Utah State University

Digital Commons@USU

Undergraduate Honors Capstone Projects Honors Program

12-2006

Moving Object Tracking: Seeking Extensible Solutions

Jeremy Pack
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/honors

b Part of the Computer Sciences Commons

Recommended Citation

Pack, Jeremy, "Moving Object Tracking: Seeking Extensible Solutions" (2006). Undergraduate Honors
Capstone Projects. 711.

https://digitalcommons.usu.edu/honors/711

This Thesis is brought to you for free and open access by
the Honors Program at DigitalCommons@USU. It has

been accepted for inclusion in Undergraduate Honors /[x\

Capstone Projects by an authorized administrator of /\

DigitalCommons@USU. For more information, please (l .()Al UtahStateUniversity
contact digitalcommons@usu.edu. /rg;m MERRILL-CAZIER LIBRARY

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/honors
https://digitalcommons.usu.edu/honorsp
https://digitalcommons.usu.edu/honors?utm_source=digitalcommons.usu.edu%2Fhonors%2F711&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fhonors%2F711&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/honors/711?utm_source=digitalcommons.usu.edu%2Fhonors%2F711&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

MOVING OBJECT TRACKING: SEEKING EXTENSIBLE
SOLUTIONS

by

Jeremy Pack

Thesis submitted in partial fulfillment
of the requirements for the degree

of
HONORS IN UNIVERSITY STUDIES
WITH DEPARTMENTAL HONORS
in

Computer Science
in the Department of Science

Approved:
Thesis/Project Advisor Departmental Honors Advisor
Dr. Stephen J. Allan Myra Cook

Director of Honors Program
Dr. Christie Fox

UTAH STATE UNIVERSITY
Logan, UT

Fall 2006

Moving Object Tracking: Seeking Extensible
Solutions

Jeremy Pack

January 10, 2007

Abstract

Moving object tracking is a difficult field with no “best” solution. The
documents contained here detail software that was developed in order to
perform tracking of objects that are in the line of sight of multiple cam-
eras. Some of the software developed is alrcady in use by the US Army
Dugway Proving Ground. Other software represents prototype or carly
development code. This software was written by Jeremy Pack, who was
the lead programmer. and Luke Andrew at the Space Dynamics Labora-
toryv in Logan, Utal.

Description of Contents

This document is separated into five sections:

L. Overview of Surveillance Image Processing Software
2. Cloud Edge Analysis user manual

3. Cloud Volume Reconstruction user manual

4. SIP RT development.

5. Extension plugin library proposal

Author’s Biography

Jeremy Pack was born in Logan, Utah in 1983, but his family lived in six different
states as he was growing up. He was accepted to Utali State University as a
University Club Scholar where he received a BA in Computer Science and a BS
in Computational Mathematies, with a minor in Russian. He spent two years
in Russia as a missionary for the LDS Church.

As of 2007, hie and his wife Julianne live near Seattle, Washington with their
sor Thomas where he works for Google, Inc. He enjoys swimming, playving the
violin, reading and eating the free food provided by lis employer.

Overview of the Surveillance Image Processing
Software

Jeremy Pack

January 10, 2007

1 Original Purpose

At Dugway Proving Ground, chemical releases are generated for the purpose
of simulating clouds of dangerous chemicals. DPG uses software to track these
releases based on various instruments such as cameras or lasers. They required
a new suite of software to analvze the generated data that was to run on the
Windows platform and give better, more efficient results than their current
software without requiring as much work from human operators.

2 Initial Implementation

Scth Call designed the original SIP program and delivered it to Dugway. At
the time, it tracked objects in two dimensions. The initial implementations
he designed culminated in a graphical program that was capable of processing
Dugway IR images as well as color images of various types and IR images from
SDL IR cameras.

This software used various mage processing techniques to clean up the im-
agery and isolate the objects that had moved in relation to a software sclected
compare image. The user was presented with a large nuniber of options that
could be used to modify the processing algoritluns for use with different types of
imagery. As such, the software conld handle images with many tvpes of noise,
gain changes or other Haws.

The end result was an output of the edge information for cach moving object
in each image in 2D. No 3D information was generated.

3 Cloud Edge Analysis

In 2005 Seth Call left the project and it was taken over by Jeremy Pack. Mcan-
while, the Dugway Proving Ground acquired a new infrared camera capable of
running at over 100 frames per second. The software did not, at the time, run
in real time, but the sheer volume of data generated by the new camera over-
whelmed the SIP program within as little as 20 seconds of data. As Dugway

approximation: when the angle of the camera away from the horizon is not
sufficiently close to zero.
This error is lessened as the accuracy becomes smaller.

5.2.2 Modern Processors

On older processors, floating point operations are usually much slower than
mteger operations. On newer processors, only division is significantly slower.
This algorithin can be written with three floating-point-to-integer conversions
and three floating point additions per voxel, as opposed to the three integer
additions, three integer multiplications, and an integer division that are required
by the Dugway algorithn.

When this algorithm was designed, the method used was probably much
faster than the alternative. Now. however, there is probably no longer a need,
especially given the fact that some error is introduced.

6 CVR Future Design

A new method of object reconstruction has heen designed which will niake it
possible to spread the processing load among multiple machines, increasing the
speed with which data can be processed. CVR becomes the real bottleneck in
the processing pipeline, since CEA is quite fast. The optimal accuracy for CVR
cannot be reached with any reasonable processing speed currently (L.e. making
It any more accurate than the optimal accuracy would in no way give better
results, siimilar to adding 5.2 and 3.5 and displaying the result as 8.800000 rather
than 8.8).

The future design involves a single computer used for display, oue computer
used to direct the other computers in processing and divide up tasks, and any
number of computers, each in charge of a certain region in spacc.

The 3D processing algorithms would need to be changed in a few fundamen-
tal ways in order to make this possible, and those ways have been decided but
not. yet implemented.

Space Dynamics

LABORATORY
Utah State University Research Foundation

1695 North Research Park Way ¢ North Logan, Utah 84341
Phone 435797 4600 » Fax 435,797 4495
|

Cloud Volume Reconstruction

Training Manual Prepared For:
Dugway Proving Ground

Revised: August 31, 2006

Cloud Volume Reconstruction User Manual

I. Table of Contents
. TABLE OF CONTENTS ..ottt e seeee e e ee e e e et eee s eeme e 2
Il PURPOSE ...ttt et e e ee e s e e e st e e et e e e e 4
. BACKGROUND OF SURVEILLANCE IMAGE PROCESSING
SOFTWARE ..ottt rre et eee et e e e s s 4
V. SYSTEM REQUIREMENTS......coeeieeicet e eeeeee et 5
V. CLOUD VOLUME RECONSTRUCTION QUICK START .ovoeeeeeeeeeooen, 6
Av SEHUP DHALOG...eee ettt ettt seseteseserseesesssssss e seseeen 7
l. Datd SOUICE ..o 7
2. Data Frames Per Secondcccoovoiiiiiiiiee oo 7
3. R0AA SETUP 1o 7
b APPLY VAIUES ... 7
B, Processing REZION ...ttt sesesssssessssssssssesose st e 7
C. SROTECUL KQYS ettt eeseseesessenenessssssesssses s ese et s es s 9
D. CAMEra SEtUPoveeiiieeeeeieeetetctecc et seseeae e e esssese e e s e e et s 10
E. Processing Data ...ttt e e s esesess e ss e et 12
F. EXPOrting DAta ...ttt cceseeeeeeseesseesesesssseseses e ess e 14
VL. DPG SURVEY DATA QUICK START ...ooitieeeeeeeeeeeee e, 15
VII. ADVANCED OPTIONS.......cooieeieeieteeeeeee et e 17
A, Camera SetuP OPLIONS u...cccruirirreeretreeeesceceeeeeseeeesesesssessesessese e s e 17
Lo Startand End Frames ... 17
2. Min/Max Agreeing Camerascocoooomviiis oo 17
3. Hard Target Calibrationcccoocoooiiiiiioo oo 17
B, Display OPtionsciuieeceiereincenteeecccteeseeesenesssseseseessssssssssosssssss e s 18
C. RENAEr SEttINESevieiecnrereteerteeeeetesene e neseseeesssessesessesesesses s e e 18
D. Graphical QUEPUL........cuiiiecceeirrcereeececcc e eeeees s essse e e e e 19
VIIl. CLOUD RECONSTRUCTION ALGORITHMS. ..o 20

USuU SDL For Official Use Only 2

Cloud Volume Reconstruction User Manual

A, Camera to Cloud ANGIESoeeereeeereerereereeeeeceecscecsessseseesesssesnsnsssssesssosesssaes 20
B. Location AIZOTItRINS ...ccuiiecireneenreneeeeeeetneeeesntesesesescesessasesssssssensssssesssensssssses 21
IX. CLD FILE FORMAT ...ttt e et eee s st esne e e e 22

USU SDL For Official Use Only 3

Cloud Volume Reconstruction User Manual

II. Purpose

This manual serves as an introductory tutorial for the beginning operator to become
familiar with the Cloud Volume Reconstruction program and image processing features.
Cloud Edge Analysis is a program designed to detect the motion of vapors, from IR or
color cameras, analyze specific spectral and geometric information and output the
resulting data into Cloud Volume Reconstruction, a three-dimensional view viewing
program.

1. Background of Surveillance Image Processing Software

The Cloud Volume Recognition Software (CVR) was developed at the USU Space
Dynamics Laboratory to process data from cloud releases at Dugway Proving Ground
(DPG). The purpose of this software is to make possible near-real-time on site analysis of
the IR images generated during these tests and also to perform post test analysis of the
results. Cloud edges are generated by processing sequences of images from IR, bmp, or
jpeg files by the Cloud Edge Analysis (CEA) program. The resulting cloud information
from each camera can then be used by this program, CVR, to form a 3D representation of
the cloud.

During the next phase of this project, work will be done to stream data directly from the
cameras to the software (running on computers attached to each camera). These data will
be processed immediately and then sent over a network (probably wirelessly) to a central
computer which will construct a 3D representation of the cloud. The software is capable
of performing these calculations as fast as the cameras can generate the information (over
100 frames per sccond) on a relatively fast computer, thus providing those present at the
test to immediately be able to determine the location and movement of the cloud. and be
able to analyze these data immediately after the test is completed.

The software is appropriate for use with the data generated by Dugway Proving Ground
as a set of post-test analysis tools. This documentation has been provided to help meet the
needs of Dugway Proving Ground to help users to become familiar with the software.

This version of the software was written by Jeremy Pack and Luke Andrew. Much of the
functionality of the CEA Program is based on SIP II by Seth Call. The Cloud Volume
Reconstruction program is similar in purpose to the 3DCAV program written at Dugway
Proving Ground. CEA includes optional use of an algorithm from the TRACE program,
also developed by Dugway Proving Ground.

USU SDL For Official Use Only 4

Cloud Volume Reconstruction User Manual

IV. System Requirements

For high speed processing, the following minimum requirements are strongly
recommended:

Windows XP Professional

512 MB RAM (The program does not usually use much RAM itself, but for various
reasons more RAM is beneficial)

Pentium V. Athlon, or equivalent processor with speed of at least 2 GHZ.
In addition, it can benefit from multiple processors or hyperthreading.

CVR relies heavily on the graphics card. For fast processing, a graphics card capable of
accelerating OpenGL 1.3 or higher is recommended. For advanced functions, the card
must be capable of accelerating OpenGL 2.0.

Note:

Many computers do not have the latest OpenGL drivers from the graphics card
manufacturer. It is recommended to visit the graphics card manufacturer's website and
download the latest driver for the card before using this software. It will run with
unaccelerated graphics, but performance will be severely hindered. In addition.,
requirements are similar to those for CEA. Currently, this program will not benefit much
from multiple processors or hyperthreading. This is planned for the future however.

USU SDL For Official Use Only S

Cloud Volume Reconstruction User Manual

Data Source

& TCPiIP
& *.cld Files Cancel l

Terrain Data File: (This Feature will be added when
terrain data is received from DPG)

Data Frames Per Second I 60
Start Hour (out of 24) 5 Load Setup l

A. Setup Dialog

The options associated with this window are described below.

1. Data Source
Select *.cld. TCP/IP is currently disabled.
2. Data Frames Per Second

The default value is 60, which means that if the camera data used as input was
generated at 120 frames per second. then every other frame will be skipped. If
the camera data used as input was generated at 30 frames per second, every
frame will be repeated.

For Dugway *.ptw files. 60 to 110 frames per second is appropriate (Since they
are recorded at about 108 frames per second). “*Start hour™ should be selected to
be some hour that was not passed during the test. This is to compensate for tests
running at midnight.

3. Load Setup

This button allows a previous setup to be loaded. This is useful if there is a basic
setup that is the same for many tests. or to review previously processed data.

4. Apply Values
Press “OK™.

B. Processing Region

The next dialog box to appear is the processing box dialog. This dialog box is
used to determine what region in space is processed by the program. This menu
is shown in the following image.

USU SDL For Official Use Only 7

Cloud Volume Reconstruction User Manual

X
- UTM Coordinates
Longtude Zone (C-wy: |12 Accuracy: [m
' Min Northing: {44519?5 Min 11355
§ Elevation: m
. Min Easting: | 329975 Max r——-—
Elevation: 1405 m

Max Northing: { 4452025

' Max Easting: | 330025

- Latitude and Longitude Coordinatgs s e

‘Mintongitude: 112 o [sa ¢ [s15e g
Max Longitude 112 e fs3 Jagsa
Mintatitude: [q0 ° [12 * [Gaze N
Maxlatitude [45 ° [1z {5.083 "

Cancel I

The Processing Box. or Processing Region. describes the extent of CVR for
processing the data. Coordinates can be input either as latitude and longitude or
UTM Northing and Easting (WGS84). All measurements are in meters or degrees.
The default location is near Dugway Proving Ground. The processing box
window can also be opened by clicking on “Setup™, “"Processing Box™.

For using DPG survey data, please see section VI.

Accuracy determines how many voxels (3D pixels) will be considered in the
processing region. An accuracy of 4 would mean that each 4X4X4 meter region
would be processed as a block. The lower this number is. the slower processing
will be. For normal processing speeds. it is recommended to keep the accuracy
around 1/100 of the length of the largest side. Press “OK™. Now the window
appears with the 3D display as shown below. The processing region is the
volume enclosed by green lines.

USU SDL For Official Use Only 8

Cloud Volume Reconstruction User Manual

VII. Advanced Options
A. Camera Setup Options

1.

Start and End Frames

New functionality has recently been added to the Camera Setup Dialog to
allow the user to better control the starting and ending of individual
cameras.

The frames that are processed from each camera can be modified by right
clicking on the camera, or by left clicking on the camera and then clicking
on the “Set Start/End” button.

X

Start Frame l ﬂ
Erd Frame 180 Cancel 1

Note that these are the frames relative to the image set that the *.cld file
that was processed. not relative to CVR!

Min/Max Agreeing Cameras

[t 1s now possible to set two new parameters that make CVR more useful
with large numbers of cameras:

Min Agreeing Cameras: This represents the minimum number of
cameras that can see a point in space for that point to be tested for
containing a cloud.

Max Agreeing Cameras: This represents the number of cameras that
must agree that a certain point in space is part of an object to override one
or more cameras that does not agree.

Recommended setting for 10 camera Dugway data:

Min Agreeing Cameras: 4

Max Agreeing Cameras: 6

Hard Target Calibration

The hard target information can be manually input or modified in this
dialog. Once the northing, easting, and elevation are entered for each hard
target, the camera's orientation. field of view, and angle from the
horizontal are each calculated automatically. Note that this requires that
the user specified exactly three hard targets in CEA.

USU SDL

For Official Use Only 17

Cloud Volume Reconstruction User Manual

D. Graphical Output

By clicking on “Data™, “Graphical Output”. a user can export a video of the image
rendered image results. This window dialog is shown below.

Xl

¢ Output Type : Qutput To: Browse l
. T Bitmap Files | CiData
" Jpeq Files File name:

& avI {uncampressed) | CloudOutput
Only Output Frames
Selectad For Pracessing

By clicking on the appropriate options, a user can set the desired file type and
location of the output.

USU SDL For Official Use Only 19

Cloud Volume Reconstruction User Manual

V1L Cloud Reconstruction Algorithms

A. Camera to Cloud Angles

The algorithm contained in the function ‘GenerateCameraVectors’ in the ‘CData’
class is the primary algorithm used to determine which point in the cloud
correspond to which point in the camera's field of view. To do this, it generates
three 3D vectors:

e The vector that is parallel to the view angle of the camera

e A vector coming straight through the top of the camera

e The vector coming out of the right side.

These vectors are all orthonormal. They are used to determine how much of an
effect the x.y, and z coordinates of the cloud have on the location of the
corresponding pixel in the camera image. For instance, if the camera is pointing
straight north and not tilted. the vector through the right side of the camera is (1,
0. 0) (where x is east/west. y is up/down and z is north/south). This means that the
angle in the to the x coordinate in the y.z plane has an effect of 100% on which x
pixel in the camera image that point corresponds to, has a weight of 1 in
determining the x coordinate, while the y and z values have no weight. The vector
through the top of the camera is (0.1.0) showing that the angle in the x.z plane to
the y coordinate has a weight of 1 on the final y coordinate. In this simple setup.
the direction (i.e. N.S.W.E) can be used to determine the x coordinate, and the
elevation (from the horizon. i.e.. 0 degrees is level) can be used directly to
determine the pixel location. (Note: The third vector, pointing forward is used
only for angle calculation)

The benefit of the type of calculation used here (i.e.. 3 normalized vectors) is that
it can be used with any orientation of the camera. There is no assumption that
the camera is level. as with other programs. This algorithm will still function
correctly if the camera is pointing straight down, turned on its side. or flipped in a
random direction. It has performed as fast as the 3DCAV algorithm in tests.

Once this algorithm has completed running. the results are saved and used during
cach set of processing. There is no reason, currently, to recalculate these values
every time. In the event that Dugway requires more movement of the cameras
during processing, this function can be modified to store all of the probable angles
of the camera to minimize reprocessing.

USU SDL For Official Use Only 20

Cloud Volume Reconstruction User Manual

B. Location Algorithms

The location of a camera or other object is stored in two ways — UTM coordinates
or longitude/latitude and elevation and the relative location of the object to the
processing region (in meters). The relative location is used in calculations, and is
found by using the latitude, longitude, and height. Though this software would
probably have difficulties using this method at the poles, it should therefore be
rather accurate at any other points on the Earth. The relative location is given in
(x.y.z) coordinates. Because of the OpenGL implementation used, x goes from
west to east as it increases, y goes from down to up, and z goes from north to
south. For the sake of the algorithms, this is reversed for z to make it more
intuitive and the z-values are all reversed before they are rendered.

USU SDL For Official Use Only 21

Cloud Volume Reconstruction User Manual

IX. CLD File Format

*.cld files are one of two ways that CEA sends its data to CVR. The second method
involves TCP/IP communication, and is currently disabled. These files contain the
information needed by CVR to reconstruct 3D clouds from the camera data processed by
CEA., including the following:

» File Version - Since the data stored in cld files changes, the fileVersion lets the
program know if the file is valid, and in some cases it allows the program to load
the data differently depending on the file version. This number changes every
time the type of data stored in the *.cld files is changed (e.g. the software is
modified).

o Number of Frames - The number of frames stored in the file.

 Frames Per Second - The frames recorded per second by the camera that produced
the image set.

o Width - Width of each frame in pixels.

» Height - Height of each frame in pixels.

» Frame Info - Includes data about objects in each frame.

» Object Info - Includes data about the objects found by the software.

To generate *.cld files, follow the instructions in the Quick Start Guide for CEA. Then
follow the directions in the Quick Start Guide for CVR to use the *.cId files for cloud
reconstruction.

USU SDL For Official Use Only 22

SIP: Operating in Real Time

Jeremy Pack

January 10, 2007

1 Goal

During the course of the Surveillance Image Processing related contracts with
Dugway Proving Ground. it was made clear that DPG needed a real-time object
tracking solution. A systemn was needed that would show what was occurring
in the test range within less than a second of it occurring,.

2 Rapid Prototype

The existing CEA and CVR was used to build up a quick prototyvpe, capable
of running in real time using camera input. CEA was started on each machine
connected to acamera (through USB). Then CVR was started. Fach computer
runting CEA was connected to the CVR computer. and all location data for
the cameras was also provided. Once this was accowmplished, cach process was
set to wait for a signal to hegin processing,

Using this technique, it was possible (though unwicldy) to run real-time
processing. SDL computers are synchronized very well, so the time data for
cach frame was stoved as it was taken from the camera. This provided C'VR
with the accuracy it needed.

Based on these rests, it was elear that real-time processing was quite feasible.
The rapid prototype was not put together in a robust fashion. however. and was
only used as a proof of concept vehicle.

Tests were done using people walking through a scene scen by 3 or { cameras,
and with other moviug objects. The results were good.

Thougl the solution was ouly temporary, it showed a lot of potential for an
expanded solution.

3 CEA Rewrite

Ax an initial stage, the CEA program was rewritten to focus on. and be op-
timized for. color camera input. Originally, CEA was intended primarily for
use with IR and gravscale images. For color images, however, the algorithms
did not make the best use of the information provided by each individual pixel.

Extension Library Proposal

Jeremy Pack

Januarvy 10, 2007

Abstract

This document describes a C - + library designed and implemented
by the author for use in developing so-called plugins for C! - programs.
This library was developed under the Boost software license (boost.org).
It is intended for submission to the Boost C - | Libraries.

1 Purpose

For the purpose of this document, the library will be applied to the problem of
an image processing application such as the following:

Consider an application that must load and process imagery that could be
of the following tvpes:

1. Grayvscale bitimap or jpeg images
2. Infrared image data files from company X

Now, consider that the software development team knows that, in the future,
more types of images may need to be loaded and processed, but thev do not
know which types. These types could include, for instance:

1. Color images

2. Pug. tiff cte. formatted images

3. Infrared image data files from other companies (which may be in a format
nsed only by that particular company)

Many of the algorithms and code developed for the first two types of images
would apply to the latter three. Some functionality could perhaps be done i a
more efficient. or correet. way for the later images though, and some new code
could very well be necessary.

Differences between the images could include, among other things, the fol-
lowing:

1. The number of bits required to store the intensity information for cach
pixel

Q%3

The number of channels for each pixel (i.c. grayscale requires one channel,
color requires 3: red green and blue). Multi-spectral IR imagery could
contain many channels.

3. The way that an image can be displaved to the screen

The standard object oriented response to such a problem is inheritance. Using
Ci . a base class similar to the {ollowing could be used:

class GenericImage

{

public:
virtual load() = 0;
virtual process{() = 0;

}

Using this base class, subclasses such as CompanyXIRIimage, BWDBmplmage or
BW.IpegImage could he developed originally, and classes such as Company YIR-
Image, ColorPngImage, ColorJpegImage ote. could be added lator.

Consider, in addition. that perhaps certain algorithis would be appropriate
for multiple tvpes of images (i.e. perhaps all color images should be processed
the same way once loaded). A multi-level inheritance structure would usu-
allv be appropriate. but sometimes this does not fit the problem well, and it
may be more appropriate to split the image class into ImageLoader and Tmage-
Processor classes, where a ColorImageDProcessor can only be instantiated if a
BmplmageLoader or JpeglmageLoader has been instantiated and loaded color
nagery.

Whenever new functionality needed to be added, a new derived class or
classes would be developed and the program would be recompiled.

This is a good solution, but often it would be preferable not to have to re-
compile the original program. In addition, there could be various reasous not to
want fo include all of the funetionality all of the time. Tn many different picces of
comercial and non-commereial software, different pluging are available which
can enhiance the functionality of the software. Sometimes these plugins are de-
veloped by the company that released the original software. and sometimes they
are developed by other parties, even by the customers themselves.

This library, Boost.Extension, has a number of goals:

1. Make it possible to create these types of plugins. such as for multiple
cameras and enable a program to detect available plugins automatically

and correctly

2. Allow for the managed loading of interdependent plugins

3. Allow for these interdependent plugins to share information between them-
selves. even if that information was not known when the original base
classes were designed.

. Allow for complicated inheritance classes, including virtual base classes
and multiple inheritance

5. Allow for loading of derived classes that cannot be modified in order to
be made “loadable”

6. Allow for classes to provide information about themselves for loading pur-
poses.

2 Possible Applications
2.1 Multiple Clients with Different Needs

In the situation above, cach possible client could be using different camera
cquipment. Bach client only needs to be able to load data from their own camera,
tvpes. They don’t require the additional functionality, so only the required
linked librarics would be provided, but the base executable would be the same.

2.2 User-created Add-ons

In a web browser, often additional plugins are added to play certain types of
files or provide additional information to the user. This technique could be used
to simplify ereation and use of these add-ons for such an application.

2.3 Classified or Secret Information

I many contracts, some of the algoritlins or information incorporated into
software should not be disclosed to other clients of the software. Seeret or
classified information could be placed in linked libraries that are only provided
to those clients that have a right to sce that information.

2.4 Complicated Inheritance Structures

This could also be used just as a standardized way to keep a large programi
modular and deal automatically with the difficulties inherent in dealing with
the linked libraries in a directory as well as tracking interdependencies between
loaded derived classes. Also, since the library is cross-platform, it can be used to
work with linked libraries in general without having to worry about the different
Posix or Windows APIs.

3 Proposed Solution

The library that has been designed meets the above goals and provides a rola-
tively simple API to the user. There are a number of other libraries available

that attempt. to address this same problem, and some advantages of this solution
include:

L. No macros are required - templates are used instead. There are several
reasons why it is preferable not to use macros. In this library. templates
are used without any loss of functionality, and actually make for rather
concise code.

2. It is cross platform - Windows, Linux and Macintosh, and, theoretically,
any Unix based system.

3. It requires only one externally visible function to be declared in each linked
library. Other solutions usually make many functions and classes visible
externallv. In order to circumvent this, the one visible function provides
functors that can call the required non-external functions.

4. It can automatically load all linked libraries from a given directory, or
libraries selected by name.

5. It provides for making classes loadable that are in the same executable.
In theory. it should be able to make it possible to load classes from other
executables as well, if they are declared loadable.

4 Examples

4.1 Loading unmodified classes

This first example nses the library to load simple classes with no interdepen-
dencies. These classes thus do not need to be modified in any way to be made
loadable.

The following represents the source code of a test file using Boost. Test to
verily correct library functionality.

// (C) Copyright Jeremy Pack 2006.

// Use, modification and distribution are subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at

// http://wuw.boost.org/LICENSE_1_0.txt).

//

// See http://www.boost.org/libs/type_traits for most recent version including doct
#include <boost/test/unit_test.hpp>

#include <boost/test/included/unit_test_framework.hpp>

#define BOOST_AUTO_TEST_MAIN

#include <boost/test/auto_unit_test.hpp>

#include <boost/extension/config.hpp>

#include <boost/thread.hpp>

#include <boost/extension/loader.hpp>

#include <boost/extension/extension.hpp>

#include <boost/extension/intrusive_capable.hpp>

#include <boost/extension/loadable.hpp>

#include "number_base.hpp"

using namespace boost::extensions;
class car//this is an abstract base class - it doesn’t have to be abstract though
{
public:
virtual “car(){}
virtual const char * get_type()=0;

i
class chevy : public car
{
public:
virtual const char * get_type(){return "Chevrolet";}
I
class honda : public car
{
public:
virtual const char * get_type(){return "Honda'";}
s
BOOST_AUTO_UNIT_TEST(basic)
{

/*create loader*/
loader load;
/*make local classes loadablex/
library * 1lib = new library();
lib->declare_unaltered<chevy, car>();
lib->declare_unaltered<honda, car>();
load.add_library("Local Classes", 1lib);
/*create an object that can hold multiple cars*/
multi_loadable<car> car_ptr(load);
/#Get an iterator to the first available loadable class+*/
available_class_iterator it = car_ptr.get_class_begin();
/*Make sure the list isn’t empty*/
if (it==car_ptr.get_class_end())
{

BOOST_CHECK(0) ;//This shouldn’t happen

return;
}
/*Load the class pointed to by the iteratorx/
car_ptr.load(it);
/*Check that the virtual function output is corrects/
BOOST_CHECK_EQUAL(std: :string("Chevrolet"), std::string(car_ptr[0].get_type()));
/*Go to the next available loadable class*/

++it;

if (it==car_ptr.get_class_end())

{
BOOST_CHECK(0) ;//This shouldn’t happen
return;

}
/*

Load Hondax*/

car_ptr.load(it);

BO
/*

0ST_CHECK_EQUAL(std::string("Honda"), std::string(car_ptr[1].get_type()));
There are now two cars loaded into car_ptr*/

4.2 Loading interdependent classes

This example uses classes that are modified in order to provide tracking for
interdependencies and to enable the classes to provide information about them-

selves.

//
//
//
//
//
//

(C) Copyright Jeremy Pack 20086.

Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).

See http://www.boost.org/libs/type_traits for most recent version including doct

#include <boost/thread.hpp>

#include <boost/extension/extension.hpp>

#include <boost/extension/repository.hpp>

#include <boost/extension/loadable.hpp>

#include <boost/test/unit_test.hpp>

#include <boost/test/included/unit_test_framework.hpp>
#define BOOST_AUTO_TEST_MAIN

#include <boost/test/auto_unit_test.hpp>

using namespace boost::extensions;

/*The classes below shows the most powerful way of declaring
loadable classes. For this method, each class must have
extension in it’s inheritance hierarchy.*/

/*

structure is not itself loadable, but classes that inherit
from it are loadable as structures

*/

class structure : public extension

{

public:

/*

*/
st
//
vi

/%

repository contains any shared variables and interfaces
that are relevant for multiple loadable classes.

ructure(repository & rep):extension(rep){}
This function is just here for demonstration.
rtual std::string get_my_name(){return "generic structure";}

Virtual destructors are not required - the extension
virtual destructor takes care of those issues - but
without virtual destructors, some compilers will give
warnings (when a class has other virtual functions)
*/
virtual “structure(){}
3
/%
Notice that this class below is also not exported - though
it could be.
*/
class garage : public structure
{
protected:
static void get_interface_info(boost::extensions::library_class & 1lc)
{
/%
This function declares that
garage is loadable as a structure, or as a garage.
Dependencies could also be declared here:
for example: lc.require<car>();
*/
lc.provide<garage>();
lc.provide<structure>();
}
public:
/*
This style of constructor (with a single repository argument)
is the simplest to use -
but different constructors can be created with some work.
They are not necessary, since all parameters can be placed
in the repository, but in some cases a more specialized
constructor is needed, and the library does not restrict this.
*/
garage(repository & rep):structure(rep){}
virtual std::string get_my_name(){return "some sort of garage';}
virtual “garage(){}
I
/*
house is exported. Notice the functions:
generate
get_extension_info - provide basic description
get_interface_info - list requirements and provisions
The last two are separate so that a class can recursively
include the dependencies of its super classes, if desired.

*/

7

class house : public structure

{
private:
static void get_interface_info(boost::extensions::1ibrary_class % 1c)
{
/*To construct a house, a garage is required to have been
constructed.
*x/
lc.provide<house>();
lc.provide<structure>();
lc.require<garage>();
3
garage * garage_ptr;//pointer to the required garage
public:
std::string get_garage_name(){return garage_ptr->get_my_name();}
virtual std::string get_my_name(){return "some sort of house";}
virtual "house(){}
static boost::extensions::extension * generate(boost: :extensions: :repository & reg
{return new house(rep);}//standard generate function - required
static void get_extension_info(boost::extensions::library_class & 1c)
{//called when a class is declared loadable
lc.describe("A basic house");
get_interface_info(lc);
}
house(boost: :extensions: :repository & rep)
:structure(rep)
{
rep.set_to_first(garage_ptr);//Load the first available garage
}
s

//similar to house
class four_car_garage : public garage
{
protected:
static void get_interface_info(boost::extensions::1ibrary_c1ass & 1c)
{
lc.provide<four_car_garage>();
}
public:
static extension * generate(repository & rep){return new four_car_garage (rep);}
static void get_extension_info(boost::extensions::library_class & 1lc)

{

lc.describe("A four car garage");
get_interface_info(lc);
garage::get_interface_info(lc);

}

};

four_car_garage(repository & rep):garage(rep){}
virtual std::string get_my_name(){return "a four car garage";}

//similar to house
class two_car_garage : public garage

{
protected:
static void get_interface_info(boost::extensions::1ibrary_class & 1lc)
{
lc.provide<two_car_garage>();
}
public:
static extension * generate(repository & rep){return new two_car_garage(rep);}
static void get_extension_info(boost::extensions::library_class & 1c)
{
lc.describe("A 2 car garage");
get_interface_info(lc);
garage: :get_interface_info(lc);
}
two_car_garage(repository & rep):garage(rep){}
virtual std::string get_my_name(){return "a two car garage";}
3

BOOST_AUTO_UNIT_TEST(creation)

{

/*¥Upon creation, the loader searches the current
directory. It is possible to also manually specify other
files or directories*/
loader load;
/*
This next part is only necessary because the
classes are being loaded from the current executable.

*/
library * lib = new library();
lib->declare<two_car_garage>();
lib->declare<four_car_garage>();
lib->declare<house>();
load.add_library("Local Classes", 1ib);//don’t worry, library won’t leak now
//it is stored in a smart pointer.

/*This single_loadable can carry exactly one instance of a garage
it is initialized with the loader, and it points to a list
of all available garages.

*/

single_loadable<garage> garage_loader(load);
//can load one house
single_loadable<house> house_loader(load);

/*No houses are available, becase the only house
requires a garage, which has not been constructed.*/
BOOST_CHECK_EQUAL (house_loader.get_num_available(), 0);
/*Neither garage depends on anything, so they are both loadablex/
BOOST_CHECK_EQUAL (garage_loader.get_num_available(), 2);
if (garage_loader.get_num_available()!=2)
{
BOOST_CHECK(0) ;
return;
}
/*Load the first garagex/
garage_loader.load(garage_loader.get_class_begin());
BOOST_CHECK_EQUAL (house_loader.get_num_available(), 1):
/*Load the house - it will take a pointer to the
loaded garage from the repository
*/
house_loader.load(house_loader.get_class_begin());
/*make sure that the first garage has loaded successfully.*/
BOOST_CHECK_EQUAL(std::string(house_loader->get_garage_name()), std::string("a tuc

5 Design Recommendations

5.1 XML Descriptions

The library provides for creating a string to describe cach class. A useful way
to do this would be to create a parseable description, perhaps in XML, Thus,
a BmplmageLoader can contain in its description a reference to the fact that it
loads bitmayp images, and deseribe it in a parseable way, such as:

<loader>
<file-extension>bmp</file-extension>
</loader>

Whereas a jpeg could be:

<loader>
<file-extension>jpeg</file-extension>
<file-extension>jpg</file-extension>
<loader>

5.2 Small base classes and minimizing dependencies

In software development in general, minimizing dependencies is an important
goal. Here as well, it is important to design classes in order to minimize coupling.
Though it can handle very complicated interdependercies fine, it will complicate

10

future development of plugins. The purpose of this library is to simplify the
requirements for the programmers, but this is defeated if the interdependency
feature is abused.

5.3 Avoid shared data - prefer shared interfaces

Although the library makes it possible to share actual data directly between
multiple classes, it is better to share interfaces between classes, since this makes
it casicr to modify the system in the future and minimizes dependencies.

11

	Moving Object Tracking: Seeking Extensible Solutions
	Recommended Citation

	tmp.1624906334.pdf.iH36u

