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ABSTRACT 
Centrifugal flow impellers are commonly used in a wide 

variety of industrial machines. Predicting the performance of 
these impellers over the entire operating range is key to the 
system development during the early design stages. The two 
element in series (TEIS) and two-zone model can be used to 
accurately predict impeller performance based on flow physics 
and empirical correlations. Correlations were made with linear 
regression on a database of 50 pumps and 75 impellers. These 
correlations were later found to only apply to designs that are 
similar to those in the database. This paper proposes a new 
method to generate correlations for the TEIS and two-zone 
model using reduced order modeling and machine learning. The 
models will be trained using the same database used in 
developing the previous correlations, but will also include 
additional data and computational fluid dynamics (CFD) results. 
The models will be used to improve the known correlations and 
to discover new correlations between the machine performance 
and design variables. Keywords: Turbomachinery, Meanline 
Analysis, Machine Learning 

NOMENCLATURE 
𝐶𝐶𝑝𝑝 Pressure recovery coefficient 
𝐶𝐶𝑝𝑝𝑝𝑝 Ideal pressure recovery coefficient 
𝐶𝐶𝑓𝑓 Diffuser skin friction coefficient 
𝐷𝐷𝑅𝑅2 Impeller diffusion ratio, 𝑊𝑊1𝑡𝑡/𝑊𝑊2𝑝𝑝 
𝑉𝑉 Absolute Velocity 
𝑈𝑈 Blade Velocity 
𝑊𝑊 Relative Velocity 
𝜂𝜂𝑎𝑎 Impeller inlet effectiveness  
𝜂𝜂𝑏𝑏 Impeller passage effectiveness 
𝜒𝜒 Impeller secondary flow mass fraction 
𝛿𝛿2𝑝𝑝 𝛿𝛿2𝑠𝑠 Deviation for primary (2p) or secondary (2s) 

zones 
𝑤𝑤𝑠𝑠ℎ𝑎𝑎𝑓𝑓𝑡𝑡 Shaft work 
Subscripts 
1 Inlet 
2 Outlet 
𝜃𝜃 Tangential 
𝑝𝑝 Primary zone 
𝑠𝑠 Secondary Zone 
𝑡𝑡 Tip 

1. INTRODUCTION
Centrifugal flow impellers are commonly used in a wide

variety of industrial machines, such as rocket turbopumps, 
refrigeration system compressors, and automotive turbochargers. 
Predicting the performance of these impellers over the entire 
operating range is key to the system development during the 
early design stages. A performance map is a useful tool for 
determining the pressure rise, mass flow rate, and efficiency for 
the impeller operating range. A performance map can either be 
measured experimentally or predicted. Generating accurate 
predictions of a performance map has proven to be a complicated 
process. One-dimensional meanline models were developed to 
give engineers a tool to model the performance of a pump or 
compressor before computational fluid dynamic (CFD) 
simulations were widely available. These models use a 
combination of physical laws and empirical data to calculate the 
change in fluid properties across the most important streamline. 
Even with the availability of CFD, meanline models remain a 
useful tool for preliminary design and design space exploration. 

One of these meanline methods, known as the two element 
in series (TEIS) and two-zone model, has been shown to 
outperform other meanline models by generating impeller 
performance maps that more closely resemble results from CFD 
and experiments [1]. This model has several input parameters 
that must be accurately specified. Currently, these modeling 
parameters can only be accurately predicted by engineers with 
extensive experience in impeller design. This research will focus 
on creating an improved method for predicting the performance 
of a centrifugal impeller based on the TEIS and two-zone model 
using physical conservation laws and empirical data, as well as 
a large supplementary database of CFD simulations. 

2. BACKGROUND
The background section discusses the current understanding

of the flow physics through a radial impeller and the techniques 
that have been used to predict performance maps. This section 
will also cover several different predictive modeling methods 
that will be used to complete the research objectives.  

2.1 Impeller Flow Physics 
The physics of fluid flow through an impeller has been 

studied for over 90 years. Traditional models were developed by 
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using a control volume analysis through a blade passage, 
analyzing the conservation of mass and a simplified version of 
the angular momentum equation, known as the Euler 
turbomachinery equation [2].  

This approach was developed under the assumption that the 
flow at the inlet and at the outlet is thoroughly mixed with no 
forms of aerodynamic blockage. Aerodynamic blockage refers to 
a portion of the blade passage where flow is effectively blocked 
due to the presence of a low momentum boundary layer or a 
detached eddy. Dean et al. [4] proved through experiments that 
this assumption is flawed. They demonstrated that the flow 
exiting the impeller could be divided into two regions: a high 
energy jet zone and a low energy wake zone. Japikse built off 
this research to develop the two-zone model which is shown in 
Fig. 1. Japikse found that the jet, or primary zone, consists of 
near isentropic flow, while the wake, or secondary flow, consists 
of all non-isentropic flow. This discovery uncovered a flaw in the 
traditional modeling method. The velocity triangles of both 
outlet zones need to be considered [1]. 

FIGURE 1: A CONCEPTUAL REPRESENTATION OF THE TWO-
ZONE MODEL, SHOWING PRIMARY AND SECONDARY 
VELOCITIES. NO IMPLICATION OF THE PHYSICAL LOCATION 
OF THE TWO ZONES IS INTENDED BY THIS SKETCH [1]. 

The state of the primary zone flow is established using 15 
equations, with an additional 8 equations establishing the 
secondary zone flow state. However, there is not an equal 
number of equations and unknown variables, which makes the 
two-zone modeling approach much more challenging than 
single-zone modeling. Despite this difficulty, there is useful 
simplicity that goes with two-zone modeling. Because the model 
is based on the actual flow physics, correctly implementing the 
model will result in a near exact match with results from higher-
fidelity methods such as CFD and experiments. Single zone 
methods solve a simpler set of equations, making them easier to 
implement, but they neglect the physical conditions that cause 
the two-zone behavior. They also rely on data measured with a 
mixed outflow. These weaknesses prevent single-zone models 
from matching the performance of properly implemented two-
zone models [5]. Additionally, many of the correlations, such as 
the Wiesner slip factor, are only valid within the design space 
that was used to define them. As new impellers are designed to 

operate outside of the validated design space with greater 
efficiency and higher loads, weaknesses in the correlations are 
being discovered [1]. 

As previously stated, the governing equations of the two-
zone model are unable to be directly solved. Four variables need 
to be specified to solve the entire system of equations. They are 
𝛿𝛿2𝑝𝑝,𝛿𝛿2𝑠𝑠,𝑊𝑊2𝑝𝑝, and 𝜒𝜒. A downstream parameter describing the 
flow through the diffuser must also be specified. An impeller can 
have multiple output flow states depending on the downstream 
conditions. A parameter that sets the downstream conditions is 
necessary to accurately predict the impeller outlet flow state. A 
useful downstream parameter is 𝐶𝐶𝑓𝑓 Given a 𝐶𝐶𝑓𝑓, an engineer with 
experience in impeller design can determine 𝛿𝛿2𝑝𝑝,𝛿𝛿2𝑠𝑠,𝑊𝑊2𝑝𝑝, and 𝜒𝜒 
based on their understanding of the flow physics through the 
impeller. It is difficult for newer engineers to accurately predict 
the parameters. Models that predict 𝛿𝛿2𝑝𝑝,𝛿𝛿2𝑠𝑠,𝑊𝑊2𝑝𝑝, and 𝜒𝜒 will be 
discussed in later sections. 

The Two Element in Series Model 
Accurately predicting 𝑊𝑊2𝑝𝑝 is important for determining the 

pressure rise across the impeller. Japikse developed a model to 
predict 𝑊𝑊2𝑝𝑝 by treating the impeller as a series of rotating 
nozzles or diffusers with two elements that are shown in Fig. 2. 
The first element (element a) is a model of the impeller inlet as 
a variable geometry nozzle or diffuser. At high flowrates, the 
inlet reduces the flow area, acting as a nozzle to accelerate the 
flow. At low flowrates, the inlet increases the flow area, acting 
as a diffuser. The second element (element b) models the blade 
passage from the passage throat to the exit plane of the blades. 
This element acts as a fixed geometry diffuser. By analyzing the 
flow through each element, the TEIS model predicts the 
diffusion of the flow through the impeller. The diffusion is 
quantified as a diffusion ratio, defined in equation 1. Estimates 
for 𝐷𝐷𝑅𝑅2 can be made using equation 2, where 𝐶𝐶𝑝𝑝𝑎𝑎𝑝𝑝 and 𝐶𝐶𝑝𝑝𝑏𝑏𝑝𝑝 are 
known from the geometry and 𝜂𝜂𝑎𝑎 and 𝜂𝜂𝑏𝑏 are set by the model 
user. 

𝐷𝐷𝑅𝑅2 = 𝑊𝑊1𝑡𝑡
𝑊𝑊2𝑝𝑝

(1) 

𝐷𝐷𝑅𝑅22 = 1
1−𝜂𝜂𝑎𝑎𝐶𝐶𝑝𝑝𝑎𝑎𝑝𝑝

1
1−𝜂𝜂𝑏𝑏𝐶𝐶𝑝𝑝𝑏𝑏𝑝𝑝

 (2) 

FIGURE 2: A VISUAL DESCRIPTION OF THE TEIS MODEL, 
SHOWING THE INLET (ELEMENT A) AND THE BLADE 
PASSAGE (ELEMENT B) [1]. 
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Linear Regression and the Pelton Model 
The TEIS and two-zone variables are difficult to predict 

without results from either CFD or experiments. Working with 
Japikse, Pelton [6] and Bitter [7] developed predictive models 
for the two-zone parameters using statistical regression and a 
database of experimental results. The database they used 
included data from approximately 125 centrifugal pumps and 
compressors. The work resulted in a set of equations that produce 
a reasonable curve fit for the modeling parameters of machines 
with similar geometric and flow conditions to those in the 
database. However, performance of machines with parameters 
outside of the validated range could not be accurately predicted. 
Pelton concluded that expanding the model’s operating range 
would require more data and further analysis to determine 
whether additional parameters exist that could impact the 
model’s performance. 

Japikse et al. [8] also evaluated the use of neural networks 
for predicting the two-zone modeling parameters. They 
developed single layer neural networks for each of the 
parameters. They found that the models for 𝛿𝛿2𝑝𝑝, and χ were able 
to produce reasonable results, but were unsuccessful in creating 
models for 𝜂𝜂𝑎𝑎 and 𝜂𝜂𝑏𝑏. They concluded that future work would 
require more refined input parameters, as well as a larger dataset. 
They also state that error in the models could be the result of an 
unknown bias in the training dataset. 

2.2 Predictive Modeling Methods 
Newer methods for predictive modeling and design space 

exploration have been developed since Pelton developed his 
model. These methods, such as reduced order modeling, 
surrogate modeling, and machine learning, have allowed models 
to be created with increased accuracy and computational 
efficiency, as well as better fits for nonlinear datasets. 

Reduced Order Models 
Reduced-order models (ROMs) reduce the computational 

complexity of a high order system by projecting the system into 
a lower order space [9]. The end goal of a ROM is to generate a 
system solution for an arbitrary set of input parameters, 𝑘𝑘, using 
some surrogate model, 𝑅𝑅(𝑥𝑥). This is illustrated in equation 3 
where Φ is a set of basis vectors, 𝐶𝐶 is a trained set of expansion 
coefficients, and 𝑓𝑓(𝑘𝑘) is an interpolation function or surrogate 
model. The system solution is determined in a lower order space, 
then transformed into the original, high order space. 

𝑅𝑅(𝑥𝑥) = Φ𝐶𝐶𝑓𝑓(𝑘𝑘) (3) 

Basis vectors for a system can be determined either through 
linear or nonlinear data reduction methods [10]. Linear 
projection methods for data reduction, such as principal 
component analysis (PCA), reduce the order of complex physical 
systems with minimal introduced error for linear datasets. These 
methods have been used in turbomachinery applications [9, 10, 

11, 12, 13] to increase modeling accuracy and computational 
efficiency.  

If nonlinearity exists in the dataset, using linear methods like 
PCA will introduce significant error when the data is 
reconstructed. Nonlinear methods were developed to generate 
basis vectors and reconstruct the data without introducing 
significant error. These methods include kernel principal 
component analysis (KPCA), isometric feature mapping 
(ISOMAP), and locally linear embedding (LLE) [10].  

Machine Learning 
Advances in machine learning have created frameworks that 

can be used to solve complex physics problems with data 
gathered through experiments and simulations. A common type 
of machine learning model is called a multilayer perceptron 
(MLP). This is a type of feedforward neural network (FFNN). 
These networks have a series of layers with a certain number of 
neurons per layer. Each neuron takes an input and performs a 
simple, linear operation to that input. The output is multiplied by 
a weight and passed to the next layer of neurons [16]. By 
repeatedly performing linear operations on the input, chains of 
composite functions that can recreate the response of nonlinear 
functions are created. The model is trained by adjusting the 
weights between each layer using an optimization algorithm. 
Training these models can be very computationally expensive 
and require large amounts of data, but the resulting models are 
highly efficient and accurate. Machine learning models are also 
limited when modeling out-of-sample scenarios and have the 
possibility to produce nonphysical predictions [17]. Integrating 
constraints based on conservation laws has shown promise in 
addressing these issues. Models trained with physical restraints 
have been shown to require less data while creating models that 
perform above the current state of the art. This method has been 
used to model complex fluid mechanics problems, such as flow 
across supercritical airfoils using the results from 600 CFD 
simulations [18], predicting drag force on particle suspensions in 
moving fluids using data from 5824 particles [17], and 
accelerating high fidelity CFD simulations using the results from 
five datasets of direct numerical simulation results [19]. 

The integration of physical constraints can also be used to 
overcome other limitations with ML models [18]. Machine 
learning models are limited when modeling out-of-sample 
scenarios and have the possibility to produce nonphysical 
predictions. Kochkov et al. applied conservation constraints to 
develop a model for accelerating CFD simulations [19]. This 
approach allowed their model to accurately resolve turbulence at 
scales outside of the range of the training data. Jia et al. applied 
conservation of energy when training a model to predict the 
temperature profiles at different depths in a lake [20]. The 
resulting model was able to be trained with fewer observed data 
points while outperforming a state-of-the-art physics-based 
model. 
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Machine learning frameworks have also been created to 
assist in the generation of new, unique data. Generative 
Adversarial Networks (GANs) are a class of deep learning 
models that generate new samples from a data distribution [18]. 
The model has two components: a generator that creates a new 
sample within the data distribution, and a discriminator that 
determines if the new sample belongs to the distribution. Models 
implementing this framework have successfully modeled steady 
state heat transfer and fluid flow [21]. Wu et al. showed that this 
model framework could accurately and efficiently generate 
images of the flow field around supercritical airfoils [18]. 

 
3. RESEARCH OBJECTIVES  

The main objective of this research is to develop an 
improved model for predicting the flow state at the exit of a 
centrifugal impeller based on the TEIS and Two-Zone model 
using ROM, machine learning, and a sufficiently large database 
of experimental data and CFD simulations. It is hypothesized 
that the exit flow state can be predicted with the deviation at the 
exit blade within 5% of actual behavior and the fraction of 
primary to secondary flow predicted to also within 5%. 
 
3.1 Create an Improved Model for Predicting Two-Zone 

Input Requirements 
The first objective is to create a ROM for predicting 𝜂𝜂𝑎𝑎, 𝜂𝜂𝑏𝑏,

𝛿𝛿2𝑝𝑝,𝛿𝛿2𝑠𝑠, and 𝜒𝜒 with the database used by Pelton and additional 
data provided by Concepts NREC, a corporate collaborator. Each 
impeller in the database has a performance map that was found 
through experiments. There is currently experimental data for 
162 different compressors and 73 different pumps. This is 110 
more cases than were available to Pelton. The data are of varying 
fidelity, with some data including pressure and temperature 
measurements at different stations and traverse pressure 
measurements along the impeller exit, while other data only 
include overall pressure rise and flow rates. 

 
An equivalent match to the data using the TEIS and two-

zone model will need to be made to determine values for 𝜂𝜂𝑎𝑎, 𝜂𝜂𝑏𝑏,
𝛿𝛿2𝑝𝑝,𝛿𝛿2𝑠𝑠, and 𝜒𝜒. This is done through an optimization algorithm 
that minimizes the error between the model and the data by 
varying the values of each modeling parameter. The properties 
considered in the minimization are total head rise, stage power, 
and diffusion ratio. The optimizer has been tested on the Eckardt 
O- Rotor (Eckardt, 1974), a rotor with well documented 
performance data. The resulting diffusion ratio, head rise, and 
stage power comparisons are included in Fig. 3. The initial 
testing is promising, but more testing is needed to ensure that the 
optimization is robust and can handle additional cases. 

 
Once the database has been generated, a ROM will be 

constructed. First attempts will use PCA to generate a truncated 
set of basis vectors and a radial basis interpolation function. We 
recently performed PCA on the current, uncorrected database 
and found that 56 basis vectors were required to explain 99% of 
the variance in the database. The distribution of the total 
explained variance is shown in Fig. 4. However, reconstructing 

the reduced-order data introduced significant errors. We 
hypothesize that this error is being introduced because the 
dataset is nonlinear. PCA works very well when used on a linear 
dataset, but introduces significant error when used on nonlinear 
datasets. It is possible that the corrections we make to the 
database will improve linearity. If not, nonlinear dimensional 
reduction techniques, such as KPCA, ISOMAP, and LLE will be 
implemented.  

 
FIGURE 3: A COMPARISON OF THE DIFFUSION RATIO, THE 
HEAD RISE, AND THE STAGE POWER CALCULATED BY THE 
MODEL TO THE MEASURED VALUES. 

Several different interpolation functions will be used to 
determine which will perform the best with the given data. These 
include Kriging, spline interpolation, and radial basis 
interpolation. The multi-fidelity nature of the data will influence 
which interpolation functions are tested. Frameworks for 
creating ROMs with multi-fidelity data have been developed, 
including Co-Kriging, linear regression-based multi-fidelity 
models, and Co-RBF.  

 
The ROM input parameters will be determined by finding 

the covariance between the desired output variables and the 
potential input variables. The database currently has over 1000 
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variables associated with each case. Of those 1000 variables, 
approximately 200 could be reasonably determined based on the 
impeller geometry, inlet flow conditions, and the desired 
operating state. Preliminary covariance calculations show that 
some of the most important potential input variables are inlet 
relative Mach number, impeller area ratio, blade angles, and 
Reynold’s number. 
 

 
FIGURE 4: THE DISTRIBUTION OF THE EXPLAINED 
VARIANCE CAPTURED IN EACH COMPONENT GENERATED 
THROUGH PCA.  

After different combinations of dimensionality reduction 
and interpolation have been explored to create an optimal ROM, 
a machine learning approach will be taken to create a separate 
model. FFNNs with a varying number of hidden layers will be 
trained to predict the desired variables from the input parameters. 
An initial ML model has been created for 𝜂𝜂𝑎𝑎 using the prior, 
unexpanded database. The model used the same variables used 
in the linear regression for model inputs and consisted of 6 
hidden layers. This model currently does not perform well 
compared to the former linear regression models, but this is to be 
expected given the small dataset used. We expect the model’s 
performance to improve as more data becomes available. 
 
3.2 Validate and Expand the ROM Through CFD 

To validate the results of the ROM, steady state CFD 
simulations will be run on a select number of the new geometries 
to generate performance maps that can be compared to the results 
of the ROM. The CFD geometries will be generated by altering 
five different features of existing geometries to fill gaps in the 
design space. The five geometry features have will be altered are 
inlet and exit blade angles, blade thickness, Reynold’s number 
scale, and the number of blades. Each geometry will be simulated 
at 2-4 different rotation rates and varying pressure differences. 
The simulations done at the same rotation rate constitute a 
speedline. The simulations will be done using Star CCM+ and 
the Fulton Supercomputing Lab. We are currently working on a 
framework to automatically generate a computational domain, 
create a suitable mesh, set the boundary conditions, run the 
simulation, and verify convergence. Values for 𝜂𝜂𝑎𝑎, 𝜂𝜂𝑏𝑏, 𝛿𝛿2𝑝𝑝,𝛿𝛿2𝑠𝑠, 

and 𝜒𝜒 will be calculated from the CFD results and compared to 
the output of the ROM. The CFD results will then be added to 
the former dataset, the models will be retrained, and the process 
will be repeated until the ROM outputs are consistently within 
10% of CFD. A random set consisting of 10% of the CFD 
simulations and class 1 or 2 data will be excluded from the 
training for validation. We estimate that at least 600 speedlines 
will need to be simulated to properly verify the results of the 
ROM and to provide enough data for the ML model. 

 
All simulations will be run using Star CCM+ version 2206. 

Different turbulence models will be considered as the CFD 
framework is developed. The turbulence model must be able to 
account for variations due to streamline curvature and rotation 
effects. Possible candidates include the SST K-ω turbulence 
model [22] and the Spalart-Allmaras turbulence model with a 
rotation correction [23]. The simulations will be run in a way that 
minimizes the effects of non-impeller geometry. Each simulation 
will use a standard-length inlet and a standard-length vaneless 
diffuser. 

 
It is not feasible to run a grid-independence study for each 

of the CFD simulations that will be used to expand the database. 
Instead, grid independence will be established for a small set of 
simulations during the development of the CFD framework. The 
meshing parameters that are found to work best will be applied 
to all the meshes generated using the framework. Several mesh 
statistics will be evaluated for each mesh to ensure that each 
mesh is high quality. The standards were determined based on 
the best practices outlined by the Star CCM+ documentation 
[24]. Meshes that do not meet the quality standards will be 
manually redone. The quality standards are shown in table 1. The 
Star CCM+ documentation also recommends a wall y+ value less 
than 5 for turbomachinery simulations with 10-12 prism layers. 

 
TABLE 1: THE MESH STATISTICS THAT WILL BE USED TO 
DETERMINE THE QUALITY OF EACH MESH. 

Statistic Value Definition 
Volume 
Change 

Greater 
than 1e-5 

The ratio of the volume of a cell to 
that of its largest neighbor 

Skewness 
Angle 

Less than 
85o 

The angle between the face normal 
and the vector connecting the two 
cell centroids 

Cell 
Quality 

Greater 
than 0.1 

A function of the geometric 
distribution of the cell centroids of 
the face neighbor cells 

 
The CFD framework will be validated by simulating 

existing geometry and comparing the results to data. Simulations 
on two impellers have already been done; a low-speed impeller, 
commonly known as the Eckhardt O impeller [25], and a high-
speed impeller. The low-speed impeller has a wheel radius of 
7.88 inches, 20 blades, and was simulated at speeds of 10,000 
and 12000 rpm. The high-speed impeller has a wheel radius of 
1.35 inches, 7 full blades and 7 splitter blades, and was simulated 
at speeds of 80,000, 100,000, and 120,000 rpm. The quality of 
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the match between the simulation and the data is determined by 
comparing the average pressure near the shroud at the blade exit 
(P2). This parameter is very sensitive to the modeling parameters 
and is often used for CFD validation. The low-speed impeller 
simulations show good agreement between the resulting flow 
field and the experimental measurements with the pressure at the 
blade outlet calculated from CFD being within 5% of the 
measurements across the entire operating range. This can be seen 
in Fig. 5. However, the simulations of the high-speed impeller do 
not match the measured data as well. More work is needed to 
ensure that simulations run at higher speeds will produce 
accurate results. This work will include mesh refinement, 
boundary condition selection, and geometry optimization. 
 

 
FIGURE 5: THE IMPELLER OUTLET PRESSURE AS A 
FUNCTION OF MASS FLOW RATE. VALUES SHOWN ARE FROM 
EXPERIMENTS AND CFD FOR A LOW-SPEED (TOP) AND HIGH-
SPEED (BOTTOM) IMPELLER. 

In addition to the steady state CFD runs used to expand the 
model, unsteady CFD will be run to validate the model at 
different points in the design space. Two to four impeller 
geometries will be chosen as candidates for the unsteady CFD. 
A full rotation will be simulated at three varying flow rates: near 
stall, near choke, and near design. We are also currently in 

discussions with Concepts NREC to use their test facility to 
measure additional data for the model validation. 
 
 
3.3 Perform Real-Time Analysis of the Effect of Design 

Parameters on the Outlet Flow State 
The linear regression model created by Pelton shows the 

influence that certain impeller design variables have on the two-
zone modeling parameters [6]. These include relationships 
between 𝜂𝜂𝑎𝑎 and inlet Reynold’s number, 𝜂𝜂𝑏𝑏 and the impeller exit 
velocity, 𝜒𝜒 and the impeller area ratio, and many others. As part 
of this work, the relationships discovered by Pelton will be 
validated and improved. Additionally, new correlations will be 
discovered using the model. Pelton assumed that variations in 
𝛿𝛿2𝑠𝑠 did not have any significant effect on the model output, so no 
correlations were discovered for this variable. We would like to 
challenge this assumption and develop correlations for 𝛿𝛿2𝑠𝑠. The 
highest performing model created in section 4.1 will be used to 
improve the known correlations and to discover new correlations 
between the outlet flow state and the impeller design. This will 
be accomplished by varying certain parts of the impeller 
geometry, such as blade angles, tip clearance, number of blades, 
blade thickness, and scale, inputting the new geometry to the 
model with the same boundary conditions, and comparing the 
resulting values for 𝛿𝛿2𝑝𝑝, 𝛿𝛿2𝑠𝑠, χ, 𝜂𝜂𝑎𝑎 and 𝜂𝜂𝑏𝑏. The resulting values 
will be then used in the Two-Zone model to find correlations 
between the outlet flow state and the variations in design 
variables. By varying a combination of different geometric 
variables, over 125 unique geometries could be created from 
each impeller in the database. We anticipate that the reduced 
order model will be able to produce results near real-time, 
making it possible to run thousands of cases over the entire 
design space. Specific correlations of interest include: 

• Exit blade angle and primary zone deviation 
• Exit blade angle and secondary zone deviation 
• Tip clearance and primary zone deviation 
• Tip clearance and blade exit pressure 
• Exit blade thickness and machine efficiency 

Through this process, a better understanding of how changes to 
impeller geometry affect the outlet deviation and secondary zone 
mass fraction, both of which directly affect the power 
requirements, efficiency, and overall performance of the 
machine, will be gained. 

 

4. CONCLUSION 
Correlations for the TEIS and two-zone models will be 

improved. A large database of turbomachinery results will be 
generated through processing experimental data and 
supplementing with CFD results. The data will be used to train 
reduced-order and machine learning models that will predict 
the values of the required modeling parameters based on 
geometry and flow conditions. 
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