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attached and proliferated well on both lens capsule and hydrogel surfaces, forming confluent 
monolayers of polygonal pigmented cells (fig. 6). This protocol is recommended for anyone 
wishing to perform drug treatment tests or RPE transplantation experiments, based on the highly 
epithelioid structure of the cell culture. 
 

 
Figure 5. Porcine RPE cells in suspension after 12 minutes in 0.25% edetic acid during passaging. Scale bar = 50 
�Pm. [117] 
 

 
Figure 6. Cultured porcine RPE cells, grown on a pig lens capsule (top) and a hydrogel (bottom) respectively, as 
found in Singh et al. (2001), Scale bar = 50 µm. [87] 
 
 Israel et al. (1980) cultured embryonic RPE cells from domestic chickens by dissecting 
embryos at stages 29-31 of development. The RPE cell sheets were removed from the other cells 
and dissociated in Coon’s collagenase-trypsin-chick serum-EDTA enzyme solution. The 
resulting suspension was plated in 3 ml of 5% FBS MEM or F12 medium on 60 mm plastic 
tissue culture dishes. The cells were incubated at 37.5°C in 5% CO2 and the medium replaced 
every 3 days. Cells grown in MEM were shown to form colonies of heavily pigmented cells that 
grew in epithelioid monolayers, while cells grown in F-12 were large, fibroblastic, and had little 
pigmentation. The protocol that resulted in the first type of cell is recommended for drug 
treatment experimentation, although its application to humans may be limited due to the different 
nature of the avian RPE cells. 
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Cell lines 
 
 An alternative to using cells from living or dead specimens is to culture cells that have 
already been transformed into cell lines. Immortalized RPE cells are available commercially, and 
often come with a standardized culturing protocol attached. One of the most commonly-used 
RPE cell lines is the ARPE-19 cell line, which was established from cells isolated from the 
enucleated globes of a 19-year-old male human donor 2 hours after death [142]. While ARPE-19 
cells have been used in many studies since the cell line was first established, they show some 
morphological and developmental differences from natural-type RPE cells [14], [42], [75], [77], 
[86], [143]–[145]. In general, immortalized cell lines have some physiological differences from 
natural cells, and may have different culturing requirements as well; however, variations in 
culturing technique are less prevalent than in human- and animal-derived cells, due to 
standardization of culture protocol for established cell lines. One of the most common problems 
with cell-line-derived RPE cells is a lack of pigmentation and different morphological 
characteristics than those found in natural RPE; however, it is possible to induce immortalized 
cells to form pigmented epithelioid monolayers, as shown in the examples below. 

RPE cells can also form cell lines spontaneously, as found by Mannagh et al. (1973) who 
observed that of the 119 primary RPE cultures they managed to establish from human donors, 7 
spontaneously transformed into cell lines. The researchers found the cells became smaller and 
more uniform upon transformation, as well as more closely spaced, and began demonstrating 
accelerated growth, approximately halving their generation time. They also discovered that the 
transformed cells remained in a monolayer and gradually replaced the remaining primary culture 
cells. Further study showed that the transformed cells had changed from diploid to heteroploid, a 
common indication of transformation of a primary culture into a cell line. Two of the cell lines 
established by the study survived into later years, and came from a 70-year-old and 21-year-old 
donor respectively. This tendency of RPE cells to spontaneously form cell lines has been 
observed in multiple instances [118], [142], and the cells produced by such cell lines are 
recommended for drug treatment experiments. 
 Tezcaner et al. (2003) cultured cell-line-grown RPE cells with the goal of providing 
transplants for RPE disorder patients, using cells from the D407 cell line. The cells were cultured 
in 5% FBS DMEM in a 5% CO2 atmosphere, and passaged using 0.05% trypsin-EDTA. The 
cultures were grown on thin surface-modified and un-modified PHBV8 films that were kept in 
24 well plates, with Teflon O-rings placed on top to prevent the films from floating after medium 
was added. The cells were seeded at a concentration range of 8.5 x103-45x103 cells/cm2. Both the 
films and the O-rings were sterilized using 20 minutes of UV radiation. When the cells reached 
confluence, they were passaged using 0.05% trypsin-EDTA, with a reattachment rate of 25 x 103 
cells/cm2 after 8 hours of incubation. This increase in reattachment rate with time was only found 
to occur within the previously-mentioned seeding density range, and the PHBV8 films treated 
with 100 W oxygen plasma for 10 minutes (the smoothest substrate used in this experiment) 
were found to have the greatest success in cell reattachment and growth, forming confluent 
monolayers within 7 days. This protocol is recommended for experiments with drug treatments 
and transplantation using cell lines, due to the successful formation of confluent monolayers. 
 Tian et al. (2005) used the ARPE-19 cell line, cultivating the cells in order to check for 
transcriptional differences between the cell line and native RPE from fresh cadaver eyes. All 
ARPE-19 cells were seeded at 10,000 cells/cm2 or 1000,000 cells/cm2 for 3 days in T75 flasks in 
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10% FBS DMEM:F12 and incubated at 37°C in 10% CO2. Confluent cultures were then grown 
for 7 days, and then their medium was replaced with fresh medium containing either serum (CS 
treatment) or 1% bovine serum albumin (CSW) for 3 days. Other cells were grown for 2.5 
months in 10% FBS DMEM:F12 medium, and then in either serum (DS) or 1% bovine serum 
albumin (BSA) (DSW) for 3 days. Results showed ARPE-19 cells grown on plastic to have 
fewer transcriptional differences with native RPE than ARPE-19s grown on other surfaces, and 
that the two treatments with the fewest transcriptional differences with native RPE were CSW 
and DSW. However, the DS culture showed the greatest morphological similarities to native 
RPE, displaying a tight mosaic-like monolayer configuration with polygonal, columnar, highly 
pigmented cells. Due to these results, the protocol is recommended for drug treatment 
experiments, particularly where transcriptional differences are an issue. 
 Amemiya et al. (2004) cultured cells of the ARPE-19 and H80HrPE cell lines in 8% heat-
inactivated FBS 1% penicillin-streptomycin MEM at 37°C with 5% CO2. The medium was 
changed every 3 days, and the cells were found to form a viable epithelioid monolayer and 
remained healthy after freezing and thawing. They developed pigmentation after 5 months of 
culture and, when examined immunocytochemically, showed immunoreactivity for some 
epithelial cell markers. This protocol is recommended for drug treatment experiments involving 
cell markers. 
 
Results and Conclusions 
 
 The various RPE culture protocols examined in this review are summarized in the 
following section. While each method was successful in producing a culture of viable RPE cells, 
differences in resulting cell life, morphology, function, and structure make different methods 
preferable for a researcher desiring a specific type of culture. The effects of cell source, 
preparation and extraction method, culture medium, substrate, incubation, and passaging are 
evaluated in the conclusions section. 
 
Summary of methods 
 
 Each method for culturing RPE cells reviewed is summarized in Table 1 (Appendix). 
Results of each method are summarized in Table 2 (Appendix). 
 
Cell sources and extraction methods 
 
 According to the literature, use of cells from all sources listed resulted in viable cultures. 
For human cells, both adult and fetal cells grew well, and removal from eyeballs was generally 
accomplished by first peeling off the RPE and choroid as a single sheet, then dicing/mincing the 
tissue with a scalpel, with or without digestion by some digestive enzyme first (trypsin or 
dispase). Nonhuman cells, on the other hand, were more often digested and then dissociated with 
pipetting, either in the eyecup or after the RPE-choroid sheet had been removed. Cultures from 
cell lines were generally less complicated to begin, due to the lack of need for dissection or 
dissociation, but often led to alterations in cell morphology, including loss of pigmentation, 
though this may be overcome. There is no indication that one cell source is better than another 
for increasing chances of adhesion and growth, though with dead specimens freshness is highly 
desired for a viable culture. 



18 
 

 
Culture media 
  
 In general, the medium used was either a form of Modified Eagle’s Medium (MEM) 
often supplemented with FBS or some other serum, or a mix specific to the publication without a 
standardized name. Concentrations of supplemental sera varied from 5% to 20%, and other 
supplements included streptomycin, penicillin, and other antibiotics that helped prevent 
contamination. No general trend was seen indicating the success of one medium over another in 
cell growth, though differences in cell morphology and growth rate were seen in relation with 
different medium mixtures, and the same media may react differently to human and nonhuman 
RPE. 
 
Substrates and incubation 
 
 Well-plates, culture dishes, and flasks (either T25 or T75) were the most common growth 
substrates used. Each demonstrated successful cell attachment and growth. At least one study 
[146] found the smoothest substrate to be the most effective in inducing cell attachment. Others 
[87], [133] found a more irregular surface more conducive to cell adhesion and the development 
of polygonal, epithelioid cell morphologies. This variation in adhesion potential may be due to 
the surface resembling Bruch’s membrane that natural RPE cells adhere to. Incubation was 
performed almost universally at 37°C and 5% CO2, even for nonhuman cells, the exception 
being Israel et al. (1980), who incubated avian RPE cells at 37.5°C. Medium change intervals 
ranged from 2-4 days, with no difference in cell growth detected between variations. 
 
Passaging 
 
 Of the cells successfully passaged, the most commonly-used dissolving agent was 
trypsin, ranging in concentration (in EDTA) from 0.05% to 0.25%. Most cultures were passaged 
at confluence, with successful cell reattachment and growth on the new surface. Cultures took 
between 5-30 days to reach confluence, depending on the size of the surface they were grown. 
Seeding concentrations ranged from 8.5x103 to 6x105 cells/ml, with successful adhesion and cell 
growth within that range. On average, non-immortalized cells were able to go through 4-7 
passages before growth ceased and cells became senescent, often altering their morphology at 
this point. 
 
Conclusion 
 
 The science of RPE cell culture, despite having been practiced for over four decades at 
the time of this writing, remains an experimental process. Researchers are still attempting to 
discover the correct combination of conditions, chemicals, and procedures to produce an 
artificial RPE best suited for macular degeneration testing. While there is still territory left to 
explore, a few standards have been established that can be used as guidelines for a cell scientist 
wishing to recreate the RPE in vitro.  

First, while pigmentation loss and degradation of the epithelioid formation are common 
problems for cells harvested from living or cadaverous tissue, both can be minimized with proper 
medium mixes and plating techniques. While cells from cell lines often differ from their parent 
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tissue, some differences (such as pigmentation and cell shape) can be fixed by manipulating 
culture conditions. RPE cells can be grown to form confluent epithelioid monolayers on a variety 
of surfaces and in a variety of media, though DMEM and its variations were the most 
commonly-used medium. Cultured RPEs can be grown to confluence and successfully passaged, 
and have been shown to be able to produce cell lines and retinal stem cells, and while no cultured 
RPE monolayer has been successfully transplanted into a human eye yet, as culturing techniques 
improve the cells come closer to the state found in the natural RPE, making such future surgical 
endeavors a possibility. Ultimately, the path to devising the ideal culture protocol for 
approximating the natural human RPE can only be found through further experimentation. Using 
this review as a guide will greatly aid researchers attempting to further research into the retina 
and AMD treatment. 
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