Timeframe of HBeAg and HBsAg Levels of Developing Transgenic Mice and Correlation with Liver Hepatitis B DNA Levels

Thomas Ditton, Institute for Antiviral Research
With assistance from Dr. John Morrey and Neil Motter
April 12, 2018

Image from *Hepatitis B* by Steven A Gonzalez MD, MS
What is Hepatitis B?

• DNA virus spread through transmission of bodily fluids
• Causes a wide spectrum of liver disease
 • 5-10% of infected adults develop chronic infection
 • 20-30% of Chronic infections lead to cirrhosis or hepatocellular carcinoma
• ~300 million HBV carriers worldwide
 • 686,000 deaths annually

-Liang et al 2009
HBsAg and HBeAg

• **Surface antigen:**
 - Major surface protein
 - Chronic HBV infection: presence of *hepatitis B surface antigen (HBsAg)* for >6 months
 - Key diagnostic marker

• **E antigen**
 - Indicated viral replication and infectivity

-Amini et al, 2017
-Nguyen et al, 2008
-Milich D and Liang T, 2003
Transgenic Mouse Model Used by the IAR

- Genome of C57BL genetically engineered to produce hepatitis B
- Liver and kidney tissue produce complete viral particle with associated DNA, HBsAg, HBeAg, HBcAg
- No associated cytopathology

-Guidotti et al, 1995
What We Know

• Weak observed correlation between HBeAg levels and expressed viral DNA
• No record of correlation between HBsAg levels and expressed viral DNA
• Data suggest that HBsAg levels decrease over time in males
 • No data regarding decrease in females
Purpose of experiment

• Develop a timeline showing HBsAg levels over time in both males and females
• Determine correlation between HBsAg levels and expressed viral DNA
• Confirm correlation between HBeAg levels and expressed viral DNA
Methods: Samples

- Serum collected from pups weekly from 4-10 weeks of age
- Mice were euthanized and livers were harvested at 10 weeks
Methods: Antigen Analysis

• HBsAg-specific ELISA with calibrator of known WHO (IU/mL) units
 • Absorbance was matched to standard curve to determine HBsAg levels from each collection date

• HBeAg-specific ELISA with calibrator of known PEI units
 • Absorbance was matched to standard curve to determine HBsAg levels from each collection date
Methods: DNA Analysis

- Serum DNA was extracted using QIAamp cador Pathogen Mini Kit
- Liver DNA was extracted by phenol-chloroform extraction
- Extracted DNA was analyzed by real-time qPCR
Results

HBV Serum Over Time

HBV Serum Week 4 vs. Week 10

No significant difference
Results

HBV Serum DNA vs Liver DNA at Necropsy

$R^2 = 0.7612$
Results

HBeAg 1:100

Upper limit of confidence (3OD)

Normal Experimental Range

HBeAg Wk 4 vs Wk 10

No significant difference
Results

HBeAg vs Serum HBV DNA Linear Regression

Week 4 HBeAg vs HBV Serum DNA

- Scatter plot showing the relationship between HBeAg (PEI Units/mL) and HBV Serum DNA by PCR.
- \(R^2 = 0.2595 \)

Week 5
- \(R^2 = 0.2 \)

Week 6
- \(R^2 = 0.59 \)

Week 7
- \(R^2 = 0.72 \)

Week 8
- \(R^2 = 0.46 \)

Week 9
- \(R^2 = 0.28 \)

Week 10 HBeAg vs HBV Serum DNA

- Scatter plot showing the relationship between HBeAg (PEI Units/mL) and HBV Serum DNA by PCR.
- \(R^2 = 0.6211 \)
Results

HBeAg vs Liver DNA at Necropsy

\[R^2 = 0.7962 \]
Results

HBsAg wk 4 vs wk 10 ALL

\[p = 0.0066 \]

Individual HBsAg 1:200

Upper limit of confidence (3OD)
Results

HBsAg Wk 4 vs Wk 10 between genders

No Significant Difference Between Females Groups
p=0.058

p=0.016 **
HBeAg vs Viral DNA

- HBeAg vs. Serum HBV DNA: Weak/moderate correlation
- HBeAg vs. Liver HBV DNA: Strong correlation
- HBeAg useful as surrogate marker for liver and serum HBV DNA
Serum HBV DNA vs. Liver HBV DNA

• Strong positive correlation
• Serum HBV DNA useful as surrogate marker for liver HBV DNA
HBsAg Levels

• Significantly decrease over time

• Implications:
 • HBsAg commonly used as diagnostic marker
 • Potential erroneous results in mouse studies
 • Not a reliable indicator of liver HBV DNA levels
Conclusion

• Serum HBV DNA levels remain constant overtime, suggesting constant liver HBV DNA over time

• HBsAg levels significantly decrease over time. Why?
Hypothesis

• HBsAg-specific immunoglobulins begin to be produced by the mice
 • HBsAg is neutralized and degraded by phagocytosis

• Suggests possible autoimmune response
Further research

• Repeat experiment with larger sample size
 • Support evidence that HBsAg levels significantly decrease in male mice
 • Clarify non-significant decrease in female mice

• Perform IgG-specific ELISA alongside HBsAg-specific ELISA
 • Analyze suspected inverse relationship between IgG and HBsAg levels
Works Cited

Thank You!