Evaluating the Present and Potential Future Impact of Small Satellites

10 August 2004

Andy Lewin
Johns Hopkins University
Applied Physics Laboratory
andy.lewin@jhuapl.edu
Objective

- Answer the question—"Are small satellites a complimentary or a disruptive technology?"
 - Emphasis on the near to medium term
 - Largely qualitative analysis
- This is NOT an assessment of whether small satellites are useful
- Launch history:
Method: Market-Based Analysis

• Three market segments:
 – Military
 – Civil
 – Commercial

• Focus on U.S. market

• Growth can come from one of three means:
 – Displacement of larger satellites
 – Maintenance of existing market share in a growing market (arguably this is not disruptive but is just “riding the wave”)
 – Creation of new markets
Military Space—Displacing Large Satellites

- Major Military Space Programs as of 2001:

<table>
<thead>
<tr>
<th>Program</th>
<th>Sponsor</th>
<th>Purpose</th>
<th>Mass (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP</td>
<td>Air Force</td>
<td>Nuclear and missile warning</td>
<td>2400</td>
</tr>
<tr>
<td>DMSP</td>
<td>Air Force</td>
<td>Weather monitoring and prediction; to be replaced by NPOESS</td>
<td>1500</td>
</tr>
<tr>
<td>MilSatCom EHF</td>
<td>Air Force</td>
<td>Communications</td>
<td>~7000</td>
</tr>
<tr>
<td>MilSatCom Polar</td>
<td>Air Force</td>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>T-SAT</td>
<td>Air Force</td>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>GPS</td>
<td>Air Force</td>
<td>Precise position, velocity, and time transfer</td>
<td>1545</td>
</tr>
<tr>
<td>NPOESS</td>
<td>Air Force</td>
<td>Weather monitoring and prediction; co-sponsored by NOAA and NASA</td>
<td>~2000</td>
</tr>
<tr>
<td>SBIRS-High</td>
<td>Air Force</td>
<td>Nuclear and missile warning; replacement for DSP</td>
<td></td>
</tr>
<tr>
<td>Space-Based Radar</td>
<td>Air Force</td>
<td>Moving target tracking; radar mapping</td>
<td></td>
</tr>
<tr>
<td>Wideband Gapfiller</td>
<td>Air Force</td>
<td>Communications; successor to DSCS</td>
<td>6000</td>
</tr>
<tr>
<td>DSCS</td>
<td>Army</td>
<td>Communications</td>
<td>1235</td>
</tr>
<tr>
<td>MUOS</td>
<td>Navy</td>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>Sat Comm Systems</td>
<td>Navy</td>
<td>Communications</td>
<td></td>
</tr>
</tbody>
</table>
Displacing Large Satellites

• Many of the systems are in highly elliptical or high altitude (e.g. GEO) orbit
 – Dictates the use of large launch vehicles even if the spacecraft are relatively small
 – Secondary launches are not an option for operational systems

• Power/aperture problem
 – Systems typically require high power (communications) and/or large apertures (communications and reconnaissance)

• Clusters of small spacecraft could theoretically perform the function of some large spacecraft
 – Technology is still too immature
 – Cost-effectiveness not sufficiently demonstrated
Military Space—Market Growth Potential

- Market is very large, but growth is modest (3.5% p.a. 1995-2002)
- Government funding will almost never show a large long-term growth rate

Military Space Budget Authority (constant 2005 dollars)
Military Space—Growth Opportunities

• Military showing increased interest in small satellites
 – Responsive capabilities
 – Space situational awareness
 – Space control

• Numerous efforts undertaken by the military or with military potential
 – Air Force XSS-10 and XSS-11
 – NASA Demonstration of Autonomous Rendezvous Technology
 – Surrey SNAP-1
 – Office of Force Transformation TacSat-1, TacSat-2

• DARPA FALCON program (separate from SpaceX Falcon-1 launch vehicle) aims to provide low-cost, responsive space lift capability for small satellites

• Interest is being shown, but funding is very small compared to the expenditures for large space systems
Civilian Space—Addressable Market

- Much of NASA’s budget devoted to items other than spacecraft
 - $5.8 billion of Science, Aeronautics, and Exploration available
 - $450 million of Space Flight Capabilities available
- The $6.25 billion must cover much more than spacecraft:
 - Science/research
 - Launch vehicles
 - Technology development
 - Mission and science operations
- Exploration Initiative is not likely to help small satellites

<table>
<thead>
<tr>
<th>Budget Line Item</th>
<th>Budget (US$m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science, Aeronautics, and Exploration</td>
<td>7,853</td>
</tr>
<tr>
<td>Space Science</td>
<td></td>
</tr>
<tr>
<td>Solar System Exploration</td>
<td>1,302</td>
</tr>
<tr>
<td>Mars Exploration</td>
<td>596</td>
</tr>
<tr>
<td>Astronomical Search for Origins</td>
<td>914</td>
</tr>
<tr>
<td>Structure and Evolution of the Universe</td>
<td>456</td>
</tr>
<tr>
<td>Sun-Earth Connection</td>
<td>726</td>
</tr>
<tr>
<td>Earth Science</td>
<td>1,606</td>
</tr>
<tr>
<td>Earth System Science</td>
<td>1,513</td>
</tr>
<tr>
<td>Earth Science Applications</td>
<td>92</td>
</tr>
<tr>
<td>Biological and Physical Research</td>
<td>986</td>
</tr>
<tr>
<td>Biological Sciences Research</td>
<td>368</td>
</tr>
<tr>
<td>Physical Sciences Research</td>
<td>357</td>
</tr>
<tr>
<td>Research Partnerships & Flight Support</td>
<td>260</td>
</tr>
<tr>
<td>Aeronautics</td>
<td>1,037</td>
</tr>
<tr>
<td>Space Flight Capabilities</td>
<td>7,498</td>
</tr>
<tr>
<td>Space Flight</td>
<td></td>
</tr>
<tr>
<td>Space Station</td>
<td>1,494</td>
</tr>
<tr>
<td>Space Shuttle</td>
<td>3,928</td>
</tr>
<tr>
<td>Space and Flight Support</td>
<td>468</td>
</tr>
<tr>
<td>Crosscutting Technology</td>
<td>1,608</td>
</tr>
<tr>
<td>Space Launch Initiative</td>
<td>938</td>
</tr>
<tr>
<td>Mission and Science Measurement</td>
<td>452</td>
</tr>
<tr>
<td>Innovative Tech. Transfer Partnerships</td>
<td>218</td>
</tr>
<tr>
<td>Inspector General</td>
<td>27</td>
</tr>
<tr>
<td>TOTAL</td>
<td>15,378</td>
</tr>
</tbody>
</table>
Civilian Space—Displacing Large Satellites

• A review of NASA’s 2004 budget shows that most satellite expenditures are directed towards large spacecraft such as MER, JWST, EOS
 – Power/aperture problem makes it difficult to use small satellites
 – Interplanetary spacecraft require high-energy trajectories that discourage the use of small satellites
 – Need to precisely co-locate/co-align multiple instruments
• UNEX cancelled after approving two missions (one flown)
• MIDEX competition delayed by at least one year, overall Explorer program expected to see lower flight rates
Civilian Space—Market Growth Potential

- NASA budget has been trending downwards for more than a decade
- Budget increase sought for FY 2005, but Congress is resisting due to a tight budget environment
 - Additional money slated for Exploration Initiative

![NASA Budget History (constant 2005 dollars)]
Civilian Space—Growth Opportunities

• Some small satellite activity under way
 – ST-5
 – THEMIS (5 satellite MIDEX program)
 – Magnetosphere constellation (~100 micro-/nano-satellites)
 – Ongoing SMEX competition

• Overall, little near-term opportunity seen
Commercial Space

• Disruptive technologies typically gain acceptance and growth by enabling new capabilities and applications rather than by simply displacing existing technology
 – PC initially took hold because of word processing and spreadsheet applications; partial displacement of mainframes was a by-product

• This type of innovation is more likely to occur in the commercial marketplace than in government space programs
 – Especially true in the current risk-averse environment

• Therefore, commercial space is the most likely route for the emergence of disruptive small satellite technology
Commercial Space—Displacing Large Satellites

- Commercial space expenditures dominated by geosynchronous communications satellites
 - High orbit forces the use of large launch vehicles, which makes larger spacecraft far more cost-efficient
- New and growing market for high-resolution imaging
 - Aperture problem for small spacecraft
Commercial Space—Growth Potential

• LEO communications systems were technical successes but financial disasters
 – Iridium, Globalstar used mid-size spacecraft (690kg, 450kg, respectively)
 – ORBCOMM used micro-spacecraft (42 kg)
 – All three went bankrupt and were bought for a few pennies on the dollar; all now appear to be financially viable
 – ORBCOMM is pursuing next-generation spacecraft

• Surrey-led Disaster Monitoring Constellation suggests the presence of a modest market for medium-resolution imagery

• However, truly disruptive applications capable of generating billions in revenue have yet to be identified
Launch Cost Impact on Commercial Small Space

- Getting there is NOT half the battle
- ORBCOMM example:
 - $800 million invested
 - Launch costs represent 9% of total investment

- IRIDIUM example:
 - 93 spacecraft launched prior to bankruptcy
 - Assuming $10,000/kg, $690 million in launch costs
 - Delta 2 (5 spacecraft) $34.5 million
 - Long March (2 spacecraft) $16 million
 - ~$5.5 billion invested prior to bankruptcy
 - Launch costs represent 13% of total investment

- Venture capitalists typically look for >30% annual return on investment, so **even if launch costs were zero, they would only make a marginal system look viable**

- The problem is on the revenue, not the cost side of the balance sheet

ORBCOMM Estimated Launch Costs

<table>
<thead>
<tr>
<th>S/C</th>
<th>Launch Vehicle</th>
<th>Year</th>
<th>Est. Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1-2</td>
<td>Pegasus (w/ MicroLab-1)</td>
<td>1995</td>
<td>$10m</td>
</tr>
<tr>
<td>FM5-12</td>
<td>Pegasus</td>
<td>1997</td>
<td>$14m</td>
</tr>
<tr>
<td>FM3-4</td>
<td>Taurus (secondary)</td>
<td>1998</td>
<td>$5m</td>
</tr>
<tr>
<td>FM13-20</td>
<td>Pegasus</td>
<td>1998</td>
<td>$14m</td>
</tr>
<tr>
<td>FM21-28</td>
<td>Pegasus</td>
<td>1998</td>
<td>$14m</td>
</tr>
<tr>
<td>FM30-36</td>
<td>Pegasus</td>
<td>1999</td>
<td>$15m</td>
</tr>
<tr>
<td>35 spacecraft, 6 launches</td>
<td>1999</td>
<td>$72m</td>
<td></td>
</tr>
</tbody>
</table>
Educational Institutions—Another “Market”

- Small satellites have been a disruptive impact to space education
- CubeSat program lists 66 universities and four high schools participating
 - 16 countries on 6 continents
- Other government-sponsored efforts aimed at educational institutions
 - UNEX
 - University Nanosatellite-2
 - University Nanosatellite-3
Conclusions

• At present small satellites are a complementary technology in the military, civilian, and commercial space marketplace
 – Small satellites are making very valuable contributions
 – Total expenditure dwarfed by that spent on large satellites
• Although small satellites have some growth potential, explosive growth consistent with a disruptive technology is unlikely
 – Military space spending shows only a modest growth rate
 – NASA spending has been declining
 – Within at least the commercial market, launch vehicle costs are not a primary roadblock

• Small satellites will remain a complementary technology for the foreseeable future