Combined Approaches for Quantifying Groundwater-Surface Water Exchanges in a Karst Watershed

Hyrum Tennant, Bethany Neilson, Michelle Barnes, Trinity Stout
Utah State University

Matt Miller
USGS Utah Water Science Center

Rachel Gabor, Mallory Millington, Yusuf Jameel, Andrew Gelderloos, Gabe Bowen, Paul Brooks
University of Utah
Background

Logan River Watershed

- Contains karst geology
Logan River Watershed

- Contains karst geology
 - Sinkholes
 - Caves
 - Conduits
- Everything else is the “matrix”
\[\Delta Q = Q_{\text{downstream}} - Q_{\text{upstream}} - Q_{\text{tributaries}} \]
\[\Delta Q = Q_{\text{downstream}} - Q_{\text{upstream}} - Q_{\text{tributaries}} \]

\[\Delta Q = Q_{\text{karst}} + Q_{\text{matrix}} - Q_{\text{loss}} \]

\[Q_{\text{karst}} + Q_{\text{matrix}} - Q_{\text{loss}} = Q_{C_{\text{downstream}}} - Q_{C_{\text{upstream}}} - Q_{C_{\text{tributaries}}} \]
Conclusion

- Logan Canyon is heavily influenced by karst geology
- Gains are largely due to karst features
- Losses occur throughout the watershed
- Low annual snowpack could lead to losses exceeding gains
Acknowledgements

Others involved in All-Hands Sampling:

Special thanks to Patrick Strong, Dave Epstien, Michelle Baker, Mitchell Rasmussen, and Tyler King

Funding:
• NSF EPSCoR grant IIA 1208732
• USGS 104(b) Grant
• Utah Water Research Laboratory, Utah State University
• Utah State University Undergraduate Research Fellows Program
• Utah State University Honors Program
• College of Engineering Undergraduate Research Program

References: