ARTEMIS: An Enabling Technology for Long Range or High Data Rate Microspacecraft Communications

G. James Wells Robert E. Zee

Space Flight Laboratory
University of Toronto Institute for Aerospace Studies

11 August 2005
Ground Stations Arrays for Improved Microspacecraft Communications

- Effective improvement without incurring dramatic price increases while allowing for large aperture areas - costs scale linearly for increasing effective aperture
- Can retrofit existing assets or develop low-cost new assets
- Enables higher data rate microsatellite LEO missions (1 Mbps or more) and interplanetary microspacecraft missions
- Most flexible array design: downconvert each antenna signal to baseband, transmit to a central site, and use time correlation to align the signals in phase and time (this method is used by the DSN)
Frequency Offsets in Array

- Frequency offsets between the various local oscillators of each antenna in the array and the microspacecraft, as well as errors in Doppler shift correction must be dealt with
 - DSN uses hydrogen masers as frequency sources to give high frequency accuracy to avoid these error - expensive and difficult to obtain for general use

- SFL developed a software solution to the problem that can be used with any ground station equipment - frequency correlation
Low-Cost Alternative: ARTEMIS

- **AR**raying **T**echniques for **E**nhanced **M**ultiplexing of **I**nterferometric **S**ignals
- Uses both Time Domain and Frequency Domain Correlation to replace hardware requirements with software solutions

![Diagram of ARTEMIS system](image)

Low-Cost Ground Equipment + Time Correlation (DSN: Full Spectrum Combining) + Frequency Correlation (Orthogonal Frequency Division Multiplexing)
ARTEMIS Proof-of-Concept Hardware Apparatus

- Transmitter and Receiver / Ground Correlator are TI floating-point DSPs (optimized for I/FFT function)

IF Wired Link Between Transmitter and Receiver / Ground Correlator (digital upconversion to IF of up to 38.4 kHz)
ARTEMIS Frequency Correlation Experiments

• Example experiment:
 - No. OFDM channels vs. receiver SNR
 - Correlation will not function if digital signal SNR at any of the antennas in the array is too low (ie. the array will not function regardless of its size)
 - Adding more OFDM channels allows for frequency and time correlation to function for weaker signals.
 - Comparison to traditional “single-channel” transmission
Experimental Results

• Frequency correlation works down to -21 dB receiver SNR (at each antenna) with 4096 OFDM channels
 ▪ Equivalent “single-channel” signal at best would work down to -15 to -18 dB, and data rate has to be further reduced to get an equivalent frequency offset detection resolution as the OFDM signal

• This means that ARTEMIS will allow for higher downlink data rates on smaller array antenna assets using low-cost ground station equipment
ARTEMIS Applications

Microspacecraft Missions to the Moon & Mars

<table>
<thead>
<tr>
<th>Mission</th>
<th>Antenna Type</th>
<th>Data Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moon</td>
<td>3 m Parabolic Antennas in Array</td>
<td>450 kbps data rate</td>
</tr>
<tr>
<td>Mars</td>
<td>6.1 m Parabolic Antennas in Array</td>
<td>2 to 80 kbps data rate</td>
</tr>
<tr>
<td>Mars Global Surveyor</td>
<td>6.1 m Parabolic Antennas in Array</td>
<td>300 kbps data rate avg. (DSN: 42 kbps avg.)</td>
</tr>
<tr>
<td>Cassini</td>
<td>6.1 m Parabolic Antennas in Array</td>
<td>60 kbps data rate avg. (DSN: 16 kbps avg.)</td>
</tr>
</tbody>
</table>
Next Steps for ARTEMIS

- Additional memory for DSP to allow for more OFDM channels
- Addition of an RF link between the transmitter and multiple receivers, with the receivers connected to the central correlator via a wired digital data link
- LEO flight experiment on a future SFL mission
 - OFDM transceiver in orbit
 - ARTEMIS array with central correlator site on ground
Summary

- Deep Space Communications:
 ARTEMIS as a low-cost alternative to DSN
 - For new ground stations, can use low-cost RF equipment
 - Can create ad-hoc array with existing antenna infrastructure (large or small) using low-cost equipment.

- Microspace Applications of ARTEMIS
 - High data rate LEO missions
 - Greater range for Interplanetary Microsats

- LEO flight experiment on future SFL mission
Thank You

Partners

Sponsors

Dr. Wayne Cannon (York U.)
Dr. Stephen Braham (UBC)

www.utias-sfl.net