The IRIS Project: Student Designed Imaging Satellite for the RASCAL Launch Vehicle

Quinn Young
Space Dynamics Laboratory

Dr. Todd Mosher, Jared Clements, Pranay Gupta, Matt Warner
Utah State University

Background image of San Francisco Bay area courtesy TruEarth, http://www.truearth.com
Introduction

- IRIS is a student-designed micro-satellite mission developed for a Space Systems Design class, spring semester 2004.
- The IRIS mission is a conceptual design, based on technology and capabilities that are either existing or under development.
- Mission inspired by Peersat
- Driving Requirements
 - RASCAL Launch (limits mass and volume)
 - $10 Million cost cap, including launch and operations
- Student Design Approach
 - Simple spacecraft
 - Professionally built, student operated
 - Built to allow follow-on units with upgrades
Mission Overview

IRIS Program: Low Cost Imaging of Earth from Space

Mission Segment: Earth Imaging

Spacecraft Segment

Launch System Segment: RASCAL

Mission Operations Segment

Ground Station Segment

Image Distribution Network
The IRIS mission was designed using USU’s Space Systems Analysis Laboratory, a concurrent design center.
Potential Markets for Images

<table>
<thead>
<tr>
<th>Market Category</th>
<th>Potential Customer Type and Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science</td>
<td>- Weather: weather patterns, weather images</td>
</tr>
<tr>
<td></td>
<td>- Ice: Ice flows, Iceberg location</td>
</tr>
<tr>
<td>Government (non-military)</td>
<td>- Disaster Response: weather imaging, disaster evaluation</td>
</tr>
<tr>
<td></td>
<td>- Forestry Service: forest data, forest fires</td>
</tr>
<tr>
<td></td>
<td>- Land Use: population growth, deforestation</td>
</tr>
<tr>
<td></td>
<td>- Coastal: shoreline data, shipping routes</td>
</tr>
<tr>
<td>Military</td>
<td>- Weather: cloud cover, snow locations, storms</td>
</tr>
<tr>
<td></td>
<td>- Situational Awareness: location of cities or encampments</td>
</tr>
<tr>
<td></td>
<td>- Cueing: find targets for other assets to investigate</td>
</tr>
<tr>
<td>Civilian</td>
<td>- Media: image locations of interest</td>
</tr>
<tr>
<td></td>
<td>- Education: geography, student mapping and imaging</td>
</tr>
</tbody>
</table>
IRIS Imaging System

- Two Redlake ES11000 cameras
 - 1 at 150 m/pixel maximum resolution
 - 1 at 30 m/pixel maximum resolution
- 4008 by 2672 active pixels (~11 Mega pixels)
- Color (RGBG) CCD array
- Commercial digital camera requiring minimal modifications for creating space qualified version
- Dual camera system allows flexibility in the types of images captured and provides continued operation if one system fails
Field of View

- 400 x 600 km image footprint for 150 m/pixel camera (for regional targets, such as weather)

- 120 x 80 km image footprint for 30 m/pixel camera (for local targets, such as cities, forests, coasts)
Resolution

- Regional 150 m resolution images and local 30 m resolution images provide a good mixture of image types for potential markets.

Images of San Francisco Bay area courtesy TruEarth, http://www.truearth.com
Imaging Options

- Store compressed image and download
- Store full image, compress and download only desired images after viewing thumbnails

<table>
<thead>
<tr>
<th>Image Type</th>
<th>Images/day</th>
<th>Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 bit bitmap</td>
<td>69</td>
<td>None</td>
</tr>
<tr>
<td>12 bit greyscale</td>
<td>139</td>
<td>None</td>
</tr>
<tr>
<td>Standard JPEG</td>
<td>559</td>
<td>JPEG, 25% quality loss</td>
</tr>
<tr>
<td>JPEG “thumbnail”</td>
<td>11742</td>
<td>JPEG, 90% quality loss</td>
</tr>
</tbody>
</table>
Pointing Control

• 3-axis stabilization to within 0.5 degrees is provided using momentum wheels, with torque rods for wheel de-saturation
 – Error <1% of smallest side of larger image
 – Error <5% of smallest side of smaller image

• GPS receiver provides positional data required for image targeting
Orbit

- 900 km altitude
- 60° inclination
- 103 min. period
- ~14 orbits /day
- 6-day revisit rate (with slew)
- Covers majority of inhabited areas
Communications Link

- Two ground stations
 - Primary station in Logan, UT
 - Secondary station in Bedford, MA
Design Summary

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>49 kg</td>
</tr>
<tr>
<td>Structure</td>
<td>Aluminum isogrid</td>
</tr>
</tbody>
</table>
| Imaging | 2x 11 Megapixel cameras
30 m & 150 m resolution |
| TT&C | 10 W S-band transmitter
1.9 Mbps downlink |
| C&DH | Hitachi SH7709 CPU |
| ADCS | 3-axis stabilized |
| G&N | GPS |
| Thermal | Active heater control |
| Power | 39 W orbit average power
4 GaAs Solar Panels
62 W-hr Lithium Ion battery |

External view of the IRIS spacecraft
The IRIS mission is designed specifically for launch on the RASCAL launch vehicle.
Conclusions

• The conceptual design was completed meeting all requirements and showing the potential for significant imaging capability at a very low cost

• Cost Breakdown:
 – Satellite Development: $5.1 M
 – Launch and Activation: $2.2 M
 – 3-year Operations: $2.4 M