Science Mission Scenarios Using “PalmSat” Pico-Satellite Technologies

Dr. Craig Underwood1, Dr. Vaios Lappas1, Dr. Alex da Silva Curiel2, Dr. Martin Unwin2, Dr. Adam Baker2, Prof. Sir Martin Sweeting2

1Surrey Space Centre,
2Surrey Satellite Technology Ltd.
University of Surrey, Guildford, Surrey, GU2 7XH, U.K.

18th Annual AIAA/USU Conference on Small Satellites
Outline

- Background
- SNAP-1 Experience
- PalmSat’s Design Philosophy
- PalmSat’s Configuration
- Payloads
- Conclusions

PalmSat
Background

1981-91

UoSAT
Micro-satellites
50-65 kg

2000

SNAP
Nano-satellite
6.5 kg

~$1M ticket price
~10X mass reduction
Greater capability

2005

PalmSat
Pico-satellite
~ 1 kg
Background

- “CubeSat” concept has shown that ~1 kg satellites are an effective tool for space engineering education.

- Advances in COTS microelectronics and MEMS are making such satellites increasingly attractive as low-cost demonstrators of new technologies and techniques.

- Building upon our experience with SNAP, Surrey’s “PalmSat” is intended to meet both these objectives.
SNAP-1 Experience

- **SNAP-1** – UK’s First Nano-Satellite.
 - 1995 challenge: “design a soccer-ball sized spacecraft”!
 - SNAP-1 design begun in earnest in October 1999, delivered May 2000, launched 28th June 2000.
 - Designed and constructed by SSC staff and students, and SSTL engineers. Funded by SSTL as internal R&D Project.
 - **Design-to-orbit – 9 months; cost \(\leq \$1M \).**

Dr. Craig Underwood, SNAP-1’s Chief Architect and Co-Project Manager

Jerome Salvignol, Project Manager
Ed Stevens, AIT Manager

Dr. Guy Richardson, SNAP-1’s Chief Mechanical Engineer
SNAP-1 Experience

- SNAP-1 Key Design Principles
 - Keep it simple, make it modular, use COTS.
 - Keep the number of harness interconnections small – use a standard power and CDHS interface (CAN Bus)
 - Use a standard mechanical interface (Eurocard 160 x 100 mm sized modules).
SNAP-1 Experience

SNAP-1 AIT & EVT – Spring 2000
SNAP-1 Experience

Rapid Off-The-Shelf Nano-Satellite Core

SNAP-1 Modular Configuration

SNAP Modules at the USAF Academy
These form the core of FalconSAT-2
SNAP-1 Experience

Pre-Flight: Tsinghua-1 and SNAP-1 Mounted on the Nadezhda COSPAS-SARSAT Satellite

Launch June 28th 2000, Plesetsk
SNAP-1 Experience

- **SNAP-1 Orbital Manoeuvres**
 - 18/8/00: SNAP-1 ~2 km below Tsinghua-1 – manoeuvres start.
 - 50 mN butane CGT fired ~4 times per day (~10 cm/s ΔV per day) under OBC control, with ADCS stabilisation and on-board GPS positioning.
 - 30 days later, SNAP-1 ~1 km above Tsinghua-1.
 - After separating by more than 15,000 km, SNAP-1 had manoeuvered to within ~2,000 km of Tsinghua-1 by 18/3/01.

SNAP-1 and Tsinghua-1 Semi-Major Axis History
Obtained from On-Board GPS: June 2000 – March 2001
PalmSat's design is as the result of a series of UG/PG student projects carried out since 2000 (6-8 per year).

We apply SNAP's modular COTS design philosophy – albeit with “credit-card” (90 mm x 55 mm) sized modules.

PalmSats will be launched *en-masse* in “swarm”-type missions, where many satellites (10’s or 100’s) are deployed to synthesise some mission function – e.g. multipoint sensing for Earth observation or space science.

Such missions require cooperation between the vehicles, hence autonomous attitude and orbit control, and inter-satellite link technology will be essential.

The first mission will demonstrate these technologies in a remote inspection/rendezvous/formation flying scenario.
PalmSat’s “Housekeeping” block comprises 7 modules:
- Power System
- On-Board Computer
- UHF Uplink/Downlink Transceiver and Modem
- VHF Uplink Receiver and Modem (optional)
- Attitude Control System (Magnetorquer Rods – Pitch-Axis MW)
- Attitude Determination System (tri-axial Magnetometer – Sun-Sensors)
- GPS Receiver

PalmSat’s “Payload” block will comprise (in the first instance):
- CMOS Cameras (Pair for Remote Inspection)
- 2.4 GHz ISM Band Inter-Satellite Link.

The payload interface will be CAN data in/out (2 wires), regulated +5V (or +3.3V), raw battery voltage (≈6-8V) and ground.

An Orbit Control System will be attached to the base.
Each rectangular facet is approximately 10 cm × 6 cm, and each can support two 4 cm x 4 cm cells per face, giving 12 body-mounted cells and 24 deployed panel-mounted cells.

The body-mounted cells act as passive thermal control surfaces – as do the hexagonal end-facets, which support the antennae and payload cameras.

The walls are 2mm thick aluminium alloy to provide radiation shielding.

Internally there is a stack of credit-card modules linked by a flexi-rigid harness under the top facet.
Power System

- 18 panels of triple-junction solar cells give ~ 210 mA each at 4.2 V under load.
- Input power ~ 1.7W – 5.2W depending upon attitude. Average ~ 4W in sunlight.
- Boost regulator BCR steps internal voltage up to charge the ~6-8V battery.
- 5 Cell advanced NiCd battery (as flown on SNAP-1) gives ~8.4 Whr in 120g package. Good for 8-10 thousand cycles.
- Buck regulator PDM provides switched, over-current protected +3.3V or +5.0V lines to sub-systems as required.
- Further boost regulators are used for high voltage systems (e.g. the transmitters ~ 12V).
On-Board Data Handling

- PIC family chosen: simple, low cost, low power, good interface support (USART, SPI/I²C, CAN). Watchdog timers and PWM/ADC etc.
- 18F8680 has 64K program memory with full CAN 2.0B support for payload interface.
- USART connects to uplink/downlink for simple asynchronous packet communications at 9600 bps.
- Basic operating code stored in serial EEPROM with FRAM used for telemetry data storage.
- Power system controller allows “back-door” control over the spacecraft.

Palmsat OBDH Packets:
TTC, Payload Data and Program Code

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>n</th>
<th>n+1</th>
<th>n+2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNC0</td>
<td>SYNC1</td>
<td>D</td>
<td>L</td>
<td>S</td>
<td>T</td>
<td>DATA</td>
<td>CRC0</td>
<td>CRC1</td>
</tr>
</tbody>
</table>

2nd Prototype PalmSat OBC
Communications

- Uplink and downlink use amateur radio packet links at 9600 bps.
- Prototype VHF receiver and UHF transceiver built by students based on COTS technology (VEC-1002K 2m-band receiver, Tekk KS-960 70cm-band transceiver).
- Devices can be modified for spaceflight.
- Half-duplex operation possible with transceiver alone, but the extra receiver allows full duplex operations - preferred.
- Dual-band antenna and VHF/UHF diplexer modelled, built and tested on a full-size PalmSat RF-equivalent model ("Tin-Sat").
Students have developed a miniature 3-axis magnetometer based on the Honeywell HMC2003 magneto-resistive sensor. This is the primary attitude sensor.

Miniature Sun-sensors based on CMOS photodiode arrays are also in development. This provides extra input to the attitude Kalman filter.

Students have developed a three-axis magnetorquer rod control system similar to that used in SNAP-1. This is the baseline control system.

A ultra-miniature pitch-axis momentum wheel with MEMS gyro sensing is also in development which can give PalmSat a 2° s$^{-1}$ slew capability, with 0.5° pointing precision.
• Although SNAP-1 already carries a credit-card-sized GPS receiver for orbit determination, SSTL have continued to develop the system.

• The resulting SGR-05U receiver is based upon a commercial MG5001 OEM GPS board manufactured by Sigtec.

• The SGR-05U has the following specifications:
 - Dimensions: 70 x 45 x 10 mm
 - Mass: 20 g
 - Operation Temperature: 0°C to +50°C
 - Power Supply: 0.5-0.8 W at 5 V
 - ±15 m position accuracy on-orbit
 - Cold-Start TTFF 10 minutes.

• SNAP-1 used a patch antenna for its GPS system, however, for PalmSat, a miniature antenna solution has been derived from Sarantel’s PowerHelix antenna range.
The SNAP-1 propulsion system used small solenoid valves manufactured by Polyflex Aerospace in the UK, to vent butane as its propellant.

The Lee Products Extended Performance Solenoid Valve (EPSV), which is ~6mm diameter x 33mm long, has a mass of less than 6g with an average draw power of 0.75W, is suitable for PalmSat.

This is the basis for an ultra-miniature propulsion system, based on water as a propellant. Just 8 g of water would give ~3 ms\(^{-1}\) \(\Delta V\) to PalmSat.

SSTL have already successfully test-fired an experimental version of this thruster in orbit on the UK-DMC micro-satellite.
Payloads

- **Remote Inspection Cameras**
 - 640 x 480 pixel CMOS Camera.
 - 2 Mbytes of image storage memory.
 - Two imagers are flown:
 - Medium Distance Camera: 25 mm focal length, f/4, 11° x 8.2° FoV
 - Short Distance Camera: 2.9 mm focal length, f/2, 79° x 63° FoV
 - PhD research is in progress in using such a system to determine the relative pose and range of a target spacecraft.

- **Multi-Spectral Imager**
 - Radiometric imaging sensors, based on CMOS technology.
 - An 8-spectral band prototype has been developed as part of the NigeriaSat program.
 - Applications include ocean colour sensing, and meteorological scale imaging at low GSD (100~200m).
• **Inter-Satellite Link**
 - PalmSat-1’s other payload is expected to be a COTS 2.4 GHz ISM-band data transceiver, to be used for inter-satellite link experiments.
 - A 200 mW output RF power device from Aerocomm is currently under study.
 - This has a mass of 20g, a power consumption of 2W in transmission mode and 575 mW in receive mode.
 - It can support 115 kbps links over 3 km and 9600 bps over 10 km.

Aerocomm 2.4 GHz Transceiver
Payloads

- **Thermal-IR Camera**
 - A 320 x 240 pixel array imager using uncooled microbolometer technology sensitive to the 8-12 µm band (LWIR).
 - NETD: in the range 0.4 - 0.8 K
 - Minimum detectable fire area: ~25m x 25m
 - GSD: ~260 - 500 m
 - The current imager has a mass of 1-3 kg (including optics); power consumption is ~2W. Further miniaturisation may enable this to fit on a future PalmSat.
 - It has application to forest-fire and volcanic plume detection, as well as potential application to sea-surface temperature monitoring and meteorological temperature mapping.
 - A swarm of PalmSats could provide a cost effective way of providing a continuous “fire-watch” from orbit.
• **Near-UV Radiometer**
 - The Ozone Mapping Detector (OMAD) instrument was flown on the FASAT-Bravo micro-satellite.
 - The payload comprised four UV sensitive PIN-diodes each viewing an area of 150 km x 150 km, and set to narrow wavelength bands at 289 nm, 313 nm, 334 nm and 380 nm.
 - Data from this instrument were used to primarily to recover *global total ozone* data, although it does also have application to monitoring *aerosols* in the stratosphere.
 - The OMAD payload mass (including structure) is ~200g and the power requirement is 500 mW. The data-rate is ~64 kbyte per day.
 - This instrument could therefore be easily adapted to fit PalmSat.
• Ionising Radiation Detection
 - CEDEX detects protons and heavy ions >30 MeV energy.
 - This payload flies on the TiungSAT micro-satellite, and has a mass (including mechanical housing) of 600g, and a power consumption of ~2W. The data rate is up to ~200 kbytes per day.
 - It is capable of detecting up to 200,000 particle hits per second in a 3cm x 3cm PIN diode detector/particle telescope and it records the pulse height spectrum for a LET range of 64 to 8400 MeV cm² g⁻¹.
 - A swarm of PalmSats could be used to investigate the Van Allen belts, and solar particle event phenomena in some detail.
Conclusions

- Advances in miniaturised electronics and MEMS technology enable pico-satellites to become important tools in the scientific exploration of the Earth and its environments - especially when used in swarms.

- Swarms will require sophisticated technology to enable the appropriate level of cooperation between the vehicles in the swarm.

- The University of Surrey’s PalmSat pico-satellite is being developed to support such an endeavour, with the first launch expected in 2005-7.

- Already, the PalmSat programme has enabled many students to gain practical “hands-on” experience of spacecraft engineering, as well as to contribute towards the development of a sophisticated pico-satellite platform.

- As with the SNAP nano-satellite programme before it, the PalmSat programme shows the benefit of collaboration between academics, students and engineers, working in a “real-world” environment.
c.underwood@surrey.ac.uk

www.ee.surrey.ac.uk/SSC/

www.sstl.co.uk