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ABSTRACT

Classical Foundations for a Quantum Theory of Time

in a Two-Dimensional Spacetime

by

Nathan Thomas Carruth, Master of Science

Utah State University, 2010

Major Professor: Dr. Charles G. Torre
Department: Physics

We consider the set of all spacelike embeddings of the circle S1 into a spacetime

R1 × S1 with a metric globally conformal to the Minkowski metric. We identify

this set and the group of conformal isometries of this spacetime as quotients of

semidirect products involving diffeomorphism groups and give a transitive action of

the conformal group on the set of spacelike embeddings. We provide results showing

that the group of conformal isometries is a topological group and that its action on

the set of spacelike embeddings is continuous. Finally, we point out some directions

for future research.

(76 pages)
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CHAPTER 1

INTRODUCTION

Our goal in this thesis is to provide mathematical foundations needed to im-

plement Isham’s quantization program [1] for the system whose configuration space

is the set of spacelike embeddings in a two-dimensional spacetime with compact

spatial dimension and metric globally conformal to the Minkowski metric.1

We present three main results in this direction. The third, whose importance is

the most immediately obvious, is the proof that the group of conformal isometries

of the spacetime has a natural continuous transitive action on this collection of

spacelike embeddings. As we indicate in Chapter 5, we believe that this group may

be extended to a group of symplectic transformations acting transitively on the

corresponding phase space. In Isham’s program the unitary representations of this

latter group then give information about the quantum system (more specifically,

the self-adjoint generators of the one-parameter unitary groups coming from such

a representation are the observables of the quantum system).

Our other two main results, also presented in Chapter 4, are the identification

of the group of conformal isometries and the set of spacelike embeddings in terms of

1We note that every Lorentzian metric in a two-dimensional spacetime is locally
conformal to the Minkowski metric; this global condition serves to eliminate cer-
tain pathologies, such as closed timelike curves, which could otherwise occur. We
note also that there is another obvious choice of topology for a two-dimensional
spacetime, namely R1 ×R1, in which the spatial dimension is noncompact. As far
as the results which we establish go, the compact case appears the more difficult
of the two; it appears, though, that the infinite-dimensional differential geometry
discussed in Chapter 5 is easier in the compact case.
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diffeomorphism groups. In our opinion it is the methods used in proving these two

results which constitute the main technical innovation of the present work, especially

the openness arguments and their use in providing homeomorphism arguments.

The continuity arguments given below have received very similar treatments in the

literature [5], [6], but we are not presently aware of any previous appearance of

results similar to the openness results presented in Chapter 3, particularly those in

Proposition 3.6 and Lemmas 3.1, 3.2, and 3.3; nor are we aware of prior use of the

methods used in those proofs, the concept of openness of a map onto its image, and

the related result presented in Proposition 3.2. Continuity and transitivity of the

group action presented in Theorem 4.3 could possibly be proved more directly, but

the identification in Theorem 4.1 of the conformal group in terms of diffeomorphism

groups (which are in fact covering groups of Diff(S1)) will presumably be helpful in

studying the representation theory necessary to complete Isham’s program.

We proceed as follows. In Chapter 2 we set notation and some basic conventions,

show that two certain groups of R1-diffeomorphisms are in fact topological groups

in the C∞ topology (defined below), and establish that a certain semidirect product

constructed from one of these groups is also a topological group. This semidirect

product group is that used in our constructions in Chapter 4. In Chapter 3 we

prove certain openness and topological results which are needed in Chapter 4; we

also establish that the group of diffeomorphisms used in the semidirect product

is a covering group of Diff(S1), among other things. In Chapter 4 we present

homeomorphisms between the conformal group and the set of spacelike embeddings
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on the one hand and quotients of this semidirect product group on the other, and

demonstrate the transitive action of the conformal group on the set of spacelike

embeddings in terms of these homeomorphisms. In Chapter 5 we give a brief,

informal account of the next steps necessary to implement Isham’s program and

also provide an indication of the type of questions which can be studied therein.
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CHAPTER 2

TOPOLOGICAL GROUP STRUCTURES

First we would like to set some notation which will be used in the follow-

ing. The symbol N refers to nonnegative integers, i.e., 0 ∈ N; N∗ = N\{0} is

the set of positive integers. R will denote the set of real numbers and C the

set of complex numbers. The letters V and W will be used to denote finite-

dimensional vector spaces, either real or complex, with the usual topology. Typically

we will use the standard Euclidean metric on Rn and Cn, i.e., |(x1, x2, · · · , xn)| =√
|x1|2 + |x2|2 + · · · + |xn|2; however, we will also have occasion to consider sets

of the form
∏n

i=1 Xi, where Xi is a compact subset of R or C, and unless stated

otherwise we will use the supremum metric on such spaces, i.e.,

d((x1, x2, · · · , xn), (y1, y2, · · · , yn)) = max
1≤i≤n

|xi − yi|. (2.1)

(This metric of course gives the same topology as does the Euclidean metric.) We

consider the circle S1 as the group of complex numbers of unit modulus. We let id

denote the identity map; its domain space will be determined by the context.

If V and W , as above, are finite-dimensional vector spaces, we let C∞(V,W ) de-

note the set of all smooth (i.e., infinitely differentiable) maps from V to W . We shall

always topologize these spaces and their subsets using the family of seminorms given

as follows, following Yosida [3], pp. 26-27. Let v = dim(V ), and let {x1, x2, · · · , xv}

be a basis for V ; then, for n ∈ N, K ⊂ V compact, (αi) = (α1, · · · , αv) ∈ Nv,

|(αi)| =
∑

αi, and (for f ∈ C∞(V,W ))
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∂(αi)f =
∂α1

∂xα1
1

∂α2

∂xα2
2

· · · ∂αv

∂xαv
v

f, (2.2)

where we make the convention that ∂0

∂x0
i

= id, we define

pn,K(f) = sup
|(αi)|≤n,x∈K

∣∣∣(∂(αi)f
)

(x)
∣∣∣ . (2.3)

When clarity is desired we may occasionally emphasize V or W by writing pV
n,K ,

pV,W
n,K , or pW

n,K . We shall, however, never write R1 as a superscript. We note that,

for any n ∈ N, pn,K(f − g) = 0 for all K implies that f(x) = g(x) for all x; thus

(see Yosida [3], p. 26) the topology on C∞(V,W ) defined by this family of semi-

norms gives C∞(V,W ) the structure of a locally convex space. We shall always

give these spaces this topology.2 Thus sets of the form {f ∈ C∞(V,W )|pn,K(f −

f0) < ε}, n ∈ N, K ⊂ V compact, f0 ∈ C∞(V,W ), and ε > 0 form a basis

for the topology of C∞(V,W ). (Though not necessary for this definition of the

topology, we shall usually tacitly assume that all compact sets K are nonempty.)

2This topology corresponds to the so-called weak topology introduced in [15], Sec-
tion 2.1. Other topologies for these spaces which we have seen include the so-called
strong topology introduced also in [15], Section 2.1, and the so-called very-strong
topology introduced in [16]. For spaces of C∞ functions on compact manifolds all
three definitions appear to coincide (see [15], p. 35, [16], p. 413). As we will see in
Chapter 4, the group of conformal transformations of interest to us behaves in some
ways like a set of C∞ functions on a compact manifold; thus the weak topology is a
reasonable choice. Further, the strong and very strong topologies are not in general
first countable ([15], p. 35, [16], p. 413); also, as we point out after Theorem 4.1
below, the identity is the only element of the conformal group which has compact
support, and thus the results in [17] (see especially p. 19 and Proposition 4.1) ap-
pear to imply that the conformal group is totally disconnected in the very strong
topology. While this would imply that our group in the very strong topology is
at least first countable, it is still (as is lack of first countability) very undesirable
from the perspective of the infinite-dimensional differential geometry mentioned in
Chapter 5. The use of fundamentally different function spaces, such as the Sobolev
spaces used in [18], is beyond the scope of our present work.
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We shall denote these sets by U(n, K, ε, f0); as with the pn,K we may occasion-

ally emphasize the vector spaces and write UV,W (n,K, ε, f0), etc. We note that

U(n,K1, ε, f0)∩U(n,K2, ε, f0) = U(n,K1∪K2, ε, f0). We note also that pm,K(f) ≤

pn,K(f) for any compact K and any m, n ∈ N for which m ≤ n (in particular,

p0,K(f) = sup
x∈K

|f(x)| ≤ pn,K(f) for any n ∈ N); thus U(n,K, ε, f0) ⊂ U(m,K, ε, f0)

for n ≥ m and we may restrict to n ≥ n0 for any fixed n0 ∈ N and obtain an

equivalent topology. If X ⊂ W is a submanifold then we topologize C∞(V,X) as

a subspace of C∞(V,W ). (The term subspace will always be used to mean simply

a topological subspace, i.e., a subset equipped with the subspace topology, unless

noted otherwise.) The only spaces of C∞ maps which we shall consider below in

which the domain space is not a vector space are spaces of the form C∞(S1, X) or

C∞(R1 × S1, X); we shall topologize these roughly as in Milnor [2] (i.e., roughly

with the weak topology) – we give the details in Chapter 3 below.

For any finite-dimensional vector space V , we set

C∞
p (R1, V ) = {f ∈ C∞(R1, V )|f(x + 2π) = f(x) for all x ∈ R}, (2.4)

and topologize it as a subset of C∞(R1, V ). We let Diff(R1) denote the set of

all C∞ diffeomorphisms of the real line, i.e., invertible smooth maps with smooth

inverses. We let

Diff2πZ(R1) = {f ∈ Diff(R1)|f(x + 2π) = f(x) + 2π for all x ∈ R} (2.5)

and note that it is a subgroup of Diff(R1). We topologize these last two spaces as

subspaces of C∞(R1,R1).
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We shall often denote the nth derivative of a function f ∈ C∞(R1, V ) by f (n) ∈

C∞(R1, V ). We make the convention that f (0) = f .

We recall (see Bredon [4], pp. 4-5, especially Proposition I.2.6) that a function

f : X → Y between two topological spaces is continuous if and only if for every x ∈

X and any basis of open sets Bf(x) at f(x) ∈ Y , the set f−1(U) is a neighborhood

of x for every U ∈ Bf(x). In our case, this gives rise to the following result.

Proposition 2.1. Let V1, V2,W1, and W2 be finite-dimensional vector spaces.

Then a function F : C∞(V1,W1) → C∞(V2,W2) is continuous if and only if for every

g0 ∈ C∞(V1,W1), n ∈ N, K ⊂ V2 compact, and ε > 0, there exist n′ ∈ N, K ′ ⊂ V1

compact, and δ > 0 so that pV1,W1

n′,K′ (g−g0) < δ implies that pV2,W2

n,K (F (g)−F (g0)) < ε.

Proof. This criterion is equivalent to

F−1(UV2,W2(n,K, ε, F (g0))) ⊃ UV1,W1(n
′,K ′, δ, g0), (2.6)

and the result is then clear since by definition the collections of all sets of the form

UVi,Wi
(n,K, εi, fi) form neighborhood bases about fi ∈ C∞(Vi,Wi). QED.

Similar results clearly hold in the case of maps between products of these spaces.

With these preliminaries out of the way we now proceed to our first main results,

namely that Diff(R1) and Diff2πZ(R1) are topological groups with respect to the

C∞ topology specified above. We refer the reader to the papers by Glöckner [5],

[6] for a somewhat clearer proof of this result along the same lines. We present

the proofs below for the sake of completeness, and also because the form of the

polynomials in Proposition 2.2 and an estimate in the proof of Lemma 2.1 are both
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needed for the proof of Lemma 2.2 presented in Chapter 3 below.

Our first proposition, giving an explicit formula for the polynomials mentioned

in [6], Appendix, in the case d = n = 1, is fairly easy, even if it at first sight appears

somewhat cumbersome. The reader is strongly encouraged to work out a few cases

such as n = 1, 2, 3, . . . by hand, collecting terms to bring the result into the form

given below, so as to get a feel for what is going on. For a similar but much more

general result, see Keller [7], p. 111.

Proposition 2.2. Let n ∈ N∗. There is a finite collection In = {{(ji,mi, li)}i}

of finite, ordered sequences of triples of positive natural numbers and a collection of

positive natural numbers {an
k}k∈In

such that, if V is any finite-dimensional vector

space, f ∈ C∞(R1, V ), and g ∈ C∞(R1,R1), then

(f ◦ g)(n) = (f ′ ◦ g)(x)g(n)(x)

+
∑

k={(ji,mi,li)}N
1 ∈In

an
k

(f (j1) ◦ g
)

(x)
∏

(ji,mi,li)∈k

(
g(li)(x)

)mi

 .(2.7)

Moreover, if k = {(ji,mi, li)}N
i=1 ∈ In, then j1 = j2 = · · · = jN ,

∑N
i=1 mili = n,∑N

i=1 mi = j1, and li < n for all i. (Since ji is independent of i, we shall simply

write k = {(j,mi, li)}N
i=1 below.)

Proof. The proof proceeds by induction. For n = 1 we have by the chain rule

(f ◦ g)′(x) = (f ′ ◦ g)(x)g′(x), which is simply the leading term above; we may thus

take I1 = ∅ and the result follows vacuously. Now suppose that the result holds for

n ≤ q, q ≥ 1. We shall differentiate the expansion above with n = q and show that

each resulting term is of the correct form. We see that



9

(f ◦ g)(q+1)(x) =(f ′ ◦ g)(x)g(q+1)(x) + (f ′′ ◦ g)(x)g(q)(x)g′(x)

+
∑

k={(j,mi,li)}∈Iq

aq
k

d

dx

(f (j) ◦ g
)

(x)
∏

(j,mi,li)∈k

(
g(li)(x)

)mi

 . (2.8)

The first term is the expected leading term in the expansion with n = q + 1. The

second term is a term of the correct form with sequence {(2, 1, q), (2, 1, 1)}; since

for this sequence j1 = j2 = 2,
∑

mili = q + 1,
∑

mi = 2 = j1, and li < q + 1 for

each i, this sequence is of the desired form, and hence so is this term.

Now each term in the sum in equation (2.8) may be expanded as (for k =

{(j,mi, li)} ∈ Iq; we set z0 = 1 for all z ∈ R1 and note also that mi ≥ 1 for all i)

aq
k

[(
f (j+1) ◦ g

)
(x) g′(x)

∏
(j,mi,li)∈k

(
g(li)(x)

)mi

+
∑

(j,mi,li)∈k

(
f (j) ◦ g

)
(x)mi

(
g(li)(x)

)mi−1

g(li+1)(x)
∏

(j,m,l)∈k
(m,l)6=(mi,li)

(
g(l)(x)

)m
]
. (2.9)

Now the first of these terms is a term of the stated form whose sequence is k with

each j replaced by j + 1 and the term (j + 1, 1, 1) added at the end (recall that

each k is considered as an ordered sequence!); since this new sequence satisfies

j1 = · · · = jN+1 = j + 1,
∑

ml = q + 1,
∑

m = j + 1 = j1, and l < q < q + 1

for each l, it is of the desired form, and thus so is this term. Similarly, fix some

(j,mi, li) ∈ k, and consider the corresponding term in the sum in (2.9). Consider

the sequence obtained from k by adjoining the element (j, 1, li + 1) at the end and

replacing (j,mi, li) by (j,mi − 1, li) if mi > 1, or deleting it if mi = 1. This new

sequence is easily seen to correspond to the term under consideration. Now for this
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sequence we have j1 = j2 = · · · = j,
∑

ml = q + (li + 1)−mili + (mi − 1)li = q + 1,∑
m = j − mi + (mi − 1) + 1 = j, and l < q + 1 for all l; thus this sequence is of

the desired form. Hence we see that each term in (2.9) is of the desired form; since

(2.9) is a generic term of the sum in equation (2.8), the entire sum is of the desired

form, and hence the result holds for n = q + 1 and thus for all n by induction.

(Each an
k will be a positive natural number since N∗ is closed under the operations

of addition and multiplication.) QED.

We note that we could dispense with the first term above by including the

singleton sequence {(1, 1, n)} in In and writing an
{(1,1,n)} = 1 for all n, and we shall

frequently do this below. In this case we shall write Jn for the collection of sequences

rather than In. (The only condition in the above proposition not satisfied by Jn is

l < n, which must be replaced with l ≤ n.) The explicit form of the leading term

is important in the proof of Lemma 2.2 given in Chapter 3 below, but we shall not

need it until then.

We now proceed to prove that composition of C∞ functions is continuous, using

the above proposition. First we make one more definition. Fix n ∈ N∗. For each

k ∈ Jn we define a multilinear form βk : Rn → R by βk((xi)n
i=1) =

∏
(j,m,l)∈k(xl)m;

thus by the proposition we may write

(f ◦ g)(n)(x) =
∑
k∈Jn

an
k

(
f (j) ◦ g

)
(x) βk

(
(g(i)(x))n

i=1

)
. (2.10)

We note that if k ∈ In then βk only depends on the first n − 1 elements of (xi).

Let V denote a finite-dimensional vector space.
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Lemma 2.1. Composition of C∞ functions,

α : C∞(R1, V ) × C∞(R1,R1) → C∞(R1, V )

(f, g) 7→ f ◦ g,

(2.11)

is continuous.

Proof. Basically, this follows from continuity of the multilinear functions βk

along with certain compactness arguments. Some of the estimates are somewhat

involved, though, so for the sake of completeness, and also because one of the

estimates below is necessary for the proof of Lemma 2.2, we give a detailed proof

of this result, as follows.

Continuity of α is equivalent to openness of α−1(U) in C∞(R1, V )×C∞(R1,R1)

for each basic open set U ⊂ C∞(R1, V ). Fix (f0, g0) ∈ C∞(R1, V ) × C∞(R1,R1),

n ∈ N∗, K ⊂ R1 compact, and ε > 0, and let U = UV (n,K, ε, f0 ◦ g0) be the

corresponding basic neighborhood of f0 ◦ g0 = α(f0, g0). By our comments about

restricting n on pp. 5-6 the set of all such U is a basis for the topology of C∞(R1, V )

since α is clearly surjective (as α(f, id) = f for all f ∈ C∞(R1, V )). We must

then show that there exist n1, n2 ∈ N, K1,K2 ⊂ R1 compact, and δ1, δ2 > 0

so that UV (n1,K1, δ1, f0) × U(n2,K2, δ2, g0) ⊂ α−1(U); i.e., so that for all f ∈

C∞(R1, V ), g ∈ C∞(R1,R1) pV
n1,K1

(f − f0) < δ1 and pn2,K2(g − g0) < δ2 implies

that pV
n,K(f ◦ g − f0 ◦ g0) < ε.

First, define K ′ = g0(K) + [−1, 1]; then K ′ is compact. Similarly, for each n′ ∈

N∗, n′ ≤ n let K ′′
n′ =

∏n′

i=1

(
g
(i)
0 (K) + [−1, 1]

)
⊂ Rn′

; the K ′′
n′ are also compact

since g0 ∈ C∞(R1,R1). Note that K ′ and K ′′
n′ are fixed – they are determined solely
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by the initial data fixed in the paragraph above. Now suppose that g ∈ C∞(R1,R1)

satisfies pn,K(g − g0) < 1; then for each i ∈ N∗, i ≤ n, we have g(i)(K) ⊂ g
(i)
0 (K) +

[−1, 1]. Thus
∏n′

i=1 g(i)(K) ⊂ K ′′
n′ for each n′ ≤ n. Similarly, g(K) ⊂ K ′. Now

for each q ∈ N f
(q)
0 |K′ : K ′ → V is uniformly continuous (see, e.g., Munkres [8],

Theorem 27.6), as are the βk|K′′
n′

: K ′′
n′ → R1 for each k ∈ Jn′ , where 1 ≤ n′ ≤ n. Let

s = max
1≤n′≤n

(∑
k∈Jn′

|an′

k |
)
; then s > 0 since n ≥ 1. Let ε′ = ε

9(1 + s) (1 + pn,K(g0))
n ,

ε′′ = ε
3(1 + s)(1 + pV

n,K′(f0))
; then 0 < ε′ < ∞, 0 < ε′′ < ∞ and ε′ and ε′′ are both

fixed by our choices in the previous paragraph. By the uniform continuity of the

functions noted above we may then choose δ′, δ′′ > 0 so that (i) x, y ∈ K ′ and

|x − y| < δ′ implies that |f (q)
0 (x) − f

(q)
0 (y)| < ε′ for all q ∈ N, q ≤ n and (ii)

x, y ∈ K ′′
n and max

1≤i≤n
|xi − yi| < δ′′ (recall our convention about the metric used

on products of compact subsets of R1!) implies that |βk((xi)n′

1 ) − βk((yi)n′

1 )| < ε′′

for all k ∈ Jn′ , 1 ≤ n′ ≤ n. (δ′′ exists since the collection of functions {βk|k ∈

Jn′ for some 1 ≤ n′ ≤ n} is finite and each member is uniformly continuous, and

since x, y ∈ K ′′
n and max

1≤i≤n
|xi − yi| < δ′′ if and only if (xi)n′

1 , (yi)n′

1 ∈ K ′′
n′ and

max
1≤i≤n′

|xi − yi| < δ′′ for each 1 ≤ n′ ≤ n.)

Now let δ = min{1, δ′, δ′′, ε′}, and let f ∈ C∞(R1, V ) and g ∈ C∞(R1,R1)

satisfy pV
n,K′(f−f0) < δ and pn,K(g−g0) < δ. We note that pV

q,K′(f) < 1+pV
q,K′(f0)

and pq,K(g) < 1 + pq,K(g0) for all q ∈ N, q ≤ n. Thus in particular g(K) ⊂ K ′

and
∏q

i=1 g(i)(K) ⊂ K ′′
q for 1 ≤ q ≤ n. Further, for all q ∈ N, q ≤ n we see that

x, y ∈ K ′ and |x − y| < δ implies
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|f (q)(x) − f (q)(y)| ≤ |f (q)(x) − f
(q)
0 (x)| + |f (q)(y) − f

(q)
0 (y)| + |f (q)

0 (x) − f
(q)
0 (y)|

< δ + δ + ε′ ≤ 3ε′, (2.12)

since pV
n,K′(f − f0) < δ ≤ ε′, and δ ≤ δ′ implies that |f (q)

0 (x) − f
(q)
0 (y)| < ε′ by

uniform continuity of f0 on K ′. Thus for all x ∈ K,

|(f ◦ g)(x) − (f0 ◦ g0)(x)| ≤ |(f ◦ g)(x) − (f ◦ g0)(x)| + |(f ◦ g0)(x) − (f0 ◦ g0)(x)|

< 3ε′ + δ ≤ 4ε′ < ε, (2.13)

since |g(x) − g0(x)| < δ and g(x), g0(x) ∈ K ′, and |f(y) − f0(y)| < δ ≤ ε′ for all

y ∈ K ′.

Now fix n′ ∈ N∗, n′ ≤ n, and x ∈ K. We see that

∣∣∣(f ◦ g)(n
′)(x) − (f0 ◦ g0)(n

′)(x)
∣∣∣ ≤ ∑

k∈Jn′

∣∣∣an′

k

∣∣∣ ·∣∣∣(f (j) ◦ g
)
(x)βk

(
(g(i)(x))n′

1

)
−
(
f

(j)
0 ◦ g0

)
(x)βk

(
(g(i)

0 (x))n′

1

)∣∣∣ .
(2.14)

Now fixing k = {(j,mι, lι)} ∈ Jn′, we see that

∣∣∣(f (j) ◦ g
)
(x)βk

(
(g(i)(x))n′

1

)
−
(
f

(j)
0 ◦ g0

)
(x) βk

(
(g(i)

0 (x))n′

1

)∣∣∣
≤
∣∣∣(f (j) ◦ g

)
(x)βk

(
(g(i)(x))

)
−
(
f (j) ◦ g0

)
(x)βk

(
(g(i)(x))

)∣∣∣
+
∣∣∣(f (j) ◦ g0

)
(x)βk

(
(g(i)(x))

)
−
(
f (j) ◦ g0

)
(x)βk

(
(g(i)

0 (x))
)∣∣∣

+
∣∣∣(f (j) ◦ g0

)
(x)βk

(
(g(i)

0 (x))
)
−
(
f

(j)
0 ◦ g0

)
(x)βk

(
(g(i)

0 (x))
)∣∣∣

=
∣∣∣(f (j) ◦ g

)
(x) −

(
f (j) ◦ g0

)
(x)
∣∣∣ ∏
(j,mι,lι)∈k

∣∣∣g(lι)(x)
∣∣∣mι

+
∣∣∣(f (j) ◦ g0

)
(x)
∣∣∣ ∣∣∣βk

(
(g(i)(x))

)
− βk

(
(g(i)

0 (x))
)∣∣∣

+
∣∣∣(f (j) ◦ g0

)
(x) −

(
f

(j)
0 ◦ g0

)
(x)
∣∣∣ ∏
(j,mι,lι)∈k

∣∣∣g(lι)
0 (x)

∣∣∣mι

. (2.15)
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Recalling that 1 ≤ j, l ≤ n′ ≤ n and
∑

mι = j for (j,mι, lι) ∈ k, that x ∈ K, and

hence that g(x), g0(x) ∈ K ′, that pn,K(g − g0) < δ ≤ 1, and that pV
n,K′(f − f0) <

δ ≤ ε′, we see that

|(f (j) ◦ g)(x) − (f (j) ◦ g0)(x)| ≤ 3ε′∏
(j,mι,lι)∈k

∣∣∣g(lι)(x)
∣∣∣mι

≤ (1 + pn′,K(g0))j ≤ (1 + pn,K(g0))n

|(f (j) ◦ g0)(x)| ≤ 1 + pV
n,K′(f0)

|(f (j) ◦ g0)(x) − (f (j)
0 ◦ g0)(x)| < δ ≤ ε′∏

(j,mι,lι)∈k

∣∣∣g(lι)
0 (x)

∣∣∣mι

≤ (1 + pn′,K(g0))j ≤ (1 + pn,K(g0))n;



(2.16)

moreover, we see that max
1≤i≤n

|g(i)(x) − g
(i)
0 (x)| ≤ pn,K(g − g0) < δ ≤ δ′′; since

(g(i)(x))n
1 , (g(i)

0 (x))n
1 ∈ K ′′

n, uniform continuity of βk gives, for each k ∈ Jn′,

∣∣∣βk((g(i)(x))n′

1 ) − βk((g(i)
0 (x))n′

1 )
∣∣∣ < ε′′. (2.17)

(In passing note our (admittedly buried) usage of the uniform continuity of f (j) and

βk: we need the estimates given above to hold uniformly for all g and all x ∈ K and

hence need uniform continuity, not just pointwise continuity.) We therefore obtain

∣∣∣(f (j) ◦ g
)
(x)βk

(
(g(i)(x))

)
−
(
f

(j)
0 ◦ g0

)
(x) βk

(
(g(i)

0 (x))
)∣∣∣

≤ 3ε′ (1 + pn,K(g0))
n +

(
1 + pV

n,K′(f0)
)
ε′′ + ε′ (1 + pn,K(g0))

n

=
4ε

9(1 + s)
+

ε

3(1 + s)
<

ε

1 + s
; (2.18)

and substituting this back in to our original expression in equation (2.14) above

gives finally



15∣∣∣(f ◦ g)(n
′)(x) − (f0 ◦ g0)(n

′)(x)
∣∣∣ < ∑

k∈Jn′

∣∣∣an′

k

∣∣∣ ε

1 + s

≤ ε
s

1 + s
< ε, (2.19)

so f ◦ g ∈ U . We may thus take δ1 = δ2 = δ, K1 = K ′, K2 = K, and n1 = n2 = n.

QED.

This establishes, in particular, that composition in Diff(R1) is continuous. See

[16], Proposition 2.3, [19], Proposition 1, for similar results in other topologies.

The last step in proving that Diff(R1) is a topological group is to prove that

inversion ι : Diff(R1) → Diff(R1), f 7→ f−1 is continuous. A large part of the

technical work necessary for this is applicable also to proving one of the openness

results in Chapter 3, and so we give it as a separate result, as follows. As usual, let

V be some fixed finite-dimensional real vector space. Now let

C∞
0 (R1, V ) = {f ∈ C∞(R1, V )|f ′(x) 6= 0 for all x ∈ R1}. (2.20)

It is to be topologized, of course, as a subspace of C∞(R1, V ). We then have the

following result.

Lemma 2.2. Let f0 ∈ C∞
0 (R1, V ), g0 ∈ C∞(R1,R1). For every ε > 0, n ∈ N,

and K ⊂ R1 compact, there exist δ > 0 and K1,K2,K3 ⊂ R1 compact so that, for

all f ∈ C∞(R1, V ) and g ∈ C∞(R1,R1), pV
n,K1

(f−f0) < δ, pV
n,K2

(f ◦g−f0◦g0) < δ,

and p0,K3(g − g0) < δ implies that pn,K(g − g0) < ε.

We defer the proof to Chapter 3 and instead show first how this result may be

applied to show continuity of inversion.
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Corollary 2.1. Inversion

ι : Diff(R1) → Diff(R1)

f 7→ f−1

(2.21)

is continuous.

Proof. We proceed by showing (essentially) that ι is continuous in the compact-

open topology on Diff(R1) (i.e., the C∞ topology restricted to n = 0) and then

applying Lemma 2.2. The technical details of the following argument basically

involve a lot of juggling of inequalities. There is, nevertheless, a fairly clear intuitive

picture to most of what we are doing: we may think of a neighborhood of a function

g0 in Diff(R1) as consisting of certain functions having their graphs in a strip in the

plane around the graph of g0; recalling that the graph of the inverse of a function

is simply the graph of the original function reflected in the line {(x, x)|x ∈ R1},

we then see that the inverses of all such functions must have their graphs in the

reflection in this line of the original strip around g0, which is a strip around g−1
0 .

This underlies the inequality-juggling below.

Fix f0 ∈ Diff(R1). We show that, if K ⊂ R1 is compact and ε > 0, then there

exist K ′ ⊂ R1 compact and δ > 0 so that p0,K′(f − f0) < δ implies p0,K(f−1 −

f−1
0 ) < ε. Fix K and ε. Set K∗ = [inf K − 1, sup K + 1]; then K ⊂ K∗ and

K∗ is compact. Now since f0 ∈ Diff(R1) we see that either f ′
0 > 0 on R1 or

f ′
0 < 0 on R1. First suppose that f ′

0 > 0. Let K ′′ ⊂ R1 be any compact set with

supK ′′ > inf K ′′. Then we see that f0(supK ′′)− f0(inf K ′′) > 0; if f ∈ Diff(R1) is

such that p0,K′′(f − f0) < 1
2(f0(supK ′′)− f0(inf K ′′)) then f0(x)− 1

2(f0(supK ′′)−
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f0(inf K ′′)) < f(x) < f0(x) + 1
2(f0(supK ′′) − f0(inf K ′′)) for all x ∈ K ′′; thus

f(supK ′′) − f(inf K ′′) >

[
f0(supK ′′) − 1

2
(f0(supK ′′) − f0(inf K ′′))

]
−
[
f0(inf K ′′) +

1
2
(f0(supK ′′) − f0(inf K ′′))

]
=

1
2
(f0(supK ′′) + f0(inf K ′′))

− 1
2
(f0(supK ′′) + f0(inf K ′′))

= 0, (2.22)

and thus f ′(x) > 0 for some x ∈ K ′′, so f ′ > 0 on R1, since f is a diffeomorphism

of R1.

Now K∗ + [−1, 1] ⊂ R1 is compact; thus there is a δ′′ > 0 so that x, y ∈ K∗ +

[−1, 1] and |x− y| < δ′′ imply that |f−1
0 (x)− f−1

0 (y)| < ε. Let now K ′ = f−1
0 (K∗),

which is compact since f0 ∈ Diff(R1); we note that f0(supK ′) = supK∗ and

f0(inf K ′) = inf K∗, so f0(supK ′) > f0(inf K ′) (and hence sup K ′ > inf K ′) by our

definition of K∗. Now set δ = min{1
2δ′′, 1

2(supK∗−inf K∗), 1
2}, and let f ∈ Diff(R1)

satisfy p0,K′(f − f0) < δ. We note that f ′ > 0 on R1.

Now we begin our juggling of inequalities. First, we note that for all x, a ∈

R1, f0(f−1
0 (x − a)) + a = x, so (f0 + a)−1(x) = f−1

0 (x − a), and similarly (f0 −

a)−1(x) = f−1
0 (x + a). Further, if g1, g2 ∈ Diff(R1), g′1, g

′
2 > 0, and g1(x) >

g2(x) for all x in some set A, then for all y ∈ g1(A) we have g2(g−1
2 (y)) = y =

g1(g−1
1 (y)) > g2(g−1

1 (y)), so g−1
2 (y) > g−1

1 (y) since g′2 > 0; similarly, for y ∈ g2(A)

we have g1(g−1
1 (y)) = y = g2(g−1

2 (y)) < g1(g−1
2 (y)), so again g−1

2 (y) > g−1
1 (y).

Now f(f−1
0 (K∗)) = f(K ′) ⊂ K∗ + [−1, 1]; also, f0(x) + δ > f(x) > f0(x)− δ for all
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x ∈ f−1
0 (K∗) = K ′, so for all y ∈ f0(K ′)+{δ}∩f0(K ′)−{δ} ⊂ K∗+[−1

2 , 1
2 ] we have

f−1
0 (y + δ) > f−1(y) > f−1

0 (y − δ). But f−1
0 (y + δ) < f−1

0 (y) + ε and f−1
0 (y − δ) >

f−1
0 (y) − ε, by our choice of δ′′ and since δ ≤ 1

2δ′′ and y, y ± δ ∈ K∗ + [−1, 1]; thus

|f−1(y) − f−1
0 (y)| < ε for y ∈ K∗ + {δ} ∩ K∗ − {δ}. But δ < 1, so since K∗ is

connected K∗ + {δ}∩K∗−{δ} ⊃ K∗ + {1}∩K∗−{1} ⊃ [inf K, supK] ⊃ K. Thus

p0,K(f−1 − f−1
0 ) < ε, as desired.

If f ′
0 < 0, then (−f0)′ > 0; thus there exist K ′ ⊂ R1 compact and δ > 0

so that f ∈ Diff(R1) and p0,K′((−f) − (−f0)) = p0,K′(f − f0) < δ implies that

p0,−K((−f)−1 − (−f0)−1) = p0,K(f−1 − f−1
0 ) < ε. Thus the result holds for all f0.

We now apply the lemma. We first note that C∞
0 (R1,R1) ⊃ Diff(R1). Fix

f0 ∈ Diff(R1), let g0 = f−1
0 , and fix K ⊂ R1 compact, ε > 0, and n ∈ N. By the

lemma there exist δ > 0 and K1,K2,K3 ⊂ R1 compact so that f ∈ C∞(R1,R1),

g ∈ C∞(R1,R1), pn,K1(f − f0) < δ, pn,K2(f ◦ g− f0 ◦ g0) < δ, and p0,K3(g− g0) < δ

implies that pn,K(g−g0) < ε. Now by the preceding there exist K ′ ⊂ R1 and δ′ > 0

so that p0,K′(f−f0) < δ′ implies that p0,K3(f
−1−f−1

0 ) < δ. Let f ∈ Diff(R1) satisfy

pn,K′∪K1(f − f0) < min{δ′, δ}. Then p0,K3(f
−1 − g0) < δ, pn,K1(f − f0) < δ, and

pn,K2(f ◦f−1−f0◦g0) = 0 < δ, and therefore pn,K(f−1−g0) = pn,K(f−1−f−1
0 ) < ε.

ι is therefore continuous, as desired. QED.

We thus have the following theorem.

Theorem 2.1. Diff(R1) and Diff2πZ(R1) are topological groups.

Proof. Lemma 2.1 and Corollary 2.1 together show that Diff(R1) is a topologi-
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cal group. That Diff2πZ(R1) is also a topological group follows from consideration

of the restriction of the map Diff(R1) × Diff(R1) → Diff(R1), (f, g) 7→ f ◦ g to

Diff2πZ(R1)×Diff2πZ(R1), which maps into Diff2πZ(R1) since Diff2πZ(R1) is a sub-

group of Diff(R1), and of the restriction of ι : Diff(R1) → Diff(R1) to Diff2πZ(R1),

which similarly maps into Diff2πZ(R1). (For a more detailed argument, see e.g. Pon-

trjagin [9], p. 58.) QED.

We let S2 denote the symmetric group on two letters, i.e., S2 = {(1), (12)},

where (1) is the identity and (12) : {1, 2} → {1, 2}, 1 7→ 2, 2 7→ 1. We note that

S2
∼= Z2. Now we may view Z2 as the multiplicative group of real numbers of unit

modulus, and we shall often do this below. By virtue of the above isomorphism we

may then write loosely −χ = (12)χ for χ ∈ S2, and we shall often use this notation

below. We give both of these groups the discrete topology.

We let Diff+
2πZ(R1), Diff−

2πZ(R1) represent, respectively, orientation-preserving

and orientation-reversing elements of Diff2πZ(R1), and set ∆ = Diff+
2πZ(R1) ×

Diff+
2πZ(R1)∪Diff−

2πZ(R1)×Diff−
2πZ(R1). ∆ is clearly a topological group (see Hewitt

and Ross [11], Theorem 6.2). We denote elements of ∆ by either (f1, f2) or f1 × f2.

We shall also view elements f1 × f2 as functions R2 → R2, (x, y) 7→ (f1(x), f2(y)).

We define an action of S2 on ∆ by setting χ(f1, f2) = (fχ(1), fχ(2)) and note the

following easy result.

Proposition 2.3. The map Σ : ∆ × S2 → ∆, (f1, f2, χ) 7→ χ(f1, f2), is contin-

uous.

Proof. Let U = U(n1,K1, ε1, f0) × U(n2,K2, ε2, g0) ∩ ∆ be open in ∆. Then
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Σ−1(U) = {(f1, f2, χ) ∈ ∆ × S2|χ(f1, f2) ∈ U}

= {(f1, f2, 1) ∈ ∆ × S2|(f1, f2) ∈ U}

∪ {(f1, f2, (12)) ∈ ∆ × S2|(f2, f1) ∈ U}

= [U × {1}] ∪ [(U(n2,K2, ε2, g0) × U(n1,K1, ε1, f0) ∩ ∆) × {(12)}]; (2.23)

this last set is open in ∆ × S2 since we give S2 the discrete topology and since

the set U(n2,K2, ε2, g0) × U(n1,K1, ε1, f0) ∩ ∆ is open in ∆ (since the reflection

(f1, f2) 7→ (f2, f1) fixes ∆). QED.

We now define the semidirect product ∆oS2 by taking the group operation to be

(f1, f2, χ)(g1, g2, ξ) = (f1 ◦ gχ(1), f2 ◦ gχ(2), χξ) = ((f1 × f2) ◦ (χ(g1 × g2)), χξ); inver-

sion is given by (see Hungerford [10], p. 99) (f1, f2, χ)−1 = ((χ−1)(f−1
1 , f−1

2 ), χ−1).

These operations are both continuous by the foregoing proposition, since ∆ is a

topological group and S2 has the discrete topology, and thus this semidirect prod-

uct is a toplogical group. This group is basic to our constructions in Chapter 4

below. As a topological space it equals ∆ × S2, and we shall occasionally write it

as such when we are not concerned with its group structure.

We shall also have occasion to use the action of S2 on R2 given by χ(x1, x2) =

(xχ(1), xχ(2)), and when we write an element χ of S2 standing alone as a function

on R2 it will always have this meaning. We note that (χ(f1, f2))(χ(x1, x2)) =

(fχ(1)(xχ(1)), fχ(2)(xχ(2))) = χ(f1(x1), f2(x2)) = (χ ◦ (f1 × f2))(x1, x2); thus in

particular we take most careful note that χ ◦ (f1 × f2) 6= χ(f1 × f2) – in fact, this

is crucial to a correct understanding of our proof of Theorem 4.1 below!
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CHAPTER 3

OPENNESS AND TOPOLOGICAL RESULTS

We present first the proof of Lemma 2.2. We recall that {(1, 1, n)} /∈ In, so that

if k = {(j,mi, li)} ∈ In then li < n for each i.

Proof of Lemma 2.2. Fix ε > 0 and K ⊂ R1 compact and nonempty. We

proceed by induction on n. Our basic idea is to take inequality (2.14) in the proof of

Lemma 2.1 above and solve it for g(n′) after writing out the leading term explicitly

as in the statement of Proposition 2.2 above.

For n = 0 we may clearly take K1 = K2 = K3 = K, δ = ε.

Suppose now that the result holds for n ≤ q, q ≥ 0. (We would like to here

insert a word of caution. The case q = 0 is of course a key case, as without it our

induction could never get started. However, it is a very special case in what follows

as many of the conditions and terms below become vacuous and zero, respectively,

when q = 0, and we invite the reader to pay special attention to the logic below for

this particular case. The other cases (q > 0) are more straightforward. We make

the convention that a sum taken over an empty range and a function taken on an

empty set are both zero.) We see that (for all f ∈ C∞(R1, V ), g ∈ C∞(R1,R1))

∣∣∣(f ◦ g)(q+1)(x) − (f0 ◦ g0)(q+1)(x)
∣∣∣ = ∣∣∣(f ′ ◦ g)(x)g(q+1)(x) − (f ′

0 ◦ g0)(x)g(q+1)
0 (x)

+
∑

k∈Iq+1

aq+1
k

[(
f (j) ◦ g

)
(x)

∏
(j,m,l)∈k

(
g(l)(x)

)m

−
(
f

(j)
0 ◦ g0

)
(x)

∏
(j,m,l)∈k

(
g
(l)
0 (x)

)m]∣∣∣; (3.1)
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for q = 0 the range over which the sum is taken is empty (since I1 = ∅) and we

therefore take the sum to be zero. The condition l < q + 1 on the elements of the

sequences in Iq+1 implies that the terms in the sum above depend on the derivatives

of g only up to the qth order. As in the proof of Lemma 2.1, if pq,K(g − g0) < 1

then g(l)(K) ⊂ g
(l)
0 (K) + [−1, 1] for all l ≤ q. As before, let K ′ = g0(K) + [−1, 1]

and K ′′ =
∏q

l=1

(
g
(l)
0 (K) + [−1, 1]

)
for q > 0; for q = 0 set K ′′ = ∅. As before,

K ′ and K ′′ are fixed and compact. Let m = 1
2 inf

x∈K′
|f ′

0(x)|, which is positive since

f ′
0 is continuous and never zero and K ′ is compact and nonempty, and let s =∑

k∈Iq+1

∣∣∣aq+1
k

∣∣∣; we see that s ≥ 0. Let ε′ = mε
27(1 + s)(1 + pq+1,K(g0))q+1 , ε′′ =

mε
27(1 + s)(1 + pV

q+1,K′(f0))
; as before, ε′ and ε′′ are positive, finite, and fixed. As in

Lemma 2.1 above, choose δ′ > 0, δ′′ > 0 so that (i) x, y ∈ K ′ and |x−y| < δ′ implies

that |f (q′)
0 (x)− f

(q′)
0 (y)| < ε′ for all q′ ∈ N, q′ ≤ q + 1 and (ii) (xi)q

i=1, (y
i)q

i=1 ∈ K ′′

and max
1≤i≤q

|xi − yi| < δ′′ implies that |βk((xi)q) − βk((yi)q)| < ε′′ for all k ∈ Iq+1.

(We recall that βk only depends on the first q of its arguments if k ∈ Iq+1.) For

q = 0 condition (ii) is entirely vacuous since K ′′ and Iq+1 are empty; in this case

we set δ′′ = 1. Now by our induction hypothesis the result is true for n = q and

ε = min{δ′′, 1}; let δ′′′, K ′
1, K ′

2, and K ′
3 be the positive number and compact sets

resulting in this case. Set K1 = K ′ ∪ K ′
1, K2 = K ∪ K ′

2, and K3 = K ∪ K ′
3,

set δ = min{1, 1
2m, δ′, δ′′, δ′′′, ε′}, and let f ∈ C∞(R1, V ), g ∈ C∞(R1,R1) satisfy

pV
q+1,K1

(f − f0) < δ, pV
q+1,K2

(f ◦ g − f0 ◦ g0) < δ, p0,K3(g − g0) < δ. Then by our

induction hypothesis pq,K(g − g0) < min{δ′′, 1} ≤ 1; thus
∏q

i=1 g(i)(K) ⊂ K ′′ if

q > 0. Moreover, as before, for 0 ≤ q′ ≤ q + 1, x, y ∈ K ′, |x − y| < δ we have



23∣∣∣f (q′)(x) − f (q′)(y)
∣∣∣ ≤ ∣∣∣f (q′)(x) − f

(q′)
0 (x)

∣∣∣+ ∣∣∣f (q′)
0 (x) − f

(q′)
0 (y)

∣∣∣
+
∣∣∣f (q′)

0 (y) − f (q′)(y)
∣∣∣

< 2δ + ε′ ≤ 3ε′. (3.2)

Similarly, if q > 0, then for all x ∈ K we see that (g(i)(x))q
1, (g(i)

0 (x))q
1 ∈ K ′′,

and similarly (by the induction hypothesis) max
1≤i≤q

∣∣∣g(i)(x) − g
(i)
0 (x)

∣∣∣ < δ′′; thus∣∣∣βk((g(i)(x))q
1) − βk((g(i)

0 (x))q
1)
∣∣∣ < ε′′ for all k ∈ Iq+1. Finally, pV

1,K′(f − f0) ≤

pV
q+1,K1

(f − f0) < δ ≤ 1
2m (note that q ≥ 0 implies q + 1 ≥ 1!), so for all x ∈ K ′

we have |f ′(x)| > |f ′
0(x)| − 1

2m (since |f ′
0(x)| − |f ′(x)| ≤ |f ′(x)− f ′

0(x)| < 1
2m), and

thus inf
x∈K′

|f ′(x)| > 2m − 1
2m = 3

2m. Further, pV
q+1,K′(f) ≤ 1 + pV

q+1,K′(f0). Thus

we see that, for all x ∈ K

∣∣∣g(q+1)(x) − g
(q+1)
0 (x)

∣∣∣
≤ 1

|(f ′ ◦ g)(x)|

[∣∣∣(f ◦ g)(q+1)(x) − (f0 ◦ g0)(q+1)(x)
∣∣∣

+
(∣∣∣(f ′ ◦ g)(x) − (f ′ ◦ g0)(x)

∣∣∣+ ∣∣∣(f ′ ◦ g0)(x) − (f ′
0 ◦ g0)(x)

∣∣∣)(∣∣∣g(q+1)
0 (x)

∣∣∣)
+
∑

k∈Iq+1

∣∣∣aq+1
k

∣∣∣ ∣∣∣(f (j) ◦ g
)
(x)

∏
(j,m,l)∈k

(
g(l)(x)

)m

−
(
f

(j)
0 ◦ g0

)
(x)

∏
(j,m,l)∈k

(
g
(l)
0 (x)

)m∣∣∣ ]
<

2
3m

[
δ + (3ε′ + δ)(1 + pq+1,K(g0)) +

∑
k∈Iq+1

∣∣∣aq+1
k

∣∣∣ [
|(f (j) ◦ g)(x) − (f (j) ◦ g0)(x)||βk((g(i)(x))q

1)|

+|(f (j) ◦ g0)(x)||βk((g(i)(x))q
1) − βk((g(i)

0 (x))q
1)|

+|(f (j) ◦ g0)(x) − (f (j)
0 ◦ g0)(x)||βk((g(i)

0 (x))q
1)|
]]

. (3.3)
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Noting that estimates analogous to those in equations (2.16) and (2.17) in the

proof of Lemma 2.1 above hold here, and recalling that all l values in the sum are

no greater than q (and that the entire sum is taken to be zero when q = 0) we thus

obtain

∣∣∣g(q+1)(x) − g
(q+1)
0 (x)

∣∣∣ <
2

3m

(
δ + (3ε′ + δ)(1 + pq+1,K(g0))

+
∑

k∈Iq+1

∣∣∣aq+1
k

∣∣∣ [3ε′(1 + pq,K(g0))q+1 + (1 + pV
q+1,K′(f0))ε′′ + ε′(1 + pq,K(g0))q+1

])
≤ 2

3m

(mε

27
+

mε

9
+

mε

27
+

mε

9
+

mε

27
+

mε

27

)
=

20
81

ε < ε. (3.4)

Thus the result is true for q + 1 as well with the above choices of δ, K1, K2, and

K3. We note in passing that we may take K2 = K3 = K for all n. QED.

We say that a map F : X → Y between topological spaces is open onto its

image if the restriction F : X → F (X) ⊂ Y is open; such a function is open as

a map into Y if and only if its image F (X) is open in Y . We have the following

criterion, related to Proposition 2.1 above, which links this notion with Lemma 2.2.

Compare Pontrjagin [9], §18, C). (We note that if B ⊂ P (Y ) is a basis for the

topology of Y , then {U ∩F (X)|U ∈ B} is for F (X), and similarly if B is instead a

basis of neighborhoods at some point x0.)

Proposition 3.1. Let X and Y be two topological spaces, and let F : X → Y .

F is open onto its image if and only if for every x0 ∈ X the following condition is

satisfied: if Bx0 is a basis of neighborhoods at x0 and BF (x0) is a basis of neigh-
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borhoods at F (x0), then for every U ∈ Bx0 there is a V ∈ BF (x0) so that for every

x ∈ X satisfying F (x) ∈ V there is an x∗ ∈ U such that F (x) = F (x∗).

Proof. Suppose that F : X → Y is open onto its image, and let x0 ∈ X, Bx0

be some basis of neighborhoods at x0, and U ∈ Bx0. Then F (U) is open in F (X)

as a subspace of Y , and it contains F (x0); thus there is a V ∈ BF (x0) so that

V ∩ F (X) ⊂ F (U). Let x ∈ X be such that F (x) ∈ V ; then F (x) ∈ F (U) so there

is an x∗ ∈ U such that F (x) = F (x∗), as desired.

Now suppose that the above criterion holds, let W ⊂ X be open, and consider

y0 ∈ F (W ). Then y0 = F (x0) for some x0 ∈ W ; since W is open there is a

U ∈ Bx0 so that U ⊂ W . Let V ∈ BF (x0) be as given by the criterion; thus

y0 = F (x0) ∈ V . Let y = F (x) ∈ V ∩ F (X); then there is an x∗ ∈ U ⊂ W so that

y = F (x) = F (x∗) ∈ F (U) ⊂ F (W ). Thus V ∩ F (X) ⊂ F (W ) and y0 ∈ V ∩ F (X).

Since y0 ∈ F (W ) is arbitrary this shows that F (W ) is open in F (X). Thus F is

open onto its image, as desired. QED.

Specializing to the case where X and Y are both spaces of C∞ functions, we

have the following result.

Corollary 3.1. Let V1, V2, W1, and W2 be finite-dimensional vector spaces.

A map F : C∞(V1,W1) → C∞(V2,W2) is open onto its image if and only if for

every n ∈ N, K ⊂ V1 compact, g0 ∈ C∞(V1,W1), and ε > 0 there exist n′ ∈

N, K ′ ⊂ V2 compact, and δ > 0 so that for every g ∈ C∞(V1,W1) satisfying

pV2,W2

n′,K′ (F (g) − F (g0)) < δ there is a g∗ ∈ C∞(V1, W1) such that F (g∗) = F (g) and
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pV1,W1

n,K (g∗ − g0) < ε.

Proof. This follows immediately from the proposition since sets of the form

U(n,K, ε, g0) and U(n′, K ′, δ, F (g0)) for the stated ranges of n, n′,K,K ′, ε, δ form

neighborhood bases at g0 and F (g0), respectively. QED.

Proposition 3.2. Let X and Y be topological spaces, and let F : X → Y

be a map open onto its image. Let S ⊂ X be such that S = F−1(F (S)). Then

F |S : S → Y is also open onto its image. This also holds if S is open in X.

Compare Munkres [8], Theorem 22.1.

Proof. Let U ⊂ S be open. Then there is an open V ⊂ X such that U = V ∩S.

Since F is open onto its image F (V ) is open in F (X). Consider F (U). Clearly

F (U) ⊂ F (V ) ∩ F (S). Let y0 ∈ F (V ) ∩ F (S); then there exist v0 ∈ V , s0 ∈ S such

that y0 = F (v0) = F (s0). But this implies that v0 ∈ F−1(F (S)) = S, so v0 ∈ S ∩V

and y0 ∈ F (V ∩S). Thus F (U) = F (V )∩F (S) is open in F (S), since F (S) ⊂ F (X)

and F (V ) is open in F (X). Thus F |S is open onto its image, as desired.

If S is open and U ⊂ S is open in S, then U is also open in X so F (U) ⊂ F (S)

is open in F (X) and hence in F (S). QED.

We note that the first condition is clearly satisfied if F is a homeomorphism

onto its image; thus the restriction of a homeomorphism is a homeomorphism onto

its image. (This can also be seen more directly, of course.)
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Corollary 3.2. Let F : X → Y and G : Y → Z be two maps between

topological spaces, each open onto its image. Then G ◦ F : X → Z is open onto its

image if G−1(G(F (X))) = F (X), or if F (X) is open in Y .

Proof. By Propostion 3.2, G−1(G(F (X))) = F (X) or F (X) open in Y implies

that G|F (X) : F (X) → G(F (X)) is open. But F : X → F (X) is open, and thus

G ◦ F = (G|F (X)) ◦ F : X → G(F (X)) is open; i.e., G ◦ F : X → Z is open onto its

image, as desired. QED.

We desire now to prove certain results concerning the topology of spaces of

the form C∞(S1, V ), where V is some finite-dimensional vector space, and also

concerning openness of certain maps between such spaces. First we set some more

notation. We let q : R1 → S1, x 7→ eix denote the standard covering map, and

p : R1 ×R1 → R1 × S1, (t, θ) 7→ (t, eiθ) the universal covering map of the cylinder;

thus p = id × q. We note that q and p are local diffeomorphisms; specifically, if

U ⊂ S1 is evenly covered by q, so that q−1(U) = ∪iVi, Vi ⊂ R1 open and disjoint

and such that q|Vi
: Vi → U is a homeomorphism for each i, then q|Vi

: Vi → U is

in fact a diffeomorphism, since q|Vi
is smooth and bijective with nowhere vanishing

derivative. A similar statement holds for p. Before proceeding we note a property

of such maps.

Proposition 3.3. Let M , N , and L be finite-dimensional C∞ manifolds, and

let π : M → N be a covering map which is also a local diffeomorphism in the above

sense. Suppose that maps f : M → L and φ : N → L are such that f = φ ◦ π.
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Then f is C∞ if and only if φ is. The same holds for f : L → M and φ : L → N

satisfying π ◦ f = φ if f is continuous.

Proof. We start with the first statement. The if direction is obvious. Suppose

now that f is C∞ and let n ∈ N . Let U ⊂ N be a neighborhood of n evenly

covered by π, so that π−1(U) = ∪iVi, where the Vi ⊂ M are disjoint and open and

π|Vi
: Vi → U is a diffeomorphism for each i. Then we see that f |Vi

= (φ ◦ π)|Vi
=

φ|U ◦ π|Vi
; now π|Vi

is a diffeomorphism, and thus φ|U = f |Vi
◦ (π|Vi

)−1 : U → L is

C∞ on U , and in particular at n. But n ∈ N was arbitrary and thus φ : N → L is

C∞, as desired.

For the second part, we note first that if f is C∞ then clearly so is φ. Suppose

now that φ is C∞ and that f is continuous, let l ∈ L, and as before let U be an

evenly covered neighborhood of φ(l) ∈ N , with π−1(U) = ∪iVi where the Vi are

disjoint and mapped diffeomorphically onto U by π. Now π(f(l)) = φ(l) ∈ U , so

f(l) ∈ Vi for some i. Now f−1(Vi) is open in L since f is continuous; moreover, we

see that on f−1(Vi) π|Vi
◦ f |f−1(Vi) = φ|f−1(Vi), so f |f−1(Vi) = (π|Vi

)−1 ◦ φ|f−1(Vi) and

hence f is C∞ at l ∈ f−1(Vi) since π|Vi
is a diffeomorphism. Thus f is C∞ on L,

as desired. QED.

Continuity of f in the second part is necessary: consider the case M = L = R1,

N = S1, π = φ = q, and f(x) = x, x < 0, x + 2π, x ≥ 0. Then clearly π ◦ f = φ and

φ is C∞, but f is not C∞ at 0.

Let now V be some finite-dimensional vector space, and consider C∞(S1, V ).

We shall topologize this space as done in Milnor [2] (in other words, with essentially



29

the weak topology; see our note on p. 5). Specifically, for every σ = eiθ0 ∈ S1 we

have a coordinate system θσ : S1\{−σ} → (−π, π) given by inverting ei(·+θ0)|(−π,π) :

(−π, π) → S1\{−σ}; we then take as a basis for the topology of C∞(S1, V ) the set

of all finite intersections of sets of the form

{φ ∈ C∞(S1, V )|pV
n,θσ(K)(φ ◦ θ−1

σ − φ0 ◦ θ−1
σ ) < ε}, (3.5)

where n ∈ N, σ ∈ S1, K ⊂ S1\{−σ} is compact (and hence θσ(K) ⊂ (−π, π) is

compact), ε > 0, and φ0 ∈ C∞(S1, V ). Consider now the two compact sets K1 =

q([π
4 , 7π

4 ]) and K2 = q([−3π
4 , 3π

4 ]). We see that K1 ⊂ S1\{1} and K2 ⊂ S1\{−1}.

Now θ−1 : S1\{1} → (−π, π) is the inverse of ei(·+π)|(−π,π) = q(· + π)|(−π,π), and

θ1 : S1\{−1} → (−π, π) is the inverse of q|(−π,π). Thus for all n ∈ N and all

φ ∈ C∞(S1, V ) we have

pV
n,θ−1(K1)

(φ ◦ θ−1
−1) = pV

n,[− 3π
4 , 3π

4 ](φ ◦ q(· + π))

= pV
n,[π

4 , 7π
4 ](φ ◦ q), (3.6)

and similarly pV
n,θ1(K2)

(φ ◦ θ−1
1 ) = pV

n,[− 3π
4 , 3π

4 ](φ ◦ q). Thus the set

{φ ∈ C∞(S1, V )|pV
n,[− 3π

4 , 7π
4 ](φ ◦ q − φ0 ◦ q) < ε} (3.7)

is a basic open set in C∞(S1, V ) for all n ∈ N, ε > 0, and φ0 ∈ C∞(S1, V ); we see

that the collection of all such sets forms a basis for the topology of C∞(S1, V ) as

defined above. By the periodicity of q this means that {φ|pV
n,K(φ ◦ q − φ0 ◦ q) < ε}

is open in C∞(S1, V ) for all n ∈ N, K ⊂ R1 compact, ε > 0, and φ0 ∈ C∞(S1, V ).

We similarly topologize C∞(R1 ×S1, V ) by taking as a basis all finite intersections
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of sets of the form {Ψ ∈ C∞(R1 ×S1, V )|pV
n,K×[− 3π

4 , 7π
4 ](Ψ ◦ p−Ψ0 ◦ p) < ε}, n ∈ N,

K ⊂ R1 compact, Ψ0 ∈ C∞(R1 × S1, V ), ε > 0. We then see that any set of

this form with [−3π
4 , 7π

4 ] replaced by an arbitrary K ′ ⊂ R1 compact is also open

in C∞(R1 × S1, V ). We let C∞
p (R1 × R1, V ) for any vector space V denote the

set of all C∞ functions f : R1 × R1 → V satisfying the periodicity condition

f(x, y + 2π) = f(x, y) for all (x, y) ∈ R1 × R1, and we topologize this space as a

subspace of C∞(R2, V ).

We now have the following result.

Proposition 3.4. The map

Θ : C∞(S1, V ) → C∞
p (R1, V )

φ 7→ φ ◦ q

(3.8)

is a homeomorphism.

Proof. Clearly Θ maps into C∞
p (R1, V ), by periodicity and smoothness of q. It

is clearly injective: Θ(φ1) = Θ(φ2) implies that φ1(q(x)) = φ2(q(x)) for all x ∈ R1,

which implies that φ1 = φ2 by surjectivity of q. To see that Θ is surjective, let

f ∈ C∞
p (R1, V ). Then f is constant on the fibers of q, so f(q−1(σ)) is well-defined

for each σ ∈ S1. Denote this value by φ(σ) ∈ V . Thus φ : S1 → V satisfies

φ ◦ q = f ; by Proposition 3.3 and our observations about q above, this implies that

φ ∈ C∞(S1, V ). Now by definition Θ(φ) = f , and thus Θ is indeed surjective.

To see that Θ is continuous, let U1 = UV (n,K, ε, f0) ∩ C∞
p (R1, V ) be a basic

open set in C∞
p (R1, V ), where n ∈ N, K ⊂ R1 is compact, ε > 0, and f0 ∈
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C∞
p (R1, V ). Choose φ0 ∈ C∞(S1, V ) such that Θ(φ0) = f0. Then Θ−1(U1) = {φ ∈

C∞(S1, V )|pV
n,K(φ ◦ q − φ0 ◦ q) < ε}, which is open in C∞(S1, V ) by our comments

above. To see that Θ is open, let U2 = {φ|pV
n,[− 3π

4 , 7π
4 ](φ ◦ q − φ0 ◦ q) < ε} be a basic

open set in C∞(S1, V ); then Θ(U2) = {φ ◦ q|pV
n,[− 3π

4 , 7π
4 ](φ ◦ q − φ0 ◦ q) < ε}. Since

Θ is surjective, we see that Θ(U2) = UV (n, [−3π
4 , 7π

4 ], φ0 ◦ q, ε) ∩C∞
p (R1, V ), which

is open. Thus Θ is open. Hence Θ is a homeomorphism, as desired. QED.

Restricting to C∞(S1, S1) ⊂ C∞(S1,C) and C∞
p (R1, S1) ⊂ C∞

p (R1,C), we

have the following result.

Corollary 3.3. The map

Θ̂ : C∞(S1, S1) → C∞
p (R1, S1)

φ 7→ φ ◦ q

(3.9)

is a homeomorphism.

Proof. Again, Θ̂ maps into C∞
p (R1, S1) by smoothness and periodicity of q. It

is injective as a restriction of the injective Θ. To see that it is surjective, note that

C∞
p (R1, S1) ⊂ C∞

p (R1,C); if f ∈ C∞
p (R1, S1) and φ = Θ−1(f) ∈ C∞(S1,C), then

φ ◦ q = f so clearly φ : S1 → S1. φ is smooth by Proposition 3.3, as before, so

φ ∈ C∞(S1, S1); thus Θ̂(φ) = f and Θ̂ is indeed surjective, as desired. Now Θ̂ is

clearly continuous as the restriction of the continuous Θ; it is open by Proposition

3.2 (or alternatively since Θ̂−1 = (Θ−1)|C∞
p (R1,S1)). Thus Θ̂ is a homeomorphism,

as desired. QED.
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Proposition 3.5. Let X ⊂ C∞(R1 × S1,R1 × S1), topologized as a subspace

of C∞(R1 × S1,R1 × C), be any subset. Then the map

ZX : X → C∞
p (R1 × R1,R1 × S1)

f 7→ f ◦ p

(3.10)

is a homeomorphism onto its image.

Proof. ZX is clearly injective, since p is surjective. It clearly maps into C∞
p (R1×

R1,R1 × S1) by periodicity and smoothness of p. To see that it is continuous, let

U = UR1×R1,R1×C(n,K, ε, f0) ∩ C∞
p (R1 × R1,R1 × S1), n ∈ N, K ⊂ R1 × R1

compact, f0 ∈ C∞
p (R1×R1,R1×S1), and ε > 0 be open in C∞

p (R1×R1,R1×S1).

We may assume that K = K1 × K2, K1,K2 ⊂ R1 compact. Then Z−1
X (U) =

{Ψ ∈ X|pR1×R1,R1×C
n,K (Ψ ◦ p − f0) < ε}; defining Ψ0 : R1 × S1 → R1 × S1 by

Ψ0◦p = f0, which exists since f0 ∈ C∞
p (R1×R1,R1×S1) and is C∞ by Proposition

3.3, we see that this is a basic open set in X with respect to the topology on

C∞(R1 × S1,R1 × C) given above since K = K1 × K2.

To see that ZX is open onto its image, let V = {Ψ ∈ X|pR1×R1,R1×C
n,K1×K2

(Ψ◦p−Ψ0◦

p) < ε} be a basic open set in X. Then ZX(V ) = {Ψ ◦ p|Ψ ∈ X, pR1×R1,R1×C
n,K1×K2

(Ψ ◦

p − Ψ0 ◦ p) < ε} = ZX(X) ∩ UR1×R1,R1×C(n,K1 × K2, ε, Ψ0 ◦ p), which is open in

ZX(X), as desired. QED.

Proposition 3.6. The map

I : C∞(R1,R1) → C∞(R1, S1)

f 7→ q ◦ f
(3.11)
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is open.

Proof. We note first of all that I maps into C∞(R1, S1) by smoothness of

q. Moreover, I is surjective, since we may lift any smooth curve R1 → S1 to a

continuous curve R1 → R1 by the covering map q : R1 → S1 since π1(R1) is trivial

(see Bredon [4], Theorem III.4.1), and such a lift will be C∞ by Proposition 3.3

above. Now fix K ⊂ R1 compact and connected (as in Corollary 2.1 above), ε > 0,

n ∈ N, and g0 ∈ C∞(R1,R1), and let δ > 0, K1 ⊂ R1 compact, K2 = K3 = K be as

given by Lemma 2.2 above with f0 = q ∈ C∞
0 (R1,C). Note that K, ε, n, g0, δ, and

K1 are all fixed throughout the rest of the proof. Let δ′ = min{δ, π
2}. Since q : R1 →

S1 is open (since it is a covering map), there is a δ′′ > 0, δ′′ < δ′, so that x ∈ R1 and

|eix−1| < δ′′ implies that |x−2πm| < δ′ for some m ∈ Z. (Alternatively, this follows

by considering an evenly covered neighborhood of 1 ∈ S1.) Let h ∈ C∞(R1, S1)

satisfy pC
n,K(h − q ◦ g0) < δ′′. Choose g ∈ C∞(R1,R1) so that q ◦ g = h; then g

satisfies pC
0,K(q ◦ g − q ◦ g0) = pC

0,K(ei(g−g0) − 1) ≤ pC
n,K(q ◦ g − q ◦ g0) < δ′′ < δ.

Thus for each x ∈ K there is an m(x) ∈ Z such that |g(x) − g0(x) − 2πm(x)| < δ′.

We claim that m : K → Z is continuous. Choose δ′′′ > 0 so that x, y ∈ K and

|x − y| < δ′′′ implies that |g(x) − g(y)| < δ′, |g0(x) − g0(y)| < δ′. (δ′′′ exists since g

and g0 are continuous on K and K is compact.) Then for such x, y,

|2πm(x) − 2πm(y)| ≤ |g(x) − g0(x) − 2πm(x)| + |g(x) − g0(x) − (g(y) − g0(y))|

+|g(y) − g0(y) − 2πm(y)|

< 2δ′ + |g(x) − g(y)| + |g0(x) − g0(y)|

< 4δ′ ≤ 2π; (3.12)
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thus |m(x) − m(y)| < 1 so m(x) = m(y) and m : K → Z is necessarily continuous.

Since K is connected and Z is discrete this means that m is constant. We denote

its constant value simply by m as well. (Note that the equation m(x) = m(y)

only holds for |x − y| < δ′′′ and thus does not immediately imply that m must be

constant.) Thus g − 2πm ∈ C∞(R1,R1). Moreover, p0,K3(g0 − g − 2πm) < δ′ ≤ δ

by construction, and pC
n,K2

(q ◦ g − q ◦ g0) = pC
n,K2

(q ◦ (g + 2πm) − q ◦ g0) < δ also;

finally, taking f = f0 = q, we see that pC
n,K1

(f − f0) = 0 < δ. The lemma then

shows that pn,K(g0 − g − 2πm) < ε; since q ◦ (g + 2πm) = q ◦ g = h, an application

of Proposition 3.1 to the map I : C∞(R1,R1) → C∞(R1,C) shows that this map

is open onto its image, which means that I : C∞(R1,R1) → C∞(R1, S1) is open,

as desired. QED.

We note that I(f1) = I(f2) for f1, f2 ∈ C∞(R1,R1) implies that for each x

there is an m(x) ∈ Z such that f1(x) = f2(x) + 2πm(x). Then m = 1
2π (f1 − f2) is

C∞, in particular continuous, and therefore constant. Clearly I(f+2πm) = I(f) for

all f ∈ C∞(R1,R1) and all m ∈ Z, and thus I−1(I(S)) = {f + 2πm|f ∈ S,m ∈ Z}

for any S ⊂ C∞(R1,R1). In particular, I−1(I(Diff2πZ(R1)) = Diff2πZ(R1), and

thus I|Diff2πZ(R1) : Diff2πZ(R1) → C∞(R1, S1) is open onto its image.

Suppose now that G is any Lie group and H ⊂ G is any subgroup which is

discrete in the induced topology. We will now show that the canonical projection

π : G → G/H, g 7→ Hg is a covering map. We need the following elementary

result from topological group theory (cf. Bredon [4], Proposition I.15.9). If G is a

topological group, a neighborhood V ⊂ G of the identity e is said to be symmetric
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if V = V −1.

Proposition 3.7. Let G be a topological group and U ⊂ G be any neighborhood

of the identity e. Then there is a symmetric neighborhood V of e such that V 2 ⊂ U .

Proof. By Hewitt and Ross [11], Theorem 4.5, there is a neighborhood W of

e contained in U such that W 2 ⊂ U ; by ibid., Theorem 4.6, there is a symmetric

neighborhood V of e contained in W . We note that V 2 ⊂ W 2 ⊂ U , as desired.

QED.

We now have the following result about covering spaces. Compare Spanier [12],

p. 62.

Proposition 3.8. Let G be a topological group, and let H ⊂ G be a discrete

subgroup, i.e., a subgroup which is discrete in the induced topology. Then the

canonical map Ξ : G → G/H, g 7→ Hg, is a covering map. (G/H = {Hg|g ∈ G} is

of course given the quotient topology.)

Proof. Since H is discrete there is a neighborhood U of e satisfying U∩H = {e}.

Let V ⊂ U be a symmetric neighborhood of e satisfying V 2 ⊂ U . Now let g ∈ G,

and consider gV ∩ H. If h1, h2 ∈ gV ∩ H, then h1 = gv1, h2 = gv2, v1, v2 ∈ V , so

h−1
2 h1 = (v−1

2 g−1)(gv1) = v−1
2 v1 ∈ V 2 ⊂ U ; thus h−1

2 h1 ∈ U ∩ H so h−1
2 h1 = e and

h2 = h1. Thus gV ∩ H has at most one point. Since G is T1, this implies that H

is closed (gV \(gV ∩ H) is a neighborhood of g disjoint from H for any g ∈ G\H,

since gV ∩ H is closed in G as it is either empty or a singleton). Similarly, if

g ∈ G, h1, h2 ∈ H, and h1V g ∩ h2V g 6= ∅, then there must be v1, v2 ∈ V
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such that h1v1g = h2v2g; thus h−1
2 h1 = v2v

−1
1 ∈ U ∩ H, so h1 = h2. Thus the

collection {hV g|h ∈ H} is a disjoint collection of open sets for each g ∈ G. Now

fix x0 = Hg0 ∈ G/H. We see that Ξ(hV g0) = Ξ(V g0) for each h ∈ H; moreover,

W = Ξ(V g0) is open in G/H, since Ξ−1(W ) = ∪h∈HhV g0 is open in G, and W

is therefore a neighborhood of x0 = Ξ(g0). We claim that it is evenly covered by

Ξ. Since Ξ−1(W ) = ∪h∈HhV g0, it suffices to show that Ξ|hV g0 : hV g0 → W is a

homeomorphism for each h ∈ H. Since hV g0 is open in G and Ξ(U ′) = Ξ(∪h∈HhU ′)

is therefore open for all open U ′ ⊂ hV g0 by Munkres [8], p. 137, this restriction

is open; it is also continuous and surjective. Thus it suffices to show that it is

one-to-one. Let hv1g0, hv2g0 ∈ hV g0 satisfy Ξ(hv1g0) = Ξ(hv2g0); then there exist

h1, h2 ∈ H so that h1hv1g0 = h2hv2g0. But then h−1(h−1
2 h1)h = v2v

−1
1 ∈ U , so

h−1(h−1
2 h1)h = e = v2v

−1
1 , so hv1g0 = hv2g0 and Ξ is injective. This completes the

proof. QED.

We now set

DiffH(G) = {f ∈ Diff(G)|f(hg) = h±1f(g) for all g ∈ G and allh ∈ H}. (3.13)

We then have the following result.

Proposition 3.9. Let G and H be as above, let now π : G → G/H denote the

canonical projection, and suppose that G is pathwise connected and locally pathwise

connected and that H is infinite cyclic. Then the map Ππ : DiffH(G) → Diff(G/H)

given by Ππ(f) ◦ π = π ◦ f is surjective.

Note that we have put no topology on Diff(G) nor Diff(G/H) in general and
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thus make no claim as to the continuity or openness of this map.

Proof. Let f ∈ DiffH(G). We first show that Ππ(f) ∈ Diff(G/H). Clearly

π ◦ f maps into G/H. We note that Ππ(f) is defined on G/H: if Hg ∈ G/H then

(Ππ(f))(Hg) = (Ππ(f))(π(g)) = π(f(g)). It is also well-defined: if g1, g2 ∈ G are

such that Hg1 = Hg2, then there is an h ∈ H so that g1 = hg2; thus Ππ(f)(Hg1) =

π(f(g1)) = π(f(hg2)) = π(h±1f(g2)) = π(f(g2)) = Ππ(f)(Hg2). Now we note

that [Ππ(f) ◦ Ππ(f−1)] ◦ π = (Ππ(f)) ◦ (π ◦ f−1) = π ◦ (f ◦ f−1) = π; since π is

surjective, this means that Ππ(f)◦Ππ(f−1) = id. Thus clearly (since (f−1)−1 = f)

Ππ(f−1) ◦ Ππ(f) = id, so Ππ(f) : G/H → G/H is bijective with inverse Ππ(f−1).

Ππ(f) and Ππ(f−1) are both C∞ by Proposition 3.3. Thus Ππ(f) ∈ Diff(G/H), as

desired.

We now show that Ππ is surjective. Let φ ∈ Diff(G/H). Then φ ◦ π ∈

C∞(G,G/H); thus there is a continuous lift φ̃ : G → G satisfying π◦φ̃ = φ◦π. φ̃ ex-

ists by Bredon [4], Theorem III.4.1, since clearly (φ◦π)#(π1(G/H)) ⊂ π#(π1(G/H))

(see also ibid., p. 132). φ̃ is then C∞ by Proposition 3.3. We claim that φ̃ ∈

DiffH(G). Let φ̃−1 : G → G be the lift of φ−1 ◦ π satisfying φ̃−1(φ̃(e)) = e, where

e ∈ G is the identity. φ̃−1 exists since (φ−1 ◦ π)(φ̃(e)) = (φ−1 ◦ φ)(π(e)) = π(e)

(see Bredon [4], Theorem III.4.1). Thus φ̃−1 is also C∞. Then π ◦ (φ̃−1 ◦ φ̃) =

φ−1 ◦ (π ◦ φ̃) = (φ−1 ◦ φ) ◦ π = π, so (φ̃−1 ◦ φ̃)(g) ∈ Hg for each g ∈ G. Thus

(φ̃−1 ◦ φ̃)(g) · (g−1) ∈ H for each g ∈ G. But (φ̃−1 ◦ φ̃)(·) · (·−1) : G → G is C∞

and hence continuous; since it maps into H, and H is discrete, it must be con-

stant. Thus there is some h0 ∈ H such that (φ̃−1 ◦ φ̃)(g) = h0g for all g ∈ G.
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Since φ̃−1(φ̃(e)) = e = h0e, we see that h0 = e and φ̃−1 ◦ φ̃ = id. Similarly,

π ◦ (φ̃ ◦ φ̃−1) = π, so as before there is some h′
0 ∈ H so that (φ̃ ◦ φ̃−1)(g) = h′

0g for

all g ∈ G. But taking g = φ̃(e) gives φ̃(φ̃−1(φ̃(e))) = φ̃(e) = h′
0φ̃(e), so again h′

0 = e

and φ̃ ◦ φ̃−1 = id. Thus φ̃ is a diffeomorphism and φ̃−1 = φ̃−1.

To see that φ̃ ∈ DiffH(G), let h ∈ H be a generator for H. Then all elements

of H can be written as nh (h or h−1 applied to itself n times as n is positive or

negative, respectively, or e if n = 0), where n ∈ Z. Fix g ∈ G and consider φ̃(hg)

and φ̃−1(hφ̃(g)). We see that

(φ ◦ π)(φ̃−1(hφ̃(g))) = (π ◦ φ̃)(φ̃−1(hφ̃(g)))

= (π ◦ φ̃)(g)

= (φ ◦ π)(g), (3.14)

so φ̃−1(hφ̃(g)) = n′hg for some n′ ∈ Z\{0}; further,

(π ◦ φ̃)(hg) = (φ ◦ π)(hg)

= (φ ◦ π)(g)

= (π ◦ φ̃)(g), (3.15)

so there is some m ∈ Z\{0} so that φ̃(hg) = mhφ̃(g). (m and n′ are nonzero since

φ̃ is injective and h 6= e.) Thus φ̃(n′hg) = n′mhφ̃(g); but also φ̃(n′hg) = hφ̃(g), so

n′m = 1 since H is infinite cyclic and thus m = ±1. Thus φ̃(hg) = h±1φ̃(g); since

H is cyclic and generated by h and g ∈ G is arbitrary, we see that φ̃ ∈ DiffH(G),

as desired. We note that φ̃ was an arbitrary lift of φ ◦ π, and thus we have actually

shown that all lifts via π of φ ◦ π are in DiffH(G). QED.
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Corollary 3.4. The map Π : Diff2πZ(R1) → Diff(S1) given by Π(f) ◦ q = q ◦ f

is surjective, continuous, and open. It is also a group homomorphism with kernel

{f ∈ Diff2πZ(R1)|f(x) = x + 2πn for some n ∈ Z, for all x ∈ R1}.

Proof. Identifying S1 with R1/Z1, surjectivity of Π follows immediately from

Proposition 3.9. Now we note that Π(f) = Θ̂−1(q ◦ f); thus Π is continuous by

Lemma 2.1 and Corollary 3.3, and open onto its image by Proposition 3.6 and our

following comment, Corollary 3.3 and Corollary 3.2.

Π is easily seen to be a group homomorphism:

Π(f1 ◦ f2) ◦ q = q ◦ (f1 ◦ f2)

= (Π(f1) ◦ q) ◦ f2

= (Π(f1) ◦ Π(f2)) ◦ q. (3.16)

Its kernel may be computed as follows. f ∈ KerΠ implies that Π(f) ◦ q = q = q ◦ f ;

thus for each x ∈ R1 there is an n(x) ∈ Z such that f(x) = x + 2πn(x). As usual

n is constant, so f(x) = x + 2πn for some n ∈ Z. Conversely, any f of this form is

clearly in KerΠ, as desired. QED.

Since KerΠ is discrete, Proposition 3.8 above together with Pontrjagin [9], The-

orem 12 shows that Π is in fact a covering map. The work which has gone into this

corollary will be used again in Theorems 4.1 and 4.2 below.

We now prove a few special results about openness of maps between C∞ spaces

which will be of great importance in Chapter 4 below.

Lemma 3.1. The map
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ω : C∞(R1, S1) × C∞(R1, S1) → C∞(R2, S1)

(f, g) 7→ ((x, y) 7→ f(x)g(y))
(3.17)

is continuous, and open onto its image.

Proof. We show first that ω is open onto its image. Choose n ∈ N, ε > 0,

K ⊂ R1 compact and nonempty, and (f0, g0) ∈ C∞(R1, S1) × C∞(R1, S1), and

consider the basic open set U = UC(n,K, ε, f0) × UC(n,K, ε, g0) ∩ C∞(R1, S1) ×

C∞(R1, S1). Sets of this form clearly form a neighborhood basis at (f0, g0) in

C∞(R1, S1)×C∞(R1, S1). Let δ = min
{

1
2ε,

ε

2(1 + pC
n,K(g0))

}
, let V = UC(n, K×

K, δ, ω(f0, g0)) ∩ C∞(R2, S1), and let (f, g) ∈ C∞(R1, S1) × C∞(R1, S1) be such

that ω(f, g) ∈ V . Pick x0 ∈ K, and define f∗, g∗ : R1 → S1 by f∗(x) =

f(x)g(x0)g0(x0)−1, g∗(x) = g(x)g0(x0)g(x0)−1. Then clearly f∗, g∗ ∈ C∞(R1, S1)

and ω(f∗, g∗) = ω(f, g). Moreover, for all x ∈ K and all n′ ∈ N, n′ ≤ n,

∣∣∣f∗(n′)(x) − f
(n′)
0 (x)

∣∣∣ = ∣∣∣f (n′)(x)g(x0) − f
(n′)
0 (x)g0(x0)

∣∣∣
≤ pC

n,K×K(ω(f, g) − ω(f0, g0)) < δ < ε (3.18)

∣∣∣g∗(n′)(x) − g
(n′)
0 (x)

∣∣∣ =
∣∣∣g(n′)(x)g0(x0)g(x0)−1 − g

(n′)
0 (x)

∣∣∣
=
∣∣∣g(n′)(x)f(x0) − g

(n′)
0 (x)f∗(x0)

∣∣∣
≤
∣∣∣g(n′)(x)f(x0) − g

(n′)
0 (x)f0(x0)

∣∣∣
+
∣∣∣g(n′)

0 (x)
∣∣∣ |f0(x0) − f∗(x0)|

<
1
2
ε +

ε

2(1 + pC
n,K(g0))

pC
n,K(g0) < ε, (3.19)
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so (f∗, g∗) ∈ U and ω is open by Proposition 3.1.

To see that ω is continuous, let (f0, g0) ∈ C∞(R1, S1) × C∞(R1, S1), n ∈ N,

K ⊂ R1 compact, and ε > 0, and let U = UR2,C(n,K×K, ε, ω(f0, g0))∩C∞(R2, S1)

be a basic open set in C∞(R2, S1). As before, sets of this form clearly form a neigh-

borhood basis at ω(f0, g0). Now let δ = min
{

ε
2(1 + pC

n,K(f0))
, ε
2(1 + pC

n,K(g0))
, 1
}

,

let V = UC(n, K, δ, f0) × UC(n,K, δ, g0) ∩ C∞(R1, S1) × C∞(R1, S1), and let

(f, g) ∈ V . Then for all x, y ∈ K and all n1, n2 ∈ N, n1 + n2 ≤ n,

∣∣∣∣ ∂n1+n2

∂xn1∂yn2
(f(x)g(y) − f0(x)g0(y))

∣∣∣∣
≤
∣∣∣g(n2)(y)

∣∣∣ ∣∣∣f (n1)(x) − f
(n1)
0 (x)

∣∣∣+ ∣∣∣f (n1)
0 (x)

∣∣∣ ∣∣∣g(n2)(y) − g
(n2)
0 (y)

∣∣∣
< (1 + pC

n,K(g0))

(
ε

2(1 + pC
n,K(g0))

)
+ pC

n,K(f0)

(
ε

2(1 + pC
n,K(f0))

)
< ε. (3.20)

Thus ω−1(U) ⊃ V , and ω is continuous by Bredon [4], Proposition I.2.6 (cf. Propo-

sition 2.1 above). QED.

Our next result is used in Chapter 4 below to allow us to work in null coordinates

on a Minkowski spacetime. As usual, let V denote an arbitrary finite-dimensional

real or complex vector space.

Lemma 3.2. For each χ ∈ S2, the map

ηχ : C∞(R2, V ) → C∞(R2, V )

f 7→
(

(x, y) 7→ (f ◦ χ)
(

1√
2
(x + y),

1√
2
(x − y)

)) (3.21)
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is continuous and open.

Proof. First we note that, using the isomorphism S2
∼= Z2, we may write

ηχ(f)(x, y) more explicitly as f
(

1√
2
(x + χy), 1√

2
(x − χy)

)
. Now fix χ ∈ S2. We

note that η2
χ = id; thus continuity and openness are equivalent. (Also, ηχ is bi-

jective.) We prove continuity. Fix K × K ⊂ R2 compact, ε > 0, n ∈ N, f0 ∈

C∞(R2, V ), let U = UV (n,K ×K, ε, f0), and consider η−1
χ (U). Let δ = ε

(n + 1)2n!
,

and choose f ∈ C∞(R2, V ) satisfying pV
n, 1√

2
(K+χK)× 1√

2
(K−χK)(f − f0) < δ. Now

∂

∂y

(
f

(
1√
2
(x + χy),

1√
2
(x − χy)

))
=

χ√
2
(−∂2f + ∂1f)|( 1√

2
(x+χy), 1√

2
(x−χy))

(3.22)

and

∂

∂x

(
f

(
1√
2
(x + χy),

1√
2
(x − χy)

))
=

1√
2
(∂2f+∂1f)|( 1√

2
(x+χy), 1√

2
(x−χy)), (3.23)

where by ∂1, ∂2 we mean differentiation with respect to the first or second variable,

respectively. Let n1, n2 ∈ N, n1 + n2 ≤ n, and let (x, y) ∈ K × K; then ( 1√
2
(x +

χy), 1√
2
(x − χy)) ∈ 1√

2
(K + χK) × 1√

2
(K − χK), so

∣∣∣∣ ∂n1+n2

∂xn1∂yn2

(
f

(
1√
2
(x + χy),

1√
2
(x − χy)

)
− f0

(
1√
2
(x + χy),

1√
2
(x − χy)

))∣∣∣∣
=
(

1√
2

)n1+n2 ∣∣∣[(−∂2 + ∂1)n2(∂2 + ∂1)n1(f − f0)] |( 1√
2
(x+χy), 1√

2
(x−χy))

∣∣∣
≤
(

1√
2

)n1+n2
[ n1∑

k1=0

(
n1

k1

)∣∣∣∣∂n1−k1
2 ∂k1

1(
n2∑

k2=0

(
n2

k2

)
(−∂2)n2−k2∂k2

1 (f − f0)

)∣∣∣∣
( 1√

2
(x+χy), 1√

2
(x−χy))

∣∣∣∣]
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≤
(

1√
2

)n1+n2 n1∑
k1=0

n2∑
k2=0

n1!n2!·∣∣∣∂(n1+n2)−(k1+k2)
2 ∂k1+k2

1 (f − f0)|( 1√
2
(x+χy), 1√

2
(x−χy))

∣∣∣
<

(
1√
2

)n1+n2 n1∑
k1=0

n2∑
k2=0

n!δ ≤ ε. (3.24)

Thus ηχ is continuous. We note that η2
χ = id implies that ηχ is then a

homeomorphism. QED.

We end this chapter with a lemma on the continuity and openness of a variety of

maps. As usual, W and V denote finite-dimensional real or complex vector spaces.

Lemma 3.3. (i) The maps below are open onto their images:

(a) α± : C∞(R1, V ) → C∞(R2, V ), f 7→
(
(x, y) 7→ f

(
1√
2
(x ± y)

))
.

(b) β1 : C∞(W,V )×C∞(W,V ) → C∞(W,V ), (f, g) 7→ f + g; β2 : C∞(W,V )×

C∞(W,V ) → C∞(W × W,V ), (f, g) 7→ ((x, y) 7→ f(x) + g(y)).

(c) q1 × q2 : X1 × X2 → Y1 × Y2, (x1, x2) 7→ (q1(x1), q2(x2)), X1, X2, Y1, Y2

arbitrary topological spaces, q1 : X1 → Y1, q2 : X2 → Y2 maps open onto their

images.

(d) C∞(W,V ) → C∞(W,V ), f 7→ cf , c 6= 0.

(e) C∞(W,V ) → C∞(W,V ), f 7→ (x 7→ f(cx)), c ∈ R or c ∈ C, c 6= 0.

The map β1 in (b) is open into C∞(W,V ), and that in (c) is open into Y1 × Y2

if q1 and q2 are open into Y1 and Y2, respectively. The maps in (a), (b), (d), and

(e) are also continuous, as is that in (c) if the maps q1 and q2 are continuous.

(ii) If V1 and V2 are finite-dimensional real or complex vector spaces, then the
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map ιWV1,V2
: C∞(W,V1)×C∞(W,V2) → C∞(W,V1×V2), (f, g) 7→ (x 7→ (f(x), g(x)))

is a homeomorphism. (Compare [16], Proposition 3.1.)

Proof. (i)(a) We see that

∂(αi)

(
f(

1√
2
(x ± y))

)
=
(

1√
2

)|α|

(−1)kf (|α|)
(

1√
2
(x ± y)

)
, (3.25)

where k ∈ N depends only on α = (αi). Thus pR2,V

n,K
√

2×{0}(α±(f) − α±(f0)) <(
1√
2

)n+1

ε implies pV
n,K(f − f0) < ε, and pV

n, 1√
2
(K±K)(f − f0) < ε implies that

pR2,V
n,K×K(α±(f) − α±(f0)) < ε, where n ∈ N, K ⊂ R1 compact, f, f0 ∈ C∞(R1, V ),

and ε > 0 are arbitrary. Thus α± is continuous and open onto its image, as desired.

(b) pW,V
n,K ((f + g)− (f0 + g0)) < ε implies that pW,V

n,K ((f + g− g0)− f0) < ε; since

β1(f +g−g0, g0) = β1(f, g), we see that β1 is open onto its image by Proposition 3.1

above. Clearly β1 is surjective (β1(f, 0) = f), and thus it is open into C∞(W,V ).

Now clearly f ∈ UW,V (n,K, 1
2ε, f0), g ∈ UW,V (n,K, 1

2ε, g0) implies that β1(f, g) ∈

UW,V (n,K, ε, f0+g0) for all n ∈ N, K ⊂ W compact, ε > 0, and f0, g0 ∈ C∞(W,V ),

and therefore β1 is continuous.

To see that β2 is open onto its image, let n ∈ N, K ⊂ W compact and nonempty,

ε > 0, and (f0, g0) ∈ C∞(W,V )×C∞(W,V ), and let (f, g) ∈ C∞(W,V )×C∞(W,V )

satisfy β2(f, g) ∈ UW×W,V (n,K ×K, 1
2ε, β2(f0, g0)). Pick x0 ∈ K, and define f̂ , ĝ ∈

C∞(W,V ) by f̂(x) = f(x) + g(x0) − g0(x0), ĝ(x) = g(x) + g0(x0) − g(x0). Then

clearly β2(f̂ , ĝ) = β2(f, g); moreover,

pW,V
n,K (f̂ − f0) ≤ pW×W,V

n,K×K (β2(f, g) − β2(f0, g0)) <
1
2
ε

pW,V
n,K (ĝ − g0) ≤ pW×W,V

n,K×K (β2(f̂ , ĝ) − β2(f0, g0)) + pW,V
n,K (f̂ − f0) < ε. (3.26)
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Thus β2 is open onto its image by Proposition 3.1, as desired. (We note, incidentally,

that β2 is very far from being surjective – in fact its image is very far from being an

open set.) Continuity follows as with β1: if n ∈ N, K ⊂ W is compact, ε > 0, and

f0, g0 ∈ C∞(W,V ), then f ∈ UW,V (n,K, 1
2ε, f0) and g ∈ UW,V (n,K, 1

2ε, g0) implies

that β2(f, g) ∈ UW×W,V (n,K × K, ε, β2(f0, g0)).

(c) Let U1 ⊂ X1, U2 ⊂ X2 be open; then since (q1 × q2)(X1 × X2) = q1(X1) ×

q2(X2), we see that (q1 × q2)(U1 × U2) = q1(U1) × q2(U2) must be open in the

image of q1 × q2, and thus q1 × q2 must be open onto its image. If q1 and q2 are

open into Y1 and Y2, then q1(X2) × q2(X2) is open in Y1 × Y2 and thus q1 × q2

is open into Y1 × Y2, as desired. For continuity, note that (q1 × q2)(x1, x2) =

((q1 ◦ π1)(x1, x2), (q2 ◦ π2)(x1, x2)), where π1 and π2 are the projections on the first

and second factors, respectively, and apply Munkres [8], Theorem 19.6.

(d) Trivial (pV
n,K(cf − cf0) = |c|pV

n,K(f − f0)).

(e) Let n ∈ N, K ⊂ W compact, and f ∈ C∞(W,V ). Then for all x ∈ W and

all sequences (αi), |(αi)| ≤ n, we have

∣∣∣∂(αi)(f(cx))
∣∣∣ = |c||(αi)|

∣∣∣(∂(αi)(f)
)

(cx)
∣∣∣ . (3.27)

Now let c< = min{1, |c|} > 0 and c> = max{1, |c|} > 0; then cn
< ≤ |c||(αi)| ≤ cn

>

and

cn
<

∣∣∣(∂(αi)(f)
)

(cx)
∣∣∣ ≤ ∣∣∣∂(αi) (f(cx))

∣∣∣ ≤ cn
>

∣∣∣(∂(αi)(f)
)

(cx)
∣∣∣ , (3.28)

so cn
<pW,V

n,cK(f) ≤ pW,V
n,K (f(c·)) ≤ cn

>pW,V
n,cK(f). Thus the map is continuous and open

onto its image. Since the inverse of f 7→ f(c·) is clearly f 7→ f(1
c ·), each of these
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maps is in fact a homeomorphism.

(ii) First, ιWV1,V2
is clearly surjective, as the components of a C∞ map are also

C∞. It is likewise clearly injective. Now we note that for all (x1, x2) ∈ V1 × V2,

max{|x1|, |x2|} ≤ |(x1, x2)| =
√

|x1|2 + |x2|2; thus for all n ∈ N, K ⊂ W compact,

and (f0, g0), (f, g) ∈ C∞(W,V1) × C∞(W,V2),

max{pW,V1

n,K (f − f0), p
W,V2

n,K (g − g0)} ≤ pW,V1×V2

n,K (ιWV1,V2
(f, g) − ιWV1,V2

(f0, g0))

≤
√

pW,V1

n,K (f − f0)2 + pW,V2

n,K (g − g0)2; (3.29)

thus ιWV1,V2
is continuous and open onto its image. Since it is surjective and injective

it is therefore a homeomorphism, as desired. QED.
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CHAPTER 4

CONSTRUCTION OF THE TRANSITIVE ACTION

We are interested in the cylinder R1 × S1 and its universal cover R1 × R1.

We shall use (t, σ) to denote an arbitrary point in R1 × S1 and (t, θ) to denote an

arbitrary point in R1 × R1. (t, θ) are then the standard coordinates on R1 × R1.

Considering the covering map p restricted to sets of the form R1 × (θ0 − π, θ0 + π),

we see that these coordinates on R1 × R1 also give rise to coordinates id × θσ0 :

R1×S1 → R1×(−π, π), where σ0 = eiθ0 and θσ0 : S1\{−σ0} → (−π, π) is as defined

in Chapter 3 above. Now for every σ ∈ S1 the tangent space TσS1 is one-dimensional

with basis f 7→ ∂θ[(f ◦ θ−1
σ )(θ)]|θ=0, which for simplicity we denote by ∂θσ

|σ. We

note that (letting θ0 ∈ (−π, π), σ0 = eiθ0σ ∈ S1) ∂θ[(f ◦ θ−1
σ )(θ)]|θ=θ0 = ∂θσ0

|σ0(f);

we shall also denote the tangent vector so defined by ∂θσ
|σ0. For every σ ∈ S1 the

basis of the cotangent space (TσS1)∗ dual to the basis {∂θσ
|σ} of TσS1 is dθσ|σ. We

define κ : S1 → T ∗S1 by κ|σ = dθσ|σ and claim that κ is a 1-form. κ|σ ∈ T ∗
σS1

by definition. To see that κ is C∞, let X : S1 → TS1 be a C∞ vector field

and pick σ0 ∈ S1. Then on S1\{−σ0} we may write X|σ = f(σ)∂θσ0
|σ, where

f : S1\{−σ0} → R1 is C∞. Thus on S1\{−σ0} we have κ|σ(X|σ) = f(σ), which is

C∞ at σ0. Thus κ is C∞. Now we note that p∗(∂θ|θ0) = ∂θσ0
|σ0, where σ0 = eiθ0;

thus p∗κ = dθ. Clearly p∗dt = dt.

Let now g = ew(σ,t)(κ⊗κ−dt⊗dt) be a metric on R1×S1 globally conformal to

the Minkowski metric. g will be fixed throughout the remainder of our discussion.
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Let G(R1×S1; g) ⊂ C∞(R1×S1,R1×C) denote the set of all conformal isometries

of g, topologized of course as a subspace of C∞(R1 ×S1,R1 ×C), and K(S1;R1 ×

S1; g) ⊂ C∞(S1,R1 × C) the set of all spacelike embeddings X : S1 → R1 × S1,

i.e., embeddings such that X∗g is positive-definite, topologized as a subspace of

C∞(S1,R1 × C).3 We note that p∗g|(t,θ) = ew(t,eiθ)(dθ ⊗ dθ − dt ⊗ dt) is a metric

on the covering space R1 × R1 which is also globally conformal to the Minkowski

metric. We now introduce null coordinates on R1 ×R1 with respect to this metric

by defining z± : R1 × R1 → R1, z±(t, θ) = 1√
2
(t ± θ). Define T : R1 × R1 → R2

by T (t, θ) = (z+(t, θ), z−(t, θ)); then T 2 = id. Thus t = 1√
2
(z+ + z−) and θ =

1√
2
(z+ − z−), so

dθ ⊗ dθ − dt ⊗ dt =
1
2
(dz+ ⊗ dz+ + dz− ⊗ dz− − (dz+ ⊗ dz− + dz− ⊗ dz+))

− 1
2
(dz+ ⊗ dz+ + dz− ⊗ dz− + (dz+ ⊗ dz− + dz− ⊗ dz+))

= −(dz+ ⊗ dz− + dz− ⊗ dz+) (4.1)

and in null coordinates p∗g = −ew(dz+ ⊗ dz− + dz− ⊗ dz+).

We define S : R1 × R1 → R2 by S(t, θ) =
(

1
2(t + θ), 1

2(t − θ)
)

and note that

S−1(t, θ) = (t + θ, t − θ). We now prove two theorems allowing us to characterize

G(R1 × S1; g) and K(S1;R1 × S1; g); specifically, we shall demonstrate both of

them as quotients of the semidirect product ∆ o S2 defined at the end of Chapter

2 above.

Theorem 4.1. The map Φ : ∆ o S2 → G(R1 × S1; g) given by

3The letters ‘G’ and ‘K’ are from the Mandarin pronunciation of the Chinese words
for ‘conformal’ and ‘space’, respectively.
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Φ(f1, f2, χ) ◦ p = p ◦
(
S ◦ (f1 × f2) ◦ χ ◦ S−1

)
(4.2)

is a surjective, continuous, and open homomorphism with kernel

KerΦ = {(f1, f2, 1) ∈ ∆ o S2|f1(x) = x + 2πn, f2(x) = x − 2πn for some n ∈ Z,

for all x ∈ R}. (4.3)

Thus G(R1 × S1; g) ∼= (∆ o S2)/KerΦ via a homeomorphic isomorphism, and

in particular G(R1 × S1; g) is a topological group.

More explicitly, using the isomorphism S2
∼= Z2 and thinking of Z2 as the group

of real numbers of unit modulus, we may write

[Φ(f1, f2, χ) ◦ p] (t, θ) = p
(1

2
(f1(t + χθ) + f2(t − χθ)),

1
2
(f1(t + χθ) − f2(t − χθ))

)
.

(4.4)

Proof. We note first of all that Φ(f1, f2, χ) is defined since f1, f2 ∈ Diff2πZ(R1).

Further, Φ maps into C∞(R1×S1,R1×S1) by Proposition 3.3. We now show that

its image is equal to G(R1 × S1; g).

We show first that its image must contain G(R1×S1; g). Let Ψ ∈ G(R1×S1; g),

and consider any p-lift Ψ̃ : R1 × R1 → R1 × R1 of Ψ ◦ p : R1 × R1 → R1 × S1,

which exists and is continuous by Bredon [4], Theorem III.4.1. Since Ψ : R1×S1 →

R1 × S1 is a diffeomorphism and R1 × S1 may be viewed as R1 × R1/{0} × Z,

Proposition 3.9 applies to show that Ψ̃ ∈ Diff(R1×R1) and that Ψ̃ must also satisfy

Ψ̃((t, θ) + (0, 2πn)) = Ψ̃(t, θ) ± (0, 2πn) for all n ∈ Z. Moreover, by definition Ψ̃

satisfies p◦Ψ̃ = Ψ◦p; thus Ψ̃∗◦p∗ = p∗◦Ψ∗, so Ψ̃∗(p∗g) = p∗(Ψ∗g) = eγp∗g, where γ
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is some function, since Ψ is a conformal transformation of g. Thus Ψ̃ is a conformal

isometry of p∗g. We consider its representation in null coordinates, which we write

(Ψ̃+(z+, z−), Ψ̃−(z+, z−)) = (T ◦Ψ̃◦T−1)(z+, z−). Let a1∂z+ +b1∂z− , a2∂z+ +b2∂z−

be any two vectors at some point (z+
0 , z−0 ). Then since Ψ̃ is conformal we have

Ψ̃∗(p∗g)(a1∂z+ + b1∂z−, a2∂z+ + b2∂z−) = −ew(2a1a2Ψ̃+
,+Ψ̃−

,+ + 2b1b2Ψ̃+
,−Ψ̃−

,−

+ b1a2(Ψ̃+
,−Ψ̃−

,+ + Ψ̃+
,+Ψ̃−

,−)

+ b2a1(Ψ̃+
,+Ψ̃−

,− + Ψ̃+
,−Ψ̃−

,+))

= −eγew(a1b2 + b1a2). (4.5)

Thus Ψ̃+
,+Ψ̃−

,+ = Ψ̃+
,−Ψ̃−

,− = 0 and Ψ̃+
,+Ψ̃−

,− + Ψ̃+
,−Ψ̃−

,+ > 0; further, Ψ̃+
,+Ψ̃−

,− −

Ψ̃+
,−Ψ̃−

,+ 6= 0 since Ψ̃∗ = p∗Ψ∗p∗−1 is nondegenerate (since p is a local diffeomor-

phism). Thus Ψ̃+
,+ 6= 0 implies that Ψ̃−

,+ = 0, which implies that Ψ̃−
,− 6= 0, so

Ψ̃+
,− = 0; similarly, Ψ̃+

,− 6= 0 implies that Ψ̃−
,− = 0, which implies that Ψ̃−

,+ 6= 0, so

Ψ̃+
,+ = 0. Thus Ψ̃+(x+, x−) = f(x+), Ψ̃−(x+, x−) = h(x−) or Ψ̃+(x+, x−) = f(x−),

Ψ̃−(x+, x−) = h(x+), where in either case f, h ∈ C∞(R1,R1) and f ′h′ > 0. (This

logic is not original to us. For an example in the literature, see [14], Section 2.5,

especially Theorem 2.14.) This logic clearly works in reverse as well – thus any Ψ̃

so defined for f, h ∈ C∞(R1,R1) with f ′h′ > 0 will preserve p∗g up to a conformal

factor.

Now the periodicity condition satisfied by Ψ̃ becomes in null coordinates

Ψ̃±(z+ + nπ
√

2, z− − nπ
√

2) = Ψ̃±(z+, z−) ± nπ
√

2. (4.6)

Thus if Ψ̃+(z+, z−) = f(x+) and Ψ̃−(z+, z−) = h(x−) then f and h satisfy f(x +
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nπ
√

2) = f(x) + nπ
√

2, h(x + nπ
√

2) = h(x) + nπ
√

2, while if Ψ̃+(z+, z−) = f(x−)

and Ψ̃−(z+, z−) = h(x+) then f and h satisfy f(x + nπ
√

2) = f(x) − nπ
√

2,

h(x + nπ
√

2) = h(x)− nπ
√

2. Thus either (
√

2f( 1√
2
x),

√
2h( 1√

2
x)) ∈ Diff+

2πZ(R1)×

Diff+
2πZ(R1) or (

√
2f( 1√

2
x),

√
2h( 1√

2
x)) ∈ Diff−

2πZ(R1) × Diff−
2πZ(R1). Now in either

case

Ψ̃(t, θ) =
(

1√
2

(
f

(
1√
2
(t + χθ)

)
+ h

(
1√
2
(t − χθ)

))
,

1√
2

(
f

(
1√
2
(t + χθ)

)
− h

(
1√
2
(t − χθ)

)))
, (4.7)

where χ = +1 in the former case and χ = −1 in the latter. Thus we see that

p ◦ Ψ̃ = Φ(
√

2f( 1√
2
x),

√
2h( 1√

2
x), χ) ◦ p, so Φ(

√
2f( 1√

2
x),

√
2h( 1√

2
x), χ) = Ψ and

G(R1 × S1; g) is contained in the image of Φ, as desired.

To see that the image of Φ is in fact contained in G(R1 × S1; g), we note first

of all that by our comment at the end of the second-to-last paragraph and since Φ

maps into C∞(R1×S1,R1×S1) every element in the image of Φ will preserve g up

to a conformal factor. That each element is in fact a diffeomorphism follows from

the homomorphism property satisfied by Φ which we now demonstrate.

Let (f1, f2, χ), (g1, g2, ξ) ∈ ∆ o S2. Then we see that, recalling that (see the

last paragraph of Chapter 2) (χ(g1, g2))(χ(x1, x2)) = (χ ◦ (g1 × g2))(x1, x2), i.e.,

(χ(g1 × g2)) ◦ χ = χ ◦ (g1 × g2),

Φ((f1, f2, χ)(g1, g2, ξ)) ◦ p = Φ(f1 ◦ gχ(1), f2 ◦ gχ(2), χξ) ◦ p

= p ◦
(
S ◦ [(f1 ◦ gχ(1)) × (f2 ◦ gχ(2))] ◦ (χξ) ◦ S−1

)
= p ◦

(
S ◦ (f1 × f2) ◦ χ ◦ [(g1 × g2) ◦ ξ ◦ S−1]

)
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= p ◦
[(

S ◦ (f1 × f2) ◦ χ ◦ S−1
)

◦
(
S ◦ (g1 × g2) ◦ ξ ◦ S−1

)]
= Φ(f1, f2, χ) ◦ Φ(g1, g2, ξ) ◦ p. (4.8)

Thus we see first of all, by consideration of

Φ((f1, f2, χ)(f1, f2, χ)−1) (4.9)

and

Φ((f1, f2, χ)−1(f1, f2, χ)) (4.10)

that every element in the image of Φ is in fact a diffeomorphism; thus the image

of Φ is contained in and hence equal to G(R1 × S1; g). Second, Φ is in fact a

homomorphism.

Finally, we note that (for (f1, f2) ∈ ∆, χ ∈ S2)

(
ηχ

(
β2

(1
2
f1(

√
2·), 1

2
f2(

√
2·)
))

(t, θ), ηχ

(
ω
(
(q◦1

2
f1)(

√
2·), (q◦(−1

2
f2))(

√
2·)
))

(t, θ)
)

= p

(
1
2

(f1(t + χθ) + f2(t − χθ)) ,
1
2

(f1(t + χθ) − f2(t − χθ))
)

= [Φ(f1, f2, χ) ◦ p] (t, θ). (4.11)

We claim that this first map above, which maps ∆ into C∞(R1 × R1,R1 × S1),

is continuous and open onto its image. It is continuous by Lemmas 2.1, 3.1, 3.2,

and 3.3. To see that it is open onto its image we will apply Corollary 3.2 and our

work in Chapter 3. Since openness of Φ (together with openness of the map Ω

in Theorem 4.2 below) is a key part of our results, and since a large part of the

work done in the more than twenty pages of Chapter 3 is necessary to prove it,
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we will present the argument in detail. (For the necessity of openness of Φ, see

e.g. Pontrjagin [9], §19.) Fix χ ∈ S2 and consider the extension of this map to all

of C∞(R1,R1) × C∞(R1,R1), i.e., the map

Φ̃ : C∞(R1,R1) × C∞(R1,R1) → C∞(R2,R1) × C∞(R2, S1)

(f1, f2) 7→
(
ηχ

(
β2

(1
2
f1(

√
2·), 1

2
f2(

√
2·)
))

, ηχ

(
ω
(
(q◦ 1

2
f1)(

√
2·), (q◦−1

2
f2)(

√
2·)
)))

;
(4.12)

in other words,

(
Φ̃(f1, f2)

)
(t, θ) =

(
1
2
(f1(t + χθ) + f2(t − χθ)), q(

1
2
f1(t + χθ) − f2(t − χθ))

)
.

(4.13)

By Lemma 3.3(i)(c),(i)(d),(i)(e) the map

C∞(R1,R1) × C∞(R1,R1) → C∞(R1,R1) × C∞(R1,R1)

(f1, f2) 7→
(

1
2
f1(

√
2·), 1

2
f2(

√
2·)
) (4.14)

is a homeomorphism; thus

C∞(R1,R1) × C∞(R1,R1) → C∞(R2,R1)

(f1, f2) 7→ β2

(
1
2
f1(

√
2·), 1

2
f2(

√
2·)
) (4.15)

is open onto its image by Corollary 3.2. ηχ is a homeomorphism, and thus

C∞(R1,R1) × C∞(R1,R1) → C∞(R2,R1)

(f1, f2) 7→ ηχ

(
β2

(
1
2
f1(

√
2·), 1

2
f2(

√
2·)
)) (4.16)

is open onto its image by our comment after Proposition 3.2 above. Similarly, by
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Lemma 3.3(i)(c),(i)(d),(i)(e), Proposition 3.6, and Corollary 3.2 the map

C∞(R1,R1) × C∞(R1,R1) → C∞(R1, S1) × C∞(R1, S1)

(f1, f2) 7→
((

q ◦ 1
2
f1

)
(
√

2·),
(

q ◦ −1
2
f2

)
(
√

2·)
) (4.17)

is open. Thus by Lemma 3.1 and Corollary 3.2 the map

C∞(R1,R1) × C∞(R1,R1) → C∞(R2, S1)

(f1, f2) 7→ ω

((
q ◦ 1

2
f1

)
(
√

2·),
(

q ◦ −1
2
f2

)
(
√

2·)
) (4.18)

is open onto its image. By Lemma 3.2 and Corollary 3.2 the map

C∞(R1,R1) × C∞(R1,R1) → C∞(R2, S1)

(f1, f2) 7→ ηχ

(
ω

((
q ◦ 1

2
f1

)
(
√

2·),
(

q ◦ −1
2
f2

)
(
√

2·)
))
(4.19)

is open onto its image. Lemma 3.3(i)(c) then shows that Φ̃ is open onto its image.

By Lemma 3.3(ii) (and since we give S2 the discrete topology) the related map

˜̃Φ : C∞(R1,R1) × C∞(R1,R1) × S2 → C∞(R2,R1 × S1)

(f1, f2, χ) 7→ ιR
2

R1,C

(
Φ̃(f1, f2)

) (4.20)

is open onto its image as well. We now investigate its restriction ˜̃Φ|∆×S2, which is

the map on the left-hand side of equation (4.11) above. We compute the fibers of ˜̃Φ:

˜̃Φ(f1, f2, χ) = ˜̃Φ(g1, g2, ξ) if and only if for all (t, θ) ∈ R2 1
2(f1(t+χθ)+f2(t−χθ)) =

1
2(g1(t + ξθ) + g2(t − ξθ)) and 1

2(f1(t + χθ) − f2(t − χθ)) = 1
2(g1(t + ξθ) − g2(t −

ξθ)) + 2πn, where n ∈ Z; but this is equivalent to f1(t + χθ) = g1(t + ξθ) + 2πn,

f2(t − χθ) = g2(t − ξθ) − 2πn. Differentiating with respect to t and θ at θ = 0



55

gives, respectively, f ′
1(t) = g′1(t), χf ′

1(t) = ξg′1(t), f ′
2(t) = g′2(t), χf ′

2(t) = ξg′2(t);

thus either χ = ξ or f1, f2, g1, and g2 are all constant. In either case we have, for

all x ∈ R1, f1(x) = g1(x)+2πn, f2(x) = g2(x)− 2πn; if f1 and f2 are not constant,

this condition together with χ = ξ clearly implies that ˜̃Φ(f1, f2, χ) = ˜̃Φ(g1, g2, ξ).

Thus

˜̃Φ
−1 ( ˜̃Φ(∆ × S2)

)
=
{
(f1, f2, χ) ∈ C∞(R1,R1) × C∞(R1,R1) × S2|

˜̃Φ(f1, f2, χ) = ˜̃Φ(g1, g2, ξ) for some (g1, g2, ξ) ∈ ∆ × S2

}
=
{
(f1, f2, χ) ∈ C∞(R1,R1) × C∞(R1,R1) × S2|

f1(x) = g1(x) + 2πn, f2(x) = g2(x) − 2πn for some (g1, g2) ∈ ∆ and n ∈ Z,

for all x ∈ R
}

= ∆ × S2. (4.21)

Thus the restriction ˜̃Φ|∆×S2 : ∆ × S2 → C∞(R2,R1 × S1) is open onto its image.

Now the image of Φ was shown above to be G(R1 × S1; g); now ˜̃Φ|∆×S2 is

the map on the left-hand side of equation (4.11) above; thus for all (f1, f2, χ) ∈

∆ × S2 we have ˜̃Φ(f1, f2, χ) = Φ(f1, f2, χ) ◦ p, so ˜̃Φ|∆×S2 = ZG(R1×S1;g) ◦ Φ.

Thus Φ =
(
ZG(R1×S1;g)

)−1 ◦ ˜̃Φ|∆×S2 is continuous and open onto its image, since

ZG(R1×S1;g) : G(R1 × S1; g) → C∞(R2,R1 × S1) is a homeomorphism onto its

image by Proposition 3.5 above. (We note that the image of ˜̃Φ|∆×S2 equals that

of ZG(R1×S1;g) since ˜̃Φ|∆×S2 = ZG(R1×S1;g) ◦ Φ and Φ is surjective from ∆ × S2

onto G(R1 × S1; g).) Since the image of Φ is G(R1 × S1; g) we see finally that
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Φ : ∆ o S2 → G(R1 × S1; g) is open. Φ is therefore a continuous, open, surjective

homomorphism, as desired.

To compute its kernel, we note that Φ(f1, f2, χ) = id = Φ(id, id, 1) if and only if

˜̃Φ(f1, f2, χ) = ˜̃Φ(id, id, 1), since ZG(R1×S1;g) is a homeomorphism; our previous work

then shows that this is equivalent to (since id is not constant) χ = 1, f1(x) = x+2πn,

f2(x) = x − 2πn for some n ∈ Z, for all x ∈ R. Thus

KerΦ = {(f1, f2, χ) ∈ ∆ o S2|χ = 1, f1(x) = x + 2πn, f2(x) = x − 2πn

for some n ∈ Z, for all x ∈ R}, (4.22)

as desired.

Thus we see that Φ descends to a map Φ̂ : (∆ o S2)/KerΦ → G(R1 × S1; g)

which is an abstract group isomorphism and also a homeomorphism (see Munkres

[8], Corollary 22.3; compare Pontrjagin [9], Theorem 12). Since (∆ o S2)/KerΦ is

a topological group (Pontrjagin [9], p. 60), this shows, among other things, that

G(R1 × S1; g) is also a topological group, as desired. This completes our proof.

QED.

We note that for all (f1, f2, χ) ∈ ∆ × S2, n ∈ Z, (t, σ) ∈ R1 × S1 we have

Φ(f1, f2, χ)(t + 2πn, σ) = Φ(f1, f2, χ)(t, σ) · (2πn, 1), i.e., Φ(f1, f2, χ) commutes

with time shifts of 2πn, n ∈ Z. Thus each conformal transformation is completely

determined by its restriction to the compact subset [0, 2π] × S1, and it is in this

sense that G(R1 × S1; g) behaves like a group of diffeomorphisms of a compact

manifold. Moreover, the identity is the only element in G(R1 × S1; g) which has
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compact support (see our comment on p. 5).

Theorem 4.2. The map Ω : ∆ o S2 → K(S1;R1 × S1; g) given by

[Ω(f1, f2, χ) ◦ q] (x) = p
(
(S ◦ (f1 × f2))(χ(x,−x))

)
(4.23)

is surjective, continuous, and open, and each of its fibers is a union of two cosets

of Φ.

We note that this implies that Ω descends to a map Ω̂ : (∆ o S2)/KerΦ →

K(S1;R1 × S1; g); this map is however not injective. We note also that we may

write more explicitly

[Ω(f1, f2, χ) ◦ q] (x) = p

(
1
2
(f1(χx) + f2(−χx)),

1
2
(f1(χx) − f2(−χx))

)
. (4.24)

Proof. We note first that Ω(f1, f2, χ) is defined since (f1, f2) ∈ ∆; more ex-

plicitly, letting ξ = ±1 as (f1, f2) ∈ Diff±
2πZ(R1) × Diff±

2πZ(R1), we see that for all

n ∈ Z

p
(
(S ◦ (f1 × f2))(χ(x + 2πn,−(x + 2πn)))

)
= p
(
S(f1(χx) + 2πχξn, f2(−χx) − 2πχξn)

)
= p

(
1
2
(f1(χx) + f2(−χx)),

1
2
(f1(χx) − f2(−χx)) + 2πχξn

)
= p

(
1
2
(f1(χx) + f2(−χx)),

1
2
(f1(χx) − f2(−χx))

)
= p
(
(S ◦ (f1 × f2))(χ(x,−x))

)
. (4.25)

Further, by Proposition 3.3, Ω(f1, f2, χ) : S1 → R1 × S1 is C∞.
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To show that the image of Ω equals K(S1;R1×S1; g), we proceed as in the proof

of Theorem 4.1 above. Let X ∈ K(S1;R1×S1; g) be some spacelike embedding, and

consider any continuous p-lift X̃ of X ◦ q : R1 → R1 × S1; thus X̃ : R1 → R1 ×R1

satisfies p ◦ X̃ = X ◦ q. As usual, we see that X̃ is C∞. Now by definition X∗g

is positive definite; since p∗ and q∗ are nondegenerate, this implies that q∗X∗g =

(X ◦ q)∗g = (p ◦ X̃)∗g = X̃∗p∗g must also be positive definite. We now write X̃ in

null coordinates as (X̃+(x), X̃−(x)) = (T ◦ X̃)(x). Then we see that

X̃∗(p∗g) = X̃∗(−ew(dz+ ⊗ dz− + dz− ⊗ dz+)) = −2ewX̃+′X̃−′dx ⊗ dx, (4.26)

so X̃ must satisfy X̃+′X̃−′ < 0 on R1. In particular, X̃+ and X̃− must both be

injective.

Now, for each x, X̃ must satisfy X̃(x+2π) = X̃(x)+(0, 2πn(x)) for some n(x) ∈

Z. As usual (since the components of a C∞ function are C∞) this implies that n is a

constant. Thus X̃± satisfy X̃±(x+2π) = X̃±(x)±πn
√

2; since X̃± are injective this

implies that n 6= 0. Thus X̃± are surjective and hence are diffeomorphisms of R1,

as they are smooth and have nowhere-vanishing derivatives. We note moreover that

X̃+′X̃−′ < 0 implies that X̃θ′ 6= 0 on R1. Since X̃θ(x + 2π) = X̃θ(x) + 2πn for all

x ∈ R1, we see that X̃θ is a diffeomorphism of R1. Now let χ = sgn X̃θ′ and define

ζ : R1 → R1 by ζ(x) = (X̃θ)−1(X̃θ(x) + 2πχ); thus ζ(x) > x for all x ∈ R1. Now

we note that (setting ζ0 = id) ζm(x) = (X̃θ)−1(X̃θ(x)+2πχm) for all m ∈ Z (since

ζ−1(x) = (X̃θ)−1(X̃θ(x) − 2πχ)); thus in particular (since sgnn = sgn X̃θ′ = χ)

ζ |n|(x) = (X̃θ)−1(X̃θ(x) + 2πn) = x + 2π and so X̃t(x) = X̃t(ζ |n|(x)) for all

x ∈ R1. Now fix x ∈ R1 and consider the sequence {X̃t(ζm(x))−X̃t(ζm−1(x))|m =
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1, 2, · · · , |n|}. This sequence sums to zero since X̃t(x) = X̃t(ζ |n|(x)); thus there must

be an m in the given range, i.e., between 1 and |n| (which is nonempty since n 6= 0),

so that X̃t(ζm+1(x))− X̃t(ζm(x)) = X̃t(ζ(ζm(x)))− X̃t(ζm(x)) is nonnegative and

X̃t(ζ(ζm−1(x))) − X̃t(ζm−1(x)) is nonpositive or vice versa. In either case there

must be an x∗ ∈ [ζm−1(x), ζm(x)] so that X̃t(ζ(x∗)) = X̃t(x∗). But X̃θ(ζ(x∗)) =

X̃θ(x∗) + 2πχ; thus p(X̃(ζ(x∗))) = p(X̃(x∗)), so X(q(ζ(x∗))) = X(q(x∗)). By

injectivity of X this shows that ζ(x∗) = x∗ + 2πn′ for some n′ ∈ Z. But then

X̃θ(x∗ + 2πn′) = X̃θ(x∗) + 2πn′n

= X̃θ(x∗) + 2πχ, (4.27)

so n′n = ±1 and n = ±1. Thus
√

2X̃± ∈ Diff2πZ(R1). Now we note that X̃−(−x)

satisfies X̃−(−(x + 2π)) = X̃−(−x − 2π) = X̃−(−x) + nπ
√

2, while X̃+(x + 2π) =

X̃+(x) + nπ
√

2; thus (
√

2X̃+,
√

2X̃−(−·)) ∈ ∆. (Recall that n could be either 1 or

−1.) Now we clearly have Ω(
√

2X̃+,
√

2X̃−(−·), 1)◦q = p◦( 1√
2
(X̃++X̃−), 1√

2
(X̃+−

X̃−)) = p◦X̃; thus Ω(
√

2X̃+,
√

2X̃−(−·), 1) = X and K(S1;R1×S1; g) is contained

in the image of Ω, as desired.

To see that K(S1;R1×S1; g) contains the image of Ω, let (f1, f2, χ) ∈ ∆×S2 and

consider X = Ω(f1, f2, χ) : S1 → R1×S1. X is C∞ as usual. Then X̃ = (1
2(f1(χx)+

f2(−χx)), 1
2(f1(χx) − f2(−χx))) : R1 → R1 × R1 is a lift of X ◦ q by definition

of Ω. In null coordinates we have X̃+(x) = 1√
2
f1(χx), X̃−(x) = 1√

2
f2(−χx); thus

X̃+′X̃−′ = −1
2χ2f ′

1(χx)f ′
2(−χx) < 0 since (f1, f2) ∈ ∆, so as above X̃∗p∗g = q∗X∗g

is positive definite. Hence so is X∗g and X is therefore everywhere spacelike. X is

injective since X̃(x1) − X̃(x2) = (0, 2πm) for some m ∈ Z implies that f1(χx1) −
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f1(χx2) = 2πm; thus x1 − x2 = ±2πmχ, so q(x1) = q(x2). Now X is open onto

its image since S1 is compact and X(S1) ⊂ R1 × S1 is Hausdorff (see Munkres [8],

Theorem 26.6). Thus X is an embedding and X ∈ K(S1;R1 × S1; g), as desired.

Thus the image of Ω equals K(S1;R1 × S1; g).

Now we note that we may write

Ω(f1, f2, χ)◦q =
(

β1

(
1
2
f1(χ·),

1
2
f2(−χ·)

)
, I

(
β1

(
1
2
f1(χ·),−

1
2
f2(−χ·)

)))
.(4.28)

As before the map on the right-hand side is continuous by Lemmas 2.1 and 3.3(i).

As in the proof of Theorem 4.1 above let

Ω̃χ : C∞(R1,R1) × C∞(R1,R1) → C∞(R1,R1) × C∞(R1, S1)

(f1, f2) 7→
(

β1

(1
2
f1(χ·),

1
2
f2(−χ·)

)
, I
(
β1

(1
2
f1(χ·),−

1
2
f2(−χ·)

))) (4.29)

denote the extension of this map to C∞(R1,R1)×C∞(R1,R1). As in the proof of

Theorem 4.1, the maps

C∞(R1,R1) × C∞(R1,R1) → C∞(R1,R1) × C∞(R1,R1)

(f1, f2) 7→
(

1
2
f1(χ·),±

1
2
f2(−χ·)

) (4.30)

are homeomorphisms by Lemma 3.3(i); thus the maps

C∞(R1,R1) × C∞(R1,R1) → C∞(R1,R1)

(f1, f2) 7→ β1

(
1
2
f1(χ·),±

1
2
f2(−χ·)

) (4.31)

are open by Lemma 3.3(i)(b). Thus the map Ω̃χ is open onto its image by Propo-

sition 3.6, Corollary 3.2, and Lemma 3.3(i)(c). The associated map
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˜̃Ω : C∞(R1,R1) × C∞(R1,R1) × S2 → C∞(R1,R1 × S1)

(f1, f2, χ) 7→ ιR
1

R1,C

(
Ω̃χ(f1, f2)

) (4.32)

is therefore open onto its image by Corollary 3.2 and Lemma 3.3(ii), since S2 is

given the discrete topology. We consider the restriction ˜̃Ω|∆×S2. We compute the

fibers of ˜̃Ω: ˜̃Ω(f1, f2, χ) = ˜̃Ω(g1, g2, ξ) implies that there is some n ∈ Z so that

1
2

(f1(χx) + f2(−χx)) =
1
2

(g1(ξx) + g2(−ξx))

1
2

(f1(χx) − f2(−χx)) =
1
2

(g1(ξx) − g2(−ξx)) + 2πn, (4.33)

so f1(χx) = g1(ξx) + 2πn, f2(χx) = g2(ξx) − 2πn for all x ∈ R. Thus f1(x) =

g1(ξχx) + 2πn, f2(x) = g2(ξχx) − 2πn; this is clearly also sufficient, and so

˜̃Ω
−1 ({ ˜̃Ω(g1, g2, ξ)

})
=
{
(f1, f2, χ) ∈ C∞(R1,R1) × C∞(R1,R1) × S2|

f1(x) = g1(ξχx) + 2πn, f2(x) = g2(ξχx) − 2πn for some n ∈ Z, for all x ∈ R
}

=
{
(f1, f2, ξ) ∈ C∞(R1,R1) × C∞(R1,R1) × S2|

f1(x) = g1(x) + 2πn, f2(x) = g2(x) − 2πn
}

∪
{
(f1, f2,−ξ) ∈ C∞(R1,R1) × C∞(R1,R1) × S2|

f1(x) = g1(−x) + 2πn, f2(x) = g2(−x) − 2πn
}
. (4.34)

Now (f1, f2) ∈ ∆ implies that (f1(−·), f2(−·)) ∈ ∆; thus ˜̃Ω
−1 ( ˜̃Ω(∆ × S2)

)
= ∆×S2

so Ω = Θ̂−1 ◦ ˜̃Ω|∆×S2 is open onto its image by Corollaries 3.2 and 3.3, as desired.

Further, by our computation of the fibers of ˜̃Ω above, we have clearly
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Ω−1 ({Ω(g1, g2, ξ)})

= {(f1, f2, ξ) ∈ ∆ o S2|f1(x) = g1(x) + 2πn, f2(x) = g2(x) − 2πn}

∪{(f1, f2,−ξ) ∈ ∆ o S2|f1(x) = g1(−x) + 2πn, f2(x) = g2(−x) − 2πn}

= (KerΦ)(g1, g2, ξ) ∪ (KerΦ)(g1(−·), g2(−·),−ξ), (4.35)

so each fiber of Ω is a union of two disjoint cosets of Φ. This completes the proof.

QED.

We note for future use that

Ω−1({Ω(g1, g2, ξ)}) = (KerΦ)(g1, g2, ξ) ∪ (KerΦ)(g1, g2, ξ)(−id,−id,−1). (4.36)

This theorem implies (see Munkres [8], Theorem 22.2) that Ω descends to a

continuous map Ω̂ : (∆ o S2)/KerΦ → K(S1;R1 × S1; g). We have the following

penultimate result.

Proposition 4.1. The map ˆ̂Ω = Ω̂|(∆×{1})/Ker Φ : (∆ × {1})/KerΦ → K(S1;

R1 × S1; g) is a homeomorphism.

Proof. We note that ∆ × {1} is an open subgroup of ∆ o S2 containing

KerΦ, and Φ−1(Φ(∆ × {1})) = ∆ × {1}; thus (∆ × {1})/KerΦ is an open sub-

group of (∆ o S2)/KerΦ (see also Bredon [4], Theorem I.15.11, and Pontrjagin [9],

Theorem 11). Now Ω̂ is open: if U ⊂ (∆ o S2)/KerΦ is open, then by definition

U ′ = {(f1, f2, χ) ∈ ∆oS2|(KerΦ)(f1, f2, χ) ∈ U} is open in ∆oS2, so Ω(U ′) is open

in K(S1;R1 × S1; g); but Ω(U ′) = Ω̂(U), and thus Ω̂ is open, as desired. Thus the

map ˆ̂Ω is continuous and open as a restriction to an open set of an open and con-

tinuous map. To see that it is surjective, let X = Ω(f1, f2, χ) ∈ K(S1;R1 × S1; g),
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(f1, f2, χ) ∈ ∆oS2. Then Ω−1{X} = (KerΦ)(f1, f2, χ)∪(KerΦ)(f1(−·), f2(−·),−χ)

– in other words, Ω(f1(−·), f2(−·),−χ) = X. Now if χ 6= 1 then −χ = 1, and

thus Ω|∆×{1} is surjective. Hence so is the quotient Ω̂|(∆×{1})/Ker Φ = ˆ̂Ω. To

see that ˆ̂Ω is injective, choose ω1 = (KerΦ)(f1, f2, 1), ω2 = (KerΦ)(g1, g2, 1) ∈

(∆×{1})/KerΦ, and suppose that ˆ̂Ω(ω1) = ˆ̂Ω(ω2). Then Ω(f1, f2, 1) = Ω(g1, g2, 1),

so (f1, f2, 1) ∈ (KerΦ)(g1, g2, 1) ∪ (KerΦ)(g1(−·), g2(−·),−1); but every element

in the latter has last component equal to −1 (since KerΦ ⊂ ∆ × {1}), and thus

(f1, f2, 1) ∈ (KerΦ)(g1, g2, 1) and ω1 = ω2. Thus ˆ̂Ω is a homeomorphism, as desired.

QED.

Since (∆ × {1})/KerΦ is an open subgroup of (∆ o S2)/KerΦ, this last result

shows that K(S1;R1 ×S1; g) may be given the structure of a topological group via

ˆ̂Ω; specifically, we may define a multiplication by X1X2 = ˆ̂Ω
( ˆ̂Ω

−1

(X1)
ˆ̂Ω
−1

(X2)
)

and inversion by X−1 = ˆ̂Ω
([ ˆ̂Ω−1

(X)
]−1)

, both of which are continuous since (∆×

{1})/KerΦ is a topological group and ˆ̂Ω is a homeomorphism; the identity is given

by ˆ̂Ω(id, id, 1) = (σ 7→ (0, σ)). These operations are easily seen to satisfy the group

axioms and therefore define a group structure on K(S1;R1 × S1; g). This group

structure is not canonically defined, however, since our association of elements of

∆ × S2 with spacelike embeddings depends on our choice of coordinates (t, θ) on

R1 × R1.

We now have the following final result.

Theorem 4.3. Let ω1, ω2 ∈ (∆ o S2)/KerΦ. Then Φ̂(ω1) ◦ Ω̂(ω2) = Ω̂(ω1ω2),
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and the action of G(R1 × S1; g) on K(S1;R1 × S1; g) defined by this equation is

transitive. This action is also continuous, and the nontrivial element in its isotropy

is conjugate to a conformal transformation representing time reversal.

Proof. Choose (f1, f2, χ), (g1, g2, ξ) ∈ ∆ o S2 representing ω1 and ω2, respec-

tively. Then by definition

(
Φ̂(ω1) ◦ Ω̂(ω2) ◦ q

)
(x) = (Φ(f1, f2, χ) ◦ Ω(g1, g2, ξ) ◦ q)(x)

= (Φ(f1, f2, χ) ◦ p)
(
(S ◦ (g1 × g2))(ξ(x,−x))

)
= p
(
(S ◦ (f1 × f2) ◦ χ)((g1 × g2)ξ(x,−x))

)
= p
(
(S ◦ (f1 × f2))((gχ(1) × gχ(2))(χξ(x,−x)))

)
=
(
Ω((f1, f2, χ)(g1, g2, ξ)) ◦ q

)
(x)

=
(
Ω̂(ω1ω2) ◦ q

)
(x), (4.37)

and thus Φ̂(ω1) ◦ Ω̂(ω2) = Ω̂(ω1ω2), as desired. Since Φ̂ and Ω̂ are surjective, the

action of G(R1 × S1; g) on K(S1;R1 × S1; g) given by (Ψ, X) 7→ Ψ ◦ X is thus

well-defined (i.e., it fixes K(S1;R1 × S1; g)) and transitive.

To see that this action is actually continuous, we note that (for Ψ ∈ G(R1 ×

S1; g) and X ∈ K(S1;R1 × S1; g))

Ψ ◦ X = Φ̂
(
Φ̂−1(Ψ)

)
◦ Ω̂

(
ˆ̂Ω
−1

(X)
)

= Ω̂
(

Φ̂−1(Ψ)ˆ̂Ω
−1

(X)
)

, (4.38)

where the last multiplication is done in the topological group (∆oS2)/KerΦ. But Φ̂

and ˆ̂Ω are homeomorphisms, and Ω̂ is continuous, so the action must be continuous,

as desired. (Note our use of openness of Φ and Ω here.)
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To compute the isotropy of this action, let ι = (KerΦ)(−id,−id,−1) ∈ (∆ o

S2)/KerΦ. Then Ω̂(ω) = Ω̂(ω′) if and only if ω = ω′ or ω = ω′ι. Thus Φ̂(ω1) ◦

Ω̂(ω2) = Ω̂(ω1ω2) = Ω̂(ω2) if and only if ω1 = id or ω1 = ω2ιω2
−1, so that the

isotropy is conjugate to {id, Φ̂(ι)}. Now we see that

(
Φ̂(ι) ◦ p

)
(t, θ) = p

(1
2
((−id)(t − θ) + (−id)(t + θ)),

1
2
((−id)(t − θ) − (−id)(t + θ))

)
= p(−t, θ), (4.39)

i.e., Φ̂(ι)(t, σ) = (−t, σ), so that Φ̂(ι) corresponds to time reversal as claimed.QED.
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CHAPTER 5

TOWARDS A QUANTUM THEORY

In this final section we would like to briefly and informally describe the steps still

necessary to fully implement Isham’s group-theoretic quantization program [1] and

then indicate briefly some questions which can be studied within this framework.

Isham’s program requires a group of symplectic transformations acting transi-

tively on the phase space of the classical system. In attempting to use our results

in Chapter 4 to construct such a group, we are immediately confronted with the

problem of determining a manifold structure on the infinite-dimensional spaces in-

troduced there, particularly K(S1;R1 × S1; g). This difficulty is compounded by

the existence of many inequivalent notions of smoothness for maps between topo-

logical vector spaces such as C∞
p (R1,R1) which are not Banach spaces. It can be

shown that each connected component of Diff2πZ(R1) is homeomorphic to an open

subset of C∞
p (R1,R1); these homeomorphisms can then be taken to provide a dif-

ferential structure on Diff2πZ(R1). Now Proposition 4.1 and Proposition 3.8 show

that Ω|∆×{1} : ∆ × {1} → K(S1;R1 × S1; g) is a covering map, and in particular

a local homeomorphism; thus it can presumably be used to transfer this differ-

ential structure to K(S1;R1 × S1; g). Letting (C∞
p (R1,R1))′ denote the strong

topological dual of C∞
p (R1,R1) (see Yosida [3], pp. 110-111), we may identify the

cotangent bundle of Diff2πZ(R1) with Diff2πZ(R1) × (C∞
p (R1,R1))′. This suggests

that we may identify the cotangent bundle of K(S1;R1×S1; g) with something like
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K(S1;R1×S1; g)×(C∞
p (R1,R1)×C∞

p (R1,R1))′. We may then take our symplectic

form to be the canonical symplectic form on this bundle (see Chernoff and Marsden

[13], p. 8) and attempt to extend the action of G(R1 ×S1; g) on K(S1;R1 ×S1; g)

to a transitive symplectic action on this symplectic manifold. The details and rig-

orous justification of the above would require a much more detailed understanding

of the differential structure used and the precise definition of smoothness adopted.

Beyond this, there are certain technical requirements which the group of symplectic

transformations obtained must satisfy in order to finish applying Isham’s program.

It is nevertheless possible to speculate concerning the nature of the resultant

quantum theory, and we would like to describe briefly a preliminary result which

appears to be valid regardless of the particulars of the construction indicated in

the preceding paragraph. For each point in space σ ∈ S1 let us define a classi-

cal observable tσ : K(S1;R1 × S1; g) × (C∞
p (R1,R1) × C∞

p (R1,R1))′ → R1 by

tσ(X,P ) = Xt(σ); thus roughly tσ(X,P ) is the time coordinate of the spacetime

point corresponding under X to σ. The quantum mechanical analogue of this

observable will be a self-adjoint operator, say t̂σ, on some Hilbert space. After com-

pleting the procedure described above it is possible to ask, for example, whether

the spectrum – which is of course the quantum-mechanically allowable values of the

observable – of t̂σ is continuous or discrete; in other words, whether, in our quantum

system, time remains continuous in some sense or becomes discrete. Preliminary

investigations of this operator appear to indicate that its spectrum must always be

continuous (at least in a certain technical sense – see Yosida [3], p. 209), at least
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given certain technical conditions such as continuity of the representation. There

are other technical points which would need to be addressed before this result could

be considered fully established (for example, we presently do not identify spacelike

embeddings X and X ◦ φ for φ ∈ Diff(S1), i.e., spacelike embeddings differing only

by reparametrization – it is possible that identifying such spacelike embeddings

may change the result). Regardless, any result which can be obtained about the

spectrum of t̂σ is of interest and indicates the use of our general procedure.
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