Fe Protein-Independent Substrate Reduction by Nitrogenase MoFe Protein Variants

Karamatullah Danyal
Utah State University

Andrew J. Rasmussen
Utah State University

Stephen M. Keable
Montana State University-Bozeman

Boyd S. Inglet
Utah State University

Studipta Shaw
Utah State University

Oleg A. Zadvornyy
Montana State University-Bozeman

See next page for additional authors

Follow this and additional works at: https://digitalcommons.usu.edu/chem_facpub

Part of the Chemistry Commons

Recommended Citation
Danyal, Karamatullah; Rasmussen, Andrew J.; Keable, Stephen M.; Inglet, Boyd S.; Shaw, Studipta; Zadvornyy, Oleg A.; Duval, Simon; Dean, Dennis R.; Raugei, Simone; Peters, John W.; and Seefeldt, Lance C., "Fe Protein-Independent Substrate Reduction by Nitrogenase MoFe Protein Variants" (2015). Chemistry and Biochemistry Faculty Publications. Paper 680.
https://digitalcommons.usu.edu/chem_facpub/680
Fe Protein-Independent Substrate Reduction by Nitrogenase MoFe Protein Variants

Karamatullah Danyal,‡ Andrew J. Rasmussen,‡ Stephen M. Keable,‖ Boyd S. Inget,d Sudipta Shaw,‡ Oleg A. Zadvornyy,‖ Simon Duval,‖ Dennis R. Dean,‡ Simone Raugei,‖ John W. Peters,‖ and Lance C. Seefeldt*†

†Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
‡Department of Biochemistry, Virginia Tech University, Blacksburg, Virginia 24061, United States
‖Center for Molecular Electro catalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-57, Richland, Washington 99352, United States
§Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States

Supporting Information

ABSTRACT: The reduction of substrates catalyzed by nitrogenase normally requires nucleotide-dependent Fe protein delivery of electrons to the MoFe protein, which contains the active site FeMo cofactor. Here, it is reported that independent substitution of three amino acids (β-98Tyr→His, α-64Tyr→His, and β-99Phe→Tyr) located between the P cluster and FeMo cofactor within the MoFe protein endows it with the ability to reduce protons to H2, azide to ammonia, and hydrazine to ammonia without the need for Fe protein or ATP. Instead, electrons can be provided by the low-potential reductant polyaminocarboxylate-ligated Eu(II) (Em values of −1.1 to −0.84 V vs the normal hydrogen electrode). The crystal structure of the β-98Tyr→His variant MoFe protein was determined, revealing only small changes near the amino acid substitution that affect the solvent structure and the immediate vicinity between the P cluster and the FeMo cofactor, with no global conformational changes observed. Computational normal-mode analysis of the nitrogenase complex reveals coupling in the motions of the Fe protein and the region of the MoFe protein with these three amino acids, which suggests a possible mechanism for how Fe protein might communicate subtle changes deep within the MoFe protein that profoundly affect intramolecular electron transfer and substrate reduction.

Mo-dependent nitrogenase catalyzes the fixation of biological dinitrogen (N2) to ammonia (NH3) with the minimum reaction stoichiometry shown in eq 1.1,2

\[
\begin{align*}
N_2 + 8e^- + 16MgATP + 8H^+ & \rightarrow 2NH_3 + H_2 + 16MgADP + 16P_i
\end{align*}
\]

Nitrogenase consists of two component proteins called the iron (Fe) protein and the molybdenum–iron (MoFe) protein (Figure 1).1 The MoFe protein is an αβ heterotetramer consisting of two catalytic αβ units, each containing a P cluster [8Fe-7S] and a FeMo cofactor (FeMo-co; [7Fe-9S-1Mo-C-homocitrate]).3,4 The Fe protein is a homodimer with a [4Fe-4S] cluster bridging the two subunits and an ATP binding site on each subunit.5 To achieve the complete reduction of N2 to NH3, the MoFe protein must transiently bind to the MoFe protein.6 During this association of the two proteins, a single electron is passed from the Fe protein to FeMo-co, followed by transfer of an electron from the Fe protein to the oxidized P cluster (termed a “deficit spending” electron transfer mechanism).8 ATP hydrolysis follows the electron transfer events, with release of the P, and finally dissociation of the Fe protein from the MoFe protein.7,9 The two ADP molecules bound to the released Fe protein are exchanged with ATP, and the oxidized Fe protein is reduced by dithionite (in vitro) or flavodoxin/ferredoxin (in vivo).1,10 This catalytic cycle is repeated eight times to achieve the accumulation of sufficient electrons for the activation and reduction of N2 and the stoichiometric release of H2.1,2

Fe protein is the only reductant known to support N2 reduction by the MoFe protein, suggesting it plays a pivotal role in the mechanism beyond simply donating electrons. Two recent reports have revealed that it is possible to deliver electrons directly to the MoFe protein in the absence of the Fe protein with reduction of a few substrates other than N2. In one case, a Ru–ligand complex was covalently attached to the...
MoFe protein, and it was possible to photoinduce transfer of an electron into the MoFe protein to achieve very low rates of reduction of the nonphysiological substrate acetylene to methane.11,12 In another case, substitution of a single amino acid within the MoFe protein shown in ball and stick representation with the mesh representing the van der Waals surface.

![Figure 1. Nitrogenase and metal clusters. (A) Structure of the nitrogenase complex (PDB entry 2AFK). Each unit is labeled from A to H according to the PDB numbering. (B) Three amino acid residues relevant to the Fe protein-independent reduction of the substrates (N\textsubscript{2}H\textsubscript{4}, N\textsubscript{3}−, and H+) by the MoFe protein shown in ball and stick representation. The linkage from α-64Tyr to the P cluster ligand α-62Cys and from β-98Tyr to the P cluster ligand β-95Cys are also shown. Atom colors are rust for Fe, yellow for S, gray for C, red for O, and magenta for Mo.](image)

Materials, Protein Purification, and Activity Assays. All reagents, unless stated otherwise, were purchased from Sigma-Aldrich Chemicals (St. Louis, MO). MoFe proteins were expressed in Azotobacter vinelandii strains DJ939 (β-98Tyr→H+), DJ1956 (β-99Phe→H+), and DJ1957 (α-64Tyr→H+) that were grown as described previously.14 The MoFe proteins from each strain were purified, with some modifications, as described to >95% purity and confirmed by sodium dodecyl sulfate–polyacrylamide gel electrophoresis analysis using Coomassie blue staining.15 Manipulation of proteins was done in septum-sealed serum vials under an argon atmosphere. All transfers of gases and liquids were conducted using gas tight syringes. Azide reduction, H\textsubscript{2} evolution, and N\textsubscript{2}H\textsubscript{4} reduction activities were determined as described previously.13 NH\textsubscript{3} was quantified using a fluorescence method with o-phthalaldehyde as described previously.15 For all assays, Eu(II)-L was generated by electrochemical reduction, as described previously.16

Experimental Procedures. Crystallization. Crystallization trials were performed on β-98Tyr→H+ MoFe protein that was concentrated to ∼30 mg/mL and stored in the purification buffer. All trials were conducted under anaerobic conditions in a nitrogen atmosphere glovebox (UniLAB, M. Braun) using a microcapillary batch diffusion method.17,18 Crystallization was accomplished as previously described using a precipitating solution that contained 30% polyethylene glycol (PEG) 4000, 100 mM Tris-HCl (pH 8.0), 190 mM sodium molybdate, and 1 mM sodium dithionite.19 Crystals of a dark brown color with the approximate dimensions of 100 μm × 200 μm × 200 μm were observed after they had grown for 4–6 weeks. The crystals were cryoprotected by diffusion of mother liquor doped with ∼15% glycerol. Crystals were harvested under a stream of continuous argon on rayon loops and immediately flash-cooled in liquid nitrogen. Data were collected on beamline BL-9-2 at the Stanford Synchrotron Radiation Laboratory under a continuous flow of liquid nitrogen at ∼100 K. A data set was collected at λ = 0.97 on a MAR 32S detector up to resolution 1.97 Å and was scaled and integrated using the HKL2000 software package.20

The unit cell parameters of the collected data were nearly isomorphous to the published native structure (PDB entry 3U7Q). Initial rigid body fitting and refinement were performed using AutoMR of the CCP4 suite of programs.21 Calculation of electron density maps and model fitting were accomplished by using Coot, and the model was refined using REFMAC5 to 1.97 Å resolution.22 The final model was built with a crystallographic R of 21.5, with 95.6% of the residues in the most favored Ramachandran regions and 4.2% in additionally allowed regions (Table S1 of the Supporting Information). The PDBeFold Structure Similarity server at the European Bioinformatics Institute (http://www.ebi.ac.uk/msd-srv/ssm/) was used to determine an average root-mean-square deviation (rmsd) of 0.2 Å between analogous α-carbons of the
β-98Tyr→His MoFe variant and the wild-type MoFe structure (PDB entry 3U7Q).

Normal Mode Analysis. To characterize the mechanical aspects of the long time scale dynamics of the nitrogenase complex, we performed a normal-mode analysis based on the anisotropic Gaussian network model. The nitrogenase complex was represented by beads centered at the position of the α-carbons. According to this model, two beads are connected with a harmonic spring if they are within a cutoff distance, \(R_{\text{cut}} \), and not connected otherwise. To improve the stability of the model, in this study the force constant, \(k_c \), of the spring was chosen to vary smoothly from \(k_0 \) to zero using the sigmoidal switching function around \(R_{\text{cut}} \) given in eq 2:25,26

\[
k_c(r) = \frac{k_0}{1 + e^{(r-R_{\text{cut}})/\gamma}}
\]

where \(r \) is the distance between beads \(i \) and \(j \) and \(\gamma \) is the width of the switching function. We used a cutoff distance \(R_{\text{cut}} \) of 12 Å, with a width for the switching function of 2 Å. Different choices gave consistent results, in agreement with previous reports.25

According to this model, the potential energy function of the protein is given by eq 3:

\[
V = \frac{1}{2} \sum_{i,j=1}^{N} \sum_{\alpha,\beta=x,y,z} k_c(r_{ij}) \Delta r^\alpha_{ij} \Delta r^\beta_{ij}
\]

where \(\Delta r^\alpha_{ij} \) is the component (\(\alpha = x, y, z \)) of position vector \(r_i \) for the \(i \)th \(\alpha \)-carbon and \(\Gamma \) is the so-called contact matrix. The off-diagonal and diagonal elements of the contact matrix are given by eqs 4 and 5, respectively:

\[
\Gamma_{ij} = \frac{k_c(r_{ij}) r_i \cdot e_\alpha r_j \cdot e_\beta}{k_0 |r_i| |r_j|}
\]

\[
\Gamma_{ii} = -\sum_{k=1}^{N} \sum_{\beta \neq \alpha} \Gamma_{ik}^{\beta} - \sum_{\beta \neq \alpha} \Gamma_{ki}^{\alpha}
\]

where \(e_\alpha \) is the unit vector along Cartesian direction \(\alpha \). The correlations between the fluctuations of the protein residues were analyzed in terms of the covariance matrix \(C \), whose elements \(C_{ij} = \sum_{\alpha} \langle \Delta r^\alpha_{ij} \Delta r^\alpha_{ij} \rangle \) were calculated from the eigenvector decomposition of the inverse of the contact matrix (eq 6):24

\[
C_{ij} = \frac{3k_B T}{k_0} \sum_{\alpha} \lambda_k^{-1} \Gamma_{ij}^{-\alpha} = \frac{3k_B T}{k_0} \sum_{k=1}^{N} \sum_{\alpha} \lambda_k^{-1} \langle r_i \cdot e_\alpha r_j \cdot e_\beta \rangle
\]

where \(\lambda_k \) and \(v_k \) are the \(k \)th eigenvalue and eigenvector of the contact matrix, respectively. The six zero-frequency modes corresponding to rigid body translations and rotations of the nitrogenase complex are excluded from the summation over the normal modes. Diagonal elements of the covariance matrix are proportional to the \(\beta \) factor of the amino acid residues, \(\beta_i = 8\pi^2 C_{ii}/3 \). As one can see in eq 6, the spring constant \(k_0 \) acts as a mere scaling factor for the atomic fluctuations and the \(\beta \) factors, and its value was chosen to reproduce the average magnitude of the crystallographic \(\beta \) factors. The model is able to reproduce faithfully the relative magnitude of the experimental \(\beta \) factors (Figure S1 of the Supporting Information), making us confident that it is also able to describe the overall large amplitude motions of the nitrogenase complex.

The calculations were performed on the crystal structure of the complex between the Fe protein and the MoFe protein from *Azotobacter vinelandii* with an ATP analogue and ADP bound to the Fe protein (PDB entries 2AFK and 2AFI, respectively).27

RESULTS AND DISCUSSION

The recent preliminary finding that substitution of \(\beta-98Tyr→His \) in the MoFe protein allows it to reduce hydrazine to ammonia without participation of the Fe protein or ATP, but instead with electrons coming from Eu(II)-DTPA, points to participation of the protein around \(\beta-98Tyr \) in the MoFe protein in regulating electron transfer between the P cluster and FeMo-co or in the reactivity of FeMo-co.13 To further explore this possibility, we have prepared MoFe proteins having independent amino acid substitutions for three amino acids co-localized between the P cluster and FeMo-co (\(\beta-98Tyr→His, \beta-99Phe→His, \) and \(\alpha-64His→Phe \)) (Figure 1). The amino acid substitutions did lower the proton reduction to \(H_2 \) rate driven by the Fe protein and ATP to 1100 ± 25 nmol of \(H_2 \) min\(^{-1}\) mg\(^{-1}\) for \(\beta-98Tyr→His \) and to below detection for the \(\beta-99Phe→His \) and \(\alpha-64His→Phe \) variants. The wild-type rate is ∼2000 nmol of \(H_2 \) min\(^{-1}\) (mg of MoFe protein)\(^{-1}\).

The three variant MoFe proteins were tested for their ability to reduce substrates without Fe protein, but instead with electrons coming from Eu(II) ligands. For these assays, Eu(II) and DTPA were added simultaneously to initiate the assay with no Fe protein added. Figure 2 shows the time dependence for the reduction of hydrazine (N\(_2\)H\(_4\)) to ammonia (NH\(_3\)) for the three variant proteins with rates ranging from 167 to 708 nmol of NH\(_3\) per mg of MoFe protein per 25 min. Activity was dependent on addition of Eu(II), DTPA, hydrazine, and MoFe protein. The reduction of hydrazine (N\(_2\)H\(_4\)) is a unique

Figure 2. Fe protein-independent hydrazine reduction catalyzed by MoFe protein variants. Time course of the reduction of hydrazine to ammonia reported as nanomoles of ammonia formed per milligram of MoFe protein catalyzed by \(\alpha-64His \) (), \(\beta-98His \) (), or \(\beta-99His \) () variant MoFe protein. The corresponding empty symbols are the no protein controls. These assays were performed with a final concentration of 1 mM Eu(II)-DTPA, 2.9 nmol of (1.83 μM) MoFe protein, and 100 mM hydrazine at 25 °C. Bars represent the standard deviation for two measurements.
property of these variant MoFe proteins compared to the wild-type MoFe protein alone, which is unable to reduce hydrazine with Eu-L as an electron donor.

When the hydrazine reduction assay with Eu(II)-DTPA as a reductant was conducted for short times (2 min), high activity could be achieved because the Eu-DTPA was stable for only short times. Under these optimal conditions, the maximal specific activity for hydrazine reduction at 100 mM hydrazine was found to be 300 ± 15 nmol of NH$_3$ min$^{-1}$ (mg of MoFe protein)$^{-1}$ for α-64Tyr\rightarrowHis, 180 ± 3 nmol of NH$_3$ min$^{-1}$ (mg of MoFe protein)$^{-1}$ for β-98Tyr\rightarrowHis, and 150 ± 2 nmol of NH$_3$ min$^{-1}$ (mg of MoFe protein)$^{-1}$ for β-99Phe\rightarrowHis. These rates of hydrazine reduction compare to the rate of 320 nmol of NH$_3$ min$^{-1}$ (mg of MoFe protein)$^{-1}$ catalyzed by the wild-type MoFe protein with Fe protein as the electron donor. For the β-98Tyr\rightarrowHis, β-99Phe\rightarrowHis, and α-64Tyr\rightarrowHis MoFe protein variants, the rate of reduction of hydrazine was dependent on the concentration of Eu(II)-DTPA (Figure S2 of the Supporting Information), with saturation being achieved because the Eu-DTPA was stable for only short times. Under these optimal conditions, the maximal activity for hydrazine reduction at 100 mM hydrazine could be achieved because the Eu-DTPA was stable for only short times (2 min), high activity could be achieved because the Eu-DTPA was stable for only short times. The data were fitted to the Michaelis-Menten equation $v = V_{max} [S] / (K_m + [S])$. All assays were conducted for 2 min at 25 °C with a final concentration of 1 mM Eu(II)-DTPA, 100 mM hydrazine, and 2.9 nmol of (1.83 μM) MoFe protein. The data were fit to Michaelis–Menten equation (2 min) using SigmaPlot with r2 values of 0.94, 0.87, and 0.91 for the α-64Tyr\rightarrowHis, β-98Tyr\rightarrowHis, and β-99Phe\rightarrowHis MoFe protein variants, respectively.

EDTA redox couples have reduction potentials of -1.14, -0.88, and -0.84 V versus the normal H$_2$ electrode (NHE), respectively. All three ligand complexes with Eu(II) were examined with the three variant proteins for reduction of azide to ammonia (Table 1). For some of the variants, the EGTA and EDTA complexes with Eu(II) showed higher rates of azide reduction. The Eu(II)-DTPA complex catalyzes proton reduction to form H$_2$ even in the absence of enzyme, whereas the Eu(II)-EDTA complex does not. This allowed the Eu(II)-EDTA complex to be examined as a source of electrons for proton reduction to form H$_2$ for the three proteins. Only the β-98Tyr\rightarrowHis protein showed significant H$_2$ evolution rates above background.

Structural Characterization. The structure of the β-98Tyr\rightarrowHis MoFe protein was determined and refined to 1.97 Å resolution and compared to the structure of the wild-type MoFe protein (PDB entry 3U7Q, 1.0 Å). Subtle structural differences were observed in the immediate vicinity of the amino acid substitution and in the solvent structure immediately around FeMo-co. Most notable with respect to the later is the ~ 1.5 Å difference in the position of a water molecule coordinating homocitrate resulting from the differences in the H binding groups of Tyr and His at position β-98 (Figure 4). The histidine residue in the variant refines in a slightly different orientation relative to the tyrosine in the wild-type MoFe protein and may be better posed for electron transfer due to the δ orbital dominance of this residue relative to the π orbital dominance of tyrosine. The change in side chain pK$_a$’s may also have an effect on the active site electrostatic environment and electron transfer pathway.

Calculations on Normal-Mode Conformational Changes. The findings described above reveal that it is possible to create a MoFe protein through amino acid substitutions that can reduce a number of substrates without the Fe protein and ATP. This suggests that these substitutions might regulate electron transfer from the P cluster to FeMo-co and/or the reactivity of FeMo-co. The nature of these conformational changes remains elusive, but the results from this work point to the possible participation of amino acids located between the P cluster and FeMo-co. To further explore the possible communication between the Fe protein and the MoFe protein, the vibrational normal modes that describe the large-amplitude motions of the nitrogenase complex were calculated according to a coarse-grained description of the proteins. A covariance analysis of the displacement of amino acid residues reveals a cross correlation between the motion of the two Fe proteins (Figure S3 of the Supporting Information).

<table>
<thead>
<tr>
<th>protein</th>
<th>Eu-DTPA</th>
<th>Eu-DTPA</th>
<th>Eu-EGTA</th>
<th>Eu-EDTA</th>
<th>Eu-EDTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-64Tyr\rightarrowHis</td>
<td>662 ± 29</td>
<td>108 ± 8</td>
<td>150 ± 21</td>
<td>167 ± 29</td>
<td>NDa</td>
</tr>
<tr>
<td>β-98Tyr\rightarrowHis</td>
<td>650 ± 8</td>
<td>125 ± 4</td>
<td>104 ± 8</td>
<td>79 ± 16</td>
<td>262 ± 24</td>
</tr>
<tr>
<td>β-99Phe\rightarrowHis</td>
<td>530 ± 21</td>
<td>137 ± 12</td>
<td>92 ± 8</td>
<td>NDb</td>
<td>NDb</td>
</tr>
</tbody>
</table>

Both the hydrazine and azide assays were conducted at 30 °C for 20 min, while the proton assays were conducted for 40 min at 30 °C. The hydrazine concentration was 100 mM and the azide concentration 10 mM. All assays were performed at pH 7.0.

None detected.
suggesting that the motion of one of the two Fe proteins causes a response in the region between the P cluster and FeMo-co. In particular, motion of residues α^{-64}Tyr, β^{-98}Tyr, and β^{-99}Phe in the MoFe protein correlates with the motion of the Fe protein. Figure 5 displays the correlation between these residues and the rest of the nitrogenase complex. As one can see, there is a trivial in-phase correlation between the motion of residues α^{-64}Tyr, β^{-98}Tyr, and β^{-99}Phe and the neighboring residues within the MoFe protein, which decays quickly in space. Remarkably, Figure 5 shows a high degree of out-of-phase correlation between these residues and the Fe proteins. The normal mode contributing most to this correlation corresponds to an out-of-phase rolling motion of the Fe proteins on the surface of the MoFe protein (Figure 6). These results suggest a dynamic coupling between the motion of the Fe protein and the MoFe protein region lying between the P cluster and FeMo-co, which may provide the key to understand the unique role of the Fe protein in regulating activity within the MoFe protein necessary for electron transfer and substrate reduction. The predicted motions within the MoFe protein are especially interesting because of the lack of any observed changes in different X-ray structures determined to date.27

■ CONCLUSIONS

Nitrogenase is a dynamic protein, with protein conformational changes playing key roles at various steps in the catalytic cycle.27−30 The absolute need for the Fe protein and ATP binding to the MoFe protein to support N$_2$ reduction suggests that the protein–protein association communicates conformational changes within the MoFe protein essential to some aspects of catalysis, perhaps intramolecular electron transfer...
(i.e., initiation of deficit spending electron transfer) and/or substrate binding and reduction. The results presented here add to the earlier finding that substitution of amino acids buried deep within the MoFe protein located between the P cluster and FeMo-co can create a MoFe protein that is able to reduce a number of substrates without the Fe protein and ATP. The structure of the β-98Tyr$^{\text{His}}$ variant reveals no global structural differences compared to the wild-type structure, with small changes localized near the amino acid substitution and histidine to alter the reactivity of the MoFe protein, suggesting that equally subtle changes might be sufficient when the Fe protein binds. Finally, computational normal-mode analysis reveals that the Fe protein and this region of the MoFe protein are connected in terms of molecular motion, suggesting a mechanism for how Fe protein might communicate into the MoFe protein to affect activity.

ASSOCIATED CONTENT

Supporting Information

Eu-DPTA concentration dependence, covariance matrix for the motions within the nitrogenase complex, and a table of X-ray data statistics. This material is available free of charge via the Internet at http://pubs.acs.org.

Accession Codes

The coordinate file for the β-98$^{\text{His}}$ MoFe protein was deposited with the Protein Data Bank (4XPI).

AUTHOR INFORMATION

Corresponding Authors

E-mail: lance.seefeldt@usu.edu. Phone: (435) 797-3964. Fax: (435) 797-3390.

E-mail: john.peters@chemistry.montana.edu. Phone: (406) 994-7211.

Funding

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (DE-SC00010687 and DE-SC0010834 to L.C.S. and D.R.D.), the Division of Chemical Sciences, GeoSciences, and Bio-Sciences (SR), and the National Science Foundation (MCB-1330807 to J.W.P. and L.C.S.). Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-76SF00515. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research and by the National Institutes of Health, National Institute of General Medical Sciences (including Grant P41GM103393).

Notes

The authors declare no competing financial interest.

ABBREVIATIONS

Fe protein, iron protein of nitrogenase; MoFe protein, molybdenum-iron protein of nitrogenase; FeMo-co, iron-molybdenum cofactor; Eu(II)-L, europium(II) ligand; DTPA, diethylenetriaminepentaacetic acid; EGTA, ethylene glycol bis(2-aminoethyl ether)-N,N,N',N'-tetraacetic acid; EDTA, ethylenediaminetetraacetic acid; M cluster, iron-molybdenum cofactor; F cluster, [4Fe-4S] cluster of the Fe protein; P cluster, [8Fe-7S] cluster of the MoFe protein; ET, electron transfer; PDB, Protein Data Bank.

REFERENCES

DOI: 10.1021/acs.biochem.5b00140

Biochemistry 2015, 54, 2456–2462

2461

