R A S C A L

“A Demonstration of Responsive Space Lift for Small Satellites”

18th Annual AIAA/USU Conference on Small Satellites
RASCAL Overview

• Distinguishing characteristics of the RASCAL air-launch system
 – 1st stage is a new aircraft design
 – Simple, low cost expendable rocket vehicle
 – Ability to operate outside of existing federal launch ranges
 – Enhanced turbojet engines are employed for high speed/high altitude flight
 – Near exo-atmospheric (alt. ~180,000 ft) staging of rocket vehicle

• RASCAL represents a new paradigm for small payload launch
 – Low recurring cost
 – Highly responsive
 – Aircraft-like operations
 – Dedicated space launch for small payloads
 – Scaleable technology
RASCAL Operations

Responsive 1 hour scramble with aircraft like sorties.
- Quick response to developing threats
- High flight rates

Flexible Covert delivery of a variety of payloads to any orbital inclination.
- Operates from any airfield with a 2500 m (8200 ft) runway
- In-flight mission planning capability

Operable Aircraft-like reliability, supportability, maintainability.
- Not dependent on launch ranges
- 24-hour mission turn around

Economical Mission cost $10,000/kg
• Currently in Phase II of a three phase demonstration program

• Phase II involves design work and significant risk mitigation testing
 ➢ Aircraft configuration selected
 ➢ Propulsion ground testing underway
 ➢ Wind tunnel testing completed
 ➢ Full scale solid rocket motor test to take place this fall

• Phase III will end with two orbital demonstration launches

• RASCAL system performance: 75 kg to 500 km 97.1°
Phase II Industry Team

- BAE Systems
 - Mojave, CA
- Acei
 - Valencia, CA
- AAE Aerospace & Commercial Technologies
 - Huntington Beach, CA
- Universal Space Lines LLC
 - Newport Beach, CA
- Space Launch Corporation
 - Irvine, CA
- Scaled Composites
 - Mojave, CA
- Intercon Airlift Services
 - Ronkonkoma, NY
- ATK Gas/L Propulsion
 - Butte, MO
- ATK Alliant TechSystems
 - Elkton, MD
 - Manassas, VA
- Athena Technologies
 - Juno Beach, FL
- Pegasus Engineering Services, Inc.
 - San Antonio, TX
- Cymetech
 - Huntsville, TX
- Pratt & Whitney
 - San Antonio, TX
Scaled’s Tier One Program

Our subcontractor for the RASCAL aircraft has space experience.
THE RASCAL Aircraft

Configuration Summary

• Four engine, low wing, supersonic configuration with internal payload bay

• Single pilot cockpit with the capability for future autonomous operation

• Capable of conventional airport take-off and landing

• Propulsion system uses liquid oxygen and water Mass Injection Pre-Compressor Cooling (MIPCC) for thrust augmentation at high Mach number and altitude
Evolution of the RASCAL Aircraft
Current Configuration

- Gross Weight \(\approx 115,200 \) lbs
 - Payload \(\approx 18,000 \) lbs
 - Consumables \(\approx 31,900 \) lbs
 - Empty Weight \(\approx 65,300 \) lbs

- 59 ft span
- 102 ft length
- 2100 ft\(^2\) wing area

Size Comparison

- F-15
- MPV
- SR-71
MIPCC Testing Underway

- Shakedown tests with a J-85 have been completed in Mojave

- Initial tests indicate an ~2X increase in thrust when using MIPCC
- MIPCC testing with an F100-PW-200 engine underway
F100 Engine At MTB
Inlet Status

10% Scale Inlet Model Designed and Fabricated
Tunnel Testing Currently Underway – No Surprises

Self Start Demonstration at Mach 2.5, alpha = 0
Expendable Rocket Vehicle

Designed to be Low Cost, Safe, Simple, and Inherently Reliable

- Large payload volume
- Smart guidance and propulsion module provides on-orbit maneuverability
- Use of hybrid motor technology reduces recurring cost
- Autonomous flight safety system
- No payload shroud required
The Path Forward

Additional Tasks to be Completed in Phase II

• Preliminary structural design and analysis
• Aircraft systems selection and layout
• MIPCC testing with Pratt & Whitney F100 engine
• Full-scale ground test of the second stage solid rocket motor