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Abstract 

Genetic engineering is a relatively new process and is a major focus of research in 

various fields, such as medicine, plant genetics, and food science. The potential 

applications of genetic engineering include designer drug production, mass protein 

production, and enhanced food processing. Finding an appropriate host organism to be 

used in genetic engineering is an important preliminary step. Pediococcus pentosaceus 

has been suggested as a bacterial species with such potential. Since plasmids are often 

the vector of choice in genetic recombination, this research tests the ability of P. 

pentosaceus to take up and incorporate plasmids into its genome. Two plasmids were 

chosen as test vectors based on genes they carry for antibiotic resistance. Electroporation 

was used to introduce the plasmids into the bacteria. It was found that P. pentosaceus 

possesses a rather high level of innate antibiotic resistance to both erythromycin and 

chloramphenicol. Natural levels of antibiotic resistance made it impossible to identify 

transformant colonies and, as a consequence , investigate plasmid stability in this host. 

There still may be possibilities for P. pento saceus in genetic engineering , but a different 

method of selecting transformants will need to be developed. 



Introduction 

Obtaining the information necessary to determine the acceptability of a bacterium for use 

in genetic engineering can be a long process. The purpose of the research performed using the 

following procedures was to determine whether Pediococcus pentosaceus would be a suitable 

species for use in genetic engineering applications and research. A fair amount of background 

knowledge in molecular biology, including an understanding of DNA, plasmids , and bacteria in 

general , is necessary before endeavoring in actual experimentation. 

DNA 

The information for how a cell functions , grows, adapts , and divides is coded in its 

genetics. This genetic information is stored in the macromolecule known as deoxyribonucleic 

acid , or DNA (1). DNA is a polymer composed of units called nucleotides. Each nucleotide 

consists of a sugar with a phosphate group attached to it and a nucleotide base. There are four 

different bases: adenine , guanine , cytosine , and thymine. The sugar and phosphate groups link to 

form the backbone of DNA (1 ). In biological systems , DNA exists as a double-stranded 

molecule with the bases pairing to each other in a specific way. Due to the differences in size 

and structure of the bases , adenine will bind with thymine , and cytosine will bind with guanine. 

The complementary hydrogen bonding between bases dictates how new DNA is created , as well 

as how DNA is translated into actual gene products that carry out the necessary functions of a 

cell (1) . 

When a cell divides, in order for its daughter cells to be able to function , they must each 

have a copy of the original DNA so that correct gene products may be created. Thus, cells 

contain complex enzyme systems that replicate DNA. Enzymes accomplish replication by 

pulling apart the double-stranded DNA of the parent cell and using each of the individual strands 



as templates to create new complimentary strands (1). Each daughter cell then receives a 

complete double-stranded DNA molecule that consists of one strand from the parent DNA and 

one newly synthesized strand (2). 

Inside cells , DNA is coiled and twisted into a relatively small space. The entire 

collection of DNA in a cell, including both chromosomes and plasmids , is called a genome (2). 

Scientists have been working recently on sequencing the genomes of many different organisms 

such as bacteria , plants , and even humans. Sequencing involves the determination of the order of 

the nucleotide bases in a strand of DNA (1). Knowing this sequence allows scientists to gain 

understanding of how cells function individually and how multi-celled organisms function as a 

whole. Sequencing also enables researchers to be able to manipulate the DNA of cells in order 

to learn more about them by examining how cells react to the induced changes . DNA 

manipulation also permits scientists to be able to design cells with the desired genes so that the 

cells may be used in future applications (1). 

Plasmids 

Plasmids are generally small circular pieces of double-stranded DNA that are present in 

cells separately from the chromosome (3). They are often found naturally in bacteria , and 

replicate separately from the large bacterial chromosome (3). Plasmids can contain genes that 

will give bacteria valuable selective advantages. Such genes often code for specific antibiotic 

resistance or toxin production (3). Due to the independence ofreplication , it is possible for 

plasmids to either be passed on to every new cell formed or to only be passed on to a few. This 

will create colonies of cells with varying characteristics that will react differently to certain 

stimuli. Plasmids may also become incorporated into the bacterial chromosome, becoming part 

of that molecule and be passed on directly (4). 



Bacteria 

Bacteria are small single-celled organisms that exist in virtually every earthly 

environment (1). The DNA in bacteria usually exists as one large coiled chromosome (3). Some 

bacteria have the ability to take up DNA from their environment and add it to their chromosomal 

DNA in a process called transformation. Discovering this ability was extremely important in the 

development of genetic recombination because it allows researchers to introduce engineered 

DNA into bacteria and study its effects (3). 

Most bacteria divide by a process known as binary fission. In this process , the parent cell 

enlarges and elongates , replicates its chromosome , and divides in half to produce two daughter 

cells (2). Due to their abundance and extremely short generation time - the time that it takes for 

one cell to produce two daughter cells (2) - bacteria are perfect vehicles for use in genetic 

experiments . The short generation time allows researchers to observe effects over many 

generations in a reasonable time period as well as being able to use selective media to monitor 

the uptake of DNA. 

Genetic Engineering 

Genetic engineering is the process of manipulating DNA with precision in a test tube or 

an organism (1), and it has opened the door to the study of cells in ways previously never 

imagined. One common way to manipulate the DNA of a cell is to use a plasmid vector. 

Plasmid vectors are plasmids that may have genes of interest inserted into them and are then 

introduced to the cell via transformation (1). Using plasmid vectors allows the gene products to 

be studied and the actual genetics of the cell to be altered. One type of vector that has proven to 

be useful in many instances is the temperature-sensitive vector . A plasmid is temperature­

sensitive when it may be replicated at a certain incubation temperature , but not at another (4). 

3 



These incubation temperatures are termed "permissive" and "non-permissive" temperatures, 

respectively (5). When cells containing such temperature-sensitive vectors are grown at the non­

permissive temperature, the plasmid is not passed on to every new cell and is eventually lost 

from the colony as a whole. The rate at which the plasmid is lost is called the "curing rate" (4). 

This temperature sensitivity can be used to the researcher's advantage. If a plasmid containing 

an antibiotic resistance gene is introduced to a group of cells that are then grown in the presence 

of antibiotic at the non-permissive temperature, the cells are forced to incorporate the plasmid 

into their chromosome in order to survive. Thus, any genes present on the plasmid will now also 

be a part of the cell's chromosome (4). Since it is known that any genes that were present on the 

plasmid are now part of the cell's chromosome, it is possible to observe the effect of the gene of 

interest in action. A bacterial strain in which experimental DNA has successfully been 

incorporated into the chromosomal DNA is termed recombinant. 

Pediococcus pentosaceus 

The specific bacterial species examined in this study for acceptability for use in genetic 

engineering is classified as Pediococcus pentosaceus ATCC 25745. In order to gain an 

understanding of why P. pentosaceus, in particular , was selected and how it will perform in the 

experiment , some background information 

regarding Pediococcus species in general and 

P. penlosaceus specifically is required. As the 

genus name suggests, Pediococcus are cocci 

shaped. The cocci grow in pairs and tetrads (6). 

P. pentosaceus is Gram positive - meaning the cell 

wall consists of a single thick layer of a compound 

Photo 1 : Pediococcus pentosaceus 
by J. Broadbent and B. McManus , USU (9) 



known as peptidoglycan (7) . It has been found that many Lactobacillus species as well as 

Leuconostoc mesenteroides are rather closely related to P. pentosaceus genetically (8). Being 

facultatively anaerobic, P. pentosaceus can grow with or without oxygen (9). Energy is obtained 

through fermentation - the breakdown of sugars without the use of oxygen. Lactic acid is the 

main byproduct of energy production (6). Pediococcus do not form spores and are non-motile 

(9). In addition, P. pentosaceus can grow in acidic environments and grow best at a temperature 

of 37°C (10) . 

Pediococcus can be found most often associated with plant matter, but can also be 

discovered in places such as the gastrointestinal tract, animal hides, and food utensils (6). They 

appear on fresh and processed meats, and may play a role in the spoilage of some pickles (6). 

Most species are saprophytes - that is, they live off the decomposition of decaying material -

and are often present in fermented vegetable foods (11 ). Pediococcus organisms are an 

important part of the food industry because they are involved in many significant fermentations, 

such as that of pickles , green olives, sauerkraut , soy sauce, sausage products , and Cheddar 

cheese (11). The action of Pediococcus bacteria both preserves foods and adds significant flavor 

(11 ). P. pentosaceus itself has been isolated from several different plants and cheeses. It is a 

significant member of the non-starter bacteria microflora in most bacterial-riped cheeses (9). 

Studies have found that there are native plasmids already present in P. pentosaceus . Such 

native plasmids may carry traits that play significant roles in the characteristic fermentation of P. 

pentosaceus (11 ). P. pentosaceus was selected for study based on its immediate possibilities for 

involvement in gene recombination for use in the food industry. 
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pGhost9 and pSA3 

The two plasmids selected for 

study are named pGhost9 and pSA3. Both 

plasmids contain genes that provide a cell 

with resistance to erythromycin, and pSA3 

also contains chloramphenicol resistance 

genes (see Fig. 1 ). The permissive 

temperature of pGhost9 had previously 

been determined to be 30°C with a non-

permissive temperature of 37°C (14). 

pSA3 had permissive and non-permissive 

temperatures of 37°C and 42°C , 

respectively (12) . 

Experimental Design 

J'JGB305 

9 10 0 

pSA3 
10.2 kb 

t 

I 

pACVC 184 

HG . l Phy teal map of plasmid pSA3 . Symbol s and abbrcvta • 
tions : ■. pACYC184 : ~. pGBJ05 : MLS . macrolide lioocos,amidt 
strep\Oj;ramin 8 n,si,tance : Cm' . chloramphrnicol rrsis1an r ; Tc'. 
1c1rncyclinc rcsis1ancc ; KEI-'. rcrlicalion region: CO P. copy control 
region . 

Figure I from: Dao and Ferretti ( 1985) 

In any experiment , it is vital to have procedures outlined well and results organized and 

documented. It is also important to consider how credible the findings will be and to make 

allowances that would increase the reproducibility and repeatability of the experiment. Since 

bacteria are so abundant and invasive, any procedure that involves bacteria must be designed to 

avoid any contamination while allowing the growth of the desired species. A voiding 

contamination may be a difficult task at times. Aseptic techniques - including autoclaving or 

filter sterilizing of all media, flaming of bottle openings, and using sterile loops for culture 

transfers - are followed at all times and a mechanism to select for the desired bacteria are put in 

place in the procedure. 
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In the experiments outlined below, a procedure that had been used in the lab previously 

was followed. Using this procedure added credibility to the experiment because it had already 

been accepted as being adequate for accomplishing the desired purposes. Blanks were an 

important part of the study. A blank is a control sample that undergoes the procedure but does 

not contain one key factor, such as a plasmid. Blanks were run through the electroporation 

procedure and plated so that growth of the blanks could be compared to that of the transformants 

- cells that actually picked up the plasmid. By comparison , transformants could be selected for 

and their identity could be confirmed. Another way credibility was added was that a frozen stock 

culture - which had been previously isolated and identified in lab - provided the starting 

material. Using a stock culture ensured that the correct species was being used and as an extra 

caution , the culture was Gram stained and examined under a light microscope to confirm its 

identity. The plasmids used were also previously isolated and purified and were kept frozen until 

the time of use in order to guarantee credibility. Dilutions were made with proper and 

appropriate solutions in order to maintain the integrity of the delicate DNA samples and bacterial 

cultures. Duplicate samples were prepared for each step in the procedure so that results could be 

compared and a more accurate average could be reported rather than a single value. Consistency 

was maintained throughout the several trials of the experimental design so that results would be 

comparable. In essence , great care was taken so that the results of the experiment would be both 

reliable and repeatable . 

Methods 

Antibiotic Concentrations 

In the following procedures , erythromycin was used at a concentration of 5 µg/ ml for 

experiments with pGhost9 , and was later increased to 15 µg/ml (13). Experiments with pSA3 
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used erythromycin at a concentration of 15 µg/ml and chloramphenicol at a concentration of 7 .5 

µg/ml (13). 

Competent Cell Preparation 

Once the bacterial species of interest and appropriate plasmid vectors have been 

identified, isolated, and purified, the procedure of determining the acceptability of P. 

pentosaceus for use in genetic engineering may be carried out. The first step in the procedure is 

to prepare cultures of "competent cells." In order for cells to take up DNA from the environment 

in any significant amounts, they must become "competent" (4). In electroporation, cells are 

made competent by using electric shock to open pores in the cell walls. Pores cause the cell 

walls to be more permeable and allow DNA molecules to enter into the cell (1). Preparation of 

competent cells was accomplished by first allowing cells of P. pentosaceus to grow in 

specialized and previously tested conditions to obtain fresh cultures for use in further treatments. 

The following steps were performed to prepare cells for electroporation as has been described 

(I 0): 

1. Prepare comeptent cells - Pediococcus pentosaceus A TCC25745 - by overnight growth in 

MRS-G with 0.5 M sorbitol. (Frozen culture had previously been used to inoculate MRS broth 

that was incubated at 37°C until used to create competent cells.) 

2. Prepare 1.5% inoculation into 800 ml MRS-G containing 0.5 M sorbitol, 3% glycine, and 40 

mM DL-threonine. 

3. Incubate for 2 to 4 hours (or until A600 =0.4-0.6) at 37°C. 

4. Collect cells by centrifugation at SK for 10 minutes (making sure that the centrifuge is 

extremely well balanced). 

5. Wash twice in 25 ml of cold 0.5 M sorbitol-10% glycerol solution. 
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6. Suspend cells in 1 ml of cold electroporation buffer (0.5 M sorbitol , 1 mM K2HPO4, 1 mM 

MgCh, pH 7.0) in microfuge tubes ( each tube containing 80 µl of suspension). 

After Step #6, cells were frozen for later use , but they may also have been used immediately in 

the electroporation procedure. 

Cell Transformation/Electroporation 

After preparing cells for the procedure, the actual electroporation step may be carried out. 

Electroporation allows incorporation of the plasmid vector of interest into the cells . The 

prepared bacterial cells are subjected to an electric shock that opens temporary pores in the 

membrane and cell wall. The pores are large enough that the plasmid , which is present in the 

cell solution, may enter the cell (1 ). After being subjected to the electric shock, the cells are 

allowed to recover and the pores created in the membrane are clo sed again (1 ). The following 

steps were performed in order to carry out electroporation as has been described (10) : 

1. Mix 80 µl of the suspension (from the pre viou s procedure) with 0.5-1.0 µg of the plasmid (1.0 

µg of pGhost9 or pSA3 , or an appropriate blank) . 

2. Transfer the mixture to a cold 0.1-cm electrode-gap electroporation cuvette. 

3. Shock the cells using the following parameters for Bio-Rad Gene-Pulser apparatus: 200-n 

resistance , 25-µF capacitance , 1.8 kV field strength. The cells were submitted to one pulse . 

4. Immediately after electric pulse , add 2 ml (or enough liquid to fill the cuvette) cold recovery 

medium - MRS with 0.5 M sorbitol , 20 mM MgCh and 2 mM CaCb. 

5. Keep cultures on ice for approximately 5 minutes. 

6. Allow cells to recover for 2 hours at the permissive temperature of the plasmid. 
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Selection of Cells Containing Plasmid (Transformants) 

When electroporation is carried out, not every cell will pick up plasmid molecules. The 

proportion of cells that do actually have plasmid present inside the membrane after 

electroporation is called the electrotransformation frequency (5). The proportion of 

transformants to non-transformants is specific to the cells and plasmid being used (5). Due to the 

fact that not all cells will be transformants and that other experimental errors are possible, it is 

necessary to identify the cells that contain the plasmid . Because the plasmids used contain 

antibiotic resistance genes, only cells that contain the plasmid should survive when grown in the 

presence of an appropriate antibiotic. Thus , recombinant cells were isolated, cultured , and their 

identity confirmed by the following steps (15): 

1. After electroporation , plate cells (100 µl electroporated cells and recovery medium 

suspension , spread over plate with a plate spreader apparatus) on MRS agar that contains the 

appropriate antibiotic and incubate at the permissive temperature of the plasmid for 48 hours . 

2. Isolate antibiotic-resistant colonies and confirm presence of pGhost9 or pSA3 in transformants 

by agarose gel electrophoresis - which identifies DNA pieces by their relative sizes. 

Curing Rate Determination 

Once cells containing the plasmid of choice are obtained , it is possible to determine the 

curing rate of the plasmid. The curing rate is found by accomplishing the following steps over 

time (5) : 

1. Propagate transformants in MRS broth without antibiotic at the permissive temperature of the 

plasmid and at the non-permissive temperature of the plasmid for 24 hours. 



2. Each night, transfer cells from broth to fresh antibiotic-free MRS broth and return to 

respective incubation temperatures as well as plating cells on MRS agar with and without 

antibiotic to determine the fraction of the Pediococcus population that still contains plasmid 

(plates counted after being incubated at permissive temperature overnight). 

Results ( 13) 

Observations of the wild-type - unaltered - Pediococcus pentosaceus cells were as 

expected. They appeared as round cocci shaped cells attached to each other in somewhat cluster­

like formations. The cells stained purple with a Gram stain test, meaning they are Gram positive. 

Observing the cells at the beginning of the experimentation allowed a mental image of the 

working species to be gained for future reference. 

All the solutions and media used in the procedures were carefully weighed out, mixed, 

and autoclaved in advance in order to facilitate smooth and efficient carrying out of the 

experiments. No obvious visual problems such as clouding , which would indicate 

contamination , were observed with any of the media used. 

Many of the results of the experimentation were not what they were expected to be. 

Some unanticipated reactions were observed and changes had to be made to the procedures in 

order to continue testing . To begin with, the plates used for growth of bacteria after 

electroporation were first incubated in a small incubator. The temperature in the incubator was 

controlled with the use of fans that circulated air. The fans resulted in the agar plates becoming 

extremely dried out and deformed , and the colony counts to be unreadable. To compensate for 

the dry conditions of the incubator , the plates were subsequently wrapped in a plastic bag in a 

stack to protect from desiccation . 
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Once electroporation had been performed using pGhost9 as the plasmid vector, it was 

found that the blanks were also able to grow on agar containing erythromycin, rather than just 

the transformants. The electorporation procedure was repeated with different cells to confirm 

that the cells without plasmid were actually growing in the presence of antibiotic. The 

concentration of antibiotic was increased by a factor of three and the procedure was repeated 

along with several transfers. However, the blank samples continued to be able to grow along 

with the transformants. Thus, the method of selection to determine the number of colonies that 

contained plasmid was unreliable. 

Wild-type resistance to erythromycin was investigated by inoculation in MRS broth with 

increasing levels - 5 to 25 µg/ml - of erythromycin. The test tubes were incubated at 37°C 

overnight. Unfortunately , growth was found in all tubes, which demonstrated that P. 

pentosaceus has a relatively high innate resistance to erythromycin. 

In order to test for the possibility of using a different plasmid for the same electroporation 

and selection experiment , the same procedure used for determining wild-type erythromycin 

resistance was performed to determine wild-type chloramphenicol resistance. These experiments 

used a similar dilution spectrum of chloramphenicol - using a I mg/ml Cm in I 00% ethanol 

solution which was filter sterilized . Although there was a small amount of growth in all tubes, it 

was thought that using a combination of both erythromycin and chloramphenicol would be 

sufficient to select for transformants with a plasmid that contained resistance genes for both 

antibiotics. When electroporation was carried out using pSA3 , however, there was still some 

growth apparent in the blanks. In fact, almost equal growth of the blanks and the transformants 

occurred. Also, growth did not appear as individual colonies as was expected , but appeared 

more as a smear or lawn. 
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Because P. pentosaceus does not usually grow in such a pattern, cultures were tested for 

contamination by staining and visualizing with a light microscope. A simple metabolic test - the 

presence of catalase - was also performed to determine whether there was contamination present. 

There did not appear to be any non-Pediococcus cells present. Once contamination was ruled 

out, the wild-type resistance to a combination of erythromycin and chlorarnphenicol was tested. 

Resistance was investigated by inoculation in MRS broth with increasing levels of 

chlorarnphenicol and constant levels of erythromycin. Erythromycin was kept at a concentration 

of 15 µg/ml while chlorarnphenicol was varied from 5 to 20 µg/ml. Test tubes were again 

incubated at 37°C overnight and, once again, growth was observed in all tubes. 

Conclusions 

The main conclusion drawn from the proceeding experiments and results was that P. 

pentosaceus is not a good candidate to be used for the transformant selection procedure using 

plasmids conferring erythromycin or chlorarnphenicol resistance (13). A different selective 

marker , however , may work. Finding the inadequacy of the procedure was a surprise because 

the sequencing of the genome of Pediococcus pentosaceus has not revealed anything that would 

indicate the kind of high resistance to antibiotic found upon further testing (13). Also, the same 

type of procedure has been used on other Pediococci and has been successful. In other words, in 

the past , recombinant colonies of P. pentosaceus have been selected based on their ability to 

grow in the presence of erythromycin (10). 

It is possible that something is present in the genome that has simply not been discovered 

or identified that would give the preceding results. It may be more likely, however, that 

something has occurred with the particular frozen stock culture used that would cause it to react 
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the way it did. The stock culture may have been misidentified or altered in some way or some 

other human errors may have occurred during the procedure that would have caused the results 

to be what they were. Care was taken to try to minimize the effect of human error, but it is 

always a possibility. 

Future Research/Possibilities 

The goal of performing the procedures outlined above was to assess the possibility of 

using P. pentosaceus for genetic engineering. One thought was to give P. pentosaceus a better 

ability to ferment lactose so that it might be used as a starter culture in the dairy industry (10). 

From the results found, genetic recombination and engineering may still be possible with P. 

pentosaceus , but some other method of determining transformants will need to be developed and 

used. A different vector with a different antibiotic resistance gene may be used or other strains 

or species of Pediococci could work. Some investigation should be done as to why the results of 

the experiment to determine the acceptability of P. pentosaceus for use in genetic engineering 

turned out the way they did. There are definitely still many possibilities for P. pentosaceus, but 

more research needs to be conducted. The process of research continues to be a very dynamic 

study with endless future possibilities. 
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