
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

Undergraduate Honors Capstone Projects Honors Program

12-2006

Moving Object Tracking: Seeking Extensible Solutions Moving Object Tracking: Seeking Extensible Solutions

Jeremy Pack
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/honors

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Pack, Jeremy, "Moving Object Tracking: Seeking Extensible Solutions" (2006). Undergraduate Honors
Capstone Projects. 711.
https://digitalcommons.usu.edu/honors/711

This Thesis is brought to you for free and open access by
the Honors Program at DigitalCommons@USU. It has
been accepted for inclusion in Undergraduate Honors
Capstone Projects by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/honors
https://digitalcommons.usu.edu/honorsp
https://digitalcommons.usu.edu/honors?utm_source=digitalcommons.usu.edu%2Fhonors%2F711&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fhonors%2F711&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/honors/711?utm_source=digitalcommons.usu.edu%2Fhonors%2F711&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

MOVING OBJECT TRACKING: SEEKING EXTENSIBLE
SOLUTIONS

Approved:

Thesis/Project Advisor
Dr. Stephen J. Allan

by

Jeremy Pack

Thesis submitted in partial fulfillment
of the requirements for the degree

of

HONORS IN UNIVERSITY STUDIES
WITH DEP ART:MENT AL HONORS

in

Computer Science
in the Department of Science

Departmental Honors Advisor
Myra Cook

Director of Honors Program
Dr. Christie Fox

UT AH STATE UNIVERSITY
Logan, UT

Fall 2006

Moving Object Tracking: Seeking Extensible
Solutions

Jeremy Pack

Janu ary 10, 2007

Abstract

Moving object tracking is a difficult field with no "best" solu t ion . The
docum ents conta ined here detail software that was developed in ord er to
perform track ing of obj ects that are in the line of sight of multipl e cam-­
eras. Some of t he softwa re developed is already in use by the US Army
Dugway Proving Gro und . Other software represents prototype or ea rly
developme nt. code. Thi s softwa re was wr itte n by J eremy Pack, who was
the lead progra mm er , an d Luke Andr ew at t he Space Dynamics Labora­
tory iu Logan, Uta h.

Description of Contents

This document. is separated into five sect ions:

1. Overv iew of Survei llance Image Proc essing Software

2. Cloud Edge Analysis user manual

3. Cloud Volume Reconstruction user man ual

4. SIP RT development.

5. Extensio n plugin library proposal

Author's Biography

Jeremy Pack was born in Logan , Uta h in 1983, but his family lived in six different
states as he was growing up. He was accepte d to Uta h State University as a
University Club Scholar where he received a BA in Comp uter Science and a BS
in Comp ut.at.ional Mathematics, with a. minor in Russian. He spent two years
in Russia as a missionary for the LDS Chur ch .

As of 2007, he and his wife Juli ann e live near Seatt le, Washingto n with their
son Thomas where he works for Google , Inc. He enjoys swimmin g, playing the
violin, readi ng and eat ing the free food provided by his employer.

1

Overview of the Surveillance Image Processing
Software

Jer emy Pack

Januar y 10, 2007

1 Original Purpose

At Dugway Proving Ground, chemical releases are generate d for the purpose
of simulat ing clouds of dangerous chemicals. DPG uses software to track these
release's based on var ious instruments such as cameras or lasers. They required
a new suite of softwa re to ana lyze the generate d data that was to run on the
Windows platform and give better , more efficient result s than their current
softwa re witho ut requiring as much work from hum an operators.

2 Initial Implementation

Set h Call dcsigHed the origina l SIP pro gram and delivered it to Dugway. At
the tinw , it tracked objects in two dimensions. The initial implement at ions
he designed culminated in a grap hical program that was capab le of processing
Dugway IR image s as ,veil as color images of vario us types and IR images from
SDL IR cameras.

This software used various image processing techniques to clean up the im­
agery and isolate the objects that had moved in relation to a software selected
compare image. The user was presented with a large numb er of options that
could be used to modify the processing algorithms for use with different types of
imagery. As such , the software could hand le images with many types of noise,
gain changes or ot her flaws.

The encl resu lt was an outp u t of the edge information for each moving object
in each image in 2D. No 3D information was generate d.

3 Cloud Edge Analysis

In 2005 Seth Call left the proj ect and it was taken over by Jeremy Pa ck. Mean­
while, the Dugway Provin g Ground acq uired a new infrar ed camera capable of
running at over 100 fram es per second . Th e softwar e did not , at the time, run
in real time , but the sheer volume of data generated by th e new camera over­
whelmed the SIP program within as littl e as 20 second s of data. As Dugway

1

requir ed much mor e data than this to be proc essed, th is was una cceptable. As
such , a new version of SIP called Cloud Edge Analysis (CEA) was written from
the gro und up focusing on opt imizat ion for speed and memor y use. It achieved
the following:

1. A speed increase of over 200% (i.e. images which origina lly processed at
45 frames per second now pro cessed at 150 frames per second on the same
machine).

2. :vlemory savings making it possible to handl e multip le orders of magnitude
more frames than the previo us software

The user interface was also redesigned to more closely meet the requirements at
DPG.

It 'Nas writ.ten using C++ , with the l'vIFC, ATL, OpenGL and Boost librari es.

4 Cloud Volume Reconstruction

In mid 2005, work was begun on software to reconstruct 3D objects based on
the outpu t of the CEA software as the ot her half of the SIP softwa re suit e.
Dugw ay provided the initi al algor ithms for th is work , which were based on
algorithm s from prior software that they had used . An ini t ial prototype was
deve loped using these algorithm s for 3D reconstruction , and inaccuracies of the
algori thm s were noticed during testing. This is described in the next sect ion .

CVR presents a 3D user interface in which the operator can move through
space to view the moving objects from different angles. When given the output
of CEA is input , it generates these objects and they are disp layed as they move.
It is also possible to go to any point in time and view the movin g objects
generated at that time.

Th e speed of CVR naturally depends on the accuracy desired by the user.
Doubli11g the numb er of voxels (3D pixels) in each dimension natura lly increases
the num lwr of tota l voxels by a factor of eight, and the reby also increas ing the
processing time by a similar factor. With array dimensions of 50X50X50 , speeds
of 30 frames per second could usually be achieved (depend ing on the compu ter
used) . This would trans late to 3. 75 million voxcls per second . This is much
faste r than Dugway's older software, and , as explained in the next sect ion ,
more accu rate.

5 CVR Algorithm Redesign

Wh en work was begun on CVR, DPG provid ed the source code of 3DCAV, as
well as some pap ers descr ibing the maj or algorit hms involved. Some of these al­
gorithm s were initiall y tested in the CVR softwar e, but have since been replaced
beca use of seriou s flaws in their design. The Dugway versions of the algorithm s
a.re sti ll access ible in CVR by pressin g the 'D' key, and though they give the

2

corr ect result s in cert ain special cases , in oth er cases the result s are compl etely
inaccurate. Some of th e reasons for thi s inaccura cy follow:

5.1 Small Angle Approximations

In a numb er of pla ces in th e software, Dugway's original progr amm ers took ad­
vant age of the small angle appro ximat ion , which states th at as 0 ----> 0, sin(0) ---->

0. Th e prim ary funct ion used to determin e wheth er a cert ain point is seen by
a given camera makes use of thi s. Th e angle from th e hori zon is basically ig­
nor ed in the equati on . Thi s is perfectly corr ect when 0 = 0. But as 0moves
away from 0, this estim ate loses accuracy. Comm only, Dugway cameras ar e
positioned at about 4 degrees up from the hori zont al. At thi s angle, the small
angle app roxim atio n docs not result in not iceable error. However , in the event
th at cameras would need to be pointed at mor e extr eme angles, the difference
would become more app arent. In th e figures below, the red represent s what th e
camera act ually sees. Th e grey represent s the cloud generat ed by th e Dugway
and SDL algorithm s respect ively. As the angle increases, some err or begins to
appear whm using th e small angle approxim at ion . SDL' s algorithm does a full
thr ee-dim eusional rotat ion , allowing for any combin ation of dir ection , angle or
til t of the cam era.

G ◄101cra 1
~rilrne# €4

32 •500 .00 0600 :14 6 ! 11 , ,.me Numbc •· OOOt

.... ,1...,, 44)6)0 0 .00 .;_

14~0 .00 U1<lng) OC,Wa lgnrilhon

0 .00 Us ing CVll Algo rilhm

~...! 10.00

Figure 1: CVR Algorithm at 10 degree angle

3

Gaui<'rJ I
.:ramt,e E4

I
----...:....;_. . I -----..

t.o'A, -.;)1 4'itlll nfl ,"' 10 UtlD l ••mc N11mltc,· 11<104

'""""''r u1uonnn .'.l
n,, ,t,,,, l.f'iflfln Us lng CVfl Algu,ithn,

F igme 2: 3DCAV Algorit hm at 10 degree ang le

5.2 Integer Rounding

~

.J

Using t.h0 new image project.ion capah ility of CVR , it becam e ap parent that
there were small errors i11 the line drawing algor ithm . This algorit hm wa.5 the
sam e that had origina lly been used in 3DCAV. The erro r was usua lly qu ite slight ,
but b0cam0 mor0 appar0nt when the "acc uracy" was too large. An algor ithm
wa.s fou11d that yielded more accur ate results.

Th0rc wcr0 two reasons for needing a change:

5.2.1 Correct Float Conversion

In many pro gramm ing languages (includ ing C I-+), when floats are converted
to inte gers, they are round ed towards zero. Thus , .8 is rounded to 0, 54.1 is
rounded to 54, and 54.999999 is rounded to 54. Also , -.8 rounds to 0, as does
-.1.

To round floating point numb ers in the sta ndar d way in C I , (i.e. rounding
.5 yields 1, roundin g .4 yields 0, rounding -.4 yields 0 and rounding -.8 yields -1)
.5 mu st. be added to positive numb ers, an d subtra cte d from negat ive numb ers.
This was not done. In some cases , it can be assumed that this would not cause
a major problem. However , it leads to incorr ect cloud locations. Th e erro r is
prop or tional to the acc ura cy. Perh aps the primary danger of this error is that
it is most noti ceab le und er the same conditi ons as the error of the small angle

4

.,.

approxim ation: when th e angle of th e cam era away from the hori zon is not
sufficiently close to zero.

Thi s error is lessened as th e accurac y becomes smaller.

5.2.2 Modern Processors

On older pro cessors, floa ting point operations arc usually much slower than
int eger operati ons. On newer pro cessors, only division is significantl y slower.
Thi s algorithm can be writt en with thr ee floatin g-point-to-int eger conversions
and thr ee floatin g point addi tions per voxel, as oppo sed to th e thr ee int eger
additi ons, thr ee int eger multipli cation s, and an int eger division th at arc requir ed
by the Dugway algorithm.

When this algorithm was designed , the met hod used was prob ably much
faste r than th e alternative. Now, however , th ere is prob ably no longer a need ,
especially given the fact that some error is introdu ced.

6 CVR Future Design

A new met hod of object reconst ruct ion has been designed which will make it
possible to spr ead the pro cessing load among multipl e machines, increasing th e
speed with which data can be processe d. CVR becomes the rea l bottl eneck in
the processing pipeline, since CEA is quit e fast. Th e opt imal accura cy for CVR
cannot be reached with any reaso nable process ing speed curr ently (i.e. making
it any more accurate than th e optim al accura cy would in no way give bette r
results , similar to addin g 5.2 and 3.5 and displaying the result as 8.800000 rat her
than 8.8) .

Th e future design involves a single compu ter used for display, one comput er
used to direct the ot her compu ters in process ing and divide up tas ks, and any
numb er of comput ers , each in charge of a certa in region in space.

The 3D process ing algorithm s would need to be changed in a few fund amen­
tal ways in ord er to make thi s possible, and th ose ways have been decided but
not yet impl emented .

5

Space Dynamics
•LABORA TORY

·, . Utah State University Research Foundatlo

1695 North Research Pork Woy • North Logon, Utah 84341
Phone 435.797 .4600 • Fox 435 .797.4495

www.spacedynamlcs.OI'

Cloud Volume Reconstruction

Training Manual Prepared For:
Dugway Proving Ground

Revised: August 31, 2006

Cloud Volume Reconstruction User Manual

I. Table of Contents

I. TABLE OF CONTENTS .. 2

II. PURPOSE ... 4

Ill. BACKGROUND OF SURVEILLANCE IMAGE PROCESSING
SOFTWARE ... 4

IV. SYSTEM REQUIREMENTS ... 5

V. CLOUD VOLUME RECONSTRUCTION QUICK START 6

A. Setup Dialog 7
I . Data Source 7
2. Data Frames Per Second 7
3. Load Set up 7
4. Apply Values 7

B. Processing Region ... 7

C. Shortcut Keys 9

D. Camera Setup .. 10

E. Processing Data 12

F. Exporting Data 14

VI. DPG SURVEY DATA QUICK START 15

VII. ADVANCED OPTIONS .. 17

A. Camera Setup Options ... 17
I . Start and End Frames 17
2. Min/Max Agreeing Cameras 17
3. Hard Target Ca libr at ion 17

B. Display Options ... 18

C. Render Settings ... 18

D. Graphical Output .. 19

VIII. CLOUD RECONSTRUCTION ALGORITHMS ... 20

USU SOL For Official Use Only 2

Cloud Volume Reconstruction User Manual

A. Camera to Cloud Angles .. 20

B. Location Algorithms 21

IX. CLO FILE FORMAT ... 22

USU SOL For Official Use Only 3

Cloud Volume Reconstruction User Manual

II. Purpose
This manual serves as an introductory tutorial for the beginning operator to become
familiar with the Cloud Volume Reconstruction program and image processing features.
Cloud Edge Analysis is a program designed to detect the motion of vapors, from IR or
color cameras , analyze specific spectral and geometric information and output the
resulting data into Cloud Volume Reconstruction, a three-dimensional view viewing
program.

III. Background of Surveillance Image Processing Software
The Cloud Volume Recognition Software (CVR) was developed at the USU Space
Dynamics Laboratory to process data from cloud releases at Dugway Proving Ground
(DPG). The purpose of this software is to make possible near-real-time on site analysis of
the IR images generated during these tests and also to perform post test analysis of the
results . Cloud edges are generated by processing sequences of images from IR, bmp , or
jpeg files by the Cloud Edge Ana lysis (CEA) program. The resulting cloud information
from each camera can then be used by this program , CVR , to form a 30 representation of
the cloud.

During the next phase of this project , work will be done to stream data directly from the
cameras to the software (running on computers attached to each camera). These data will
be processed immediately and then sent over a network (probably wire lessly) to a central
computer which will construct a 30 representation of the cloud. The software is capable
of performing these calculations as fast as the cameras can generate the information (over
I 00 frames per second) on a relatively fast computer , thus providing those present at the
te st to immediately be able to determine the location and movement of the cloud , and be
able to analyze these data immediately after the test is completed.

The software is appropriate for use with the data generated by Dugway Proving Ground
as a set of post-test analysis tools. This documentation has been provided to help meet the
needs of Dugway Proving Ground to help users to become familiar with the software.

This version of the software was written by Jeremy Pack and Luke Andrew. Much of the
functionality of the CEA Program is based on SIP II by Seth Call. The Cloud Volume
Reconstruction program is similar in purpose to the 3DCA V program written at Dugway
Proving Ground. CEA includes optional use of an algorithm from the TRACE program,
also developed by Dugway Proving Ground.

USU SOL For Official Use Only 4

Cloud Volume Reconstruction User Manual

IV. System Requirements
For high speed processing, the following minimum requirements are strongly
recommended:

Windows XP Professional

512 MB RAM (The program does not usually use much RAM itself, but for various
reasons more RAM is beneficial)

Pentium IV, Athlon, or equivalent processor with speed of at least 2 GHZ.
In addition, it can benefit from multiple processors or hyperthreading.

CVR relies heavily on the graphics card. For fast processing , a graphics card capable of
accelerating OpenGL 1.3 or higher is recommended. For advanced functions , the card
must be capable of accelerating OpenGL 2.0.

Note:
Many computers do not have the latest OpenGL drivers from the graphics card
manufacturer. It is recommended to visit the graphics card manufacturer's website and
download the latest driver for the card before using this software. It will run with
unaccelerated graphics , but performance will be severely hindered. In addition ,
requirements are similar to those for CEA. Currently, this program will not benefit much
from multiple processors or hyperthreading. This is planned for the future however.

USU SOL For Official Use Only 5

Cloud Volume Reconstruction User Manual

V. Cloud Volume Reconstruction Quick Start

After creating and exporting an image set from the Cloud Edge Analysis program for
each camera view , the user is now ready to view the resulting cloud data. Cloud Volume
Reconstruction enables the user to combine each camera view into a thee-dimensional
(3D) representation of the clouds. An example of the output generated through this
process is shown below . Two image sets were processed in CEA, and the data was then
sent to CVR to reconstruct the 30 image.

.=1,gj29

v,,tono, 329656 .63 00:0 0:01 A01 frame Number: 001 ◄
,:,, , tt-,c9, 4451832.50 ~ J
""'""" "

148
1.

95
Processed 111 Frames in 1.94 seconds . 57.31 fram es per secon d. Alrayis 50X50X50.

Cuecticn:

14fltJ\oc.i
~!ev<1..t0n·

39.88

-25.6 4

To get started , use the CEA Quick Start Guide , in the CEA manual to generate one or
more * .cld files. Then start the CVR program . The first window that will open is the
following Setup Dialog .

USU SOL For Official Use Only

.::.I

6

Cloud Volume Reconstruction User Manual

Data Source

("' TCP/IP

C:-*.cld Files

2$.J

i:::::::::::oK:::::::::il

Cancel I
Terrain Data File: (This feature will be added when
terrain data is received from DPG)

Data Frames Per Second 160
Start Hour (out of 24) ... I 6- - ____ _. Load Setup

A. Setup Dialog
The options associated with this window are described below.

l. Data Source
Select * .cld . TCP/IP is currently disabled.

2. Data Frames Per Second
The default value is 60, which means that if the camera data used as input was
generated at 120 frames per second, then every other frame will be skipped. If
the camera data used as input was generated at 30 frames per second , every
frame will be repeated.

For Dugway * .ptw files , 60 to 110 frames per second is appropriate (Since they
are recorded at about l 08 frames per second) . "Start hour " should be selected to
be some hour that was not passed during the test. This is to compensate for tests
running at midnight .

3. Load Setup
This button allows a previous setup to be loaded. This is useful if there is a basic
setup that is the same for many tests , or to review previously processed data .
4. Apply Values
Press "OK" .

B. Processing Region

USU SOL

The next dialog box to appear is the processing box dialog. This dialog box is
used to determine what region in space is processed by the program. This menu
is shown in the following image.

For Official Use Only 7

Cloud Volume Reconstruction User Manual

Processing Box ;~

UTM Coordinates

Longitude Zone (C-W): 1121 Accuracy: I i m

Min Northing: 14451975 Min I 1355 ! Elevation: m
Min Easting: 1329975 Max I Elevation: I 1405 m
Max Northing:j 4452025

Max Easting: 1330025

Latitude and Longitude Coordinates-------~

Min Longitude: ~ 0 I 59 ' I 51.59· " !J
Max Longitude ~ 0

~' 149. 52; "

Minlatitude: ~ 0
~• 13,426:" .!!J

Max Latitude ~o ~· 15,083·"

I c:::::::: OK ::::::::JI Cancel

The Processing Box , or Processing Region , describes the extent of CVR for
processing the data. Coordinates can be input either as latitude and longitude or
UTM Northing and Easting (WGS84). All measurements are in meters or degrees.
The default location is near Dugway Proving Ground . The processing box
window can also be opened by clicking on "Setup" , "Processing Box ".

For using DPG survey data , please see section VI.

Accuracy determines how many voxels (3D pixels) will be considered in the
processing region . An accuracy of 4 would mean that each 4X4X4 meter region
would be processed as a block. The lower this number is, the slower processing
will be. For normal processing speeds , it is recommended to keep the accuracy
around 1/100 of the length of the largest side . Press "OK" . Now the window
appears with the 3D display as shown below. The processing region is the
volume enclosed by green lines.

USU SOL For Official Use Only 8

Cloud Volume Reconstruction User Manual

Untitled - Eye · ' ""' ·"' ..J.QJ~
Eile l[iew Setup Data tfelp

Easting: 329877.44 i 00~:0_0_:0_0_._00_l __ F_ra_m_ e_N_u_m_b_e_r_: 0_0_0_0 __________ _
Northing : 4451857.50 ; ···--·····

Elevation :
! Processed 111 Frames in 1.94 seconds. 57.31 frames per second . ..!.l 1466 -37 : Array is 50 X 50 X 50.

Direction: 39.88 '
Anqle of
Ele~·ation: -25.64 1

'

C. Shortcut Keys
The following keys can be used for navigation through the scene.
• North , South, Eas t, West - Use the fir st letter of the word (N, S, E, W) .
• Change the viewing direction - Use the arrow keys.

.:J

• Move forward, backward , left , right - Use 2,4,6,8 on the number pad . Also use th e
mouse scroll wheel to zoom in and out.

• Up - Plus key.
• Down - Minus key .
• Toggle Camera Views - C (view from camera) or alt-C (view from right behind

camera)

• Note that when viewing from the camera , the 2D edge outline that was
generated by CEA is projected. Some camera information is also displayed in
the upper left corner.

• Toggle Object Views - V
• Rotate the Processing Box - 0 and P
• Stop Moving - spacebar
• View from the top - T
• Default view - H
• lso3Dview - l
• Start Processing - The ti Ida key (~)
• Stop Processing - The escape key (Esc)

USU SOL For Official Use Only 9

Cloud Volume Reconstruction User Manual

• View from Camera 1-10 - Use the appropriate number key (' O' = I 0)
• View from Obect 1-10 - Use Alt+ the appropriate number key ('O' = I 0)

D. Camera Setup
Add two cameras to the setup using the previously created camera .cld data files
by completing the following steps.

• Click on "Se tup", "Ca mera Setup".
o Click "Add Camera". Change only the following:
o Click "Browse " to find a * .cld file to use for input.
o Change the Northing from 4452000 to 4451900 (to move it to the

south of the processing region , which is centered at 4452000 north) .

This camera window should be similar to that shown below.

Camera Name: I Camera 1

Elevation (meters) l 1380

Camera Tilt: j o 0

Direction: i,..o ___ 0

Angle From Ground: I 0
0

Field of View (across , 3-0-- - o

the width):
Camera Data File:

Latitude and Longitude ---------,

Longitude: j1i2 ° ~' I so .461 " ~
Latitude: ~ 0

~' I 1.013: " ~

UTM Coordinates---------~
Longitude ~ Northing: 1445 1900
Zone (C-W)

Easting: j 330000

I C: \SIP 3 Data\FireExt2 Cam 1 \FireExt2 Carn 1 . Browse Cancel l::::.:::oK::::::::I

• Press "O K", then add another camera by again using the "A dd Camera " button .
This time, change the following:

o Click Browse to find a* .cld file. This file must either have the same
timestamps , or be the same file as for the previous file (if it is the same
file, this won't of course be a valid cloud reconstruction , but this Quick
Start Guide is intended only to show the features and functionality of
CVR).

o Chang e the Easting to 329900.
o Change the direction to 90 degrees and click "OK".

This camera window should now look like the following figure .

USU SOL For Official Use Only

Cloud Volume Reconstruction User Manual

Add Camera '"iwf"'

Camera Name: I Camera 2

Elevation (meters) J 1380

Camera Tilt: Io 0

Direction: ... I 9-0-- 0

Angle From Ground: I 0
0

Field of View (across ,..I 3_0 ___ 0

the width):
Carner a Data File:

l
Latitude and Longitude - · -- - - u
Longitude : fiiz" 0

~' I 54.78: " ~
Latitude: I 40 ··· 0

~' j 4. 181: " ~
·- - - -•»>• --- ·--- --·- - • -

·· UTM Coordinates ---- -;.-=.-:.-:.-:.-:.-:.-:.-:.-:.-:.::..~
Longitude fu Northing: 14452000
Zone (C-IN)

Easting: 1329900

j C:\SIP 3 Data\FireE xt2 Cam 1 \FireExt2 Cam 1. Browse Cancel 11:::::::oK::::::::11

An image of the Camera Setup window is shown below with appropriate values
for this example.

Camera Setup 7
"

Cameras:

Carner a Name

1 Camera 1
2 Camera 2

Objects:

o b·ect Name

Render Every

Min Agreei ng I ~
Cameras '-

Northin

4451900 ,00
4452000 .00

Northin

Frames

Eastin

330000.00
329900. 00

Eastin

Add Camera
...... Edit]

Remove

Add Object

Edit

Remove

OK

Now , ex it the camera setup menu by clicking "OK ". There should be two cameras
pointing towards the processing region , one from the south and one from the west.
These cameras are shown in the following image.
(Note that the above image uses the older Camera Setup Dialog. The steps and
basic appearance are the same with the updated dialog.)

USU SOL For Official Use Only 11

Cloud Volume Reconstruction User Manual

N 1fflfil®!fl,,Mik e :
fjle 1£iew Setup Data t:!elp

Easting: 329814 .2 2 , 00:00 :11.1 01 Frame Number: 0000

Northing: 4451893 .50

Elevation:

Direction :

Angle of
Elevat ion :

1490.19

64.30

-33.26 j
E. Processing Data

Now , select "Data ", "Process Data" from the menu . If no clouds appear, check
the following settings:

• Set both cameras to use the same* .cld file as input. Changing the camera
settings in this way will work if the problem is that the two* .cld files refer
to two image sets that do not overlap in time .

• Make sure that both cameras point into the processing region. If one does
not, make sure it is not too far from the processing region . Also, check the
"Direction " setting by clicking on "Se tup ", "Ca mera Setup " and selecting
the camera of interest and clicking "Edit".

If the settings are correctly set, an image will be created from the combination of
the two cameras . If the same .cld file is set for both cameras , the image will be
symmetric, as show n below.

USU SOL For Official Use Only 12

Cloud Volume Reconstruction User Manual

·m 2 Cameras.cam - Eye ,.,J,q,

E.ile y'_iew Setup Data t:!elp

Easting:

Northin g:

Elevation:

Direction:

Angle of
Elevation:

/

"" I /
~/ /

329808.41

4451893.50 i

1469.74

62.24

-21.42

1 0:00:01 .1 00
◄ i

Scale factor: 3

/

Frame Number: 0011

' ~ ~ --~

'

Processed 55 Frames in 8.95 seconds. 6.14 frames per
second. Array is 83 X 83 X 83.

Another example of cloud imagery is shown in the following figure.

USU SOL For Official Use Only 13

Cloud Volume Reconstruction User Manual

fostmo: 329856.63 00 :00 :01 .,0l Frame Number : DOU

1-:ortr.r.,: 4451832 .50 ~ J ·-
fle"$--"'n:

148
1.

95
Processed 111 frames in 1.94 secon ds . 57.3 1 frames per s econd . Array is 50 X 50 X 50 .

C<,o,tr::n: J9 .88
An9"-'«'
Eleva:,£)n· -25.64

Congratulations . You have successfully reconstructed the cloud image in 3D.

F. Exporting Data
To output numerical data for the corresponding image , click "Data ", "Ex port
ASCII Data", "Co mma Separated ASCII". This will open up the following
window, which is used to describe the cloud data , which can be populated similar
to that shown below .

ii,,fo.ii¾itfibaffiMta _ _ 111iiiio1'-e ...
Save to:

Name of Test:

Trial Name:

Trial Date:

I C:\S IP 3 Data\FireE xl

Example Cloud Data

Trial 1

25.l

Browse

Simulant Release -------- OK
Time: j 10:DO:OO '-----

Simulant Name: I CO2 Cancel

A comma delimited text file is now available in the directory set in the previous
window.

USU SDL For Official Use Only 14

Cloud Volume Reconstruction User Manual

VI. DPG Survey Data Quick Start

Processing is simpler when Dugway Proving Ground survey data spreadsheet files are
available. In this case, it is possible to automatically input camera position information. If
CEA was used to generate the coordinates of the hard targets , then the camera orientation
is automatically calculated.

Cameras:

Camera Name

IR0l-DRDA
2 IR02-DRDA
3 IR03-DRDA
4 IR04-DRDA
c-
.J IR05-DRDA
6 IR06-DRDA
7 IR07-DRDA
8 IR08-DRDA
9 IR09-DRDA
10 !RIO-DRDA

Objects:

ob ·ect Name

Frames per
Second

Min Agreeing
Cameras

I 0 .20000

Northin

4434888.44
4435204.40
4437623.52
4437793.41
4438066 .89
4438334 .99
4438692.24
4438376 .29
4436417 .17
44:35018.60

Northino

4435962, 13
4436056 .86
4436008.31

P' Auto Set Framerate

Max Agreeing I
Cameras 6

Eastinq

325595.53
325983.06
326215.82
326135.21
325893.18
325643.24
323139. 71
322752.18
322481.18
323618.65

Eastin

324946.09
325062.28
325005.15

29

Add Camera I
Edit

Remove

Deactivate

Hard Targets

r Move To
Camera

Load Survey
Data

Set Start,IEnd j

Add Object

Edit

Remove

OK

To use this functionality , review Section V of this documentation , and then do the
following:

1. Open the Camera Setup Dialog Box and press the Load Survey Data button.

USU SDL For Official Use Only 15

Cloud Volume Reconstruction User Manual

Select a Survey Data File · 7ri1 .1.L~.I
Look jn: I~ Dugway cld files F:R.6.02

jRRA02 Dugway.csv iJ .Qpen

Files of !\!pe: I Survey Data (".csv) .:] Cancel

r 0 pen as read-only

2. Se lect the * .csv file containing the Survey Data spreadsheet (you may need to
convert the spreadsheet to * .csv format using Microsoft Excel or a similar
program)

3. Successive dialog boxes will open asking for the location of the * .cld files for
each camera found in the survey data.

I
I

4. Imp ortant: If EXACTLY three hard targets were designated in each cloud in CEA
using the Calibration Dialog before outputting the *.cld file , the cameras wi ll be
automatically given the correct orientation . Otherwise , only the position will be
set.

5. See Section VII for advanced options such as selecting appropriate levels for the
"min and max agreeing cameras " parameters.

USU SOL For Official Use Only 16

Cloud Volume Reconstruction User Manual

VII. Advanced Options
A. Camera Setup Options

USU SOL

1. Start and End Frames
New functionality has recently been added to the Camera Setup Dialog to
allow the user to better control the starting and ending of individual
cameras.

The frames that are processed from each camera can be modified by right
clicking on the camera , or by left clicking on the camera and then clicking
on the "Set Start/End " button.

Reset Start and End FF"",

Start Frame I ~ OK

End Frame ,..I 8_0 __ _ ____ _, Cancel

Note that these are the frames relative to the image set that the * .cld file
that was processed , not relative to CVR!

2. Min/Max Agreeing Cameras
It is now possible to set two new parameter s that make CVR more useful
with large numbers of cameras:
Min Agreeing Cameras : This represents the minimum number of
cameras that can see a point in space for that point to be tested for
containing a cloud.
Max Agreeing Cameras : This represents the number of cameras that
must agree that a certain point in space is part of an object to override one
or more cameras that does not agree.
Recommended setting for l O camera Dugwa y data :
Min Agreeing Cameras: 4
Max Agreeing Cameras: 6

3. Hard Target Calibration
The hard target information can be manually input or modified in this

dialog. Once the northing , easting, and elevation are entered for each hard
target , the camera's orientation , field of view , and angle from the
horizontal are each calculated automatically . Note that this requires that
the user specified exactly three hard targets in CEA.

For Official Use Only 17

Cloud Volume Reconstruction User Manual

U ffil• flln§iitl nrtfiM:Ff
Northing Easting Elevation

14434908. ' ,~,_..J • ~ 1.,·.,sC's1 2- 1427.5351

14434906.: .a ,:JL •J • . , .. 1---~C'578 5 11427.535(

14434910.: I 12C'S84? - ..J_ ' 1427.535(

B. Display Options

~

l:::::::::::oK:::::::::::::I

Cancel I

There are several options available for displaying data. These are found by
clicking on "Set up", "Dis play Options". This window is shown below.

Display Options .·,,0

~
R. endering . Type -· ,

1 None

1 Display List

r Vertex Array·

r. Verte x Buffer

P' Use Lighting
1 Outline Clouds
P Fill Clouds

r Show Ellipsoid Fit

P' Show Processing Box

P Show Carner a Lines of Sight

r Show Movement

r Show Compass

P Show Time

Default Font Size
Max Frames
Per Second

·-Movement Settings ------,

Movement Distance

Movement Acceleration

Turning Angle

Turning Acceleration

Seconds to Move from
One Object to Next

0.1

0.3

0.02

1936

~

l::.:::::.:oK:::::::::::::I

Cancel I

These settings are used to determine the display of the cloud data . These options
are fairly straightforward , and the user is encouraged to try various combinations
and see the results .

C. Render Settings
Settings describing the rendering of the image set can be changed by clicking on
"Se tup", "Render Settings ". This window is shown below.

1mmi,1.;-rm,,1.,.- ... 1► ... : __ _
~::,o:7' (O ~;~~) F, Blue F, IL- ~:;:; 11
Ambient Light : Jo."! Diffuse Light: J"o.9 ----'""' ·
Spectral Light : ro.s-· Line Width: ri--

This window allows the user to customize the color and lighting environment of
the image rendering. The user can set the color of the cloud through the Red ,
Green, and Blue options. The ambient, spectral, and diffuse light can be changed
in this menu , by filling out the appropriate boxes. The line width of items such as
the bounding box can also be changed here .

USU SOL For Official Use Only 18

Cloud Volume Reconstruction User Manual

D. Graphical Output
By clicking on "Data", "Graphical Output", a user can export a video of the image
rendered image results. This window dialog is shown below.

Save AVI . ':

·· Output Type

r Bitmap Files

, Output To:

' lc:\Data

r Jpeg Files File name:

Browse

r. AVI (uncompressed) j ... c-lo_u_d_lO_u_t_pu_t _____ _

r Only Output Frames
Selected for Processing

OK Cancel

By clicking on the appropriate options , a user can set the desired file type and
location of the output.

USU SOL For Official Use Only 19

Cloud Volume Reconstruction User Manual

VIII. Cloud Reconstruction Algorithms

A. Camera to Cloud Angles
The algorithm contained in the function ' GenerateCameraYectors' in the 'CData'
class is the primary algorithm used to determine which point in the cloud
correspond to which point in the camera's field of view. To do this , it generates
three 3D vectors:

• The vector that is parallel to the view angle of the camera
• A vector coming straight through the top of the camera
• The vector coming out of the right side.

These vectors are all orthonormal. They are used to determine how much of an
effect the x,y, and z coordinates of the cloud have on the location of the
corresponding pixel in the camera image. For instance, if the camera is pointing
straight north and not tilted , the vector through the right side of the camera is (1,
0, 0) (where x is east /west , y is up/down and z is north/south). This means that the
angle in the to the x coordinate in the y,z plane has an effect of 100% on which x
pixel in the camera image that point corresponds to, has a weight of 1 in
determining the x coordinate, while they and z values have no weight. The vector
through the top of the camera is (0, 1,0) showing that the ang le in the x,z plane to
they coordinate has a weight of 1 on the final y coordinate . In this simple setup ,
the direction (i.e , N,S, W,E) can be used to determine the x coordinate, and the
elevation (from the horizon , i.e. , 0 degrees is level) can be used directly to
determine the pixel location . (Note: The third vector, pointing forward is used
only for angle calculation)

The benefit of the type of calculation used here (i.e ., 3 normalized vectors) is that
it can be used with any orientation of the camera. There is no assumption that
the camera is level , as with other programs . This algorithm will still function
correctly if the camera is pointing straight down , turned on its side , or flipped in a
random direction. It has performed as fast as the 3DCA V algorithm in tests.

Once thi s algorithm has completed running , the results are saved and used during
each set of processing. There is no reason , currently, to recalculate these values
every time. In the event that Dugway requires more movement of the cameras
during processing , this function can be modified to store all of the probable angles
of the camera to minimize reprocessing.

USU SOL For Officia l Use Only 20

C loud Volume Reconstruction User Manual

B. Location Algorithms
The location of a camera or other object is stored in two ways - UTM coordinates
or longitude /latitude and elevation and the relative location of the object to the
processing region (in meters). The relative location is used in calculations , and is
found by using the latitude , longitude , and height. Though this software would
probably have difficulties using this method at the poles , it should therefore be
rather accurate at any other points on the Earth. The relative location is given in
(x ,y,z) coordinates. Because of the OpenGL implementation used, x goes from
west to east as it increases , y goes from down to up , and z goes from north to
south. For the sake of the algorithms , this is reversed for z to make it more
intuitive and the z-values are all reversed before they are rendered.

USU SOL For Official Use Only 21

Cloud Volume Reconstruction User Manual

IX. CLD File Format

* .cld fi Jes are one of two ways that CEA sends its data to CVR. The second method
involves TCP/IP communication , and is currently disabled. These files contain the
information needed by CVR to reconstruct 3D clouds from the camera data processed by
CEA , including the following:

• File Version - Since the data stored in cld files changes , the fileVersion lets the
program know if the file is valid, and in some cases it allows the program to load
the data differently depending on the file version. This number changes every
ti me the type of data stored in the * .cld files is changed (e.g. the software is
modified).

• Number of Frames - The number of frames stored in the file.
• Frames Per Second - The frames recorded per second by the camera that produced

the image set.
• Width - Width of each frame in pixels .
• Height - Height of each frame in pixels .
• Frame Info - Includes data about objects in each frame.
• Object Info - Includes data about the objects found by the software.

To generat e * .cld files, follow the instruction s in the Quick Start Guide for CEA. Then
follow the directions in the Quick Start Guide for CVR to use the * .cld files for cloud
reco nstruction .

USU SDL For Official Use Only 22

SIP: Operating in Real Time

1 Goal

Jeremy Pack

January 10, 2007

Durin g tlw course of the Surveillance Image Pro cessing related contracts with
Dugway P roving Ground, it. was made de ar that DPG needed a real-time object
tracking soluti on. A syste m was needed that would show what was occurrin g
in the test range within less than a second of it occurrin g.

2 Rapid Prototype

Th e existing CEA and CVR w;,.s used to build up a quick protot ype, capablr
of runnin g in real time using camera inpu t. CEA was sta rt ed on each machine
connectC'd to a camera (throu gh USI3). Then CVR was sta rt ed. Each comput er
nmniu g CEA was couuccte d to the CVR comput er , and all locatio n data for
the cameras was a lso pro vided . Once this was accom plished , each process was
set to wait for a signal to begin processing.

us ing this techniqu e, it was possible (thoug h unwieldy) to run rea l-t ime
processing . SDL comp uters are synchron i:wd very well, so the time data for
C'ach frame was stored as it was ta kC'n from the camera. This prov ided C\'R
with thC' accuracy it needed.

Based on these tests, it was clear that real-tim e process ing was quit e feasible.
ThC' rapid prot otype was not pu t toget !tn i11 a robust fashion, however, and was
only used as a proof of concept vehicle .

Tests were done using people walking thro ugh a scene seen by 3 or 4 cameras,
and with ot her moving objects. The result s were good.

Th ough the solution was only tem porary, it showed a lot of pote nt ia l for an
expan ded solu tion.

3 CEA Rewrite

As au initi a l stage , the CEA progra m was rewritten to focus on , and be op­
t imized for, color camera input . Originally, CEA was int ended prim arily for
use with IR and graysca le image s. For color images, however, the algorithm s
did not make the best use of the inform ation provid ed by each individu al pixel.

1

Ext ension Library Proposal

Jeremy Pack

Janu ary 10, 2007

Abstract

Thi s document describ es a C-,-+ librar y designed and implemented
by t he author for use in deve lopin g so-called plu gins for C I- ' pr ogra ms.
Thi s libr ary was developed under the Boost software license (boos t .. org).
It is int end ed for submission to t he Boost C I- I Librarie s .

1 Purpose

For t.he purp ose of this document, the library will b0 applied to th e problem of
an i111ag0 pro cessing appli ca tion such as the following:

Consider an applicat ion th at must load and pro cess imagery that could b0
of thC' following types:

1. Grayscale bitm ap or jpeg images

2. Infr arC'd imagC' data files from comp any X

Now, consider that t he software dC'vclopment team knows th at , in th e fut ure,
111orC' types of images m ay need to be loaded allCl processe d , but they do not
know which types . T hese types could include, for insta nce:

1. Color images

2. Pn g, tiff etc. form at ted images

3. Infr a.red image data files from ot her comp anies (which may be in a form at
used only by that part icular compan y)

'.\,Ia.ny of the algori thms and code developed for the first two types of images
would apply to the la tt er three. S01110 fun ction ality could perh aps be don e in a
more efficient or corr ect way for the la ter images th ough, and some new code
could very well be n0cessary.

Differences between the images could includ e, among other thin gs, th e fol­
lowing:

1. Th e numb er of bit s requir ed to store th e int ensity information for ea.ch
pixel

1

2. The numb er of channel s for each pixel (i.e. graysca le requir es one channel ,
color requir es 3: red green and blue). :viulti-spcctral IR imagery could
contain many channels.

3. Th e way that an image can be displayed to the screen

Th e sta ndard object orient ed respon se to such a probl em is inheritan ce. Using
C t · , a base class similar to the following could be used:

class Generic!mage
{

public :

}

virtual load()= O;
virtual pro cess()= O;

Using thi s base class, subclasses such as CompanyX IRim age, B\\.'Bmplmag e or
I3W.Jp0,glm age could he developed originally, and classes such as CompanyYIR­
Image, ColorPnglrnagc , Color.Jpcglmage etc. could be added late r.

Consider , in additi on, that perhaps certain algorithms would be appropriat e
for multipl e types of images (i.e. perhaps all color images should be processed
thC' same way once loaded) . A multi-l cvcl inheritan ce stru cture would usu­
ally be approp riate, but sometim es thi s does not fit the prob lem well, and it
may lw more appropri ate to split the image class into ImagcLoad cr and Iina.gc­
Proc 0ssor classes, ,vhcrE' a Colorlm ag0Pr ocessor can only be insta nti ated if a
Bmplm agcLoa<lcr or .Jpeglm agcLoadc r has been insta ntiat E'd and loaded color
imagery.

\Vhene,·er uew funct iona lity needed to be added , a new derived class or
class0s would br develop ed and the program would be recompi led.

This is a good soluti on , bu t often it would be prefer able not to have to rc­
curnpile the origiual progra m. In addition, there could be various reasons not to
want to includ e all of the funct ionality all of the time. In many different pieces of
comm0rcial and non-commer cial software, different plugins arc available which
can 0nhance the functionalit y of the softwar e. Somet imes the se plugin s arc dc­
v0lopcd by the company that released the original software, and somet imes th ey
arc ckveloped by ot her paiti es, even by the customers themse lves.

T his librar y. Boost.Exte nsion, has a numb er of goals:

1. l\Iak0 it possib!C' to create these types of plugins, such as for multiple
cameras and 0,nablc a program to detect availab le plugins automaticall y
and cor-rE'ctly

2. Allow for tl1e managed loading of inter dependent plugins

3. Allow for these int erdepend ent plugins to share inform at ion betw een the m­
selves, even if that information was not known when the origina l base
da ssPs were designE'd.

2

4. Allow for comp licated inherita nce classes, includin g virtual Lase classes
aud multiple inherit ance

5. Allow for loadin g of derived classes that cann ot be modified in ord er to
be made "loadable''

6. Allow for classes to provid e inform ation about th emselves for loading pur­
poses .

2 Possible Applications

2.1 Multiple Clients with Different Needs

In the situat ion above, each possible client could be using different camera
equipm ent. Each client only needs to be able to load data from their own camera
types. Th ey don 't requir e the additi onal functionality, so only th e requir ed
linked libraries would be provid ed , bu t the base executable would be th e same.

2.2 User-created Add-ons

In a web browser , often ad<lit.ional plugins a.re aclcle<l to play certa in types of
files or provide additi onal inform at ion to th e user. T his techniqu e could be used
to simplify creation and use of th ese add-ons for such an appli cat ion.

2.3 Classified or Secret Information

In many contrac ts, some of the algori thms or inform at ion incorporate d into
software should not be disclosed to ot her clients of the software. Secret or
classified inform ation could be placed in linked libraries th at arc only provided
to those clients that have a right to see that informat ion.

2.4 Complicated Inheritanc e Structures

This could also be used ju st as a standardi zed way to keep a large pro gram
modul ar and dea l automat ically with the difficulti es inherent in dealing with
the linked librari es in a directo ry as well as tra cking inte rdependencies between
loaded dcriYecl classes. Also, since the library is cross-plat form, it can be used to
work with linked libraries in genera l without having to worry about the different
Posix or Wind ows APi s.

3 Proposed Solution

Th e libra ry tha t has been designed meets the ab oYe goals and provides a rela­
t ively simple API to th e user. Th ere are a numb er of oth er libraries availabl e
that atte mpt to addr ess thi s same probl em, and some advant ages of thi s solution
includ e:

3

1. No macro s arc required - templates are used instead. There arc several
reasons why it is preferable not to use macro s . In this library , template s
arc usc-d without any loss of funct ionality, and act ually make for rath er
concise code .

2. It is cross platform - Window s, Linux and :\1acintosh , and , th eoretically ,
any "C nix based system.

3. It. require s only one externall y visible function to be declared in each linked
library. Oth er solutions usually make many functions and classes visible
exte rnally. In order to circumvent th is, the one visible function provide s
functor s that can call the requir ed non-external functions.

4 . It can automati cally load all linked librari es from a given dir ector y, or
libraries selected by nam e.

5. It. provid es for making classes loadable that are in th e same executab le.
In theory, it should be ab le to make it possible to load classes from oth er
executabl es as well, if they are declared loadable.

4 Examples

4.1 Loading unmodified classes

Thi s first. example uses the library to load simple classes with no interdep en­
dencies. These classes thus do not need to be modified in any way to be mad e
lo<1dabk.

Th<' following represent s the source code of a tc.-t file using Boost.Test to
,wif y correct library functionalit y.

II (C) Copyright Jeremy Pack 2006.
II
II
II
II

Use, modification and distribution are subject to the Boost Software License,
Versi on 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http :ll www.boost.org1LICENSE_1_0.txt) .

II See http: ll www.boost.orgllibsltype_traits for most recent version including doc1
#include <boost l testlunit_test.hpp>
#include <boost l testlincludedlunit_test_framework.hpp>
#define B00ST_AUT0_TEST_MAIN
#include <boost ltestla uto_unit_test.hpp >
#include <boostlexte nsion /co nfig.hpp >
#include <boostlthrea d .hpp>
#include <boostlexte nsion l loader.hpp >
#include <boostlexte nsion lexte nsion.hpp >
#include <boost /ex tension l intrusive_capable .hpp >
#include <boostlextensionlloadable.hpp>
#include "number_base.hpp"

4

using namespace boost::extensions;
class car//this i s an abstract base cl ass - i t doesn't have to be abst r act tho ugh
{

public:
virtual -car(){}
virtual const char* get_type()=O;

} ;
class chevy : public car
{

public:
virtual const char * get_ type() {ret ur n "Chevr ol et";}

} ;

class honda: pub l ic car
{

public :
virtual const char * get_ type() {return "Honda";}

} ;

BOOST_AUTO_UNIT_TEST(basic)
{

/ *create loader*/
loader load;
/*make local classes loadable*/
library* lib= new l ibrary();
lib- >declare_unaltered<chevy, car>();
lib ->declare_unaltered <honda, car>();
load.add_library("Local Classes", lib);
/ *create an object that can hold multiple cars*/
multi_loadable<car> car_ptr(load);
/*Get an iterator to the first available loadable class*/
available_class_iterator it= car_ptr.get_class_begin();
/* Make sure the list isn't empty* /
if(it ==car _ptr.get _class_end())
{

}

BOOST_CHECK(O);//This shouldn't happen
return;

/* Load the class pointed to by the iterator* /
car_ptr.load(it);
/*Check that the virtual function output is correct*/
BOOST _CHECK_EQUAL(std: : string("Chevrolet"), std: : string (car _ptr [OJ . get _ type()));
/* Go to the next available loadable class*/
++it;
if(it==car _ptr.get_class _end())
{

BOOST_CHECK(O);// Thi s shoul dn't ha ppen
return;

5

}

/ *Load Honda*/
car_ptr.load(it);
B00ST_CHECK_EQUAL(std: :string("Honda"), std: :string(car_ptr[l] .get_type()));
/ *There are now two cars loaded into car_ptr*/

}

4.2 Loading interdependent classes

This examp le uses classes that are modified in order to provid e tracki ng for
int erde pendencies and to enabl e the classes to provide inform at ion abo ut. them­
selves.

// (C) Copyright Jeremy Pack 2006.
II
II
II
II

Soft~are License, Use, modification and distribution are subject to the Boost
Version 1.0. (See accompanying file LICENSE_l_0.txt or copy at
http: // www.boost.org/LICENSE_l_O.txt).

// See http: // www.boost.org / libs/type_traits for most recent version including docl
#include <boost / thread.hpp >
#include <boost / extension /ex tension.hpp >
#include <boost / extension /re pository.hpp >
#include <boost/extension / loadable.hpp >
#include <boost / test / unit_test.hpp>
#include <boost / test / included / unit_test_framework.hpp >
#define B00ST_AUT0_TEST_MAIN
#include <boost / test /a uto_unit_test.hpp >
using namespace boost: :ex tensions ;
/* The classes below shows the most powerful way of declaring
loadable classes. For this method, each class must have
extension in it's inheritance hierarchy .*/
I*
str ucture is not itself loadable, but c lasses that inherit
from it are loadable as structures
*I
class structure : publi c extension
{

public:
I*

repository contains any shared variables and interfaces
that ar e relevant for multiple loadable classes.

*I
structure(repository & rep):extension(rep){}
// This function is just here for demonstration.
virtual std: : string get _my _name() {return "generic structure";}
I*

6

*I

Virtual destructors are not required - the extension
virtual destructor takes care of those issues - but
without virtual destructors, some compilers will give
warnings (when a class has other virtual functions)

virtual -str ucture(){}
} ;

I*
Notice that this class below is also not exported - though
it could be.
*I
class garage public structure
{

protected:

*I

static void get_interface_info(boost: :extensions: :l ibrary_class & le)
{

I*
This function declares that

garage is loadable as a structure, or as a garage.
Dependencies could also be declared here :
for example: lc.require <car>();

lc.provide <garage>();
lc.provide<structure >();

}

public:

} ;

I*

I*

*I

This style of constructor (with a single repository argument)
is the simplest to use -
but different constructors can be created with some work.
They are not necessary, since all parameters can be placed
in the repository, but in some cases a more specialized
constr uctor is needed, and the library does not restrict t his .

garage(repository & rep):structure(rep){}
virtual std: :string get_my_narne(){return "some sort of garage";}
virtual ~garage() {}

house is exported. Notice the functions:
generate
get_extension_info - provide basic description
get_interface_info - list requirements and provisions

The last two are separate so that a class can recursively
include the dependencies of its super classes, if desired.

*I

7

class house public structure
{

private:
static void get_interface_info(boost::extensions::library_class & le)
{

}

l* To construct a house, a garage is required to have been
constructed.
*I
lc.provide<house>();
l c .pro vide<str ucture >();
lc.require <garage >();

garage* garage_ptr;//pointer to the required garage
public:

std: :string get_garage_name(){return garage_ptr->get_my_name();}
virtual std: : st ring get_my_name(){return "some sort of house";}
virtual -house(){}
stat ic boost::extensions: :extension* generate(boost: :exte nsions: :repository & re!
{return new house(rep) ;} //stan dard generate function - required
stat ic void get_extension_info(boost: :exte nsions : :librar y_class & le)
{//called when a class is declared loadable

}

l c. describe("A basi c house");
get_interface_info(lc);

house(boost: :exte nsi ons: :repository & rep)
:structure(rep)

{

rep.set_to_first(garage_ptr);//Load the first available garage
}

} ;

// similar to house
class fo ur_car_garage public garage
{

protected:
static void get _int erface_ inf o(boost: :extensio ns::library _cla ss & le)
{

lc.provide <four_car_garage>();
}

public:
stat ic extensio n* generate(repository & rep){return new four_car_garage(rep);}
stat ic void get_extension_info(boost: :exte nsion s: : librar y_cl ass & le)
{

}

lc.des cri be (" A four car garage");
get_interface_info(lc);
garage: :get_interfa ce_ info(lc);

8

four_car_garage(repository & rep):garage(rep){}
virtual std: :string get_my_name(){return "a four car garage";}

} ;

//similar to house
class two_car _garage public garage
{

protected:
static void get_interface_info(boost: :extensions: :library_class & le)
{

lc.provide<two_car_garage>();
}

public:
static extension* generate(repository & rep){return new two_car_garage(rep);}

static void get_extension_info(boost::extensions::library_class & le)
{

lc.describe("A 2 car garage");
get_interface_info(lc);
garage: :get_interface_info(l c);

}

two_car_garage(repository & rep):garage(rep){}
virtual std: :string get_my_name(){return "a two car garage";}

} ;

BOOST_AUTO_UNIT_TEST(creation)
{

/ *Upon creation, the loader searches the current
directory. It is possible to also manually specify other
files or directories* /
loader load;
I*
This next part is only necessary because the
classes are being loaded from the current executable.

*I
library* lib= new library();
lib- >declare<two_car_garage >();
lib ->declare <four_car_garage >();
lib -> declare<house>();
load.add_library("Local Classes", lib); // don't worry, library won't leak now
// it is stored in a smart pointer.

/ *This single _loadable can carry exactly one instance of a garage
it is initialized with the loader, and it points to a list
of all available garages.
*I
single_loadable<garage> garage_loader(load);
//can load one house
single_loadable<house> house_loader(load);

9

}

l*No houses are available, becase the only house
requires a garage, which has not been constructed.*/
BOOST_CHECK_EQUAL(house_loader.get_num_available(), O);
/*Neither garage depends on anything, so they are both loadable* /
BOOST_CHECK_EQUAL(garage_loader.get_num_available(), 2);
if(garage_loader.get_num_available()!=2)
{

}

BOOST_CHECK(O);
return;

/* Load the first garage*/
garage_loader.load(garage_loader.get_class_begin());
BOOST_CHECK_EQUAL(house_loader.get_num_available(), 1);
/* Load the house - it will take a pointer to the
loaded garage from the repository
*I
house_loader.load(hou se _loader .get _class_begin());
/*make sure that the first garage has loaded successfully.*/
BOOST _CHECK_EQUAL (std: : string(house_loader->get_garage_name ()) , std: : string(" a twc

5 Design Recommendations

5.1 XML Descriptions

The librar y pro vides for creat ing a str ing to describ e each class. A useful way
to do this would be to create a parseable descripti on , perh aps in XML. Thu s,
a Bmpim ageLoader can cont ain in its description a reference to the fact th at it
loads bitmap images, and describE' it in a parseaLle way, such as :

<loader>
<file-extension >bmp</ file-extension>

</ loader>

Wh crE'as a jpe g could be:

<loader >
<f ile-extension>jpeg </f ile-extension >
<fi le - extension>jpg</file-extension>

<loader>

5.2 Small base classes and minimizing dependencies

In software development in genera l, minimizing dependencie s is an important
goal. Here as well, it is important to design classes in ord er to minimiz e coupling.
Though it ca11 hand le very complicat ed int erd epend encies fine, it will comp licate

10

future' dC'velopment of plugin s. The purpo se of thi s library is to simplify the
requiremC'nt s for the progra mmers, bu t this is defeate d if the int erdependm cy
feat ure is abused.

5.3 Avoid shared data - prefer shared interfaces

Althou gh the library makes it possible to share act ual data direct ly betwee n
multiple classes, it is bette r to share interfaces between classes, since this makes
it easier to modify the syste m in the fut ure and minimizC's dependencies.

11

	Moving Object Tracking: Seeking Extensible Solutions
	Recommended Citation

	tmp.1624906334.pdf.iH36u

