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ABSTRACT 

Electron-Induced Electron Yields of Uncharged Insulating Materials 

by 

Ryan Carl Hoffmann, Master of Science 

Utah State University, 2010  

Major Professor: Dr. JR Dennison 
Department: Physics 

Presented here are electron-induced electron yield measurements from high-resistivity, 

high-yield materials to support a model for the yield of uncharged insulators. These 

measurements are made using a low-fluence, pulsed electron beam and charge neutralization to 

minimize charge accumulation. They show charging induced changes in the total yield, as much 

as 75%, even for incident electron fluences of <3 fC/mm2, when compared to an uncharged yield. 

The evolution of the yield as charge accumulates in the material is described in terms of electron 

recapture, based on the extended Chung and Everhart model of the electron emission spectrum 

and the dual dynamic layer model for internal charge distribution. This model is used to explain 

charge-induced total yield modification measured in high-yield ceramics, and to provide a 

method for determining electron yield of uncharged, highly insulating, high-yield materials. A 

sequence of materials with progressively greater charge susceptibility is presented. This series 

starts with low-yield Kapton derivative called CP1, then considers a moderate-yield material, 

Kapton HN, and ends with a high-yield ceramic, polycrystalline aluminum oxide. Applicability of 

conductivity (both radiation induced conductivity (RIC) and dark current conductivity) to the 

yield is addressed. Relevance of these results to spacecraft charging is also discussed. 

(182 Pages)
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CHAPTER 1 

1 INTRODUCTION 

The focus of this thesis is the electron-induced electron emission from low-conductivity 

materials (<10-16 (Ω-cm)-1). This comes as an outgrowth of studies of the charging of spacecraft 

materials by the USU Materials Physics Group (MPG) over the past 15 years. The central theme 

of spacecraft charging is how spacecraft interact with the plasma environment to cause charging. 

Spacecraft materials accumulate negative or positive charge and adopt potentials in response to 

interactions with the plasma environment. A material’s electron emission and electron yield 

(defined as the ratio of electron flux out of a material to the electron flux into it), determines how 

quickly net charge accumulates in spacecraft components in response to incident electron, ion, 

and photon fluxes. The material conductivity determines how quickly that charge is dissipated. 

Due to their high mobility, incident electrons from the space plasma play a more significant role 

in electron yield and in resulting spacecraft charging than do positively charged ions. For this 

reason the focus of this study is on electron interactions and ion and photon interactions are 

neglected.  

The electron emission properties of electrically insulating materials, as a function of 

incident electron energy, are central to modeling spacecraft charging. Insulating materials 

generally exhibit higher yields than conducting materials, and accumulated charge cannot be 

easily dissipated. Therefore, insulating materials can become very efficient at collecting (yield) 

and storing (conductivity) charge. This becomes a very dynamic problem as electron emission in 

insulators is complicated by the fact that the emission mechanisms themselves can be influenced 

by accumulated surface and bulk charge, and in addition, the conductivity of the material can be 

modified by the energy deposited by the incident electron (Dennison et al., 2008). The net charge 

that a material will obtain is dictated by the complex interplay of these processes.  
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This thesis presents a study of the changes in electron-induced electron yield that result 

from the buildup of internal charge distributions due to incident and emitted electron fluxes. The 

pulsed method of measuring electron yield is discussed with special attention given to the 

strengths and limitations of the methods. These limitations are discovered by the investigation of 

three materials with varying degrees of susceptibility to charging. All of the materials 

investigated here are good insulators with conductivities ranging from 10-16 to 10-19 (Ω-cm)-1. 

What changes their charging susceptibility, in the context of this study, is primarily the maximum 

electron yield (σmax) of the material, ranging from ~1.4 to ~7. To address when the instrumental 

limit of the pulsed method is reached, a theory and model is developed to understand the 

evolution of incident and emitted flux in response to the buildup of internal charge distributions. 

Specifically, we look at how charge buildup in highly charged insulating materials affects these 

emission fluxes. Quantifiable changes in yields are observed in response to fluences of less than 3 

fC/mm2, and constitute the limit of the experimental methods.  

A model for the evolution of total electron yields as a result of surface charging is 

presented to computationally overcome inherent limitations in the experimental low-fluence, 

pulsed method. This expression is derived from two physics based models. The first component is 

the model for the emission spectrum of secondary electrons developed by Chung and Everhart 

(1974; Chung, 1975). This model is then fit to measured data thereby providing electron yields as 

a function of both incident electron energy and fluence. The second component is the double 

dynamic layer model (DDLM) for the multilayer internal charge distributions that develops in 

response to incident charge (Melchinger and Hofmann, 1995). By combining these component 

models, we derive an expression for the electron emission yield as a function of incident charge 

or equivalently surface potential (Cazaux, 1999, 2005; Meyza et al., 2003). An estimate of the 

intrinsic electron yield curve can be extracted by extrapolating to a minimal accumulated internal 

charge distribution.  
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Throughout the body of this text there are explanations of how the data can be interpreted 

using the ideas developed to quantify how charging affects the yield. Some of the measurements 

at first glance appear to be nonsense, but arguments related to charging will be made for each 

eccentricity seen in the data.  

The Coulomb force is the strongest long range fundamental force known (Thomson, 

1897); this fact makes yield measurements in insulators exceptionally difficult. The interactions 

between electrons, both primary and secondary, are so strong that just a handful of either can 

interfere with the measurement, making it difficult to obtain “intrinsic” data about a material. As 

a result, great care must be taken to minimize the flux density of incident and secondary 

electrons, thereby minimizing their interactions. This thesis will qualitatively discuss the 

evolution of methods undertaken to measure the electron-induced electron yield in highly 

insulating materials, and present representative data to quantify the effectiveness of these new 

methods.  

Two basic approaches have driven all the decisions and work described in this thesis. The 

first approach is to minimize the flux density used in the probe pulse. This has motivated the 

work on noise mitigation and management, as well as the theory developed to extrapolate to a 

flux density approaching zero. The second concept is to neutralize the surface voltage that 

develops as a result of the probe beam. This has lead to the development of UV and electron 

flooding charge neutralization capabilities, and the use of thermal modification of the 

conductivity as well as consideration of RIC enhancements. All the work presented here can be 

traced back to these two basic concepts.  

The body of this text is organized into four main sections. Chapter 2 provides a 

theoretical framework for electron-induced electron yield and how it can be modified by induced 

surface potential. This theory section includes an overview of the secondary electron energy 

distribution and the physics based model developed by Chung and Everhart to describe the 
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secondary electron emission energy spectrum. This model is then related to the development of 

surface potential as the material is bombarded with electrons. This development is then shifted to 

the dual dynamic layer model (DDLM) that describes the internal charge distribution in the 

material during electron bombardment. The final subsection in the theory section combines these 

two models to form a model that describes how the total yield of a material will be modified by 

surface potential. 

Chapter 3 describes instrumental capabilities and upgrades that have been developed to 

verify and implement the models developed in the theory section. Simple DC yield measurements 

using a continuous monoenergetic incident electron beam to measure the yield of a conducting 

gold sample are discussed to verify the systems basic operation. Next, DC secondary electron 

emission spectra are shown for an unbiased gold sample to establish baseline electron emission 

spectra functionality. Next, pulsed-yield measurement techniques are discussed, as they apply to 

insulators. This discussion includes charge neutralization techniques and careful beam 

characterization.  

Chapter 4 shows the results of three sets of the measurements on three distinct materials.  

These materials were chosen to demonstrate the range over which the techniques described herein 

are valid. First, the data measured from a material, CP1, with relatively low conductivity (~10-19 

(Ω-cm)-1) and a low maximum total electron yield (σmax=1.4) are shown.  This material charges 

slowly because of its low yield, but what charge is accumulated is dissipated slowly (many hours) 

because of its low conductivity. Next, we investigate a material with more challenging material 

parameters. Kapton HN has a low conductivity (~10-19 (Ω-cm)-1), but still maintains a moderate 

maximum total yield of σmax=2.2. This material provides an intermediate step as it is charges more 

quickly due to its low yield, and the charge that is accumulated will remain for a very long time 

(many hours) due to its low conductivity. The final material presented here is the most 

challenging. Polycrystalline aluminum oxide has a very high maximum total yield σmax=7, and 
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low conductivity (~10-16 (Ω-cm)-1), thus making it very efficient at both collecting charge and 

storing it. The charge decay time of this material is less (hundreds of seconds) than the two 

previous materials, but it is still long in comparison to the time scale of the measurement (~5 sec). 

By investigating these materials we can establish the strengths and weaknesses of the 

instrumentation and methods described in this thesis. 

The final section (Chapter 5) in this work provides a summary of all the ideas and 

information that have been learned throughout the course of this study.  This section provides the 

reader with a broad understanding of material charging and how charging can affect the yield 

over a broad range of incident energies. This section will also provide a framework for future 

studies to be made by the Materials Physics Group at USU. 
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CHAPTER 2 

2 MODELING YIELD MODIFICATION  

In order to lay down a framework for the following discussion we must review the 

fundamental process involved in electron emission. Total electron yield, secondary electron (SE) 

yield and backscatter electron (BSE) yield and the processes involved in each are discussed. A 

treatment of electron emission spectra in the context of electron yield and based on the model 

proposed by Chung and Everhart (1974) follows. This leads to a conversation involving bulk 

charge accumulation and distribution models and their effect on electron emission spectra and 

subsequently on total electron yield measurements. This theoretical framework motivates the 

instrumental development described in Chapter 3, and provides an underpinning for the new 

model for the response of the electron yield to evolving surface potential developed in Section 

2.4. 

2.1 Electron Emission 

The total yield, σ(Eo), is the ratio of emitted flux to incident flux where Eo is incident flux 

energy. The secondary electron (SE) yield, δ(Eo), is this ratio for emitted electrons that originate 

from within the sample, which by convention, are delimited as having energies <50 eV (Seiler, 

1983; Reimer, 2000). The backscattered electron (BSE) yield, η(Eo), is this ratio for emitted 

electrons that originate from the incident source to incident electrons (by convection with energy 

>50 eV), as shown in FIG. 2.1. σ(Eo) and η(Eo) can also be expressed as the ratio of the sample 

emitted current to the total incident electron current as 

,
)(

∫
∫

⋅

⋅+
=

+
≡

dtI

dtII

Q
QQ

TOT

BSESE

TOT

BSESEσ
 (2.1) 
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,
∫
∫

⋅

⋅
=≡

dtI

dtI

Q
Q

TOT

BSE

TOT

BSEη
  (2.2) 

and   

,
∫
∫

⋅

⋅
=≡

dtI

dtI

Q
Q

TOT

SE

TOT

SEδ
  (2.3) 

 where QTOT, QBSE, and QSE are, respectively,  the total, BSE and SE charge in Coulombs to and 

from the material (Thomson, 2004).  

An electron yield curve of gold shows the yield as a function of incident electron energy, 

Eo (see FIG. 2.2). The total yield curve can be characterized in terms of five parameters: (i and ii) 

the first and second crossover energies, E1 and E2, occur when the total yield is equal to unity and 

no net charge is deposited; (iii and iv) the yield peak, σmax, is the maximum yield and occurs 

between the crossover energies at Emax (the maximum yield is typically found between 

FIG. 2.1. Diagram of incident electron flux impinging on a generic material. 
η(Eo) denotes the backscatter electrons that originate from within the incident beam that have
energies >50 eV. δ(Eo) denotes the secondary electrons liberated from within the material that
have energies <50 eV. 

Vacuum  

Material   

η(Eo) 
δ(Eo) 

Incident Flux 

R



8 
200<Emax<1000 eV.); and (v) the rate at which the yield approaches the asymptotic limit, 

σ(Eo→∞)→σ∞, with increasing beam energy (Abbott and Dennison, 2005). 

The electron emission properties of conductors are relatively easy to measure, because 

emitted electrons are rapidly replaced by connecting the material to ground (Nickles, 2002; 

Dennison et al., 2004). However, yield measurements on dielectrics are more difficult because of 

the inability to ground the dielectric and the resulting response of the yield to charge 

accumulation (Thomson, 2004; Sim et al., 2005). Accumulated charge in insulators interacts with 

both incident and emitted charged particles through Coulomb interactions and affects electron 

emission in the production, transport and emission stages of emission models, as reviewed in 

Thomson (2004). Surface potentials resulting from the accumulated charge can influence yields 

by altering incident (landing) energies, by affecting the escape energies of secondary electrons 

(SEs) and backscattered electrons (BSE), or by reattracting (repelling) low-energy SE to a 

positively (negative) charged surface.  

When measuring the yield of insulators, it is important to consider the effects of charging 

on the total and BSE yields. To understand this more fully we must review the electron emission 

spectrum and how it is affected by charging.  

2.2 Electron Emission Spectra 

2.2.1 SE Energy Distribution Model  

When a material is exposed to high-energy electron irradiation, electrons can be from the 

material, and have a range of emission energies from 0 eV up to the incident electron energy, Eo. 

The escape energies of SE’s depend on their production depth, as well as the energy-loss 

mechanisms and potential barriers experienced before exiting the material. A typical electron 

emission spectrum from polycrystalline gold with incident electron energy of ~400 eV is shown 

in FIG. 2.2. The electron emission spectrum of both conductors and insulators appear very similar 
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in shape, however charging from the beam causes the SE peak from insulators to shift and the 

high energy tail to fall off more gradually. Generally in uncharged materials, for incident energies 

>50 eV, a large population of electrons are emitted with energy <50 eV. Most of these electrons 

have undergone inelastic scattering interactions such that they have developed a well-defined 

energy distribution within the material before they escape the surface. An energy distribution 

generally exists at the energies near the incident beam energy that is comprised of elastically and 

quasi-elastically scattered electrons (Kite, 2007). 

Chung and Everheart provide a useful model for the SE emission spectra, which 

expresses the energy distribution of the number of emitted SE per unit energy, dN(E;Eo)/dE, in 

terms of the work function for metals, ϕ. As this work is at the heart of the electron yield work 

presented here, it is important that we summarize the model. For a full derivation, the papers by 

Chung and Henke should be studied (Chung and Everhart, 1974; Henke et al., 1979). 

An energetic electron impinging on a semi-infinite material in a vacuum is depicted in 

FIG. 2.1. The incident electron impinges on the target along the z axis and penetrates to some 

range, R. Wilson provides a discussion of the energy dependence of R and its relation to inelastic 

mean free path, as well as a semi-empirical model of the yield from 40 eV to >10 MeV (Wilson 

and Dennison, 2010). We assume that all directions of motion of an internal excited SE are 

equally probable. We also assume that any scattering of the internal SE with the ambient electron 

gas produces absorption, hence only electrons that do not scatter between their point of origin and 

the surface can escape. 

Consider an excited SE electron generated at depth R in FIG. 2.1 moving in a direction θ 

with respect to the normal. Due to the diverse nature of scattering processes involved, the SE 

transport process has generally been modeled as a diffusion process, where the probability a SE 

will reach the surface decays exponentially with creation depth, and varies with the associated SE  
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escape depth of the material (Lye and Dekker, 1957; Dionne, 1975). The probability that it will 

reach the surface without a collision is given by 

⎥
⎦

⎤
⎢
⎣

⎡ −
=

θλ
θ

cos)(
exp),,(

E
RREP

, (2.4) 

where λ(E) is the mean free path (MFP) of an excited internal electron with energy E. In order for 

a SE to escape, E must be greater than a critical value Ecr that is given by,  

φ+= fcr EE , (2.5) 

where Ef is the Fermi energy and ϕ is the work function of the target conductor. When the 

condition E>Ecr is met the maximum value of θ for escape is determined by requiring the normal 

component of the momentum, p cos(θ), must at least be equal to the magnitude,  

( ) .2 2
1

crcr mEp =   (2.6) 

FIG. 2.2. Total electron yield of polycrystalline Au as a function of incident energy. 
Data were taken using a DC electron beam. E1 and E2 are the first and second crossover energies.
The yield peak, σmax, is the maximum yield and occurs between the crossover energies at Emax.

E1 E2 

σmax 

Emax  
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We assume that all SE’s with a normal component of momentum corresponding to an 

energy greater than the surface barrier height have unit probability of escape. For now the surface 

reflection and refraction effects are neglected for the purpose of this work, however Olifant 

(2009) provides correction terms to include reflection and refraction in the Chung and Everheart 

(1974) model. We now have the condition, 0≤θ≤cos-1(pcr/p), for E≥Ecr, where E=p2/2m in a free 

electron model.  

The number of SE’s excited per unit energy into an energy interval between E and E +dE  

per unit primary path is denoted by S(E, R). The energy distribution per unit primary path is given 

by 

( ) ( )[ ] .cosexpsin,
2
1

1cos

0

2

∫
⎟
⎠
⎞⎜

⎝
⎛−

−=
p

Pcr

dERRES
dRdE
Nd θθλθ

 (2.7) 

In Eq. (2.7) it is assumed that the primary electron moves in a straight line along the z 

axis inside the solid. This assumption is accurate for high-energy electrons, but becomes an 

approximation at lower energies as the mean free path (MFP) of low-energy electrons is smaller 

and therefore more likely to undergo a collision in the first few hundred angstroms of the material 

where the SE’s are produced.  

Equation (2.7) can be further simplified by assuming that S(E,R) is independent of R and 

is equal to S(E) within the MFP of a SE from the surface. We now integrate Eq. (2.7) from 0 to ∞. 

The upper limit of the integration is not critical as long as the MFP of the low-energy SE is small 

compared to the high-energy primary electrons. Hence Eq. (2.7) reduces to 

( ) ( )
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The functions S(E) and λ(E) have been derived in the work presented by Stolz and Kanter 

respectively (Stolz and Streitwolf, 1958; Kanter, 1961). Upon substitution of these functions Eqs. 

(2.4, 2.5, and 2.6) into Eq. (2.8) we find that only the function 

4)(
);(

φ+
=

E
E

E
k

dE
EEdN

o

o

 (2.9) 

determines the shape of the energy distribution curve for SE emission. There is a prefactor, but it 

is material dependant and only contributes to the magnitude of the peak, the position of the peak 

and the full width at half max are both determined by Eq. (2.9).  

The work function, ϕ, in Eq. (2.9) represents the energy required for a SE to escape from 

a material’s surface. Since the measured SE energy distribution of both conductors and uncharged 

insulators are similar in shape, with the spectral magnitudes controlled by surface energy barriers 

(i.e., work function or electron affinity) it is reasonable to extend the Chung and Everhart model 

to uncharged insulators by replacing the work function term with the insulator electron affinity, χ 

(Baroody, 1950; Quinn, 1962; Thomson, 2004). E is the SE emission energy and k is a material 

dependent proportionality constant and as before Eo is the incident electron energy, 

4)(
);(

χ+
=

E
E

E
k

dE
EEdN

o

o

. (2.10) 

Measured emission spectra for Au are shown in FIG. 2.3. The same data along with a fit 

based on the Chung-Everhart model and Eq. (2.9) are shown in FIG. 2.4a. The measured peak 

position of (2.5 ± 0.2) eV, minus a (0.583 ± 0.002) eV offset energy, is in agreement with a peak 

energy value of 1.9 eV reported in Reimer (2000). The measured FWHM of (4.6 ± 0.3) eV agrees 

with the previous published value of 4.4 eV. The work function ϕ derived using Eq. (2.9) for Au 

is measured as 4.3 eV using the electron-induced emission spectrum. The accepted work function 

for clean Au in vacuum is 5.2 eV, while the value in air is reduced to perhaps 4.8 eV due to 

minimal contamination (Hansen et al., 1989). A prediction of the Chung and Everhart model is  
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that the peak energy is one third of the work function; the measured ratio of peak energy to work 

function is 0.44, in reasonable agreement with the model. A spectrum of the same Au sample 

taken with a ~80 eV primary beam and an external sample bias of -20 V relative to the grounded 

inner grid is shown in FIG. 2.4b. The measured peak position is 24.2 ± 0.2 eV with a FWHM 

value of 8.5 ±0.2 eV. The work function found from fitting the data with Eq. (2.10) is 9.0 ± 0.1 

eV. None of these values compare favorably with published values and do not validate the 

assumption made in the next section that the shape of the SE emission curve does not change with 

surface potential. It may be that the grid peak, as discussed in Section 3.1.2, needs to be properly 

subtracted from the electron emission curves before a valid comparison of peak shapes at 

different incident energies and sample biases can be made. This is an area that will have to be 

explored both in the theory and measurements. 

This lends credibility to the model as a reasonable approximation of energy distribution 

of SE excited from a conductor. We have also provided a reasonable justification for extending 

the Chung model for conductors, to approximate the energy distribution of the SE from  

FIG. 2.3 Electron emission spectra from polycrystalline Au. 
Acquired using the Hemispherical Grid Retarding Field Analyzer (HGRFA). Note secondary and
backscatter peaks. 
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FIG. 2.4. Electron emission spectra from unbiased and Au biased. 
(a) Is the emission spectra from an 80 eV beam on grounded Au fit to the model developed by
Chung and Everheart, Eq. (2.9). (b) Shows the Chung and Everheart model for 80 eV SE
emission on a Au sample biased to -20 V.
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insulators. However, it would be beneficial to perform a thorough review of previous literature, 

particularly of Chung and Everhart (1974), Baroody (1950), and Quinn (1962), to make any 

necessary modification and interpretations to the Chung and Everhart model as applied 

specifically to dielectric material SE distribution theory. Such modification could involve 

differences in the conductor and insulator SE production terms, S(E), mean SE escape depth, 

λ(E), electric-field assisted SE transport, as well as the associated surface escape terms of electron 

affinity, χ, and surface potential, Vs. 

2.2.2 SE Energy Distribution Related to Charging Modified Yield  

The SE yield in terms of N(E) is given by integrating Eq. (2.10) from 0 eV to the cutoff 

from the definition of a secondary electron energy of 50 eV,  

.1)(1)()(
);(50
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o EEEdE
dE

EEdN
σηδ  (2.11) 

In terms of the total yield this integration is the number of excess electrons that contribute to the 

yield being greater than or less than unity. Here  
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N σ

 (2.12) 

is the net number of excess emitted electrons, leading to the one on the right side of Eq. (2.11). 

The subscript o in σo, δo and ηo denotes the uncharged total, secondary and backscatter yields to 

distinguish between the charged versions of these yields.  

Between the total-yield crossover energies where the total yield σ =1, E1 and E2, the 

polarity of insulator charging is positive (since the total yield is greater than one), and due to the 

reattraction of low-energy secondary electrons, the insulator attains a steady-state surface 

potential of just a few volts positive. This positive charging decreases the insulator surface 

potential barrier by an amount eVs, where Vs is the positive surface potential. Hence, the resulting 

secondary electron yield emitted from a positively charged specimen can be expressed as an 
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integral of the uncharged spectrum (taken at the same incident energy) with the integration limits 

extending from the positive surface potential up to the arbitrary 50 eV limit of SE energy. This is 

depicted by the shaded region in FIG. 2.5a. η(Eo) is assumed to be unaffected by the built up 

potential in the following discussion because η is roughly constant above ~150 eV (see Fig. 4.32). 

The total electron yield σ, at incident energy Eo for the sample potential Vs is, 
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;50
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This integral can be solved analytically by direct substitution of Eq. (2.10) into Eq. (2.13)  

( ) ( ) ( )[ ] 1;50;
6

; +−= χχσ eVheVh
E
kVE s

o
so , (2.14) 
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and α is an arbitrary energy at which h is evaluated (Thomson, 2004). 

The positive surface charge inhibits the escape of lower-energy SE’s, thus suppressing 

the lower-energy portion of the SE spectrum. This is represented by the shaded area in FIG. 2.5a 

showing a emission spectrum from aluminum oxide with 400 eV beam energy fitted with the 

Chung and Everheart model and parameters k =(5.93±0.01)·105 electron·eV3 and ϕ=(5.3±0.1) eV. 

Consequently, only the unshaded area of the electron energy spectrum (above eVs) contributes to 

the charged electron yield. It follows that the fraction of the total yield escaping the surface is 

. (2.16) 

As illustrated in FIG. 2.5b, Eq. (2.16) gives the fraction of the generated SE’s that have 

enough energy to overcome the surface potential and contribute to the yield. Between the 

crossover energies, typical fractional SE yields for insulators approach values of 0.2 to 0.6,  
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(a) 

(b) 

(c) 

FIG. 2.5. Fraction of SE escaping a surface potential Vs. 
(a) Electron emission spectrum on Al203 produced from a 400 eV electron beam. The shaded region
represents the SE recaptured by a positive surface potential of ~2 eV. (b) The fraction of SE allowed
to escape the surface as a function of evolving positive surface potential Vs in the positive charging
region where E1<E0<E2. (c) Yield decay curve taken on polycrystalline Al2O3 at 200 eV. The red line
is the fit developed in Section 2.4 based on Eqs. 2.17 and 2.19. 
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corresponding to positive surface potentials of 3 to 8 V. For charged insulators, this is the fraction 

of secondary electrons that escape the sum of the intrinsic electron affinity and the positive 

surface potential created by accumulated charge. Using Eq. (2.16), to solve Eq. (2.13) for the 

secondary yield as a function of surface potential, Vs, we obtain 

1)();(]1)([)();,();,( +−−=−= oosoooososo EVHEEVEVE ηχσηχσχδ . (2.17) 

σo is the uncharged total yield; in practice this becomes the minimally charged yield and is used 

as a fitting parameter. With χ, the electron affinity, representing an intrinsic material property, Eq. 

(2.17) is a two parameter analytic expression for the yield as it responds to an evolving surface 

potential. At this point it is necessary to find an expression for Vs as a function of incident flux 

density.  

2.3 Charge Distribution in Insulators 

Let us consider a succession of progressively more sophisticated charge distribution 

models for floating conductors above a grounded plane, as illustrated in FIG. 2.6. For the 

purposes of this discussion we will focus only on the incident electron energies between the 

crossover energies (i.e., the positive charging regime).  

For charged floating conductors, the charge resides near the surface in accordance with 

Gauss’ law (see FIG. 2.6a). The simplest model for ideal insulators assumes that the charge does 

not move appreciable distances within the material after deposition (e.g., that resistivity is 

infinite), and that the net accumulated charge is in a single planar distribution at a depth equal to 

the penetration depth or range of the primary electron, R(Eo) (see FIG. 2.6b). This is the Bethe 

approximation (Bethe and Heitler, 1934). For both of these cases, the deposition of the net total 

accumulated charge, Qo(σ-1), can be modeled as a single charge layer at the surface of a sample 

of thickness, D. Using a simple parallel plate capacitor model with the net total electron yield 

dependence included gives 
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where Qo is the total incident charge, εo is the permittivity of free space, εr is the relative dielectric 

constant, and Ao is the cross sectional beam area. As expected, for Eq. (2.18), Vs is positive 

(negative) for σ greater (less than) unity and in the limit where σ→1 no charging occurs.  

While this model provides a useful first order approximation for the surface potential, it 

is simplistic in its treatment of the internal charge distribution. Finite resistivity allows relocation 

of charge within the insulator, leading to more complicated internal charge distributions. Previous 

models of insulators have shown that the internal charge distributions (both evolving 

distributions, as well as static charge distributions) resulting from incident electron irradiation, 

FIG. 2.6 Succession of progressively more sophisticated charge distribution models. 
(a) A charged floating conductor with charge residing very near the surface. (b) An ideal insulator 
with the simplest single-layer model of charge accumulation. In this model, the net charge resides
in a thin layer at a depth equal to the penetration depth of the primary electron, R(Eo). (c) A 
double-charge distribution (positive–negative) is formed from embedded incident electrons at a 
depth R(Eo) and a positively charged region, from SE depletion, between the surface and λSE. (d) 
A more complex model of an ideal insulator with an additional layer for the SE reattracted to the
surface by the positive charge within the insulator. 
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form multiple alternating positive and negative charge layers (Melchinger and Hofmann, 1995; 

Usui et al., 2003), Measurements of internal charge distributions of thin-film insulators, for 

higher incident energies and thicker films, confirm the general nature of these distributions 

(Takada et al., 2006). However, the spatial and charge-polarity configurations of these layers can 

be complex and difficult to predict. The SE distributions can depend on a number of factors that 

include the magnitude of electron yield, electron yield crossover energies (particularly E2), 

material conductivity (both dark current (DC) and radiation induced conductivities (RIC)), 

dielectric strength, electron trapping and detrapping rates, incident electron penetration depths, 

mean SE escape depths, and incident electron fluxes and energies (Dennison et al., 2007). The 

combination of these layers is what defines the overall magnitude of the surface potential. 

Thomson provides a useful review of the literature on models of charge distributions within 

insulators, with application to electron emission from insulators (Thomson, 2004). 

A somewhat more realistic double-layer model is illustrated in FIG. 2.6c. Between the 

crossover energies, incident electron penetration is only somewhat larger than the SE escape 

depth, or mean free path, λse. The negatively charged planar distribution results from embedded 

incident electrons stopped at a depth R(Eo). The use of a single depth follows from the Bethe 

approximation for primary electron (PE) stopping power used in the Sternglass formulation of the 

secondary electron (SE) yield formula (Bethe and Heitler, 1934; Sternglass, 1950). A positively 

charged region is formed by SE depletion that occurs between the surface and λse. The electric 

field from the negative charge again retards further incident electron penetration and acts to drive 

a greater number of low-energy SE from the sample, thereby enhancing the positive charge 

region (Jbara et al., 2001; Hoffmann and Dennison, 2006).  

The electric field from the positive charge region, in turn, acts to reattract the lowest 

energy SE emitted from the surface (gray region in FIG. 2.5a), thereby establishing a shallow 

negative surface charge region (see FIG. 2.6d). For this charging scenario, the dynamic double 
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layer model (DDLM) has been presented in the literature to predict ensuing internal electric fields 

and potentials (Melchinger and Hofmann, 1995; Cazaux, 1999, 2003; Meyza et al., 2003). For the 

DDLM charge distribution deposited over the penetration range, the surface potential can be 

approximated assuming a parallel-plate capacitor geometry as 

௦ܸ ൌ
ொ೚஽

ఌ೚ఌೝ஺೚
ቂሺߪ െ 1ሻ െ ߪ ఒೞ೐

ଶ஽
െ ோ

ଶ஽
ቃ. (2.19) 

The first term is from the net charge distribution of magnitude Qo(σ-1) given by Eq. 

(2.18), the term involving λse describes the positive charge distribution of magnitude Qoσ from SE 

emission, and the term involving R is from the embedded PE distribution of magnitude Qo. The 

thin-film capacitor geometry is a reasonable approximation since the charge deposition area Ao, 

which is determined by the electron beam radius Rbeam, is much greater than R, and λse (for studies 

reported here, Rbeam was on the order of 0.85 mm, whereas insulator thicknesses ranged from 5 

μm to 1 mm). Furthermore, it can be seen that the first term in Eq. (2.19) dominates if the 

insulator thickness D is much greater than R or λse (R did not exceed ~1 μm for the incident 

energies reported here as seen in FIG. 4.6). This approximation is equivalent to assuming a 

uniform charge distribution, as given in Eq. (2.18). Notice that Vs is also a function of the total 

yield σ(Qo), which itself is dependent on incident charge. 

This model provides a useful and accurate depiction of the internal charge distribution 

resulting from an impinging electron beam. It is reasonable to assume that this distribution 

remains static as long as the material inhibits significant redistribution in response to internal 

electric fields. This is true for materials with charge decay times that are much longer than that of 

the experiment. We can estimate how material conductivity corresponds to charge decay time by 

using Eq. (2.18) and model the distribution as a simple parallel plate capacitor. This allows us to 

relate conductivity σDC to the decay time τ in the form (Brunson, 2009) 

DC

or

σ
εετ = , (2.20) 
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where εr is the dielectric constant of the material and εo is the permittivity of free space. Using Eq. 

(2.20), materials with conductivities >5·10-15 (Ω-cm)-1have a charge decay time that is much 

longer (>300 s) than our experiment (typically 5 s). This does not include the complex internal 

charge distribution discussed in this section, but it is an adequate treatment for determining 

charge decay times.  

2.4 Response of Total Yield to Evolving Surface Potential  

We can now combine our expression for the electron yield in terms of the Chung and 

Everhart model of electron emission, Eqs. (2.11-2.13), with a model of the surface voltage in 

terms of incident charge from the DDLM model, Eq. (2.19), to derive a model for the evolution 

of the yield in response to positive surface potential. Both of these component models are physics 

based and have been experimentally supported (Melchinger and Hofmann, 1995; Griseri et al., 

2004; Takada et al., 2006). In order to proceed and combine these two expressions, we need to 

make several assumptions: 

The energy distribution of emitted electrons given by Eq. (2.9) does not change shape 

with charge accumulation, but only changes amplitude and peak position. Experimental evidence 

for both biased conductors and charged insulators, as well as the theoretical development by 

Chung and Everheart (1974, 1977; Shih et al., 1997a), suggest this is a reasonable assumption. 

While these assumptions make the derivation possible, we still encounter considerable 

difficulty when merging these two models, because of the limit of integration for Eq. (2.13). This 

is due to the fact that Vs is itself a function of the total yield σ. In order to get an expression for 

measured electron yield decay data σ verses accumulated incident charge (or, equivalently, 

surface potential), one need only plot σ(Eo,Vs) verses Qo(Vs) with either Vs or Qo defined 

implicitly. It can be seen in FIG. 2.5c that the model described above provides a good fit to the 

decay curve taken at 200 eV on polycrystalline aluminum oxide. 
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CHAPTER 3 

3 INSTRUMENTAL UPGRADES TO MINIMIZE SAMPLE CHARGING  

The intent of this section is to detail the modifications made to the chamber during the 

course of this work. There are two areas of focus for instrumental upgrades. The first is charge 

mitigation and includes efforts to reduce pulse duration so that smaller pulses will be measurable 

above the systematic background noise. To do this, grounding was improved, cables shortened, 

noise sources removed and the beam characterized. The second focus is to improve the 

techniques used to dissipate accumulated charge. This includes low-energy (< 5 eV) electron and 

UV photon flooding and sample heating. All of this is done in an effort to increase the capabilities 

of the chamber to better measure the materials with high-resistivity and high-yield.  

The work contained in this thesis was performed in the electron emission analysis 

chamber maintained by the Materials Physics Group. This chamber can simulate diverse space 

environments including controllable vacuum (<10-10 to 10-3 Torr), ambient neutral gas conditions, 

electron, ion, and solar irradiation fluxes. The chamber is currently equipped with three electron 

guns, two ion guns, various photon sources, SEM, Auger spectroscopy, and a flood gun 

neutralization source (Chang et al., 1998; Dennison et al., 2003b; Thomson, 2004). For UHV 

measurements, the chamber is pumped using turbomolecular, magnetic ion, and titanium 

sublimation pumps to base pressures typically <10-9 Torr. The sample stage holds 11 samples that 

can be positioned in front of various sources, and is detachable for rapid sample throughput. 

The primary detector for electron emission studies is a custom hemispherical grid-

retarding field analyzer (HGRFA) that fully encloses the sample under study, as depicted in FIG. 

3.1 (Chang et al., 2000a; Nickles et al., 2001). The hemispherical detector features an aperture for 

incident electron/ion admission and a fully-encased hemispherical collector for full capture of 

emitted electrons with a retarding-field analyzer grid system for emitted-electron energy 

discrimination. The hemispherical grid detection system, shown in FIG. 3.1, has been carefully 
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calibrated (both through calculation and measurement) to account for detector losses, allowing 

yield accuracies with systematic errors <5% (Thomson, 2004). A simplified schematic diagram of 

the HGRFA is show in FIG. 3.2. The incident electron (or ion) beam enters into the detector 

assembly through a tubular aperture in the back of the detector housing. A suppression grid 

within the detector is used to discriminate between BSE’s (energies >50 eV) and SE’s (energies 

<50 eV), by applying a 0 V or -50 V bias. By ramping the grid bias, energy spectra of the emitted 

electrons can also be measured using this detector with an energy resolution of 0.4±0.1 eV,  

Collector
Suppression 

Inner Grid
Sample

 

FIG. 3.1. Simplified cross-section of HGRFA. 
Cross section diagram for original electron emission detector. Here the inner grid is tied to
ground. 
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limited by non uniformities in the suppression grid (Nickles et al., 2001). Potentials on the 

suppression grid are controlled using a Keithley 230 voltage supply controlled via GPIB 

interfacing by a computer for both DC and pulsed-yield measurements.  

Photos showing some of the elements of the analysis chamber are shown in FIG. 3.3 The 

photo in FIG. 3.3a is the vacuum chamber. The HGRFA and the sample carousel are shown in 

FIG. 3.3b-c respectively. The sample carousel is designed to hold 11 samples for rapid sample 

throughput. The carousel and HGRFA are shown mounted in the analysis chamber in FIG. 3.3d-

e. 

The full capabilities of the analysis are not discussed in the body of this thesis as they are 

not relevant to the work contained herein, but may be of interest to the reader (Dennison et al., 

2004).  

FIG. 3.2. Schematic of HGRFA.  
(a) Solid hemispherical collector held at +50 V to attract all electrons that penetrate the bias grid.
(b) Bias grid used to discriminate electron energies coming from within. (c) Inner grid used to
provide a uniform electric field and shield from unwanted edge effects. (d) Sample stage
comprises the hemispherical and sample mounting platform. (e) The sample is held in the center
of hemisphere. 
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3.1 DC Measurements 

A DC method with a continuous, low-current beam of electrons is used to measure 

electron emission and electron yield from conducting samples. Charge added to or removed from 

a conductor, via electron emission, can be rapidly replaced by connecting the sample to ground 

(Bruining and De Boer, 1938; Baroody, 1950). The fully encased hemispherical grid retarding 

field detector, shown in FIG. 3.1, facilitates high accuracy measurements of absolute yields, with 

accuracy on the order of ±2% for conducting samples. It also allows the application of bias to 

each of the discrete elements of the detector. These biases allow for the discrimination of 

secondary and backscatter electrons and measurement of electron emission spectra. Also, the 

individually biased elements of the detector allow for extensive instrument characterization.  

This section is devoted to the validation of the HGRFA in its new configuration. In 

previous studies, the inner grid (FIG. 3.2c) was electrically tied to the stage and was meant to 

provide a uniform electric field between the sample and the bias grid. This caused two problems: 

first, the current from the inner grid could not be measured independently from the stage and 

second, the inner grid could not be biased without biasing the entire stage. This becomes a 

problem when the sample adopts a potential and the inner grid begins to act like a discriminating 

grid.  

The first test to be discussed is confirming the basic function of the HGRFA by taking the 

DC yield on Au. We then move to a more complex measurement of the DC emission spectra of 

Au. With the successful completion of these tests, we are able to validate the newly isolated inner 

grid by taking the emission spectra of an externally biased Au sample to test this new capability. 

The biased Au sample acts as a controlled surrogate for more difficult measurements on charged 

insulators. A permanent Au SEE standard has recently been added to a new surface voltage probe 

integrated within the HGRFA (Hodges, 2010). 
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FIG. 3.3. Photos of analysis chamber.  
(a) Costello UHV surface analysis chamber. (b) In situ hemispherical grid retarding field
analyzer. (c) Sample carousel removed from the chamber and setting vertical for sample
replacement. (d) Sample carousel mounted in the chamber with HGRFA attached. (e)
Another view of sample carousel and HGRFA mounted in chamber.  

(a)

(e) 
(d)

(c)

(b)
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3.1.1 DC Yield 

A thorough discussion of the DC system and methods is given in Thomson. This 

measurement technique has been thoroughly discussed in the literature (Chang et al., 2000a; 

Nickles et al., 2001). Where our system stands out is the use of the fully enclosed hemispherical 

detector and the detailed calibration of the instrument. By using this method we are able to 

measure the total and backscatter electrons directly rather than the more typical method of 

measuring a biased sample current. Our method not only improves accuracy it allows us to 

measure absolute yields with very high accuracy that is not possible using other methods. 

For electron yield measurements on conductors, a continuous incident beam is directed 

on the sample and the currents on the detector (FIG. 3.2a), suppression grid (FIG. 3.2b), inner-

grid (FIG. 3.2c), sample (FIG. 3.2d) and stage (FIG. 3.2e) are measured using electrometers 

designed by Dennison et al. (2002). A 50 V bias, relative to the suppression grid, is maintained at 

all times on the detector to insure that all electrons that are able to penetrate the grids are then 

collected. Grounding the grids through the electrometer facilitates the measurement of the total 

yield by allowing all emitted electrons to be collected. A -50 V bias relative to the sample is then 

applied to the suppression grid allowing only the BSE with energies >50 eV to reach the detector, 

thus determining the BSE yield. The secondary yield is calculated as the difference between the 

BSE and the SE yields. A representative yield curve for polycrystalline gold is shown in FIG. 2.2. 

The yield of Au is presented to verify the accuracy and basic functionality of the system 

and to show that these data fall within the error bars of ±10% for the data available in the 

literature (Nickles et al., 2001). It also serves as a springboard for more complex measurements.   

3.1.2 DC SE Emission Spectra 

From a theoretical physics perspective, the difference between a SE’s and BSE’s is the 

origin of the electrons. BSE’s are electrons originating in the incident beam while the SE’s are 

those that originate from within the material (Davies, 1996; Kite, 2007). In practice from an 
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applied physics perspective and when reporting electron yields in the literature, there exists an 

arbitrary 50 eV division to distinguish secondary electrons for backscatter electrons. This division 

is only valid for incident electron energies >50 eV. This demarcation has no basis in physics and 

is set merely as a convenience. Work done by Kite discusses a more accurate way of determining 

secondary electrons (Kite, 2007). However, for the purposes of this work, electrons with energies 

greater the 50 eV are labeled BSE and those less than 50 eV, are labeled SE.  

Within these confines, there is an energy spectrum at which the SE’s and BSE’s are 

emitted. For most materials the energy spectrum for SE’s peak at ~2 eV. For BSE’s the peak is 

centered at that primary electron energy. These spectra can be measured using the same 

hemispherical detector described in Section 3.1. 

A typical electron emission spectrum for Au is shown in FIG. 2.4a. The peak centered at 

~2 eV is the secondary electron peak and the peak around 80 eV is the backscatter peak as the 

incident beam was 85±5 eV. This can be directly compared to the extensive angle resolved 

emission spectra of polycrystalline Au measured by Kite (2007). There are other features in these 

data, such as the quasi-elastic peak preceding the BSE peak, but for the purposes of this work, we 

need only note the gross features. These data were collected by biasing the suppression grid from 

0-100 V in 0.5 V increments while measuring the current on the collector and taking the 

numerical derivative with respect to energy (dN/dE). It should be noted that the Staib election gun 

controller only has limited display resolution for incident energy. It can only display energies 

accurate to tens of eV’s. If the display is reading 80 eV, the actual energy could be anywhere 

between 80 and 89 eV. The elastically scattered BSE peak should be the measure of what the 

incident energy is.  

The data shown in FIG. 2.4a are consistent both with data taken previously on this system 

by Thomson and the extensive work done on Au by Kite (2007; Thomson, 2004). 
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3.1.3  Biased Spectra 

Under a continuous-source electron beam, an insulator quickly charges to steady state, 

and the sample surface potential goes either positive (for energies between E1 and E2) or negative 

(for energies below E1 or above E2). These sample potentials can have considerable effects on SE 

escape kinetic energies as measured by the SE emission spectra. Typically a material with 0 V 

surface potential displays a SE emission peak near 2 eV (see, for example, Figs. 3.5a i and 3.5b i). 

However, if the sample potential becomes negative, the surface potential barrier will be lowered, 

and a repulsive electric field will accelerate escaping SE’s away from the sample surface. This 

effect is illustrated in FIG. 3.4a ii and FIG. 3.4b ii. 

In addition to the typical information that can be gleaned from measuring the SE 

emission spectrum, measuring shifts associated with the DC SE spectral emission peak provides 

an indirect technique for determining the sample surface potential induced by a continuous-source 

electron beam (Abbott and Dennison, 2005). A negative surface potential will increase the energy 

of escaping SE’s and can be observed in the SE spectra by a right-shifting of the SE emission 

peak to higher energies (Girard et al., 1992; Nickles et al., 1998; Jbara et al., 2001; Mizuhara et 

al., 2002). Alternatively, if the sample surface is positive, the surface potential barrier will 

increase and inhibit lower energy SE’s from escaping the sample surface as illustrated in FIG. 

3.4a iii and FIG. 3.4b iii. In this case, an external positive potential must be applied, for example, 

by a surrounding grid to pull the full distribution of SE’s away from the attracting surface 

potential of the sample. Hence, for positive surface potentials, a typical SE spectrum will show an 

SE peak left-shifted to apparent negative kinetic energies. 

Previous studies in the analysis chamber have not had the ability to apply this external 

positive potential owing to the fact that the inner grid in the hemispherical detector was tied 

directly to ground. Positive potential manifests as a suppression of dN/dE if no external field is 
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applied, but it is not possible to quantify the magnitude of the surface potential from this. For this 

reason the detector was modified to allow the inner grid to float to ~±600 V as shown in FIG. 3.2  

In order to characterize the system in this new configuration, a series of spectra were 

taken on polycrystalline Au with several biases placed on the sample and inner grid. For reasons 

of time only brief analysis of the basic capability is discussed here, but there exists a large body 

of spectral data that has not been analyzed that could provide a wealth of information about the 

instrument and its capabilities. 

To verify that the basic ability of the system to measure unbiased emission spectra has 

not been compromised by system modifications described in this thesis, several spectra were 

taken for Au as shown in FIG. 3.5a. These spectra were taken with incident energies 58±2 eV, 

79±2 eV and 90±2 eV, from bottom to top respectively. There are no external biases applied to  

FIG. 3.4 The effect of surface voltage on SE emission. 
(a) SE emission normal to the surface and (b) angular-dependant SE emission for: (left) no bias,
(center) negative bias, (right) positive bias. 

(i)    Vbias = 0 V (ii)    Vbias  < 0 V (iii)  .Vbias  > 0 V 

(i)    Vbias = 0 V (ii)    Vbias  < 0 V (iii)    Vbias  > 0 V 

(a) Normal Emission 

(b) Non-Normal Emission 
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(a) (b)

(c) (d) 

(e) (f)

FIG. 3.5. SE emission spectrum taken on Au with bias placed on sample and inner grid (IG). 
(a) Zero bias on any element, taken ascending at 58 eV, 79 eV and 90 eV incident beam energy
respectively from bottom to top, as seen in the backscatter peak. (b) 93 eV incident electrons;
(bottom red) -2 V applied sample bias, (mid green) -6 V applied sample bias, (top blue) -15 V
applied sample bias. (c) 93 eV incident electrons; the peaks tallest to shortest have a 2 V, 6 V
and 12 V applied sample bias respectively. (d) 93 eV incident electrons; (bottom red) 2 V
applied IG bias, (mid green) 6 V applied IG bias, (top blue) 12 V applied IG bias. (e) Red circle
shows sample peak position as sample is biased and have a linear fit with a slope of -1.06±0.09
eV/V. Green squares shows IG peak position as sample is biased with a linear fit with a slope of
0.00±0.03 eV/V. (f) Red circle shows sample peak position with a slope of 0.00±0.03 as IG is
biased and green square shows IG peak position with a slope of 1.02±0.06 eV/V. 
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the sample or any of the surrounding elements. Notice that the large SE peak centered at ~2 eV 

does not change in shape or magnitude despite the change in incident electron energy. The 

backscatter electron peak can be seen shifting to higher energy as the incident electrons increase 

in energy. This is consistent with work done by and cited in Thomson and many other spectra 

taken on this system before the upgrades detailed in this thesis. This confirms that no significant 

changes have been made to the basic function of the detector.  

The next issue to investigate is the detector’s ability to measure negative surface potential 

by measuring the right-shifting of the SE peak as the potential increases. These data can be seen 

in FIG. 3.5b; from bottom to top the sample had -2 V, -6 V, -15 V, respectively, applied. All these 

data where taken at a constant beam energy of ~93 eV as can be seen from the high-energy BSE 

peak. As negative bias is applied, there begins to emerge a peak centered at ~1 eV that does not 

move with sample bias. This peak is from the SE generated as BSE impact the inner grid. This 

peak is steady and does not move with sample potential; it can be used as a feudal mark from 

which to measure sample SE peak shifts.  

In the case of a positive surface potential, our detector apparatus has had the inner grid 

(tied to the sample stage) between the sample and the suppression grid used to extract SE’s from 

the positively charged sample (refer to FIG. 3.5c). Hence, an SE spectra influenced by a 

positively charged sample would appear to decrease in the magnitude (instead of shifting to the 

left) since only higher-energy electrons could escape the sample, pass through the inner grid and 

suppression grid, and arrive at the detector. This effect is seen in FIG. 3.5c where increasing 

positive potential was applied to the Au sample and, as predicted, the overall shape was unaltered, 

but the magnitude was suppressed. 

The ultimate goal of this upgrade was to allow the inner grid to be biased and thus allow 

a full spectrum of SE’s generated from the sample to reach the detector in the case of a positive 

sample bias. In FIG. 3.5d data are shown with the sample at 0 V and the inner grid held at several 
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positive biases. It can be seen that the SE peak from the sample is stationary and the other peak 

begins to shift to the left. This shows that this peak is indeed originating from the inner grid and 

that biasing can shift this peak to allow the measurement of a positive sample potential. The plots 

shown in FIG. 3.5e-f show the sample peak position of both the sample peak and the inner grid 

peak to verify that they are independent and that the peak position is linearly related to the 

potential of the respective elements. The red dots in FIG. 3.5e shows sample peak position as 

sample is biased and has a linear fit with a slope of -1.06±0.09 eV/V. The green squares shows IG 

peak position as sample is biased with a fit slope of 0.00±0.03 eV/V. In FIG. 3.5f the red circle 

show sample peak position with a slope of 0.00±0.03 as IG is biased and green square shows IG 

peak position with a slope of 1.02±0.06 eV/V. 

At the time of this study, data have not been taken with both the sample and inner grid 

biased to a positive voltage. Future study should include extensive biased conductor studies that 

include positive sample and inner grid biases, as well as insulators that have been charged with an 

electron beam to both positive and negative potentials. With that being said, the work expressed 

in this section provides a basic verification of the functionality of the new detector configuration 

and some of its capabilities. 

The conclusion that we can now draw is that measurement of sample peak position can 

yield information about the surface potential of the sample. Further we have confirmed that the 

IG peak is originating from the inner grid and that we can control the position of this peak to 

make possible the measurement of a positive sample potential.  

3.2 Pulsed Measurements 

The system at USU to measure electron emission from insulators uses the same fully 

encased hemispherical grid retarding field detector used in DC measurements, in concert with 

methods to control the deposition and neutralization of charge (Chang et al., 2000c; Nickles et 

al., 2001; Dennison et al., 2003b; Thomson, 2004). Two electron sources provide electron energy 
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ranges from ~30 eV to ~20 keV and incident electron currents (1 to 500 nA or < 0.1 nA/cm2 to 50 

nA/cm2 current densities) with pulsing capabilities ranging from 10 ns to continuous emission. 

The low-energy Staib electron gun operates at incident electron energies of ~30 eV to 5000 eV 

with a maximum beam current of ~ 100 nA and a <0.1 mm diameter minimum beam spot. The 

high-energy Kimball electron gun operated at incident electron energies of 3.5 keV to 20 keV 

with a typical beam current of ~ 20 nA and a 500 μm minimum diameter beam spot. The electron 

flood gun used for charge neutralization can also provide a focused low-energy (1 eV to 200 eV) 

source. Typically, charge deposition is minimized by using a low-current beam focused on a 

sample area of ~2.3±0.2 mm2 that is delivered in short pulses of ~5 μsec. The pulsed system uses 

custom detection electronics with fast (1-2 µs rise time) sensitive/low noise (107 V/A / 100 pA 

noise level) ammeters (Thomson, 2004). 

Great pains have been taken during the course of this thesis to minimize overall system 

noise to reach the capabilities listed above. Previous work done by Thomson was limited in the 

energy range of the Staib gun (100 -5000 eV), as well as the lowest measurable beam current. 

The work outlined in this thesis has allowed the lowest measurable incident pulse charge to go 

from 1·106 electrons/mm2 to 6·103 electrons/mm2. A simplified approximation assumes an 

isotropic distribution of electrons in the material from the surface to the penetration depth of 

about a micron. For perspective, the electron density of 6·106 electrons/mm3 that we are capable 

of producing, can be compared to that of intrinsic silicon with a free carrier density of 6·109 

electrons/mm3. These efforts have included AC power filtering, increased cable shielding, 

identification and removal of problematic noise sources, identification and removal of ground 

loops.  

Because surface charging is a function of incident flux density and not simply incident 

fluence, a careful characterization has been performed on the primary electron source (the Staib 

gun). By measuring the beam profile, and establishing controller settings for the full energy range 
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of the gun (20 eV to 5 keV), we ensure that the spot size (and consequently flux density) is 

consistent at 1.7±0.3 mm FWHM over the entire yield curve. This is a departure from the work 

previously performed on this instrument when spot size ranged from 0.3 to 1.5 mm in diameter. 

3.2.1 Charge Neutralization  

This section discusses the effectiveness of mounting the flood gun in the detector. It also 

details other methods of sample discharge, such as UV photon flooding and sample heating. 

Previous work in the analysis chamber has used the same flood gun as will be shown here, the 

difference being that in this work the flood gun is mounted in the detector housing rather than in 

sample block number one. The purpose of this upgrade was to allow charge neutralization of any 

sample positioned in the HGRFA. 

To dissipate accumulated insulator charge, the pulsed-yield process is coupled with a 

low-energy electron neutralization source. The source, a flood gun, uses thermionic emission of 

low-energy electrons ((~3±1) eV from thermal spread) near the sample to dissipate positive near-

surface charge. A sequence of events must take place in order for the flood gun to be effective. 

First, a low flux density, monoenergetic pulse is directed at the sample and the total yield is 

measured. The low-energy flood gun is then activated and allowed to flood the sample for 5 

seconds. This is repeated with a -50 V bias on the discriminating grid so that only the BSE’s can 

be measured, thus allowing the BSE yield to be determined. The entire sequence is then repeated 

typically for 15 pulses at a given energy to produce good statistics. After averaging, this produces 

one point on the total and BSE yield curves. This entire process is computer automated and 

controlled through a LabVIEWTM interface. A complete timing diagram of the pulse yield system 

can be found in Thomson.  

The thermionic electron neutralization techniques are only effective in a limited range of 

incident beam energies, namely those in the positive charging regime (σ>1). One way of 

dissipating negative potential is to irradiate the sample with higher energy electrons, at energies 
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between the crossover energies where the total electron yield is greater than one. However, this 

energy range is not well defined, varies from sample to sample, is dependent on sample charging, 

and is not even present for some materials. A more practical solution is to irradiate the sample 

with light to eject electrons via the photoelectric effect, thus causing the sample to adopt a smaller 

negative charge. UV sources with energies at a fraction of typical insulator direct band gaps (<10 

eV) have been shown to be effective in discharging insulators such as KaptonTM and polyethylene 

by stimulating photo-induces conductivity (Bass et al., 1998; Osawa et al., 2003), and the 

incident photon flux is not affected by sample potential. Levy et al.(1985) has reported 

discharging of deep distributions using a UV source of > 4 eV.  

To neutralize charge near the surface of the insulator, an optical flood lamp needs to 

deliver low fluence (typically enough to produce 102 nC/mm2 of photoemission) at visible/UV 

energies sufficient to exceed the work function threshold and induce photoemission (typically 

only a 1-10 eV to minimize penetration depth and secondary electron production and to prevent 

deep negative charging of the sample). The optimum flood lamp energy depends on both the 

sample material (work function) and charging level (electron affinity).  

For this, a UV photon source has been developed to induce the photoelectric effect and 

dissipate negative charge build up between pulses. There are two sources mounted in the 

HGRFA. First is a UV diode with wavelength peaked at 350 nm and controlled externally. The 

second is UHV fiber optic through which we can introduce any energy photon available in the lab 

through a fiber optic feedthrough.  

The photoelectric effect coupled with sample heating overnight via a heat lamp, serves to 

increase sample conductivity and facilitate the discharge of deep charging. Sample heating is 

effective due to the fact that material conductivity at room temperature (around 300 K) is 

proportional to ݁ିா ௞್்⁄ , where T is the temperature and kb is the Boltzmann constant. Therefore, 

a modest increase in the temperature from 300 K to 360 K can dramatically reduce the charge 
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decay time of a highly insulating material like Kapton from a few days to a few hours. This is an 

effective way to dissipate deep dielectric charging as is detailed in Section 3.2.1.1 and shown in 

FIG. 3.8c. 

With both the inner grid and bias grid grounded through electrometers, the currents 

measured on each discrete element are collected and used to calculate the total yield using Eq. 

(2.1). With a -50 V bias on the bias grid, the data collected can be used to calculate the 

backscatter yield using Eq. (2.2). The currents measured by the electrometer are captured on a 

Tektronix oscilloscope and read into the controlling LabVIEW program. The pulses are then 

numerically integrated over the entire pulse (typically 0 μs to 5 μs) to get total incident charge in 

fC. Since measuring the SE yield is difficult to do directly, it is calculated by finding the 

difference in the total and BSE yields, σ and η. Once this is complete, both UV and electron 

flooding is turned on to neutralize the charge induced by the probe beam. A flow diagram is 

shown in FIG. 3.6. This sequence is then repeated no less than 15 times at each energy, so that 

good statistics can be used.  

3.2.1.1 Flood Gun 

The work done previously by Thomson shows that the above described system is sound 

and adequate for limited materials testing including conductors low-resistivity insulator and low-

yield, high-resistivity insulators. In order to provide a more robust and versatile instrument with 

greater throughput, the flood gun has been moved from its position on a single sample block into 

the detector housing to provide flooding for any sample under investigation (Thomson, 2004).  

The new flood gun uses the same basic design as was developed by Thomson, but was 

modified to be installed in a mount attached to the grounded hemisphere shielding the detector. 

The gun has a line of sight view of the sample via a small hole drilled in the detector that 

constitutes <1% of the detectors collecting surface. To neutralize charge very near the surface of 

the insulator, such a flood gun needs to deliver low currents (typically 10 nA) at low electron 
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landing energies (typically only a few eV to minimize penetration depth and secondary electron 

production and to prevent negative charging of the sample), extraction potentials were 2 V. The 

characterization of the flood gun is shown in FIG. 3.7. In FIG. 3.7a a positive voltage was placed 

on a conducting sample and the current was measured as the extraction potential was increased in 

the flood gun. In FIG. 3.7b the emission energy spectra of the flood gun was measured by 

stepping the suppression grid in 0.5 V increments. This was done for several extraction potentials 

and it can be seen that the emission peak and distribution do not change much as extraction 

potential is changed. 
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FIG. 3.6. Block diagram of the pulse yield system detailing signal flow.  
Upgrades to the analysis chamber to suppress noise and enhance the systems ability to measure
high-yield, high-resistivity materials, are shown.  
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FIG. 3.7. Electron emission characterization of flood gun. 
(a) Flood gun current to a biased Au sample. IFil=1.3 A for all data; only the gun extraction
potential is varied from 4 V (●), 3 V (▲), and 2 V (■).  Sample current ranges from 5.5 nA to 75
nA at a 0 V sample potential, and from 42 nA to 380 nA at saturation. (b) Flood gun emission
spectra as measured by the collector.  The suppression grid potential was stepped in 0.5 eV
increments and the sample potential was kept at 0 V.  IFil=1.3 A for all data; only the gun
extraction potential is varied from 3.5 V (solid), 3 V (long dash), and 2.5 V (short dash). 

20

15

10

5

0

dN
/d

E
 (a

rb
itr

ar
y 

un
its

)

8.07.06.05.04.03.02.01.00.0

electron energy (eV)

300

200

100

0

S
am

pl
e 

C
ur

re
nt

 (n
A

)

50454035302520151050

Sample Voltage (V)

 4 V Extraction
 3 V Extraction
 2 V Extraction

(a) 

(b) 



41 
The flood beam should be roughly uniform in charge density over the size of the charge 

region; however this is not critical due to an effective self-regulation of the positively charged 

insulator. The most positively charged regions of the sample will preferentially attract the most 

flood electrons; as the positive charge in these regions is dissipated they will attract less and less 

of the flood electrons. Electrons with kinetic energy less than the potential energy barrier of 

negatively charged surfaces will be fully repelled and will not reach the insulator surface at all.  

Thus, low-energy flooding will naturally develop a uniformly charged surface with a negative 

potential equal to the flood gun beam energy (to within the difference between the electron 

affinity of the insulator and the work function of the electron gun source or filament). Once 

charged to this potential, no more electrons will reach the surface. Given this self-regulation, it is 

practical to have the flood beam irradiate the full insulator surface. The flood aperture in the 

detector allows electron into the interior of the detector where they are attracted to the positively 

charged regions of the sample surface.  

The effectiveness of this modification can be tested by using the pulse system to look for 

any modifications in the yield that would indicate that the material was retaining some charge 

after the discharge cycle. Of course, the material would have to be one that is of high resistivity 

and therefore especially susceptible to charging. The yield of a highly resistive material (Kapton) 

after multiple pulse discharge cycles to show that there is little change in the yield are shown in 

FIG. 3.8b. The same type of measurement except that the flood gun was not used to discharge the 

sample is shown in FIG. 3.8c. These two plots suggest that the flood gun is working and that 

positive sample charge can be removed in this way.  

To determine the total incident flux impact on the sample, the current from all elements 

in the detector are summed. Since all the elements are carefully monitored and the efficiency of 

the detector is known, any excess charge in the system is a result of the incident pulse. To 

confirm this, the data shown in FIG. 3.8a provide a direct comparison of the summation and the  
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incident pulse measured in a Faraday cup. This was accomplished by maintaining all gun settings 

and keeping all but the filament current constant. This allows a measurement to be made on the 

Faraday cup and then repeated in the detector. We have good agreement in the two methods with 

a constant offset of 50 fC. This offset could be due to modest changes in the detector since its 

FIG. 3.8. Effectiveness of detector mounted flood gun and sample heating.  
(a) These data are a comparison of the incident charge per pulse measured in the Faraday Cup
(green circles) and by summation of all elements in the detector (red square) using a Kapton HN
sample. Where the data overlap, there is a constant offset of ~50 fC. (b) Red circles indicate 500
pulse-flood cycles fit with a linear curve to show only modest instrumental drift (slope 0.5
ppm/fC). The blue data are taken without discharging between pulses. (c) Red circles show
decay curve of 50 μm Kapton HN at 400 eV incident pulses. Note asymptote of 1.08 not 1.00 as
expected. This is evidence of deep charging from past exposure. Blue squares are the same decay
curve taken after the sample was heated with a heat lamp for 4 hr to ~50o C and allowed to cool. 

(a) (b) 

(c) 
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efficiency was calculated in Thomson. This is an area that would warrant further study in the 

future and recalculation of detector efficiency outlined in Section 5.2.5.  

3.2.1.2 Photon Flooding 

Initial studies were conducted to determine the effectiveness of optical flooding at 

discharging negative charge build up (Thomson, 2004). A series of lamps including a mercury-

gas, tungsten-filament, and UV LED array (385 nm) were mounted next to a quartz view port 

with a focusing lens to irradiate insulator samples inside the chamber (Otterstrom and Dennison, 

2005). These had limited success at discharging the sample mainly due to the limited intensity 

and frequency range possible in this configuration. The primary objective of the upgrade 

described here was to add flood gun charge neutralization capabilities to any sample under 

investigation in the HGRFA. This required fabrication of a mount mentioned in Section 3.2.1, 

which had an added benefit that it was large enough to accommodate several other capabilities. 

This allowed the addition of the fiber optic cable and UV LED, both for the purpose of flooding 

the sample with UV light, inducing the photoelectric effect, and thereby neutralizing negative 

charge build up. A cross section of the HGRFA and neutralization mount can be seen in FIG. 3.9. 

In our original configuration, photon neutralization could only be done by swinging the 

detector apparatus away from the samples, and then irradiating the samples with lamps through 

the vacuum chamber port window. This is not only extremely time consuming, and difficult to 

incorporate into an automated pulse/flood sequence, but it is very difficult to irradiate the same 

spot on the sample. In order to engage in viable studies of photo-discharging, the installation of 

light sources into the detector housing was needed. To accomplish this, the neutralization mount 

shown in FIG. 3.10 was designed.  

Dual color blue/yellow or green/red LED's and a UV LED were mounted on the Cu 

detector mount.  The LEDs are held in place by a collimating lens assembly (Ocean Optics Model 

74 UVHT). These lens holders are made of anodized aluminum with a fused silica (SiO2) lens 
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made to transmit UV light. They have a 3/8” external thread on one end and are threaded for an 

SMA connector on the other end. The Cu detector mount is threaded to hold three of these lenses 

and aim them at the sample. The piece that the SMA connects to is held in place by a set screw 

and can be removed.  

All three lens holders have a common problem. They need to be in line of sight with the 

sample and are therefore exposed to emitted electrons from the sample. The lenses are insulators 

and will charge up and distort the data. Two approaches to eliminate this problem were 

considered. The first was to stop the electrons, but still let the light through. This would require a 

transparent conductor such as indium tin oxide (ITO). While the electrical properties of the ITO 

were acceptable, it will not transmit UV light, thus making it unsuitable for our application. The  

FIG. 3.9. Cross section of neutralization mount fixed to HGRFA. 
Collimating lenses are shown in the foreground and the flood gun in the right rear. One lens is
attached to a fiber optic cable and the other holds the UV LED. There is one more extra position
for future use. 

Flood Gun Extra 
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other approach was to allow the electrons to charge the lenses and shield the charge-induced 

electric field from the detector area. The shielding is accomplished with a high transmission 

copper mesh used in electron microscopy (Ladd Research, Part No. 10415SP; 150 lines per inch, 

130 μm hole diameter, 37 μm wire diameter, ~75% transmission). This mesh was cut with a hole 

punch to fit in the holes in the Cu detector mount and held in place by the lens holders when they 

FIG. 3.10. Details of neutralization mount.  
(a) Four Faraday cups (1.5 mm dia., 5.1 mm deep, 3.4:1 depth-to-diameter ratio) machined in the
Cu mount on a 13.7 mm diameter bolt circle for beam alignment. (b) Faraday cup has been
installed in the upper of the two screws for beam characterization. (c) 7 mm ID beam pipe. (d)
threaded mounting holes for Ocean Optics collimating lenses. (e) Mounting hole for low energy
electron flood gun. (f) 2-56 bolt ring for lead strain relief and future modification. 
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were screwed in place. The mesh screens stayed in place very well, even when the lenses holders 

were removed, nevertheless care should be taken. 

An ultra high vacuum compatible fiber optic for piping light from exterior sources into 

the vacuum system is attached to the third lens holder on the Cu detector mount.  A custom made 

UV transmission, UHV compatible fiber bundle (~6 x 250 μm bare fibers bundled in a Teflon 

tube for wear resistance) 1 m long is attached to the lens holder and to a UHV compatible vacuum 

feedthrough (Ocean Optics, Model VFT-600-40) using standard SMA connectors and UHV 

compatible splice bushings (Ocean Optics, Model 21-02 SS).  The exterior of the vacuum 

feedthrough is connected to various sources using a solarization resistant, high-UV transmission, 

1 m long 600 μm diameter single fiber optic cable. The detailed emission and transmission 

characteristics of these source and fiber combinations has been measured in previous work 

detailed in Otterstrom and Dennsion (2005). 

All of these measures have been installed and the basic operation has been confirmed. At 

the time of this paper, the validity of these upgrades as an effective method of discharging 

negative charge build up has not been investigated. This delay has been fortuitous because there 

now exists an instrument in the detector that is not discussed in this paper but is designed to 

measure surface potential directly (Dennison and Green, 2006c; Hodges, 2010). For this reason 

validation of the UV flooding has been outlined in Section 5.2.4 as future work to be done.  

3.2.2 Other Detector Upgrades 

A 7 mm ID beam tube is visible at the center of this Cu detector mount shown in FIG. 

3.10c. This is a marked improvement from the 5 mm ID beam tube used in previous work. The 

larger tube makes centering of the sample much easier and more repeatable.  

The Cu mount is held in place on the hemispherical shield by two machine screws visible 

in FIG. 3.10b immediately above and below the beam tube. A Faraday cup (referred to as the 

screw Faraday cup; 1.5 mm dia., 10.9 mm deep) is installed in the upper of these two screws. 
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This will allow fairly accurate determination of the beam current with minimum beam deflection 

and with an aspect ratio of 7.3 it will have an efficiency of 92%. Four smaller Faraday cups (1.5 

mm dia., 5.1 mm deep, 3.4 aspect ratio) were machined in the detector housing on a 13.7 mm 

diameter bolt circled centered on the beam pipe. These are shown just outside the beam tube 

diameter in FIG. 3.10. Because of the small aspect ratio, these Faraday cups are only useful for 

beam alignment. These smaller cups make it possible to automate the beam centering process so 

that there is no incident flux on the sample before the yield is measured. 

Five small tapped holes are visible at the outside diameter of the Cu detector mount; 

these are used to secure lead wires.  

3.2.3 Dark Current Measurement 

A timing block diagram of the pulsed-yield measurement setup is shown in FIG. 3.11. As 

can be seen in the figure, a digital TTL signal from the computer DAQ card was used to activate a 

timing circuit that delivers a trigger to the Tektronix 115 pulse generator. The pulse generator 

sends a square-wave pulse (typical pulse duration of 5 μs and 100 ns rise time) to one of the two 

electron guns that emit an electron-beam pulse with an amplitude ranging from 1-100 nA to the 

sample and to the oscilloscope. As with the DC setup, current signals from the collector, 

suppression grid, sample (sample displacement current for insulator samples), and stage were 

measured independently using sensitive ammeter circuitry. However, ammeters used for pulsed 

measurements were optically isolated, fast (1-10 μs rise time), and sensitive (1·108 V/A to 2·106 

V/A) with low internal noise (0.6-3 nA noise level). Generally, an ammeter amplification of 2·107 

V/A (with a response time of ~1 μs) was used for signal processing. These signals were captured 

using a Tektronix TDS 2100 500 MHz digital storage oscilloscope with 1GS/s sampling rate. 

Details of the current measuring circuitry are provided in Zavyalov (2003). The response time of 

the electrometers and the electron gun ultimately define the shortest pulse the system is capable 

of measuring. Pulses from the Staib gun into a Faraday cup are shown in FIG. 3.12. Pulse widths  
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supplied by the generator were 2 µs, 3 µs, 4 µs, 5 µs, 7 µs, and 10 µs duration square waves. As 

seen in FIG. 3.12, electron pulse profiles emitted from the gun were not square or symmetric in 

time. It might be possible to further push the sensitivity of the pulse yield system by calculating 

the yield point for point throughout the duration of pulse rather than integrating it to calculate the 

yield. This process will be outlined in Section 5.2.6 as an item of future work.  

As with the DC setup, the pulsed-data acquisition and analysis setup was fully automated 

using LabVIEWTM. In the pulsed system described by Thomson, two of the four measured 

currents (detector, sample, grid and stage) were measured using the integrator circuits detailed in 

FIG. 3.11. Timing diagram of pulse yield system.  
The sequence starts in the red box. For the first iteration the sequence is started by the user. For
all subsequent iterations the sequence will repeat until the stop condition is met with a user
defined value for the number of pulses. 
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Zavyalov (2003). These circuits integrate the entire signal from beginning to end. If the signal is 

clean before and after the pulse, this method is adequate. However, it was found that the two 

signals measured by the integrators (grid and stage; particularly the stage) contain more noise 

than the other two. This leads to inaccurate measurements of the yield. To overcome this, a four 

channel Tektronix digital storage scope is used to measure all currents. LabVIEW then integrates 

all the traces to calculate the total current from each element. In this way, only the current during 

the pulse is measured. This is illustrated in FIG. 3.13a by the region between the shaded areas.  

Although the data before and after the pulse (as seen in FIG. 3.13a) are not contributing 

to the yield, they can be used to determine the dark current offset. This is accomplished in 

LabVIEW by averaging all the data before (15 μs) and after (10 μs) the pulse and subtracting it  

 

FIG. 3.12. Pulse profiles for the Staib gun at 1 keV as measured by the Faraday cup. 
Similar profiles were seen in sample current profiles. Pulse widths supplied by the generator
were 2 µs, 3 µs, 4 µs, 5 µs, 7 µs, and 10 µs duration square waves. As seen in the figure, electron
pulse profiles emitted from the gun were not square or symmetric in time. 
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FIG. 3.13. Electron pulses measured on oscilloscope. 
(a) Typical signal captured on Tektronix oscilloscope from Kapton HN measuring the total
yield (i.e., with 0 V bias on grid). Blue data are measured from the sample, red are from the
collector. (b) Data showing the grid and stage current during a pulse with 0 V bias on the grid
(c)  Shows collector and sample current during a pulse with -50 V on the bias grid. (d) Data
showing the grid and stage current during a pulse with -50 V bias on the grid. Note the large
stage signal to the stage due to SE being repelled from the grid. (e) Noisy signal from a total
yield measurement from the sample and collector respectively. (f) Noisy signal from stage
and grid. Note the relatively large peaks in the normally quiescent signal well before and well
after the pulse, for example the peaks at ~20 μs and ~70 μs. 

(a) (b) 

(c) (d) 

(e) (f) 
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from the entire signal, illustrated by the shaded region in FIG. 3.13a. This effectively zeros the 

current signal for each pulse.  

In addition to zeroing the signal and providing a more accurate calculation, these data are 

used as rejection criteria. Despite all the pains taken to minimize the noise in the system, there 

remains troublesome intermittent noise. This noise is not constant and effects only approximately 

one pulse in seven; but in that one pulse noise can significantly distort the signal (see FIG. 3.13f-

e). For this reason there is a user defined threshold for the standard deviation of the pre- and post-

pulse data. If the threshold is exceeded, the entire pulse is discarded. This threshold (typically set 

at value of 4-10-13 C) is not constant from day to day, but seems to be adequate for one day’s 

worth of data acquisition. Efforts have been made to eliminate this noise altogether, but they have 

all failed. There are some clues to its origin in the fact that it is largest in the stage current that 

shields the other elements (see FIG. 3.13f). Other detector elements register it as well, but appear 

to be inverted. This suggests capacitive coupling. Also the noise seems to get worse during the 

middle of the day and then better later on. This is roughly consistent with the buildings power 

consumption; it should be noted that the laboratory is near the buildings transformers and power 

relays. This is an unconfirmed hypothesis and needs further exploration, but for the time being 

rejecting bad data provides adequate capabilities.   

3.2.4 Beam Characterization 

Up to this point all the efforts to mitigate surface charging have focused on charge 

neutralization (electron and UV flooding) and incident beam flux minimization. However, charge 

accumulation is not a function of the flux (beam current), but the flux density (beam current per 

unit area). The work done previously has paid little regard to the spot size as beam current alone 

was assumed to be sufficiently low as to not induce a surface voltage of any significance. Given 

the data shown in Section 4.2.2.5, it is clear that the probe beam is capable of causing significant 

charging in some materials. For this reason it is necessary to normalize the spot size over the 
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entire energy spectrum of the gun so that the flux density would be the same if beam current was 

kept constant. This allows only the yield and resistivity to affect the surface potential from one 

beam energy to the next. 

The beam profile was measured using a Faraday cup (FC) residing in the analysis 

chamber and mounted on a computer controlled translation stage with 0.7 μm resolution. Using 

translation and rotation the pulsing beam is centered in the FC using as little beam deflection as 

possible to limit beam distortion. Once centered, the FC is moved in 0.19 mm steps with the 

current from the pulse beam measured at every step. In the interest of time, the spatial resolution 

of this test was set at 0.19 mm; but for future studies, the resolution is limited only by that of the 

stage (0.7 μm), and the sensitivity of the FC current to small changes in position.   

The FC is a circular aperture with a 5.5 mm diameter that is surrounded by a tertiary 

shield in the shape of a washer. The current on both elements is measured independently and the 

whole unit is mounted in the sample carousel that also has independent current monitoring. Using 

a small ~0.1 mm spot size, it is possible to profile the surface of the FC by scanning the beam 

across it as shown in FIG. 3.14. 

Mapping the FC surface is an interesting and useful exercise to determine accuracy of 

this method. To determine the profile of the beam, we need to look at the FC current as the beam 

enters over the sharp lip of the FC. If the diameter of the beam is smaller than that of the FC then 

the method of beam characterization is straight forward. It is assumed that the beam has a 

Gaussian distribution and since the FC is bigger than the beam, we can approximate it as a step 

function. This allows the deconvolution of the two functions to be accomplished by fitting the 

measured FC current with a Gaussian. The FWHM of the fit is the diameter of the beam. These 

profiles and their fits are shown in FIG. 3.15 and FIG. 3.16. If the beam is larger than the FC, it is 

necessary to deconvolve the Gaussian beam with a circular aperture rather than the simple step  
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function. For this study the beam was significantly smaller than the FC, so the simpler step 

function deconvolution is used here. 

A complete series of profiles was taken at energies that span the range of the gun. By 

fitting each, the gun settings were found that provided a consistent pulsed spot diameter of 

1.7±0.1 mm. 1.7 mm was chosen because that is the largest size obtainable at 5000 eV; at lower  

 

FIG. 3.14. Staib electron gun DC beam profile and Faraday cup. 
The width of the electron beam and features of the Faraday cup are evident as the Faraday cup is
translated past the electron beam. 
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FIG. 3.15. Staib electron gun pulsed beam profiles  
(a) Beam profile at 50 eV with grid setting of 1.74 and focus at 0.69. (b) Beam profile at 80 eV
with grid setting of 1.75 and focus at 0.79. (c) Beam profile at 100 eV with grid setting of 2.21
and focus at 0.91. (d) Beam profile at 200 eV with grid setting of 2.37 and focus at 1.18. (e)
Beam profile at 300 eV with grid setting of 2.41 and focus at 1.41. (f) Beam profile at 1000 eV
with grid setting of 2.62 and focus at 1.57.   

(a) (b) 

(c) (d) 

(e) (f) 
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energies, larger sizes are possible, but it will not be possible to normalize them over the full range 

of the Staib gun.  

Because of the difficulty of these measurements it is not possible to measure a profile at 

every energy that might be of interest. It is assumed that the spot size has some consistent relation 

to the grid and focus settings on the gun. The red and green data FIG. 3.17 show the settings for 

the Staib gun at the normalized spot size of 1.7 mm. It was found that a double exponential, of the 

form 

),exp()exp()( dxCbxAyxy o −+−+=  (3.0) 

fit the settings for the grid and focus. The fits are also shown in FIG. 3.17, with fitting 

parameters tabulated in TABLE 3.2. This fit provides settings for the gun at any desired energy 

FIG. 3.16. Continued Staib electron gun pulsed beam profiles. 
(g) Beam profile at 2000 eV with grid setting of 2.8 and focus at 1.9.(h) Beam profile at 3000 eV
with grid setting of 2.93 and focus at 2.18. (i) Beam profile at 4000 eV with grid setting of 2.92
and focus at 2.3. (j) Beam profile at 5000 eV with grid setting of 2.89 and focus at 2.32. 

(g) (h) 

(i) (j) 
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to maintain the spot size at ~1.7 mm. It should be noted that the fit is not valid for energies less 

than 70 eV as there is insufficient data at the low end of the curve where the data are changing 

most dramatically.  

The settings found in this section should be used with the Staib gun whenever surface 

charging is critical. This includes yield measurements, decay curves and charge accumulation 

measurements. All the data presented in Chapter 4 have been taken using the setting describe in 

this section. It should also be noted that these settings are only valid for the pulsed Staib gun. 

Other setting need to be use while using the gun in DC mode, but typically charging is of little 

concern while operating in this mode. Settings for the high-energy Kimball gun are also not 

included here and would need to be profiled in the same manner to provide a uniform spot size 

before an investigation could be conducted.   

 
 
 
 
 

FIG. 3.17. Grid and focus settings for Staib electron gun.  
The red data are the grid settings for the Staib gun at a spot size of 1.7 mm FWHM. These data
are fit with a double exponential fitting function. The green data are the settings for the focus and
are also fit with the same function.    
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TABLE 3.1. Measured spot sizes and corresponding gun settings 

Beam 
Energy 

(eV) 
Grid Setting Focus Setting 

Spot Size 
FWHM 
(mm) 

50 1.74 0.69 1.7±0.2 
80 1.75 0.76 1.8±0.2 

100 2.21 0.91 1.8±0.2 
200 2.37 1.18 1.8±0.2 
300 2.41 1.41 1.8±0.2 

1000 2.62 1.57 1.6±0.2 
2000 2.8 1.9 1.6±0.2 
3000 2.92 2.18 1.6±0.2 
4000 2.93 2.30 1.7±0.2 
5000 2.89 2.32 1.6±0.2 

 
TABLE 3.2. Fitting parameters for Staib gun grid and focus. 

 
 
Fitting Parameter 

Grid Focus 

Value Error Value Error 

yo 2.9 0.1 2.6 0.3 
A -0.6 0.2 -1.4 0.2 
b 0.0007 0.0006 0.0003 0.0002 
C -1.4 0.7 -1.0 0.2 
d 0.02 0.01 0.010 0.005 
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CHAPTER 4 

4 INSULATOR MEASUREMENTS 

The instrument described up to this point has been characterized and validated. It is now 

possible to discuss yield measurements taken on progressively more charge susceptible insulators. 

Susceptibility to charging is a function of total yield and resistivity. The total yield defines how 

quickly a material will accumulate charge. Resistivity (both DC and RIC) defines how well 

charge is transported away from the surface, through the bulk of the material and to a grounded 

substrate. Therefore, to determine the effectiveness of the pulse yield system for measuring the 

minimally charged yield of an insulator, we consider a progression of more challenging materials. 

First we examine CP1, a material similar to Kapton HN that has a low total yield of (σmax~1.4) 

and a relatively low conductivity (~10-19 (Ω-cm)-1) (ManTech, 2010). With a resistivity in this 

range, the charge decay time will be several days and will therefore dissipate any charge build up 

in that time frame. Next, we investigate the polyimide Kapton HN (DuPont, 2010). This material 

has a slightly higher yield (σmax ~2.2), and has low conductivity (~10-19 (Ω-cm)-1), again leading to 

a decay time of several days. This material is a good test of our discharge methods and is 

representative of most of the materials of interest for space-based application. Finally, we 

consider polycrystalline aluminum oxide with a high yield (σmax =~7) and low conductivity (~10-

16 (Ω-cm)-1) (Donegan et al., 2010). This material accumulates charge quickly and retains it for 

tens of minutes. This material not only tests our discharge methods, but also our minimum probe 

pulse current and ultimately our noise floor.  

The three materials presented in this chapter are shown in three subsections (Section 4.1-

4.3). Because these subsections are of great interest to the spacecraft charging community as a 

whole, they have been written and formatted is such a way as to make them independent from the 

rest of this thesis and from each other. For this reason there will be considerable repeat 

information presented for each material. This can be tedious to a reader interested in this entire 
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document, but it will allow a more rapid and widespread dissemination of the information 

contained herein. 

4.1 Low-Conductivity Low-Yield Material (CP1)  

This material was part of a broader study, and is being explored as material for use as a 

solar sail by NASA JPL. The bulk density of LaRCTM-CP1 is tabulated as (1.434 ± 0.02) 104 

kg·m–3 by the manufacturer of these materials (ManTech, 2010). Much of the information 

contained in this section is repeated in a report generated by the MPG. The data presented there is 

of greater detail, so if there is information required about the material it is likely found in the full 

JPL report (Dennison et al., 2006a). 

4.1.1 Material Characterization  

The SRS Technologies solar sail sample is a layered material comprised of ~2.5 ± 0.2 μm 

fluorinated polyimide with ~80 ± 10 nm vapor deposited aluminum on the back side as given on 

the manufactures product sheet (ManTech, 2010). No compositional analysis was available for 

the sample from manufacturer. The sample substrate is a 2.5 μm thick CP1 fluorinated polyimide 

(PI) material developed by NASA Langley Research Center and manufactured by SRS 

Technologies. The CP1 material is closely related to polyimide, manufactured by DuPont under 

the trade name KaptonTM HN. The polymer repeat unit, or mer, for polyimide is shown in FIG. 

4.1; it has an atomic composition of C22O5N2H10. This material is a fluorinated polyimide 

accomplished by some number of F’s replacing H’s, although the exact formula is proprietary. 

However, a range of compositions can be considered when one or more of the ten hydrogen 

atoms in the polyimide mer shown are substituted by fluorine atoms. It is believed that CP1 has 

an atomic composition of C22O5N2FnH10-n.  

In some portions of the material there are embedded KevlarTM fibers, on the order of ~1 

μm diameter. The relative amount of Kevlar to CP1 varies for different portions of the material. 
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The polymer repeat unit, or mer, for Kevlar has an atomic composition of C14O2N2H8. Because 

the relative concentration of Kevlar to CP1 is unknown, it has been neglected in this discussion. 

The back surface is coated with ~80 nm thick vapor deposited Al (VDA). The aluminum 

as deposited is usually of high purity, but will become oxidized after deposition. Typical 

aluminum oxide (Al2O3) layers formed in atmosphere are on the order of ~2 nm (Boggio and 

Plumb, 1966).  This is only perhaps 2-3% of the VDA layer by thickness. 

There was a 2.5 μm dielectric film (CP1) covering the conducting Al sample. The 

tabulated value of the dielectric constant for CP1 at 1 MHz and 30% relative humidity is 2.77 

(ManTech, 2010). Bulk resistivity of the sample is listed as the tabulated value of the bulk Al 

resistivity of (2.655 ± 0.004) 10-8 Ω-m (Lide, 1993). The tabulated value of the CP1 bulk 

resistivity is not available. The bulk conductivity was measured with the charge storage methods 

to be ~2·10-19 (Ω-cm)-1 under vacuum conditions (Green et al., 2006b). Surface resistivity was 

calculated based on thickness measurements and the tabulated bulk resistivity values. 

For comparison, the tabulated value of the bulk resistivity of Kapton measured with 

constant voltage conductivity methods is 1.5·10-18 (Ω-cm)-1 at 50% relative humidity (DuPont, 

2010). The bulk conductivity of Kapton was measured with the charge storage methods to be 

~9·10-20 (Ω-cm)-1 under vacuum conditions (Dennison et al., 2006b).  

FIG. 4.1. Possible structure of CP1 mer C22O5N2FH9. 
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The radiation induced conductivity was not measured for CP1, but we can approximate it 

with the values measured for Kapton HN. This can be done because of the chemical similarity of 

the two polymers.  

Reflectivity measurements were made for the sample over a range of photon wavelengths 

of ~200 nm to ~1100 nm (~1.1 eV to ~6.2 eV), shown in FIG. 4.2 and FIG. 4.3 . Measurements 

were made using a grating spectrometer (Ocean Optics, Model HR4000) with a resolution of 0.6 

meV (0.75 nm) and 0.2 meV (0.25 nm) data increments. A deuterium/tungsten halogen dual light 

source was used. An Al high-reflectivity specular reflectance standard (Ocean Optics, Model 

STAN-SSH) was used with a UV-enhanced fiber optic reflectivity probe. Measurements had an 

estimated uncertainty in reflectivity of ±5%. 

Four separate spectra were taken at four different locations on each sample surface. These 

four spectra were averaged; no appreciable variations were observed between these spectra. Dark 

current spectra were subtracted from both the average sample spectra and the reflectivity standard 

spectra; the reflectivity was found as the ratio of these two differences. 

A plot of the specular reflectivity at normal incidence as a function of energy is shown in 

FIG. 4.2a; a similar plot versus wavelength is shown in FIG. 4.3a. A plot of the diffuse 

reflectivity with both the source and detector in the same fiber optic reflectance probe at 45° from 

normal as a function of energy is shown in FIG. 4.2b; a similar plot versus wavelength is shown 

in FIG. 4.3b. 

The specular reflectivity of the SRS solar sail sample CP1 side was highly reflective, 

between 55% to 85%, at lower energies from ~1.2 eV to 3.0 eV. The CP1 sample has a sharp 

drop off and has a reflectivity of <10% from ~3.7 eV to 4.8 eV. The sharp drop off is identified as 

an absorption edge in the CP1. The increase in reflectivity above 4.8 eV may result from noise in 

the lower amplitude signals from both the sample and the reflectance standard above 4.5 eV.  
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(a) 

(b) 

FIG. 4.2. Reflectivity of CP1 as a function of incident energy. 
(a) Specular reflection, for normal incidence. (b) Diffuse reflectance for 45° incidence and
scattered light. 



63 

 

FIG. 4.3. Reflectivity of sample as a function of incident wavelength. 
Note logarithmic wavelength scale. SRS—CP1 side. (a). Specular reflection, for normal
incidence. (b) Diffuse reflectance for 45° incidence and scattered light. 
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(b)

Wavelength (nm) 
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The reflection spectra exhibits oscillations in intensity that are approximately evenly 

spaced with 97 meV between peaks, over an energy range of ~1.2 eV to 4.0 eV. The phenomenon 

is explained as a thin film interference pattern. It can be shown that for this process ΔE=hc/2nt, 

where ΔE is the energy difference between maxima, h is Planck’s constant, c is the speed of light 

in a vacuum, n is the index of refraction (n is 1.58 for CP1 (ManTech, 2010)), and t is the CP1 

film thickness. Based on this model, the CP1 film thickness is found to be ~4 μm, in reasonable 

agreement with the thickness of ~2.5 μm listed by the manufacturer.  The disagreement may be 

due in part to the presence of Kevlar, which is not taken into account in the calculations. The 

magnitude of the intensity oscillations is relatively constant with increasing energy, up to the 

sharp drop-off in intensity. The point at which the oscillations are fully damped is in very good 

agreement with the UV cut off at 320 nm (3.88 eV) listed by the manufacturer (ManTech, 2010).  

Typically, a measure of reflectivity cannot easily reveal an absorption edge, but the 

nature of this layered material makes this possible. Recall that the back of CP1 is coated with 

highly reflective VDA and acts as a mirror. Photons impinge on the surface and some are 

reflected while the rest enter the material, travel through it, reflect off the reflective VDA and 

interfere with the light initially reflected. 

For reference, optical images were taken using an Olympus BX41 microscope and are 

shown in FIG. 4.4 and FIG. 4.5. What is interesting to note in these photos is the extensive 

damage of these samples. This material was flight-ready and fully qualified, so this level of 

damage is surprising. 

We have developed a composite function to approximate the range, R, which an incident 

electron travels before all kinetic energy is lost and the electron comes to rest in the material 

(Wilson and Dennison, 2010). The function is applicable over more than six orders of magnitude  
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FIG. 4.4. Optical micrographs of the CP1 side of the using the Olympus BX41 microscope. 
(a-c) Images at 150x magnification showing an image of size 0.64 mm (h) x 0.98 mm (w). (d)
Images at 300x magnification showing an image of size 0.32 mm (h) x 0.49 mm (w). Image
shows an apparent tear in the material. (d-f) Images at 300x magnification showing an image of
size 0.16 mm (h) x 0.25 mm (w). Image shows details of an apparent tear in the material. (f)
Images at 300x magnification showing an image of size 0.32 mm (h) x 0.49 mm (w). 

(a) (b) 

(c) (d) 

(e) (f) 
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in energy (~3 eV to ~ 3 MeV) and range (10-9 m to 10-3 m), with ~20% uncertainty for a very 

broad range of conducting, semiconducting, and insulating materials. This is accomplished by 

fitting data from two standard NIST databases (ESTAR) (NIST, 2010a) for the higher energy 

range and inelastic mean free path (IMFP) (NIST, 2010b) for the lower energy electron inelastic 

mean free path). In turn, the data in the NIST databases have been fit with well established semi-

empirical models for range and IMFP that are related to standard materials properties (e.g., 

density, atomic number, atomic weight, stochiometry, and band gap energy or plasmon energy). 

A single free parameter, the effective number of valence electrons per atom Nv, is used to predict 

the range over the entire energy span. 

(a) (b) 

(c) (d) 

FIG. 4.5. Optical micrographs of the CP1 side using the Olympus microscope.  
(a-b) (d) Images at 750x magnification showing an image of size 0.13 mm (h) x 0.20 mm (w). 
(c-d) Images at 1500x magnification showing an image of size 0.064 mm (h) x 0.10 mm (w).  
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Electron ranges at high energies using the continuous-slowing-down approximation 

(CSDA) are given by the NIST ESTAR database spanning incident energies from ~10 keV to ~1 

GeV. The CSDA for range is a very close approximation to the average path length traveled by a 

charged particle as it loses energy and comes to rest. In this approximation, the rate of energy loss 

(total stopping power) at every position along the penetration path is assumed constant and equal 

to (dE/dx)=Eb/R; energy-loss variations with energy, E, or penetration depth, x, are neglected. 

The CSDA range is obtained by integrating the reciprocal of the total stopping power with respect 

to energy (Spencer, 1955; Reimer, 2000) (or equivalently, the stopping power) over the full 

penetration depth such that ܧ௕ ൌ ׬ 
ௗா
ௗ௫

ோ
଴ This implies ௗா .ݔ݀

ௗ௫
ൌ ௕ܧ

ܴൗ ൌ ௠ܧ
௠ൗߣ is a constant, with 

Em equal to mean energy lost per collision occurring at mean free path λm. A reasonable 

approximation for Em is the geometric mean of the plasmon energy (as determined from ܧ௣ ൌ

ħሺ ௏ܰݍ௘ଶ ݉௘ߝ଴⁄ ሻଵ ଶ⁄ ) and the bandgap energy times an empirically determined factor of ~3 (Alig 

and Bloom, 1975).  

The ESTAR database (NIST, 2010a) range data are fit using a modified power law 

formula for the energy dependence of the range, based on the Bethe stopping power formula 

(Bethe and Heitler, 1934) as extended by Tanuma et al. (2005). This formula uses the bandgap 

energy for semiconductors and insulators and the plasmon energy (or equivalently Nv) for 

conductors as fitting parameters. Direct extrapolation of the range from the ESTAR data to lower 

energies is not valid for energies comparable to the atomic electronic structure, typically a few 

keV and below, because the discrete energy nature of the collisions becomes important. 

The NIST Electron Inelastic-Mean-Free-Path Database provides values of electron IMFP 

in solid elements and compounds at selected electron energies between 50 eV and 10 keV 

(although most of the available data are for energies <2 keV) (NIST, 2010b). This database was 

designed mainly to provide IMFPs for applications in surface analysis by Auger electron 

spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). It provides IMFP information 
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for each material from up to three types of sources: calculated IMFPs from experimental optical 

data for a limited number of materials, IMFPs measured by elastic-peak electron spectroscopy 

(EPES) for some elemental solids, and IMFPs from predictive formulae for all materials. The 

calculated and measured IMFPs were fit with the standard TPP-2M formula used to predict the 

IMFP over an energy span of ~50 eV to ~30 keV (Tanuma et al., 2005). 

A simple extension of the CSDA can relate the range to the electron IMFP, where 

ௗா
ௗ௫
ൌ ௕ܧ

ܴሺܧ௕ሻൗ ൌ ቂܧ௠ ௕ሻൗܧ௢ሺߣ ቃ ൫1 െ ݁ିா್ ா೘⁄ ൯.  Here the stopping power is again assumed equal 

to the total energy lost (incident energy) divided by the total distance traveled (range). This is set 

equal to the mean energy lost per collision, Em, divided by the mean distance traveled per 

collision all times the probability that a collision occurs, ൫1 െ ݁ିோ ఒ೘⁄ ൯=൫1 െ ݁ିா್ ா೘⁄ ൯.  Here, 

the energy dependence in the range is fully contained in the energy dependence of the mean free 

path. For Eb>Em, λo(Eb) is assumed to be given by the TPP-2M formula used in the NIST IMFP 

database, while for Eb<Em, the IMFP is constant and equal to the IMFP at the mean energy loss or 

λo(Eb)=λm. Zangwill also presents a universal curve of mean free paths for conductors at lower 

energies (Zangwill, 1988), which provides an estimate of the IMFP below ~50 eV. As a final 

step, the power law fit of the ESTAR data and the extended range formula based on the TPP-2M 

fit to the IMFP data are set equal at points in the intermediate incident energy span; this allows a 

composite fit to the data with only a single fitting parameter. 

Plots of the range for Kapton HN based on this method are shown in FIG. 4.6. A 

complete discussion of this calculation is beyond the scope of this work but is discussed in more 

detail by Wilson and Dennison (2010). 
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4.1.2 Electron-Induced Emission 

To measure points on the yield curves at a particular energy, a series of ~10 to 200 or 

more pulses at constant incident energy are measured with ~5 sec of neutralization between each 

pulse using both low energy electron flooding and visible-ultraviolet flooding as described in 

Section 3.2. A similar series of pulses at fixed incident energy, taken without neutralization, 

constitute so-called electron yield decay curves. For each curve there are speculations about the 

effects that charging is having on the yield. These are only speculations at this point, but they do 

provide a useful back drop for the discussion.  

Data are then presented for BSE yields. At this point it is necessary develop methods for 

determining the crossover energies and electron emission spectra. These two data sets, taken 

together, help to explain some of the anomalous results seen in the preceding sections.  

FIG. 4.6. Penetration range of Kapton HN.  
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Finally, a decay curve is measured to establish the susceptibility of CP1 to charging. 

These data indicated that CP1 is not particularly charge susceptible despite the obvious charging 

features seen in the sections above. This might be explained by the application of RIC to our 

understanding of how the material charges (Dennison et al., 2007).  

4.1.2.1 SE Yield 

Measurements of the SE yield were made using the pulsed system, due to initial problems 

with surface charging of the samples with the DC system. FIG. 4.7a shows the SE yield as a 

function of incident electron energy, with energy on a log scale. The green line in FIG. 4.7a is a 

best guess at what the yield curve might look like without the effects of charging. The overall 

shape of this line is based on the 5 parameter fit used by NASCAP 2K modeling code (Mandell et 

al., 2001) to model the electron yield curve. It was projected by assuming the yields at the 

crossover energies are unaffected by charging. It is used to provide a guide only and while it is 

based in SE yield theory two points (E1 and E2) are not enough data to provide anything more 

than an educated guess. 

Values obtained for the SE yield parameters for CP1 surfaces of SRS Solar Sail have not 

been measured previously. The best fit to the SE yield curve was provided by the NASCAP five 

parameter SE yield model. For this model, we found values for the five parameters of δmax = (1.10 

± 0.01) electrons/electron, Emax = (0.17 ± 0.01) keV, b1/ b2 = (0.32 ± 0.02), n1 = (0.47 ± 0.1) and 

n2 = (1.55 ± 0.01). The values for the five parameter fit values differ from those stated in the 

original JPL report for CP1 (Dennison et al., 2006a). This is due to an error in the calculation of 

b1/ b2  and is corrected here. 

It is interesting to note that the general shape of the secondary electron yield curve for the 

CP1 side of the sample (excluding the regions from 600 eV to 1600 eV and 6000 eV in FIG. 4.7a) 

is rather similar to the secondary electron yield curve of the Al side of the same sample (FIG. 

4.7b). Recall that this material has CP1 on one side and a thin coating of VDA on the other. The  
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FIG. 4.7. Yields from CP1 and VDA. 
(a) Total, SE and BSE yields as a function of incident electron energy on CP1. (b) Total SE and
BSE yields of the oxidized VDA side of the material shown here for comparison to the CP1 side
of the material. The dashed horizontal line indicates a yield of one and the two vertical lines
indicate when the total yield changes from a negative to a positive regime, E1 and E2 respectively.
The green lines in both plots indicate a best guess at an uncharged total yield. 

E1 E2 

E1 
E2 

(a) 

(b) 
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overall magnitude of the CP1 secondary electron yield curve, however, is a factor of ~2.2 smaller 

than that from the oxidized Al of the SRS sample.  In fact, δmax for the CP1 side is much closer to 

that of unoxidized Al (Dennison et al., 2006a), which is near δmax=1. It is interesting to speculate 

that this may somehow result from the CP1 yield curve partially originating from the unoxidized 

rear surface of the 80 nm vapor deposited Al of the SRS sample. Insulators are known to have 

significantly longer inelastic mean free paths than conductors, as a result of the presence of a 

band gap that inhibits scattering of low energy electrons. The absorption edge seen in the 

reflectivity measurements of CP1 on Al clearly indicates a band gap of ~4 eV in CP1 (ManTech, 

2010). Most emitted secondary electrons have energies less than 4 eV (see FIG. 2.4) and would 

therefore have a longer inelastic mean free path. Still, it would be surprising but not impossible 

for the secondary electron to have an inelastic mean free path as large as 2 μm, the thickness of 

the insulating side. A rough approximation for the inelastic mean free path of a SE as it makes its 

way to the surface is ~0.2 μm (Donegan et al., 2010). 

Figure 4.8a shows the total and BSE yields for CP1 with curve discretized into several 

distinct areas (zones 1-6) and specific energies (A-C). At first glance this curve does not seem to 

make much sense, as it does not follow the typical profile one would see in an uncharged 

conductor. If we take each section in turn and apply what we know about penetration range, 

internal charge distribution and how that charge will affect the yield, we can start to speculate 

about the deviation of the measured (charged) yield from the ideal uncharged (green curve in 

FIG. 4.7a) yield.  

We start by identifying the zones and points of interest in FIG. 4.8a. In zone 1 below E1 

SE yield is not affected by charge. At these energies the IMFP of the SE is greater than the 

incident electron IMFP. Also, below 50 eV BSE cease to be defined and σ=δ. In this energy 

range the DDLM is not an accurate model. At point A (namely E1) there is no net charging by 

definition. Here E1 is less than the minimum in the IMFP curves so the DDLM is again 
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inapplicable. Zone 2 spans from above E1 to below E2 and makes up the section of the total yield 

curve that results in positive charging. As such, the total yield curve is depressed due to positive 

sample charging and the subsequent reattraction of some SE’s. The BSE yield in the section is 

unaffected by the relatively small positive surface potential. Point B (namely E2) is accurate as 

there is no net charge accumulating on the sample and σ=1. The BSE yield at this point is also 

accurate. Zone 3 for E2<Eo<~1200 eV is above the true uncharged total yield depicted by the 

green line. This may result from extra SE from the depletion region (surface side of the negative 

deposition layer at the penetration depth R) that are accelerated out due to the large electric field 

from the negative layer at R. We will also observe that the BSE are near normal or slightly 

depressed. Zone 4 in the range of 1200 eV <Eo<1500 eV total yield is still above the true yield , 

but decreasing as many of the SE’s are accelerated up into the BSE range (>50 eV). In this 

section we start to see an increase in the BSE yield as we would expect. At about 1500 eV at 

point C there is a large jump up in the BSE yield at the expense of an approximately equal 

decrease in δ and a commensurate drop in the SE yield. This occurs as the peak in the electron 

emission spectrum (nominally at ~4 eV) is accelerated to greater than 50 eV by a large net 

negative surface potential. That is, SE from the depletion region are now being measured as extra 

BSE as they meet the criteria of having energies over 50 eV. In zone 5 the total yield is enhanced 

because of the negative surface potential and the acceleration of the SE up into the BSE range. In 

zone 6 total and BSE yields largely to return to the idealized uncharged green curve as essentially 

all SE have been accelerated to BSE and the number of SE that can be accelerated continue to fall 

with increasing incident energy.  

This could be due to a physical breakdown in the material; that is to say, the surface 

voltage Vs exceeds the voltage for electrostatic breakdown Vesd typically 278 MV/m or ~700 volts 

for Kapton HN. However, given Eo at zones five and six boundary at ~6000 eV and E2
eff≈ 3100 

eV, this doesn’t appear to be related to Eesd. The notion of the PE being reflected by the surface  
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FIG. 4.8. Discretized and residual yield for CP1. 
(a) Total yield (black) and BSE (red) for CP1 showing zones 1-6 and points A-C as discrete
regions of charging behavior. (b) The difference between the idealized fits to the total (green line
in figure 4.1.5), SE (5 parameter fit) and BSE (3 parameter fit in FIG. 4.7) and the data from CP1
that exhibits evidence of charging. 
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potential (i.e. mirror method) suggests a surface voltage at equilibrium charge with an effective 

total yield of unity at a landing energy of Eb–E2 (or perhaps Eb–E2
eff). The observed transition 

from zone five to six occurs at ~6000 eV for CP1, that is 5350 eV above E2. 

4.1.2.2 BSE Yield 

Measurements of the BSE yield were made using the pulsed system, as was done for the 

SE yield. The BSE yield as a function of incident electron energy is shown in FIG. 4.9, with 

energy on a log scale. The plots include the NASCAP one parameter fit and an extended three 

parameter fit to the BSE yield curve (Mandell et al., 2001) (note, these fits are heavily influenced 

by the enhanced BSE yields in zones four and five). Zeff, referred to as the effective atomic 

number, a fitting parameter for BSE yield has no direct relation to atomic number (Levy et al., 

1985). The fitting parameters for the extended fit of the maximum value of the CP1 side of the 

samples BSE yield was found to be (0.45 ± 0.02) electrons/electron. Our measured energy for the 

CP1 side of the samples has a maximum BSE yield of (0.27±0.01) keV. The value of Zeff for the 

one parameter NASCAP fit to the BSE yield curve of the SRS Solar Sail sample of Zeff = 13.0 ± 

0.5. The NASCAP fit is not a good fit, but it is shown here to highlight the inadequacy of the 

model for BSE used in the modeling code.  

The eccentricities of this curve are speculated on in Section 4.1.2.1 and are not repeated 

here as they are intimately tied to the charging induced behavior of the SE’s. The green line in 

FIG. 4.9 is an estimate of at the BSE yield without charging effects. The three parameter fit 

plotted in this figure is usually a good fit, but it is distorted here because it is not able to account 

for the SE→BSE shift in zones four and five.  

4.1.2.3 Determination of Crossover Energies 

Determination of the two crossover energies E1 and E2 is a key point in the understanding 

of the charging behavior of a material, as seen in the previous section. These two points provide 
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fixed points for all the fits that may be preformed. As such it is important to use several methods 

of determination to bolster our confidence in crossover values. This section describes several 

independent methods for finding the crossover energies.  

The crossover energies have been determined using four methods (Abbott and Dennison, 

2005). Values for the first and second crossover energies are compared in Table 4.1. 

TABLE 4.1. Crossover energies determined by various methods 
Method CP1 Crossover Energy (eV) 
Yield 
Curve 

E1: 61±2 
E2: 650±20 

Null 
Current 

E1: 54±1 
E2: 660±20 

Spectral 
shift 

E1: 65±5 
E2: NA 

BSE-to-
SE Ratio E2: 600±30 

Best 
Estimate 

E1: 60±5 
E2: 640±20 

FIG. 4.9. Backscattered  electron emission yield curve for CP1. 
The plot includes the NASCAP one parameter fit and an extended three parameter fit to the BSE
yield curve.    
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Yield Curve Method: The first method simply interpolates the yield curve data to 

determine where the total yield is unity. This can be seen in FIG. 4.7a as the green line crosses the 

horizontal dashed line indicating a yield of one.   

Null Sample Current Method: The second method takes advantage of the fact that when a 

crossover is reached, the charge entering and leaving the material exactly balance and the sample 

current is zero. Since it is difficult to take high-resolution measurements in energy, a linear 

regression of the energy verses sample current gives us the intercept point.  

Spectral Shift Method: The third method determines the onset energies of sample 

charging as indicated by shifts in the sample SE peak in the electron emission spectra.  

Specifically, the crossover energy is found as the energy midway between an unshifted (or more 

correctly, slightly left shifted peak due to smaller positive charging) emission spectrum for which 

the grid and sample SE peaks are not separated and a shifted (or more correctly, a largely right 

shifted peak due to larger negative charging) emission spectrum. This effect can be seen in data 

presented in Section 4.1.2.4.  

SE-to-BSE Ratio Method: A fourth method provides crude determination of the second 

crossover energy. Above the second crossover energy, the sample charges negatively and SE are 

imparted extra energy as they leave the charged sample surface.  When the surface has charged to 

perhaps -45 V, the low-energy SE electron in the peak of the emission spectrum have more than 

50 eV and are counted as BSE electrons rather than SE electron. This produces a sharp jump in 

the BSE yield and concomitant decreases in the SE yield above the second crossover energy. This 

method only works for insulators. The resolution of the SE-to-BSE ratio method is limited by the 

necessity to shift the majority of the SE with energies near the SE peak to more than 40 eV to 

enhance the BSE yield over the SE yield. Depending on many material parameters such as dark 

current conductivity and RIC, -50 V may be reached quickly after the crossover, or if charge is 

bled off quickly the potential may never exceed -50 V. For this reason this method is the crudest 
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and provides only a limiting estimate for the second crossover. That is to say that the second 

crossover will never be higher than the jump in the SE→BSE ratio.   

4.1.2.4 Electron Emission Spectra 

Measurements of the electron-induced electron emission spectra were made using a low-

energy electron gun operating in the continuous mode at incident energies of  30 eV to 600 eV 

with a beam current of ~ 5 nA, a ~1 mm diameter beam spot and a beam current density of ~50 

pA/cm2. Full-range electron-induced emission spectrum, including the low-energy SE peak and 

the high-energy elastic peak, are shown in FIG. 4.10. The positions of the high-energy elastic 

peaks are in good agreement with the incident beam energy. The elastic peak shape is dominated 

by the instrumental broadening of the peak. All elastic peaks are well fit with Gaussians with 

average FWHM of (3.8 ± 0.3) eV. The Gaussian FWHM corresponds to the instrumental 

resolution, largely from the hemispherical grid retarding field analyzer, in particular from the 

non-uniformity of the retarding grids. Note that the asymmetric shape of the elastic peak, with a 

larger FWHM at lower energies than higher energies, is predicted by the theory of Doniach and 

Sunjic (1970). Kite provides a detailed discussion of the origins and shape of the SE, quasielastic 

and elastic peak features over a range of electron emission energies and angles (Kite, 2007). Plots 

of the electron-induced emission yield curve are shown in FIG. 4.10 and FIG. 4.11, which also 

show a four parameter fit to the SE peak based on the Chung and Everhart model discussed in 

Section 2.2 (Chung and Everhart, 1974) and tabulated in TABLE. 4.2. Some of the fits shown in 

this section may be distorted as the SE peak originating from the inner grid was not subtracted 

from the data prior to fitting the data. The average measured low-energy secondary electron 

emission peak position for uncharged CP1 side of the samples are (3.4 ± 0.4) eV. The average 

measured FWHM was (6.2 ± 0.6) eV. The average work function of the sample is measured as 

(7±1) eV using the electron-induced emission spectrum. A prediction of the Chung and Everhart 

model is that the peak energy is one third of the work function (Chung and Everhart, 1974). Since  
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FIG. 4.10. Full-range emission spectrum from CP1.  
(e) Incident beam energy is 70 eV. SE peak and the high energy elastic and quasi elastic
peak. Also note the low energy peak from detector grid secondary electron emission.  
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we do not have a measurement of the work function of CP1 we can compare to the work function 

of Kapton HN, a good estimation this is 4.36 eV. If this is an accurate surrogate value for CP1, 

the prediction by Chung is not true as the ratio of peak position (3.4 eV) to work function (4.36 

eV) is 78 %. However it is easy to imagine that the work function of CP1 is much higher than that 

of Kapton based solely on the fact that CP1 is transparent in the visible range and Kapton has an 

orange color. This would imply that the work function for CP1 is higher and might be near the 

10.2 eV required for the peak position to be 33% of its value. Also, note the low-energy peak 

from detector grid secondary electron emission. This peak has lower intensity than the main SE 

peak. Further, the grid peak does not move with changing sample charge (or bias) as does the 

larger sample SE peak. Thus, the grid peak acts nicely as a fiducial mark, to which the charge 

induced shifts of the sample SE peak may be referenced. Separation of these two peaks is 

FIG. 4.11. Details of electron emission spectra on CP1 with a Chung fit to the SE peak. 
No other fits were preformed because the inner grid peak interferes with fitting algorithm and 
will need to be subtracted out for a better fit.
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Eo=60 eV (b) 

Eo=70 eV

(d) 
Eo=100 eV 

(c) 
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indicative of sample charging and can be used to determine the crossover energies (see Section 

4.1.2.4). We do not see the elastic BSE peak being affected by the surface potential, because the 

incident electrons lose (gain) energy as they near a negative (positive) surface potential. Once 

elastically scattered, they will gain (lose) the same amount of energy from the electric field on the 

way out. Inner grid/sample peak separation is observed at incident energies of 60 eV and below, 

consistent with negative charging below the E1 crossover energy of 54 eV to 62 eV as determined 

by other methods (see TABLE 4.1). At the lowest incident energy, 40 eV, we observed 

unexpected emission spectra, as shown in FIG. 4.10a-b. The dual peaks may be evidence of sever 

negative charging, 40 eV is well below E1 and the sample would develop a negative charge. No 

SE peak shifts are observed for incident energies from 70 eV to 100 eV because the sample is 

charged positively and this does not affect sample peak position, only the peak magnitude as 

discussed in Section 3.1.3. In FIG. 4.10e the inner grid, SE, quasi elastic and elastic peaks are all 

indentified. Other typical features are also identified in Section 3.1.2 for reference. At incident 

energies of 200 eV to 600 eV there were significant peak shifts observed, on the order of +3 eV 

to +9 eV. It is important to note that these are shifts in peak position, not sample potential. Such 

negative charging is not typically expected in the regime between crossover energies where total 

yield is greater than unity. The creation of additional trap sited in the band structure of the 

material could lead to changes in the charging behavior. In Section 4.2.3 there is a body of data 

on damaged Kapton a discussion on how radiation damage may explain some of the results seen 

in that section. 

TABLE 4.2. Fitting parameters for the secondary electron peak of electron emission 

Material 
Secondary Electron Peak Parameters 
Energy 
(eV) 

FWHM of SE 
Peak (eV) 

Peak Position 
(eV) 

Energy Shift 
(eV) 

Work Function 
(eV) 

 
CP1 
  

60 6.0 ± 0.5 4.00 ± 0.13 1.754± 0.006 6.104± 0.001 
80 7.0 ± 0.5 3.25 ± 0.25 0.90± 0.01 6.710± 0.001 
100 5.5 ± 0.5 3.00 ± 0.13 0.269± 0.001 9.027± 0.002 
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4.1.2.5 Decay Curve 

To study the effect of charge accumulation on the electron yield, an electron yield decay 

curve was measured for CP1, as shown in FIG. 4.12. An incident energy of 300 eV was used. 

Since this energy is near the maximum electron yield (see FIG. 4.7a) with an uncharged yield 

greater than unity, and between the crossover energies, the sample was expected to charge 

positively. As the sample charges to higher positive values, more emitted electrons are re-

attracted to the surface, causing the yield to asymptotically approach unity. A series of 2000 ~5 

μs wide pulses at ~5 s intervals, each containing ~500 fC/pulse or 3·106 electrons/pulse with a 

spot size of ~1.7 mm diameter and beam energy of 300 eV, were incident on the sample, without 

charge neutralization. This results in ~1 nC total incident charge, and given a total yield of ~1.6 at 

300 eV we can estimate the total flux to be ~2 nC. Using Eq 3.19 from the DDLM, we calculate 

that the induced surface potential is ~12 V or ~8 MV/m. This voltage is sufficient to recapture 

81% of the escaping SE, but nowhere near the 278 MV/m required for breakdown. For highly 

insulating materials, the charge accumulates rapidly and changes in the yield are evident for small 

charge accumulation, as low as 106 fC/m2 (or equivalently, charge density of 1010 electrons/cm3) 

(Hoffmann et al., 2008). However, because CP1 has a somewhat lower resistivity, incident charge 

leaks through the material, partially dissipating the charge in the incident pulse in the time 

intervals between pulses.  

Based on charge storage measurements of the conductivity of ~(2 ± 1) • 10-19 (Ω-cm)-1 

and a relative dielectric constant of 2.8 ± 0.1, simple theory predicts that a charge decay time of 

5·108 s or 16 years, using τ = εoεr/ σDC (Green et al., 2006a). This suggests that some mechanism 

other than the dark current conductivity may be responsible for the decay shown in FIG. 4.12, 

RIC being the most likely suspect. We can calculate the total dose of the entire experiment that 

lasted 2.8 hr using Eq (4.0) where Jin is the beam current density, Eo is the beam energy, ρd is the 

density (1460 kg/m3), qe is the charge on an electron, and R is the penetration depth.  
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We can then use the Eq. (4.1) to calculate the RIC (σric) and the charge decay time.  

Δ= DkD ricric
&& )(σ . (4.1) 

This allows us to see how these values compare to the dark current decay time and the duration of 

the experiment.  

Delivering 500 fC in 5 μs gives yields a dose rate of 2.8·107 rad/s and a RIC value of 

1.7·10 -10 (Ω·cm)-1, nine orders of magnitude larger than σdc. This corresponds to a charge decay 

time of 2 ms, significantly shorter than the time scale of each pulse cycle. This means that each 

pulse is shorting out the internal charge distribution and allowing charge to recombine. This does 

FIG. 4.12. Electron yield decay curve for CP1.  
Data taken at 300 eV incident energy for a series of 2000 ~5 μs wide pulses at ~5 s intervals,
each containing ~500 fC/pulse or 3 · 106 electrons/pulse with a spot size of ~1.7 mm diameter,
on the SRS sample—CP1 side, without charge neutralization. 
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not, however, short the charged layers to ground and the RIC enhancement only affects the 

material between the surface and the penetration depth.  

The values stated in the paragraph above do not take into account the fact that there is a 

finite amount of time required for the material to respond to the extra energy from the incident 

electron (typically the response time is on the order of a few tens of seconds) (Dennison et al., 

2008). To account for this in a pulsed system, it has been shown that as long as the duty cycle of 

the pulses (5 s) are less than the decay time (tens of seconds), we can approximate the RIC value 

by assuming the flux from the pulse is delivered over the full five seconds rather than 5 μs 

(Dennison et al., 2008). This is reasonable to do in this case, but it provides an approximation 

only.  

The pulse contains 500 fC/pulse and 5 μs long with 5 s between each pulse resulting in 

the beam delivering 100 fC/s. This gives a beam current density of 1.1 pA/cm2, 28 Rad/s and 

using the parameters from Kapton HN (kric=6·10-18 (Rad·sec-1·Ω-cm)-1, Δ=1.0) RIC value of 

1.7·10-16 (Ω·cm)-1, about three orders of magnitude larger than σdc. This leads to a decay time of 

1440 s and is 0.1% the decay time if RIC is not included. This decay time is 16% of the total time 

required to take the data. It seems reasonable that CP1 would slowly but eventually reach 

equilibrium potential and unity total yield. This idea will become key point in discussing high 

current beams on aluminum oxide in Section 4.3.3. 

4.2 Low-Conductivity Low-Yield (Kapton HN) 

Kapton HN is one of the most widely used materials in spacecraft construction; as such 

no discussion of material charging in relation to spacecraft would be complete without a thorough 

investigation of Kapton. It also provides us with an intermediate step in determining the full 

capabilities of the pulsed yield system. Kapton has very low conductivity and stores charge very 

well. It also provides an increased yield above that of CP1; the increased yield increases its 

charge susceptibility and provides a more challenging material. 
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In addition to its favorable material properties, Kapton has been very widely studied in 

the open literature and should provide a useful benchmark to determine accuracy and reliability of 

the pulsed yield system. 

4.2.1 Material Characterization 

This sample is a layered material comprised of a ~27.5 μm polyimide (PI) film with ~80 

nm vapor deposited aluminum (VDA) on the back side. The film was manufactured by DuPont 

and purchased through Sheldahl. No compositional analysis was available from the sample 

manufacturer. The PI polymer repeat unit, or mer, for polyimide is in FIG. 4.13; it has an atomic 

composition of C22O5N2H10 (DuPont, 2010). 

The aluminum as deposited is usually of high purity, but will become oxidized after 

deposition. Typical aluminum oxide (Al2O3) layers formed in atmosphere are on the order of ~2 

nm (Boggio and Plumb, 1966).  This is only perhaps 2-3% of the VDA layer.  

The Al surface of the Kapton samples are attached to a Cu mounting slug using double 

sticky Cu tape with the Kapton side facing the beam. Microscopic images were taken using both 

an Intel QX3 low magnification microscope and an Olympus BX41 high magnification 

microscope. They were lit from the top to expose surface defects and from the bottom to show 

FIG. 4.13. Structure of KaptonTM mer C22O5N2H10. 
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defects in the VDA substrate. FIG. 4.14 shows the images taken from these microscopes. The 

most prominent features to note are the long scratches in both the VDA and the Kapton layer. 

Some of this damage is deep enough to totally remove the VDA layer. This is evidenced by the 

green backlighting showing through in both FIG. 4.14 and FIG. 4.15. These defects measure 

~0.25 mm long and are spaced roughly 2 mm apart. It is estimated that as much as 1% of the 

VDA coating might be missing from this material. It should be noted that these materials were 

handled with extreme care during the cleaning and mounting procedure at USU.  

It is believed that these defects originate from the manufacturer and that they are a 

consequence of the manufacturing process. It was a bit surprising to find this level of damage on 

spaceflight-ready materials direct from the manufacturer, but in the future it should be considered 

that all layered materials will have similar defects.  

The defects shown here may not compromise the mechanical strength or the optical 

properties of the material, but they will have consequences for charging. With the grounded Al 

backing removed from the material, stored charge will be forced to travel greater distances to 

ground. One might imagine a scenario where localized charge gradients developed as a result of 

damage to the grounded VDA backing. This will likely be small, but should still be considered.  

Using several NIST databases we have estimated electron penetration range as described 

in Section 4.1.1 (Wilson and Dennison, 2010). 

4.2.2 Electron-induced Emission  

All electron-induced emission data discussed in this section were taken with the pulsed 

yield system as described in Section 3.2. The electron emission of a material determines how 

quickly a material will charge. This, in competition with conductivity, is what defines the 

equilibrium voltage a material will eventually reach.  

To measure points on the total, SE and BSE yield curves at a particular energy and 

electron flux density, a series of ~10 to 200 or more pulses at constant incident energy are  
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FIG. 4.14. Optical images of Kapton HN on VD films. 
Films are backlit with green light to emphasize pinholes and cracks in the Olympus BX41
microscope images. (a) Images taken using the Intel QX3 microscope show an image size of 2.3
mm (h) x 3.1 mm (w) taken at 60x magnification. (b-d) Images taken using the Olympus BX41
microscope show an image size of area 0.64 mm (h) x 0.98 mm (w) taken at 150x magnification.
(e) Images taken using the Olympus BX41 microscope show an image size of 0.32 mm (h) x 0.49
mm (w) taken at 300x magnification. (f)  Images taken using the Olympus BX41 microscope
show an image size of 0.13 mm (h) x 0.20 mm (w) taken at 750x magnification.    

(a) (b) 

(c) (d) 

(e) (f) 
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FIG. 4.15. Optical images of VDA side of Kapton HN film. 
Films are backlit with green light to emphasize pinholes and cracks in the Olympus microscope
images. (a) Images taken using the Intel QX3 microscope show an image size of 2.3 mm (h) x 3.1
mm (w) taken at 60x magnification. (b) Images taken using the Olympus BX41 microscope show
an image size of area 0.64 mm (h) x 0.98 mm (w) taken at 150x magnification. (c) Images taken
using the Olympus BX41 microscope show an image size of 0.32 mm (h) x 0.49 mm (w) taken at
300x magnification. (d) Images taken using the Olympus BX41 microscope show an image size
of 0.13 mm (h) x 0.20 mm (w) taken at 750x magnification. (e)  Images taken using the Olympus
BX41 microscope show an image of size of 64 μm (h) x 100 μm (w) taken at 1500x
magnification. 

(a) (b) 

(c) (d) 

(e) 
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measured with ~5 sec of neutralization between each pulse using low-energy electron flooding. 

Similar series of pulses at fixed incident energy, taken without neutralization, constitute so-called 

electron yield decay curves. SE emission spectral data are also presented taken with a DC beam 

for Kapton HN. These processes have been described in detail in Section 3.1.  

4.2.2.1 SE Yield  

The total, SE and BSE stimulated electron yield are shown in FIG. 4.16. These data are 

exceptionally smooth and represent the cleanest insulator data ever taken on the pulsed MPG 

system. An attempt was made to compare these data with data presented in the literature, but no 

comparable data could be found. This suggests that these data are the only data available for 

electron yield on Kapton HN. This could be due to the extreme difficulty in measuring electron 

yields of high-resistivity materials, owing to their charging susceptibility.  

The total and BSE yields for Kapton HN with curve discretized into several distinct areas 

(zone 1-5) and points (A-C) are shown in FIG. 4.17. As was done in Section 4.1.2.1 with CP1 

measurements, we take each zone in turn and apply what we know about penetration range, 

internal charge distribution and how that charge will affect the yield. This allows us to start to 

speculate about the deviation of the measured (charged) yield from the ideal uncharged (green 

curve in FIG. 4.16a) yield.  

We start by identifying the zones and points of interest in FIG. 4.17. In zone 1 below 

Eo<E1=31 eV SE yield is not affected by charge. At these energies the IMFP of the SE is greater 

than the incident electron IMFP. Also, below 50 eV BSE cease to be defined and σ=δ. In this 

energy range the DDLM is not an accurate model. At point A (namely E1=31±5 eV) there is no 

net charging by definition. Here E1 is less than the minimum in the IMFP curves in FIG. 4.17 so 

DDLM is again inapplicable. Zone 2 spans from above E1 to below E2 and makes up the section 

of the total yield curve that results in positive charging. As such, the measured total yield curve 

could be depressed due to positive sample charging and the subsequent reattraction of some SE’s,  
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FIG. 4.16. Electron yield curves for Kapton HN. 
(a) Total, SE and BSE yields as a function of incident electron energy on Kapton HN. (b)
Electron-induced SE yield curves. Electron yield as a function of incident electron energy, with
NASCAP 5 parameter fits. Note the logarithmic energy scale. 

(b) 

(a) 
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but we see little or no evidence of this in the Kapton HN data. The BSE yield in the section is 

unaffected by the relatively small positive surface potential. Point B (namely E2=775±10 eV) is 

accurate as there is no net charge accumulating on the sample and σ=1. The BSE yield at this 

point is also accurate. Zone 3 for E2<Eo<~1000 eV follows the idealized green curve despite 

ineffective charge neutralization of negative charge accumulation; no increase in σ above the 

green line is seen. It might be that the internal electric field in Kapton is insufficient to excite 

electrons from (presumably deeper) traps in Kapton HN, in contrast to what was seen in CP1 (see 

Section 4.1.2.1). At about 1100 eV, at point C, there is a large jump up in the BSE yield and a 

nearly commensurate drop in the SE yield. This occurs as the peak in the electron emission 

spectrum (nominally at ~4 eV) is accelerated to greater than 50 eV by a large negative surface 

potential. That is, SE from the depletion region are now being measure as extra BSE as they meet 

the criteria of having energies over 50 eV. There is no evidence of zone 4 in this material as there 

1 2 3 5 

A B 

C 

FIG. 4.17. Total and BSE yield from Kapton HN showing discrete charging zones. 
Black dots indicate the total yield and the red diamond is the BSE yield. Zones and points of
interest are marked 
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is no decrease in SE below the SE to BSE shift. In zone 5 in the range of 1100 eV <E<4000 eV 

total yield is above the true yield as extra SE’s from the depletion region (surface side of the 

negative deposition layer at the penetration depth R) that are accelerated out due to the large 

electric field formed by the negative layer at R. Near the end of zone 5 total and BSE yields begin 

to return to the idealized uncharged green curve indicating that the yield is close to returning to its 

uncharged value we would see in zone 6 but did not quite get there. This could be due to a 

physical breakdown in the material, that is to say the surface voltage Vs exceeds the voltage for 

electrostatic breakdown Vesd typically 278 MV/m or ~278 V for Kapton HN. Higher energy data 

must be taken to confirm that the measured yield is indeed reconverging on the true yield curve.  

Values obtained for the SE yield parameters for Kapton HN have not been measured 

independently by other groups, but these data are in good agreement with those in Thomson 

(2004). The best fit to the SE yield curve was provided by the NASCAP five parameter SE yield 

model. For this model, values for the five parameters are as follows; δmax=(2.00 ± 0.01) 

electrons/electron, Emax = (0.20 ± 0.01) keV, n1 = (1.7 ± 0.1) and n2 =  (0.47 ± 0.01), b2/ b1 = (4.84 

± 0.02). 

4.2.2.2 BSE Yield   

Measurements of the BSE yield were made using the pulsed system, due to initial 

problems with surface charging of the samples. Figure 4.18 shows the BSE yield as a function of 

incident electron energy, with energy on a log scale. The plot includes the NASCAP one 

parameter fit and an extended three parameter fit to the BSE yield curve (Levy et al., 1985; 

Mandell et al., 2001). Values for these fitting parameters are listed in Table 4.3. 

The fitting parameters for the extended fit of the maximum value of the Kapton HN BSE 

yield was found to be (0.22 ± 0.02) electrons/electron at the incident electron energy of 

(0.20±0.01) keV. The green line in FIG. 4.18 is an estimate of the BSE yield without charging  
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effects. The three parameter and NASCAP fits are plotted in this figure are usually a good fit, but 

it is distorted here because it is not able to account for the SE→BSE shift.  

The larger shifts in BSE yields observed at ~1100±50 eV occurs when the charge on the 

sample builds up to over ~45 V and the SE in the main peak of the SE emission spectrum acquire 

enough energy to be measured as BSE. The fact that this occurs almost 300 eV above E2 can be 

attributed to either the very small charge fluence used in the pulsed yield measurements, to the 

relatively rapid decay of charge (see Section 2) possibly from RIC, or a combination of the two 

effects. A full discussion of this effect cannot be had outside the context of SE and total yield. As 

such, please refer to Section 5.1.2.1 for a full explanation of this phenomenon and it 

consequences.  

FIG. 4.18. Backscattered  electron emission yield curves for Kapton HN. 
The plots include both the NASCAP one parameter fit and an extended three parameter fit to the
BSE yield curve. Note the logarithmic energy scale. 

E1 E2 
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4.2.2.3 Electron Emission Spectra 

Measurements of the electron-induced electron emission spectra were made using a low-

energy electron gun operating in the continuous mode at incident energies of 60 eV to 100 eV 

with a beam current of ~ 5 nA and a ~1 mm diameter beam spot and a beam current density of 

~50 pA/cm2. Limited spectra were taken on this material, but what is shown here is a good 

indication of the general behavior of Kapton in the region of 60 eV≤Eo≤100 eV. As shown in 

FIG. 4.19, a second electron emission peak begins to emerge at Eo≤ 90 eV, this is an indication 

that E1 has been crossed and that the sample is charging to negative potentials at 90 eV incident 

energies and below. Using the inner grid peak as a bench mark, the sample potential can be 

estimated at -12V at maximum with Eo=80 eV. One might expect the sample to continue to 

charge negatively as the beam becomes lower in energy, but at this point Vs is a substantial 

fraction (15 %) of the incident energy. This results in a significant slowing of the PE’s and their 

possible deflection. Limited data were taken on this material, so it was not possible to develop a 

full analysis using emission spectra. In particular, spectra at energies near E2 might help 

determine its value. E1, as determined by the yield curve, gives a value of 33±5 eV and the 

spectral method gives a value of ≤ 90 eV. This inconsistency is due to the fundamental  

differences in the measurements, namely, the pulsed nature of the yield system and the DC beam 

used when taking spectra. Given this, the agreement for the value of E1 is rather good. 

4.2.2.4 Decay Curve  

To study the effect of charge accumulation on the electron yield, an electron yield decay 

curve was measured for Kapton HN, as shown in FIG. 4.20. An incident energy of 400 eV was 

used. Since this energy is near the maximum electron yield of 200±25 eV, and between the 

crossover energies, with an uncharged yield greater than unity, the sample is expected to charge 

positively.  
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As the sample charges to higher positive values, more emitted electrons are reattracted to 

the surface, which is expected to cause the yield to asymptotically approach unity. In FIG. 4.20a, 

there is certainly an asymptotic limit, but it does not have a value of one; rather, it has a value of 

σ=1.08. Data in FIG. 4.20a were taken after many measurements of the total yield had been taken 

with all discharge methods (discussed in Section 3.2.1) were employed. This suggests that after a 

full day of measurements, there remains some deep space charge that our discharge methods do 

not adequately dissipate.  

To test this theory, a second curve was taken (as shown in Fig. 4.20b) that shows the 

same curve after the material had been heated to 60o C for 6 hr and then allowed to cool to room 

temperature. Heating the material increases its bulk conductivity and enhances the material’s 

ability to dissipate charge (Brunson, 2009). This phenomenon is discussed in greater detail in  

FIG. 4.19. Electron emission spectrum of Kapton. 
Data acquired at incident energies of 60 eV (bottom), 70 eV, 80eV, 90eV, 100 eV (top). Here E1
is assumed to be around 95 eV and as Eb decreases the sample begins to charge negatively as
evidenced by the emergence of the sample peak and its shift to the right as the negative potential
increases.    
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FIG. 4.20. Decay curves taken for Kapton HN at 400 eV incident electron energy. 
(a) Decay curve charged very quickly and did not approach unity. (b) Data after being subjected
to prolonged charge/discharge cycles.  

(a) 

(b) 
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Section 4.3.2.2. Shown in FIG. 4.20b is an asymptotic approach to unity, as is expected for a 

sample with little or no stored space charge. Also note that it takes ~40 nC to reach the yield limit 

of one, a more expected value base on DDLM estimates of a surface potential of 20 V from Eq. 

(2.19), whereas the FIG. 4.20a takes only ~4 nC (DDLM estimated value of 2 V) to reach its 

elevated limit.  

It is not entirely clear why the unheated decay curve does not obtain a limit of one. Other 

yield data that were taken on the sample prior to this curve in FIG. 4.20a all had a yield greater 

than one and should have resulted in net positive charging. If the discharge methods where fully 

ineffectual, there would have only been a flat curve at the asymptotic yield limit. Such results 

might be due to internal (deep dielectric) charge layering in the material that has not been taken 

into account in this discussion. One can speculate that this internal charge, results from the high-

energy irradiation used in the yield test pulses, just prior to when the discharge from the flood gun 

begins. Flooding will only eliminate the near-surface positive charge region leaving some 

implanted negative charge behind at a greater depth R. Since the majority of the charge is positive 

only a small amount of negative charge is left behind and it would take many pulse/discharge 

cycles to reach a significant charging level. This is a hand waving argument; direct measurements 

of the surface potential proposed in Section 5.1 will determine the validity of this hypothesis.  

Until such time as this phenomenon has been fully understood, we have shown here that 

heating the material is effective at dissipating charging. As such, the sample is heated for 6 hr to 

~333 K each night after every full day’s measurements. 

4.2.2.5 Dose Decay Curve   

Up until this point, it has been assumed in all the data analyzed that the ~106 electrons 

used in the probe pulse is not large enough to cause significant charging. Measurements taken to 

support this assumption used the following method. Fifteen pulses at a single incident energy 

between the crossover energies were taken and a mean and standard deviation of the yield were 
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determined. All dissipation techniques where employed and the total yield did not decay as in a 

decay curve. The first set of pulses were tuned at the lowest possible incident flux of 20 fC per 

5μs pulse and a 1.7 mm diameter spot size. This corresponds to a charge density of ~1.2 pC/cm2 -

pulse.  During a ~5 μs pulse this is an average current density of ~230 nA/cm2 or a particle flux 

density of ~1.5·1012 electrons/cm2·s and a dose rate of ~4·106 rad/s in the sample region between 

the surface and range (assuming a range of ~9 nm at 200 eV incident energy). 

This is an unrealistically high dose rate, however, as it does not include the material 

response time to the energy injected into the sample surface layer during the short ~5 μs pulse. 

This response time is evident in the time it took a sample to come to equilibrium after a beam was 

turned on in RIC experiments (Dennison et al., 2007). The RIC decay time was typically ~100 s 

for a Kapton sample to exponentially approach equilibrium. It is well known that pulsed beam 

used in accelerators with repetition rates of ≥102 cycles/s can be accurately approximately by 

effective dose rate equal to the average dose over the full cycle (Dennison et al., 2009b). What is 

not well known is at what extended cycle time this approach breaks down.   

A lower bound on the dose rate in charge decay experiments can be calculated assuming 

the energy from a single pulse is spread over the full repetition period of typically ~5 sec, which 

is small compared to the RIC decay time. Under this assumption, the average current density is 

2.3·10-13 A/cm2, the particle flux is ~1.5·106 electrons/cm2·s, the dose rate is ~4 rad/s (assuming 

R=9 nm at 200 eV), the RIC is 1013 (Ω·cm)-1  and the RIC decay time is ~3 s. It is important to 

recognize that charge dissipation at this lower bound is still completely dominated by RIC effects 

in Kapton and that the decay time is comparable to the pulse cycle time of 10’s to 100’s of pulse 

cycles. An interesting and important test of these conjectures would be to repeat experiments such 

as shown in FIG. 4.20, with different effective dose ratios, longer and shorter times between 

pulses and pulse widths, and with higher and lower beam current density and energy. 
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Once finished, the incident flux was increased slightly by turning up the electron gun 

filament. After 30 min to allow the gun to stabilize and come to thermal equilibrium, another set 

of data were taken. This sequence was repeated until the electrometers reached saturation at ~700 

fC/pulse. These data are shown in FIG. 4.21a at two different energies, 200 and 600 eV. The 

arrow in FIG. 4.21a indicates the dose used in the yield curve taken in Section 4.2.2.1 shown in 

FIG. 4.16. The yield at 200 eV from the yield curve is 2.2±0.1 at a dose of ~100 fC; this is in 

good agreement with the yield of 2.1±0.2 from the 200 eV decay curve at ~100 fC. The 

agreement is also very good for the 600 eV incident beam with a pulsed yield value of 1.5±0.1 

and a decay curve value of 1.5±0.2 

If the pulse were not causing significant charging, we would expect a plateau on the left 

low fluence side of the dose decay curve. This is obviously not the case and suggests that if the 

pulse could be lowed further the yield would continue to climb. The expected dose decay curve is 

expected to have a shape as determined by the SE emission curve calculations as described in 

Section 2 and shown in FIG. 4.21b. Unfortunately, it is not possible to lower the incident pulse 

because of the noise of system. This was the first indication that the other methods described in 

Section 3 were needed.  

4.2.2.6 Dose Yields 

The dose decay curves described in the previous section indicate that the yield will 

change as a function of incident flux in the probe beam. To verify that this is true, yield curves 

were taken at several incident fluxes: 110±50 fC/pulse, 370±30 fC/pulse, and 1.0±0.05 pC/pulse, 

all with ~5 μs pulses. For this to be effective, it was important that the incident spot size be 

constant throughout the full energy range of the gun. This required new settings for the Staib  

gun, at every incident energy, so the spot size would remain set at an arbitrary 1.7±0.1 mm 

FWHM. Refer to Section 4.2.4 for details regarding the measurements of the spot size and the 

subsequent gun calibration. The flux density for 110±50 fC/pulse is 5±2 pC/cm2 with a 40%  
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FIG. 4.21. Decay curve and fractional SE recapture of Kapton HN. 
(a) Dose decay curve was taken on Kapton HNTM by adjusting the number of electrons contained
in the incident pulse, keeping all other parameters constant. In this range, a change of only ~4x104

el/mm2 produces a ~40% increase in the yield. Dose decay curves are shown for both 200 eV
(red) and 600 eV (green) incident energies. (b) SE decay model derived from model for SE
emission spectra.

(a) 

(b) 

Vs Surface Potential (V) 
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error. With the electron gun set to 370±30 fC/pulse, the flux density is 16±1 pC/cm2 with a 6% 

error. At 1.0±0.05 pC/pulse the flux density is 44±2 pC/cm2 with a 5% error. The error in these  

measurements is completely dominated by the error in the flux measurement; the error in the 

FWHM is trivial by comparison. 

The yield curve results of the measurements taken at 110±50 fC/pulse incident fluence 

are shown in FIG. 4.22a. These data were taken at the lowest fluence and show a σmax of 3.9±0.1. 

The plot in FIG. 4.22b shows data taken at an intermediate flux of 370±30 fC/pulse and a 

suppressed σmax of 2.2±0.1. Only a partial yield curve was taken at the maximum flux of 110±50 

fC/pulse, but the curve (FIG.4.23a) shows a maximum total yield of ~2, a further suppression of 

the yield from the low flux. The SE yield from each of these three curves plotted together in 

FIG.4.23b shows the suppression of the yield as the flux in the probe pulse is increased from low 

to high (shown as top to bottom curves, respectively). It is interesting to note that the pulse flux 

appears to dramatically affect the yield in the positive charging region. between the crossover 

energies (Zone 2), but seems to have little effect on the negative charging zones 1 and 3. This is 

most likely due to our inability to dissipate negative charge. As a result the charge accumulates 

over many pulses to a steady state and the flux of the individual pulse is not as important. For 

example, if, at the low flux, it takes 10 pulses to reach equilibrium, then, at the high flux it would 

take only one pulse to reach equilibrium. This makes little difference as the yields are averaged 

over 30 pulses and the difference would primarily appear as an increase in the statistical error. 

There are also BSE yields data from all three runs plotted together for comparison in FIG. 

4.24b. It is not expected that incident energies between the crossovers (positive charging) will 

affect the BSE yield because any energy gained from the electric field is lost as the BSE leaves 

the sample. However, it can be seen that there is a modest change for energies between 200 eV 

and 700 eV and between ~1100 eV and 5000 eV. The data for the lowest and highest fluxes, 

(black dots and the blue triangle), respectively, are very similar, but differ from the mid-range run  
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FIG. 4.22. Yields of Kapton at 2 fluxes. 
(a) Yield curves taken on Kapton HN with an incident flux of 110±50 fC/pulse. (b) show the
Yield curves taken with an incident flux of 370±30 fC/pulse. All other parameters were kept
constant and only the incident flux was changed. These fluxes were maintained over the entire
energy spectrum. Black dots indicate total yield. Blue triangles indicate SE yield. Red dots
indicate BSE yield. 

E1 E2 

E1 E2 

(a) 

(b) 
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FIG.4.23. Total yield as a function of dose comparison. 
(a) Partial yield curves taken on Kapton HN with an incident flux of 1.0±0.05 pC/pulse. A full
spectrum of yields was not able to be taken at this flux. (b) Comparison of the total yield curves
over the energies at various fluxes. Black dots are yield taken at 110±50 fC/pulse, red diamonds
are 370±30 fC/pulse, and blue diamonds are at a flux of 1.0±0.05 pC/pulse. Black dots indicate
total yield. Blue triangles indicate SE yield. Red dots indicate BSE yield. 

E1 E2 

E1 E2 

(a) 

(b) 
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FIG. 4.24. Residual of uncharged curves and BSE yields.  
(a) Difference in total yield from the green idealized (green curve) for all three fluxes. (b)
Comparison of the BSE yield curves at various fluxes. Black dots are yield taken at 1.0±0.05
pC/pulse, red diamonds are 370±30 fC/pulse, and blue diamonds are at a flux of 1.0±0.05
pC/pulse. Black dots indicate total yield. Blue triangles indicate SE yield. Red dots indicate BSE
yield. 
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(red diamond). It is unclear why the highest and lowest fluxes are in such good agreement, but the 

intermediate run is not. This may be an anomalous result and would need to be repeated to verify 

the result. It is interesting to note that the highest and lowest flux yield curves show the same 

jump in the BSE to SE ratio at ~1100 eV. As stated in the paragraph above, this is most likely due 

to our inability to dissipate negative charge. As a result the charge accumulates over many pulses 

to a steady state and the flux of the pulse is not as important. 

4.2.3  Irradiated Kapton HN 

During the course of this investigation, many mistakes have been made, but not all of 

them bad. The measurements taken on Kapton up to this point have been on one sample with 

special care taken to do the most destructive tests last. The following has been determined to be 

the order which the tests were performed. Yields with energies E1<Eb<E2 are preformed first, 

followed by Eb<E1, then decay curves. These were followed chronologically by the test deemed 

most destructive; yields with energies Eb>E2 and finally DC spectra. These tests were done last 

because it was assumed that the material undergoes permanent structural changes as a result of 

the high electric fields these measurements induce. The data presented in this section were taken 

on the same Kapton sample after all of measurements were taken in Section 4.2.2. As such, the 

sample had undergone significant radiation damage and possibly electrostatic breakdown. This is 

not meant to be a complete treatment of the subject, and does not represent all the data in this 

archive. This is simply intended to document the fact that a wealth of data exists and needs 

further analysis in the future. Sim presents some related theoretical treatments of the effects of 

trap production due to irradiation on electron emission, conductivity, surface voltage decay and 

electro static discharge (Sim, 2010). 
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4.2.3.1 Electron Yield  

It is very difficult to quantify this discussion without a clear understanding of the sample 

history so that we might put clear bounds on the total electron dose and internal potential this 

sample has been subjected to. To be clear, all the data from Sections 4.2.2.1-4.2.2.6 was taken on 

the same sample as the data presented in this section. There was a one week period between when 

these data were taken and when the data from the previous section were taken. As a minimum, 

the Kapton HN sample had been subject to 109 C of electron fluence at energies ranging from 30 

eV to 5 keV during the course of the pulse yield measurements. This irradiation is 

inconsequential, given that the sample was subject to a 1 nA DC beam for ~4 hr (~1 μC) at 

energies up to 650 eV while taking emission spectra. This later punishment is assumed to have 

caused material breakdown. 

The most obvious difference seen in the damaged and undamaged yield curves in FIG. 

4.25 is that the point at which the BSE yield jumps up due to SE being accelerated above 50 V is 

significantly lower. This point occurs at ~800 eV in the irradiated sample as opposed to ~1100 eV 

in the undamaged sample (FIG. 4.25a).  

One explanation for this might be that there is deep dielectric charging in the sample. 

Given the bulk dark current conductivity of Kapton (in the range of 10-19 to 10-20 (Ω-cm)-1) it can 

take weeks to months for this type of charge to dissipate (Dennison, 2008). The sample was taken 

out of the chamber after its initial set of measurements and exposed to air for a week before being 

reintroduced into the vacuum chamber. In light of this, it’s not clear if the sample would have 

been able to retain its charge in the humid, high pressure environment, both of which act to 

accelerate charge dissipation. However, electret materials such as Kapton and Teflon are known 

to store charge for long periods of time (Dennison et al., 2003a). Thus, the idea of residual charge 

may or may not explain the quicker buildup of negative potential seen in the irradiated sample.  
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FIG. 4.25. Electron yields of irradiated Kapton HN. 
(a) Plot of undamaged Kapton. (b) Data from the same sample, but after it has been abused by a
full suite of measurements. There are significant changes in the material. Most notably the
BSE→SE shift occurs at ~800 eV in the irradiated sample and ~1100 eV in the unirradiated. 
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Another explanation is that high electron fluence used in the spectral measurements 

caused damage to the sample, by generating additional traps states in the material due to radiation 

damage. Exposure from the 1 nA DC beam at Eo=650 eV for ~4 hr produces a accumulated dose 

of 107 rads in the surface layer down to the penetration depth of R=800 nm. Radiation damage 

studies have shown that polymers such as Kapton show measurable structural damage at doses 

above 108 rad. Fredrickson (Fredrickson and Dennison, 2003) has speculated that radiation 

damage, in the form of defect generation, may become evident in electron transport at lower 

fluxes, as low as 107 rad. 

If the high radiation exposure from spectral measurements prior to acquisition of data in 

FIG. 4.25b created significantly more defect trap states, built up space charge would be more 

efficient and more space charge could be stored. Higher efficiency in creating space charge would 

shift the SE→BSE transition to lower energies. Indeed, this transition in FIG. 4.25b is shifted to 

~800 eV, just slightly above E2=750±20 eV.  

This does not provide a complete treatment of the topic, but does offer some tantalizing 

clues to the effects that radiation damage might have on sample charging. More analysis is 

required to make definitive quantitative statements. 

4.2.3.2 Electron Emission Spectra 

It has been shown that secondary electron emission spectra are an effective method of 

determining negative surface potential. In an effort to prove that deep charging is responsible for 

the differences seen in the yields of irradiated and unirradiated Kapton HN a series of emission 

spectra were taken to see if any shift could be seen in the SE emission peak. 

The data shown in FIG. 4.26a are a series of emission spectra taken at 200 eV and plotted 

in chronological order from top to bottom. A spectrum uses a DC ~1 nA beam and takes roughly 

10 minutes to complete, this is ~105 and 0.6 μC. When the first measurements finished, the next 

spectral measurement was started immediately. In this fashion, all seven spectra shown in FIG. 
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4.26a, were taken, and show the typical peak from the inner grid centered at 2 eV. The top curve 

in FIG. 4.26a also shows a SE emission peak centered at 13 eV that is presumed to originate from 

the sample. This would indicate a negative sample potential of roughly -11 V using the arguments 

for surface potential detailed in Section 4.1.3. This is not expected, as the incident electron energy 

should have a total yield of ~2 giving it a positive surface potential. If there is a deep negative 

charge in the material from previous measurements, one would expect that potential to quickly 

become positive when bombarded with primary electrons of energy E1<Eb<E2. This idea is based 

on internal charge recombination and the liberation of excess electrons as SE’s. In reality, the 

opposite seemed to occur. Not only did the SE peak remain after several minutes, but it becomes 

more negative in subsequent spectra. In the third plot, after approximately 20 minutes of 

continues exposure, the sample seems to stabilize at a constant surface potential of -28 V.  

This phenomenon may be explained by the idea that it is not the surface potential that 

defines the spectral shift in the SE emission curve. One needs to remember that when an insulator 

builds up a potential, it is not a simple slab-like internal charge distribution. It is, in fact a 

complex layering of charges defined by the DDLM. The net effect of these layers defines the 

magnitude of surface potential, but it is important not to forget that the internal distribution is not 

so simple.  

With this in mind, the problem of the unexpected shifts in the spectrum for irradiated 

Kapton HN may be due to the origin of the SE rather than the surface potential. That is to say, 

that the local potential in the layer where the SE was produced is the potential barrier it must 

overcome to escape the material. The net electric field is not the relevant parameter, but rather the 

field at the SE origin that will define its emission energy spectrum. One possible explanation for 

the negative shifting SE emission peak at an energy that would normally produce a positive 

potential, is that the DC beam used for emission spectra is exciting SE’s from a negatively  
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FIG. 4.26. Electron emission spectra from irradiated Kapton HN 
(a) Seven consecutive 200 eV SE emission spectra taken with a DC beam on Kapton HN. Note
that there should be no evidence of negative charging like the second peak seen here as E1<Eb<E2.
Also, the DC beam used should cause the material to come to an equilibrium state in a few
seconds, not the tens of minutes required to measure the spectrum. (b) Seven consecutive 350 eV
SE emission spectra taken with a DC beam.  

(a) 

(b) 
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charged region left over from previous measurements. Over time, the beam would deposit 

electrons at the penetration depth R and possibly enhance the effect.  

After the plots shown in FIG. 4.26a were taken at 200 eV, the gun was retuned for 350 

eV incident energy and a similar set of spectra were taken. A similar, but less pronounced, trend 

in the data taken at 200 eV can be seen in the SE emission peak evolution in FIG. 4.26b. The first 

plot shows a sample peak at 15 eV and an inferred surface potential of -13 V, then over time 

settling at an energy of 18 eV and potential of -16 V. In this case, the shifting of the SE peak is 

not as dramatic as 200 eV incident energy. This may be because 200 eV is closer to δmax and 

therefore quicker to charge. It may also be that the space charge has approached a saturation limit.  

Saturation might result from filling most available defects. 

One more set of spectra (shown in FIG. 4.27b) was taken at 950 eV, an energy greater 

than E2 and in the negative charging regime. These data do not show a sample peak that is distinct 

from the inner grid peak. This is due to the fact that the sample has been charged to a value 

greater than the 50 V discriminating voltage used in this test. No SE’s from the sample would be 

discriminated as they all have a kinetic energy greater than the discriminating E-field.  This 

conclusion has been reached by careful examination of the total electron yield seen in FIG. 4.16b. 

It can be seen that the sample reaches approximately -50 V with incident electron energies of ≥ 

800 eV as seen by the SE→BSE jump. Thus, at an incident energy of 950 eV, as used in these 

spectra, one would expect a surface voltage accumulation of >50 eV and a concurrent shift in the 

Kapton SE peak to an off-scale value.  

There is a small anomalous peak seen at 41 eV. This has been seen in several spectra 

including Au, and is assumed to be an artifact of the detector system (see Section 3.1.2). If this is 

true, it will be possible to determine its origin by systematically applying a bias to each element 

in the detector and watch for this peak to shift. This has not been done, but should be included in 

future work on detector characterization. 
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FIG. 4.27. Emission peak position and emission spectrum from Kapton HN. 
(a) Three consecutive measurements of the secondary electron emission spectrum  taken at an 
incident energy of 950 eV. Note the absence of a sample peak that would indicate the 
development of a negative surface potential. (b) Plots of the sample and inner grid peak 
position for each consecutive spectra. The red data is the sample peak position at 200 eV 
incident beam. The blue data shows the sample and inner grid peak position of the spectra 
taken at 350 eV incident beam. 
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Many questions have been raised by these data of irradiated Kapton HN that are not 

easily explained in the framework of this thesis. These data have been presented to bring to light 

its existence and to underscore the dynamic nature of these types of measurements. The weak link 

in the efforts to model and predict spacecraft charging is the material properties. But it has been 

shown here that these properties can change after relatively little damage. The work discussed in 

this section is not a completed treatment of the topic of material aging and the effect it might have 

on charging, but there are several important ideas that have been brought to light. First is that the 

relevant potential to consider when determining SE peak positions in electron emission spectra is 

not the net surface potential, but the local potential at the SE origin. The field traversed by an SE 

between its origin and the surface determine its exit energy seen in emission spectra. Second is 

that as defect trap states are created in the material by radiation damage, the ability of the material 

to trap and store charge is affected. As more traps are created, the ability of the material to 

accumulate negative charge is enhanced while, at the same time, its ability to leak charge away is 

also modified. 

4.3 Low-Conductivity High-Yield (Polycrystalline Aluminum Oxide) 

Polycrystalline aluminum oxide is a ceramic and is widely used in spacecraft design. It is 

durable, light, and very hard. It can be used for electrical isolation, as well as coatings for large 

areas, to increase durability and thermal control. The material studied here is a bulk 

polycrystalline aluminum oxide ceramic coating that is a candidate to be used as thermal control 

in a wide range of environments (Donegan et al., 2010).  This study may have implications for a 

broader class of materials as very thin layers of aluminum oxide coat many spacecraft 

superstructure as anodized aluminum. It can also be found in optical elements, such as sapphire 

lenses.  

For the purposes of this study polycrystalline aluminum oxide provides, from the 

charging perspective, the most challenging material. This material has an extremely low 
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conductivity, and can store charge for several days, and has an extremely high total yield.  The 

combination of these two material properties make polycrystalline aluminum oxide exceptionally 

good at gathering and storing charge, and provides conditions that will test the capabilities of the 

instrumentation and methods developed herein. 

4.3.1 Material Characterization  

The sample tested was a 1.07±0.02 mm thick bulk polycrystalline aluminum oxide 

material, attached to a Cu slug using double sided Cu tape. No specific details of the material 

properties, source, or preparation are available. We expect that the sample is a mixture of α-

alumina and γ-alumina made by heating aluminum hydroxide and oxyhydroxide. The alumina is 

believed to be Type II material. The materials were deposited either by plasma spray deposition 

or chemical vapor deposition to the desired thickness. Information about this process and the 

resulting ceramic microstructure can be found elsewhere (Donegan, Sample et al., 2010). This 

material is known to have high electrical conductivity at room temperature (3·10-16 (Ω-cm)-1) and 

density of 3.83 ± 0.03·103 kg/m3 (Shugg, 1970; Morrell, 1987; Hayward, 2009). This material is 

known to have an electrostatic breakdown strength at room temperature of 27.4 ± 0.9 MV/m 

(Shugg, 1970; Morrell, 1987; Yoshimura and Bowen, 2006). 

We do not know many of the properties of this specific material because information 

regarding the crystalline structure is scarce due to the proprietary nature of manufacturing. This 

material was developed as a thermal spacecraft coating. There are a few forms of aluminum oxide 

(Al2O3), with corundum, α-alumina or α-Al2O3 being the most common. The structure of 

corundum can be viewed as a hexagonal, close-packed array of oxygen atoms with 2/3 of the 

octahedral sites occupied by Al3+ ions. Thus, the Al3+ ions are bonded to six oxygen atoms in a 

distorted octahedron. Each such octahedron shares a face with one on the upper and one on the 

lower layers. The distortion is caused by repulsion between Al3+ ions in octahedral sharing the 
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faces. Other compounds with this structure include Cr2O3, α-Fe2O3, Ti2O3 and V2O3. The crystal 

structure of aluminum oxide is shown in FIG. 4.28.  

Corundum is dense (density of 3.97g/cm3), hard (9 out of 10 on the Mohs' scale, next 

only to diamond), high melting (melting point 2288 K), and insoluble in water. Crystals of 

corundum are usually prismatic or barrel shaped bounded by steep pyramids. γ-alumina is formed 

when aluminum hydroxide [Al(OH)3] or oxy-hydroxide [AlO(OH)] is heated. The structure is 

very similar to α-Al2O3, differing largely in the position of the unfilled Al sites. Under close 

scrutiny, γ-alumina is found to have a rhombohedra structure. A rhombohedra or trigonal lattice 

has all sides equal, with all angles equal but not a right angle. Further details of the crystal 

structure, and particularly the structure of the Al vacancies is found in Bartnikas (1987). 

Aluminum oxide is responsible for metallic aluminum’s resistance to weathering. 

Metallic aluminum is very reactive with atmospheric oxygen, and a thin layer of aluminum oxide 

quickly forms on any exposed aluminum surface. This layer protects the metal from further 

oxidation. The thickness and properties of this oxide layer can be enhanced using a process called 

anodizing. Anodizing is a process used to protect aluminum from abrasion and corrosion and to 

allow it to be dyed in a wide range of colors. The process derives its name from the fact that the 

part to be treated forms the anode portion of an electrical circuit in this electrolytic process. A 

layer of aluminum oxide is created on the surface of the aluminum from the action of the current 

being passed through the part, which is bathed in an acid solution. This aids in the formation of 

the oxide layer. This oxide layer increases both the hardness and the corrosion resistance of the 

aluminum. The aluminum oxide coating is grown from and into the surface of the aluminum.  

Because of this (unlike coatings), it is not prone to peeling or cracking. It also possesses excellent 

thermal and electrical insulation qualities. The oxide forms as microscopic hexagonal pipe 

crystals of corundum, with each having a central hexagonal pore (which is also the reason that an 

anodized part can take on color in the dying process). The primary source of contamination in the  
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various types of alumina is the presence of silicate compounds. These can occur either as 

substitutions of Si for Al in the Al2O3 lattice or as inclusions of SiOx material. Further details of 

the crystal structure, and particularly the structure of the Al vacancies is found in Bartnikas 

(1987). 

Radiation-induced conductivity in polycrystalline aluminum oxide can be expressed as 

temperature-dependent functions of kric and Δ over a range of ~290 K to ~1200 K can be derived 

from four curves of Al2O3 presented in Klaffky et al. (1980).  Δ is ~1 below ~600 K, decreases to 

~0.74 at 810 K, and asymptotically approaches 0.5 at higher temperatures. Kric has a minimum 

value of 1.1·10-16 (Ω-cm-Rad/s)-1 at ~630 K, increases roughly exponential lead to 1.2·10-14 (Ω-

cm-Rad/s)-1 at 1220 K, and increases roughly exponentially to 4.8·10-16 (Ω-cm-Rad/s)-1 at 290 K 

with decreasing temperature. The observed temperature dependence of kric and Δ is consistent 

with predictions (Corbridge et al., 2008; Donegan et al., 2010) based on the Rose-Fowler 

multiple trapping model (Rose, 1951; Fowler, 1956).  

FIG. 4.28. Crystal structure of alumina. 
(α-Al2O3) is a hexagonal closed packed structure. The aluminum sites (layers C1, C2, C3) which
are only two-thirds full, are sited between the hexagonal layers of oxygen atoms (A,B).
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An attempt was made to image this material under the microscope, but no useable images 

were obtained. The material is pure white and is very diffusive, so any images had no discernable 

features.  

By using the same method described in Section 4.1.1, the penetration depth or range R 

was determined for this material and can be seen in  FIG. 4.29. 

4.3.2 Electron Emission 

Since Al2O3 has a combination of low conductivity (~10-16 (Ω-cm)-1) and high total yield 

(~7) it is very prone to charging (Donegan, Sample et al., 2010). As a result, several different 

methods were attempted to measure the uncharged yield. These methods include low fluence 

pulsed yields at room temperature and again at an elevated temperature in an attempt to increase 

the DC conductivity and dissipate the charge (Ashcroft and Mermin, 1976; Wintle, 1983). Finally 

the composite electron yield method was employed using multiple electron yield decay curves 

and the model described in Section 3 (Hoffmann et al., 2008). 

4.3.2.1 Traditional Pulsed Electron Yield 

The effects of charging on the yield curves of Al2O3 evident in FIG. 4.30 largely follow 

the scenarios for zones 1 thru 4 described in Section 4.1.2 and 4.2.2. In zone 1 the yield is 

elevated to near unity due to negative charging, though the effect is not large. Pronounced effects 

of charging of Al2O3 in the pulsed yield are evident by the depressed yield observed between 

incident energies of ~200 eV to ~1100 eV, in the central part of zone 2. As the total yield 

increases, so does the number of SE’s produced, thus charging the material more rapidly. Each 

incident pulse used to measure the yield curve in FIG. 4.30 contained roughly 4·10-13 C and is 

near the minimum pulse flux the system can measure. This pulse does not appear to induce 

significant charging until a yield of 4.6 is reached. At this point, the pulse begins to induce a few 

volts positive surface potential and a significant number of secondary electrons begin to be  
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reattracted to the surface and the yield is pushed to unity. This continues as the incident electrons 

increase in energy until they approach the second crossover energy E2=3290±50 eV. As the total 

yield drops below 4.6 the measured yield comes back to our idealized uncharged green curve in 

FIG. 4.30. But on closer inspection at ~1100 eV, the effects of charging might be evident at much 

lower incident energies and, consequently, a much lower total yield. There is a slight irregularity 

in the total yield at an incident energy of ~90 eV and a total yield of ~1.9. This might be an 

indication of the onset of significant charging at incident energies only slightly greater than 

E1=74±8 eV. This is all speculative, but it can be said that at total yield σ<4.6, the effects of 

charging are, at worst, less pronounced, and at best, insignificant. 

The yield in zone 3 at energies E2<Eo<5E2 ( up to ~15 keV) are seen to be above the 

idealized green curve, which may be indicative of additional SE being accelerated out of the 

electron depletion region (as was observed for CP1 but not for Kapton HN) showed no unusual 

behavior. In fact, it should be noted that the no jump in the BSE was seen, indicating that the 

sample surface voltage never exceeded -50 V. But upon inspection of the last point in the FIG. 
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 FIG. 4.29. Electron penetration depth of polycrystalline Al2O3. 
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4.30, there is some indication that the incident energy of 18 keV is close to the boundary of zones 

3 and 4 where the potential necessary to cause the SE→BSE shift has almost been reached, as 

discussed in Section 4.1.2.3. To confirm this it would be necessary to use a probe pulse of greater 

energy than is currently possible in the analysis chamber. 

In short, this traditional yield measurement has shown that this material exhibits extreme 

charging in the positive charging area between the crossover energies, but more manageable 

charging signatures in the negative charging areas. These data indicate that this material might 

make a good candidate composite yield method described in Section 2, but as this method is very  

time intensive, an effort was first made to overcome these charging problems by modifying the 

conductivity of the material so that it might dissipate the charge faster. These efforts are described 

in the next section. 

FIG. 4.30. Complete room temperature (296 K) yield curve taken on polycrystalline Al2O3. 
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4.3.2.2 Heated Electron Yield  

It is clear that the traditional pulsed methods are incapable of accurately measuring the 

yield of a material with a yield as high as polycrystalline aluminum oxide. Since the extent of 

charging is dictated by both the yield and the conductivity, heating the sample should reduce 

charging by thermally enhancing the conductivity. Several available data sets of the dark current 

conductivity σDC(T) of Al2O3 as a function of temperature (Shugg, 1970; Morrell, 1987) showed a 

roughly exponential increase in conductivity with increasing T. These combined data sets were fit 

with an Arrhenius function (Donegan, Sample et al., 2010) of the form 

( ) Tk
E

DC
oDC

B
a

eT
−

= σσ , (4.1) 

as predicted by standard theories of thermally assisted conductivity of semiconductors and 

insulators at higher temperatures (Ashcroft and Mermin, 1976; Wintle, 1983). In such models, 

σdc=3·10 -16 (Ω-cm) -1 at 296 K sets the magnitude of the conductivity and Eo=0.75 eV is an 

activation energy for electrons excited from localized trap states into the conduction band. The fit 

was scaled so that it has the manufacturer’s conductivity value at room temperature T for the 

specified type of Al2O3 studies here (Hayward, 2009). This conductivity versus temperature fit 

can be seen in FIG. 4.31. There are two relevant time scales that need to be considered in the 

understanding of these data. The first is the time scale between each sequential incident pulse of 

the probe beam (typically 5 s). If no discharge methods were employed, then the voltage induced 

from each pulse would need to dissipate to ground through intrinsic conduction mechanisms (DC 

and RIC). The required conductivity for this to occur is ~1014 (Ω-cm)-1, which would be achieved 

with a material temperature of 314 K. With conductivity in this range, we can be assured that all 

the charge build up from the probe pulse will not affect the yield from subsequent pulses. In the 

case of polycrystalline aluminum oxide, we see considerable charging in the positive charging  
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regime between the crossover energies in both the heated and room temperature yield 

measurements, suggesting a lower conductivity.  

We have shown in Section 3.2.1 that in this regime, low-energy electron flooding is 

effective at dissipating the residual charge after the pulse so that charge does not accumulate from 

pulse to pulse. From this we can now surmise that the incident pulse is inducing significant 

charging as seen in Section 4.2.2.6. That is to say that the first part of the pulse is charging the 

material to a voltage significant enough to reattract the electrons generated by the latter part of the 

pulse. Because of this, the other relevant time scale to consider is that of the incident pulse itself 

of 5 μs. For this, a conductivity of ~10-11 (Ω-cm)-1would be required. In polycrystalline aluminum 

oxide we can expect the DC conductivity to reach this value at a temperature of ~361 K. At 

present, the analysis chamber is not capable of attaining this high of a temperature. The data 

shown in FIG. 4.32a show the yield taken at 296 K, 3·10 -16 (Ω-cm) -1 and a corresponding decay 

time of ~10 min. This is longer than both relevant time scales but due to our discharge techniques 

only the charge induced by the pulse is changing the yield. FIG. 4.32a shows the yield measured 

348 K 296 K 

FIG. 4.31. Conductivity of aluminum oxide as a function temperature. 
The vertical lines indicate the two temperatures relevant to this study. 



122 
at 348 K and a conductivity of 9·10-12(Ω-cm) -1 and a corresponding decay time in the tenth of a 

second time scale. 

The total yields from both the room temperature and that of the elevated sample are 

plotted together in FIG. 4.32b to show any differences. Elevating material temperature to alleviate 

charging problems assumes that the only way sample heating will affect the yield is through 

modification of the DC resistivity and subsequently the acquired surface potential. However, we 

know this not to be true. It is not well understood how temperature will affect the generation of 

SE’s in the bulk of the material or how increased thermal energy might change the probability 

that SE’s will escape the surface and contribute to the yield. We can guess that there is an effect 

and that it could be significant as it is in the temperature dependence of DC conductivity. We also 

know that RIC is temperature dependant (Rose, 1951; Fowler, 1956; Dennison et al., 2008), so it 

is not unreasonable to assume that temperature will change charging by directly affecting SE 

production and escape, or that it will change it indirectly through conduction mechanisms.  

The heated yield curve does reflect some relief from charging as seen in FIG. 4.32b. 

There has been a shift in the crossover energies from E1=74±8 eV and E2=3290±50 eV at 296 K 

to E1=30±10 eV and E2=4000±100 eV at 348 K. This is consistent with the idea that the entire 

curve is being pulled toward unity as the potential increases. We also note that the heated curve 

displays an increased yield at ~200 eV from a total yield of 4.6 for low temperature, to 5.5 for 

elevated temperature. Also, the dip between the total yield peaks at ~400 is not as close to unity 

as in the cooler curve. This is an indication that the potential has lessened to some extent, or that 

the high temperature yield has increased in magnitude. 

Lastly, zone three yields remain near unity for both temperatures. However. With the 

increase in E2 at elevated temperature, zone three shifts to higher energies. In the curve taken at 

296 K the last point in the plot at 18 keV indicated that the material may be close to the zone  
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FIG. 4.32. High temperature yields of alumina. 
(a) Complete yield curve taken on polycrystalline aluminum oxide while sample was maintained
at an elevated temperature 348 K. (b) Comparison of the yields from polycrystalline aluminum
oxide at 348 K (total yield red; BSE yield purple) and at 296 K (total yield blue; BSE yield
green).   

E1 E2 
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(b) 
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three to zone four transition and the critical -50 V required for the SE→BSE shift discussed in 

Section 4.1.2 and 4.2.2. The curve taken at 348 K shows no such indication suggesting the 

SE→BSE shift has moved energies above the measured energy range.  

Despite the encouraging results heating has had on mitigating charging effects to the 

total, SE, and BSE yield for polycrystalline aluminum oxide it has not eliminated the problem 

fully. A material with a lower intrinsic total yield may be able to benefit fully from heating, but 

for this material other techniques must be employed.  

4.3.2.3 Composite Electron Yield  

Measuring the yield for a minimally charged insulator may be possible if the noise in the 

system can be sufficiently reduced to allow lower flux probe pulses, or if the material was heated 

to a sufficient temperature to increase conductivity to ~10-12 (Ω-cm)-1 so imbedded charge would 

easily dissipate to ground. As an alternative we have employed a method for turning charging to 

our advantage. In Chapter 2, a method was developed to determine the dependence of the yield on 

surface potential (Hoffmann et al., 2008). Equation (2.17) provides a model to calculate surface 

potential from the accumulated incident charge density. Equations (2.17) and (2.19), with Vs as an 

implicit variable, allow calculation of yield as a function of cumulative charge, that is, the yield 

decay curves. In practice, the lower integration limit in Eq. (2.13) needs to reflect the average 

residual charge accumulated on the surface during the first pulse. This now provides an 

expression for the yield as a function of surface potential.  

Decay curves were measured over a spectrum of 21 incident energies ranging from 200 

eV to 5000 eV and fit with Eq. (2.17). This method of yield measurement is invalid at energies 

below 200 eV because we can no longer make the assumption that the BSE are not affected by 

surface potential. All assumptions made for this model are outlined in Section 2.4. We can then 

predict yield curves as a function of incident flux (or equivalently surface voltage by use of the 

DDLM) by determining the yield at a specific cumulative incident charge resulting from the fits 
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to the measured decay curves. One of these decay curves taken at 200 eV and its fit is shown in 

FIG. 4.33a; it is representative of all 21 energies for which data exists. In order to fit the decay 

curve data we must use the parameters obtained from fitting the Chung and Everheart model to a 

measured SE emission spectra. To provide a thorough treatment of this method, one would 

measure the SE emission spectrum at the same energies as each decay curve. This would provide 

a measured data for each decay fit. In the interest of time, we have relied on the measurements 

taken in Section 3.1.3 that show that surface potential does not affect the shape of the emission 

peak, but only shifts it. Since the shape of the emission spectrum is what is relevant to this 

method, we can use only one representative spectrum and use it for all decay curves. In our case, 

we used the data from FIG. 4.36g taken with an incident beam Eo=98±1 eV. This was chosen 

because it was a clean measurement and near the first crossover energy so any unforeseen 

charging effects would be minimized.  

It may be possible to further simplify the process by not only assuming that the SE 

emission curve is unaffected by charging but that the yield decay curve is modified in a 

predictable way. This is equivalent to assuming that each material has a universal yield decay 

curve. This would be accomplished by measuring the yield and the surface voltage around E1 and 

E2 to create a universal yield decay curve that can be scaled to the measured surface voltage. This 

would need to be augmented by spot checking the yield decay curve, but would ultimately make 

it unnecessary to take yield decay curves over the full yield curve.  

Doing this allows the extrapolation of the yield to an incident flux approaching zero. This 

extrapolation is shown in the green data in FIG. 4.33b plotted with the blue data taken with the 

pulse system at room temperature. This method alleviates the charging problems encountered 

between the crossover energies in the positive charging regime as is shown FIG. 4.33b. This 

extrapolation predicts the maximum total yield σ max of 6.4 at an incident energy of Emax =500±50 

eV. It should also be noted that this method is in good agreement with pulse yield method at  
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FIG. 4.33. Yield decay curve and composite electron yield for polycrystalline Al2O3. 
(a) Yield decay curve taken on alumina at 200 eV. The red line is the fit developed in Section 3
based on Eq. 2.17 and Eq. 2.19. (b) Blue data are total yield from the pulse system discussed in
Section 4.3.2.1. Green data are the results of many decay curves fit with the results of Section 3
and extrapolated to 0 C incident flux(c) These data show the calculated curves for several surface
potentials. The green (solid square) curve shows the yield curve at 0 V surface potential. Red
(plus) curve shows a 2 V potential, black (triangle) curve is 5 V, blue (circle) curve is 10 V and
green (square) curve is 20 V. Note the  emergence of the dual-peak behavior as the surface
potential increases, and the approach to a yield curve of unity at higher potentials. 
 

(a) 

(b) 

(c) 
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energies that show little charging Eo>1200 eV. This is a good indication that the composite yield 

curve method described here and in Section 2 is correctly predicting the total yield.  

While this method is very time intensive, it can provide a great wealth of information. 

We can extrapolate these decay curve fits back to a zero surface potential to generate the intrinsic 

yield curve shown in green on FIG. 4.33b. When compared to the traditional yield curve 

measurements (blue data in FIG. 4.33b) described in Section 4.3.2.1, this seems to have resolved 

the charging difficulties, predict a much higher σmax, and eliminates the double peak behavior. 

In addition, FIG. 4.33c shows the yield curves predicted at several representative surface 

potentials. We see that, as the potential increases, we start to see the emergence of the dual-peak 

behavior observed in the traditional low-fluence pulsed method of yield measurement. From this 

we can determine that the surface voltage induced during the traditional pulse yield method was 

~5 V. We also note that at higher surface potentials the yield curve approaches unity at all 

incident energies (see FIG. 4.33c). This is consistent with total SE recapture due to accumulated 

positive surface potential, and supports the model in this limiting case.  

It is shown in FIG. 4.34a the difference between the yield that has been predicted for a 0 

V surface potential and the predictions for 2 V, 5 V, 10 V and 20 V. The greatest difference is 

seen in the prediction for 20 V and has a maximum of 5.5±0.2 at an energy of 500±50 eV. The 

fractional difference of the 0 V yield and the other predictions is shown in FIG. 4.34b. It too 

shows that the greatest difference is in the prediction of a 20 V surface potential and is 86% at 

500±50 eV. Both of the plots in FIG. 4.34b show a convergence of results after the second 

crossover energy E2=3290±50 eV. This supports the position of the crossover energy by showing 

that the yield stops responding to the surface potential. This is because there is no charging at E2 

and at higher energies the negative potential of the material does not significantly modify the 

yield. 
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FIG. 4.34. Residual plots of uncharged composite SE yield and voltage modified yield. 
(a) Difference between SE yield extrapolated to Vs =0 V and the extrapolation to 2 V (red) 5 V
(black), 10 V (blue) and 20 V (Green). (b) Fractional difference of the yield extrapolated to Vs=0
V and the extrapolation to 2 V (red), 5 V (black), 10 V (blue), and 20 V (Green). 

(b) 

(a) 
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4.3.2.4 Electron Emission Spectra  

Electron emission spectra were taken to provide further insight into the charging behavior 

of Al2O3. Data were taken with a DC beam at incident energies ranging from 30 eV to 3500 eV 

and represent energies in both the positive and negative charging regime as seen in the pulsed 

yield curves in FIG. 4.30. It is important to recall from Section 3.1.2 that the resolution of the 

incident electron gun is limited to the tenths place on the controller display, so at incident 

energies <100 eV the BSE peak can be measured as part of the emission spectra and is accurate. 

At incident energies >100 eV, the BSE peak is not measured and must be inferred from the 

controller and has an error of ±5 eV. 

E1 is estimated to be 74±8 eV and the E2 is approximately 3290±50 eV. If the incident 

energy used to measure the emission spectrum falls between these energies, we would expect to 

see positive charging; all other energies should produce negative charging. There is no evidence 

given in the emission spectra to indicate positive charging, there should only be the sample and 

backscatter peak visible (the backscatter peak will only be visible if the incident beam is 

<100eV). Negative charging will manifest as dual low-energy peaks; one peak from the sample 

and the other from the inner grid. For a full discussion of electron emission spectrum see Section 

3.1.2.  

As can be seen from the data in FIG. 4.35, the typical charging behavior is not observed 

in this material. These spectra were taken at an incident energy <E1 and should induce a negative 

surface potential. This would be evident by the presence of dual low-energy peaks like those seen 

in Section 3.1.2, with one static peak at about 2 eV originating from the inner grid. If the material 

is negatively charged (as we would expect it to be in FIG. 4.35a-d) there would be another peak a 

few eV to the right of the inner grid peak, as seen in FIG. 3.5. This second peak originates from 

the sample, and its position in relation to the inner grid peak gives the negative surface potential. 

The fact that we do not see this peak from the sample could mean one of three things. First, the 
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sample peak could be shifted to energies >-100 eV, and would require a surface potential <-100 V 

to be observable. We estimate the first crossover energy to be 74±8 eV so 4.3.7c at Eo=58±1 eV 

should be the first to show negative charging. It would be surprising to find that a material could 

charge to > -100 V within just ~10 eV of the crossover energy. However given the extreme yields 

measured from this material, this explanation gains credibility.  

Second, the sample is charging positively and the sample peak and the inner grid peak are 

both components of peak 1 in FIG. 4.35a. If this were true, the material would be charged 

positively in a region with a total yield σ<1. While the phenomenon of potential reversal is 

unusual, it is not without precedent in the literature for Al2O3  (Melchinger and Hofmann, 1995; 

Cazaux, 1999). These referenced studies were conducted using a DC beam similar to the electron 

emission spectra described in this section. These works are applicable to measurements using a 

DC beam that charges the material to an equilibrium state as was done with the spectral 

measurements presented here.  

Third, in Section 4.2.3 we presented the idea that it is not the surface potential that 

dictates the emission energy of a SE. Rather it is the electric field at the point of SE generation 

that is important. These measurements were taken with a DC beam, the sample had reached it 

equilibrium voltage, and all of the internal charge distributions had been firmly established. 

Therefore, the chronology of measurement would be important in understanding this explanation; 

unfortunately this information could not be extracted from the available data here. However, one 

could imagine a scenario where the beam establishes an internal distribution that would cause the 

results seen in FIG. 4.35. This is the most likely explanation of these results, but would require 

extensive study to support this theory.  

These figures show that the sample is charging positive or that it is charging negatively 

very quickly. We do not see the emergence of the dual peak until FIG. 4.36h taken at 100 eV. 

This incident energy is in the place on the yield curve (E1<Eo<E2) that would suggest positive  
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FIG. 4.35. Electron emission spectra of polycrystalline Al2O3. 
(a) Eb=38±1 eV, (b) Eb=49±1 eV, (c) Eb =58±1 eV, (d) Eb=70±1 eV, (e) Eb=76±1 eV, (f) Eb=85±1
eV. 

(a) (b) 

(c) (d)

(e) (f) 

Peak 1 

BSE 
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charging; dual peaks here are unexpected. This reversal in charging behavior continues as the 

incident energy increases, as seen in FIG. 4.36h-j. Further, in FIG. 4.36k-l the sample peak is lost 

again. All in all, this sequence is exactly opposite from what we would expect to see at these 

energies, and is consistent with both the second and third theories provided in the paragraph 

above.  

(h) 

(i) (j)

(k) 

(g) 

(i) (j) 

(k) 
(l) 

FIG. 4.36. Continued electron emission spectra of polycrystalline Al2O3. 
(g) Eb=96 eV, (h) Eb=105±5 eV,(i) Eb=205±5 eV,( j)  Eb=505±5 eV, (k) Eb= 3005±5  eV, (l) Eb=
3505±5 eV. 
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This, along with the irradiated Kapton data presented in Section 4.2.3, could be an 

indication of some significant findings. These behaviors have not been noted in the spacecraft 

charging community and could provide significant insight into the dynamic nature of materials 

and how they accumulate and store charge over time. These data and connection to the literature 

is not meant to be definitive, and much work remains to be done before these thoughts can be 

verified. For the time being, we make the assumption that the pulse yield charges the sample in 

the conventional way, the methods used in the sections describing the pulse yields are valid, and 

the anomalies seen in this section are caused by the use of a DC beam.  

4.3.3 Comparison to Literature 

Two important questions are raised by this study that will be pursed in future work. First, 

we note that some previous studies of the electron yield curves of high-yield, high-resistivity 

insulators using very high-fluence beams (many orders of magnitude higher than our study) have 

measured yield curves similar to our intrinsic yield curves, rather than double peak or unity yield 

curves characteristic of a highly charged sample (Dawson, 1966; Osawa et al., 2003; Whetten, 

2004). A comparison of the pulse yield, composite yield and that of Lucalox are shown in FIG. 

4.37. Lucalox is manufactured by General Electric and is the trade name for a high density, 

99.9% pure polycrystalline aluminum oxide ceramic used in high-temperature applications such 

as arc lighting (Whetten, 2004). The method of manufacture is proprietary and there is little 

information regarding the specifics of these materials in general. There is also little known about 

the test conditions for red literature data presented for comparison in FIG. 4.37. Although the 

paper that this data comes from is very vague, we can make some assumptions about test 

conditions. Often studies, such as those describing Lucalox, use highly focused rastered beams 

from AES or SEM systems, with beam diameters <1 μm and fluxes 104-106 times higher than our 

studies. There is also some reference to the sample being at an elevated temperature,  
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possibly as high as 1500 K. This would be consistent with the principle use of Lucalox in high 

temperature lighting application.  

We speculate that the local sample resistivity of the insulator may be greatly reduced due 

to radiation induced conductivity (RIC) or elevated sample temperature, leading to charge 

dissipation within the sample. We have already shown that sample temperature can alleviate 

material charging in Section 4.3.2.2. So heating might be an explanation of the Lucalox results; 

however the paper is very vague on this point and there may be no heating at all. In addition to 

the thermally assisted conduction mechanisms for dark current conductivity, electrons can be 

excited into the conduction band by high-energy incident radiation and then thermally move in 

and out of trap states near the conduction band edge as they travel in the conduction band under 

the influence of an applied electric field (Rose, 1951; Fowler, 1956; Dennison et al., 2008; Sim, 

FIG. 4.37. Yield on Al2O3 taken with three different methods.  
The blue squares are from measurements using the traditional pulse yield system. The green dots
are a result of the composite yield extrapolated to 0 V surface potential. The red diamond shows
the data taken from the literature on Lucalox. Note the good agreement in the yields of Lucalox
and the composite curve. Further there is good agreement in all three yields at 200 eV >Eb >1100
eV. 
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2010). This insulator conduction mechanism is referred to as radiation induced conductivity 

(RIC) and has been introduced in Section 4.1.2.5. We note that RIC persists for some time after 

the beam is turned off, so that this explanation could also be applicable to pulsed or rastered 

probe beams. 

For a Kapton HN sample, a rastered 1 keV incident energy with an estimated penetration 

depth of 30 nm, at a 10 A-mm-2 effective beam density produces an average absorbed dose rate of 

105 Gy and a radiation induced conductivity of 10-10 Ω-1-cm-1 (with 10-2 s decay time), 109 times 

larger than the zero dose rate dark current conductivity (Dennison et al., 2009a). In Kapton HN 

radiation induced conductivity persisted above 10% of the equilibrium dose rate value for >100 s 

(Dennison et al., 2007; Dennison et al., 2008).  

With limited RIC data available for polycrystalline aluminum oxide, performing the same 

type of analysis as stated above is difficult. There are parameters available for kric  and Δ 

(kric=6·10-9 (Rad·sec-1·Ω-cm)-1, Δ=1.0) in the literature (Donegan et al., 2010). Assuming a 10 A-

mm-2, as above and a penetration depth R of 11 nm we can calculate a dose rate of 2·1014 Gy-s-1 

by using Eq. (4.0). Now using Eq. (4.1), we calculate an equilibrium RIC value of 1·10-8 (Ω-cm)-

1. This relatively high conductivity means that in the context of our work this type of modification 

essentially makes the material a conductor.  

This would explain why the measurements shown for Lucalox and other material show 

no evidence of charging despite the intense probe beam used to make the measurement. The beam 

is essentially discharging the material as the measurement is made by pushing a significant 

number of conduction electron into the conduction band where they can dissipate to ground. It 

remains to be seen if this method of discharge gives an intrinsic yield of a material, but it can be 

said that it is not representative of what will be encountered in terms of spacecraft charging. 

Spacecraft will never encounter fluxes at the level seen in this discussion, so application of this 

method to spacecraft modeling is not valid. It should also be noted that RIC, enhancements 
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should be considered in all ground-based spacecraft charging tests (Dennison et al., 2009c). Since 

the dose rate is relatively low and the missions are long, accelerated testing is often used to test 

spacecraft materials. That is to say that because of RIC one cannot increase the electron flux in 

the test to avoid the long exposure times seen in space because doing so causes RIC to be a more 

significant factor than it otherwise might be. 

This explanation is closely related to a study of Green and Dennison of the measurements 

of resistivity by the charge storage method for an intense, rastered proton beam (Green and 

Dennison, 2008). In this study RIC is used to explain results of surface potential measurements. 

These measurements are made by irradiating a material with a proton beam and measuring the 

surface potential over time to determine material conductivity. The results of these tests are 

explained by using RIC to model the redistribution of internal charge. This redistribution is 

defined by the DC and RIC conductivities and has been used in the arguments in the paragraph 

above. 
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CHAPTER 5 

5 SUMMARY AND CONCLUSIONS  

The primary focus of this thesis has been to experimentally study the electron-induced 

electron emission and overall charging properties of common dielectric materials. This study has 

precipitated the development of state-of- the-art equipment and measurement techniques.  Of key 

importance to this work are the high precision measurements of minimally charged insulator 

electron yields and the development of predictions of how these yields are modified by 

accumulated surface potential. A model has been developed to describe surface potential and its 

relation to the total yield by combining other models for electron emission spectra and internal 

charge distribution (Hoffmann et al., 2008). This combination has allowed us to extrapolate to the 

uncharged yield on materials that would not otherwise be measurable. We have also introduced 

the idea that no discussion of the intrinsic yield is complete without consideration of the materials 

DC and RIC conductivity (Frederickson and Dennison, 2003; Compton et al., 2004; Dennison et 

al., 2008). Furthermore, separate continuous beam electron emission spectra have been taken to 

understand the interplay of surface charging and secondary electron re-capture mechanisms.   

The key advances in this research were: (i) development of state-of-the-art methods and 

instrumentation for measuring electron yields and emission spectra from insulating materials, 

particularly for low-fluence pulsed-beam techniques, (ii) development of a quantitative physics 

based model that accurately predicts total electron yield as a function of surface potential and 

incident flux, (iii) inclusion of conduction mechanisms in understanding charging behavior as 

they relate to total electron yield modifications. 

These capabilities have offered vast improvements in capability when compared to 

previous electron emission studies reported in the literature (Dawson, 1966; Willis and Skinner, 

1973; Thomson, 2004). The measurement of absolute total, secondary electron, and backscatter 

electron emission properties of insulators and conductors provide important new data for the 
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spacecraft charging modeling codes (Levy et al., 1985). This work also has broader implications, 

which include scanning electron microscopy, surface spectroscopy methods, particle detectors, 

plasma fusion devices, dielectric arcing, and flat panel displays (Seiler, 1983; Schwoebel and 

Brodie, 1995; Shih et al., 1997b; Auday et al., 2000; Belhaj et al., 2000; Reimer, 2000). 

To underscore the importance of yield in the modeling of spacecraft charging, FIG. 5.1 

shows the equilibrium voltage, Veq, that develops on a simple spacecraft (a flat sheet) as a 

function of the total yield of the material this hypothetical spacecraft is composed of (Kapton 

HN). This is accomplished by modeling the Kapton sheet in the Spacecraft Charging Handbook 

(the current software used by NASA to predict surface potential) (Mandell et al., 2001) and 

changing the material parameter σmax only in a manner similar to that in Chang (2000b). It is 

modeled in a low-Earth orbit with average environmental conditions and in eclipse without the 

effects of photoyield. It is easy to see in FIG. 5.1 that a modest error of <10 % in the 

determination of the total yield can lead to a dramatic shift in the predicted equilibrium surface 

voltage from +10 V to -10,000 V. This type of miscalculation could have several consequences. 

If, due to a yield error, the model predicts -10,000 V surface potential, then there would be 

considerable cost and effort wasted to fix a problem that does not exist. On the other hand, if the 

model predicted +10 V equilibrium potential, the craft could have a significant problem that 

would not be addressed until the craft is in orbit, and by then, mitigation options would be 

limited. These scenarios are extreme, but must be considered. In the end, it all comes down to 

accurate measurement of the materials involved.  

All of this work has been done for use in understanding spacecraft charging and 

specifically for incorporation in spacecraft modeling codes. The measurements that have provided 

material properties in the past have been sparse, unrepeated and in the case of many extreme 

insulators, little more than an educated guess (Levy et al., 1985). This study has provided  
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an instrument and methods that can give repeatable results for even the most charge susceptible 

materials. This was done through the development of theory that has been presented in the 

literature (Hoffmann et al., 2008). It has been shown that these methods can provide accurate 

measurements for materials with total yields ~7 and a conductivity of ~10-19 (Ω-cm)-1. At ~10 -19 

(Ω-cm)-1 the charge decay time is much longer than the relevant time scale of a few seconds for 

these experiments; this allows us to extend the applicability of these methods to materials with  

resistivities ρ→∞. The yield of polycrystalline aluminum oxide as been measured with the decay 

curve method to have a maximum total yield σ~7 (Donegan et al., 2010). There are materials that 

have a higher maximum total yield σmax than aluminum oxide, such as diamond, which has a 

negative electron affinity and a theoretical maximum yield σmax≈40 (Shih et al., 1997b). The 

FIG. 5.1. Equilibrium surface potential of a Kapton sheet in orbit. 
This is modeled in average environmental conditions as the maximum total yield σmax of the
material is changed. This was modeled in the Spacecraft Charging Handbook and show how
modest error in yield determination can have dramatic effects on the predicted surface
potential.   
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factor that limits how large the maximum total yield can be is how few data points can be taken in 

a yield decay curve before the material is fully charged. We have shown that this method can 

provide more than enough decay curve data to apply the model and extrapolate the zero charge 

yield. If the yield were ~40 the fit could still be applied, it would just have five times fewer 

points. This would increase the uncertainty of the extrapolation, but would still provide a 

reasonable measurement.  

The parameters of maximum total yield and conductivity dictate the charging 

susceptibility. This allows us to illustrate the demonstrated and predicted capabilities of the 

methods described in this work; they are shown in FIG. 5.2. In short, we have demonstrated a 

method’s applicability to a wide variety of materials and have predicted that these methods can be 

used to measure materials with any degree of charging susceptibility from conductors (low-yield; 

high-conductivity) to diamond (high-yield; low-conductivity). It should also be me mentioned 

that the methods described herein are applicable over the entire range of both yield (from 0 to 40) 

and conductivity (from 0 (Ω-cm)-1 to →∞ (Ω-cm)-1). This range covers the entire known 

spectrum of these two materials properties. In addition, this work has also provided great insight 

into physics of material charging by providing a physics-based approach to determining the 

electron induced electron yield of insulating materials.  

5.1 Summarization of Thesis Sections 

Chapter 2 developed the theoretical models for electron emission and for the internal 

charge distribution resulting from electron irradiation of insulators, culminating in the analytic 

model of the electron yield from insulators as internal charge is accumulated.  

In Section 2.1 a basic description of electron yields were presented, representative of 

nearly all conducting and insulating materials. This included definitions of total electron, 

secondary electron, and backscatter electron yields and how these yields can be measured  
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experimentally by summation of currents (Thomson, 2004). This section also qualitatively 

describes how surface potential affects total yield.   

Section 2.2 describes the mechanisms involved in the energy distribution of secondary 

electrons, and provides a review of the physics-based Chung and Everhart (Chung and Everhart, 

1974) model that describes secondary electron emission spectra of conductors.  This model was 

then extended through the work of Thomson (2004; Baroody, 1950; Quinn, 1962) to be generally 

applicable to dielectric materials through the substitution of the insulator electron affinity χ, for 

the work function ϕ. Building on this foundation, the yield of a material was described in terms of 

the secondary electron emission spectrum, which naturally leads to the inclusion of surface 

potential in the general model. 

FIG. 5.2. Depiction of the range of measurable materials. 
(a) Conductors and semiconductors. (b) Polymeric materials such as Kapton HN. (c) Metal oxide
ceramic materials such as aluminum oxide. (d) Negative electron affinity materials such as
diamond. (e) Range of material properties tested in this work. (f) Applicability of methods
developed herein to all materials. 

→∞0←
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The internal charge distribution that develops as a result of incident electron 

bombardment on insulators and the concominant surface potential were described in Section 2.3. 

This section reviewed a progression of increasingly sophisticated models of internal charge 

distribution. It started with a simple conductor with an internal charge distribution dictated by 

Gauss’ law (Griffiths and Inglefield, 1999), and progressively built to the dual dynamic layer 

model (DDLM) that describes the complex layering of charge that results from electron beam 

radiation (Melchinger and Hofmann, 1995). This model allowed the prediction of surface 

potential as a function of incident flux, and provides a crucial element in the modified Chung-

Everheart model to predict electron yield as surface potential develops and SE recapture is 

initiated. Confirmation of the predicted surface potential of polymeric insulators under electron 

beam bombardment, to be measured by Hodges (2010), will provide critical validation of this 

intermediate prediction of the theory developed in this thesis.  

Section 2.4 combined the DDLM from Section 2.3 and the expression developed to 

predict electron yield as a function of surface potential from Section 2.2, to form an empirical 

model that predicts what fraction of SE will escape from a given surface potential and ultimately 

how the total yield reacts to an evolving positive surface potential. It is this comparison of this 

theory with our measurements of yield decay curves, electron emission spectra and electron yield 

curves as charge accumulates that are the central result of this thesis. 

Chapter 3 provided a general description of the USU equipment and facilities used to 

measure electron emission properties of materials as they accumulated charge, and measurements 

used to evaluate the verisimilitude of the theories presented in Chapter 2. This section provided a 

description of all of the instrumental upgrades that have been implemented to study the effects of 

charge accumulation on emission and to describe the extensive validation measurements made to 

characterize these improvements. Of particular importance was the characterization of systematic 
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errors of <5% for conductors and <10% for insulators and the demonstration of yield 

measurements using pulses of <3 fC/mm2. 

Section 3.1 was devoted to DC (direct current, continuous beam) measurements and is 

presented here to validate the basic functionality of the detector after upgrades described in 

Chapter 3 (Nickles et al., 2001; Thomson, 2004). The hemispherical grid retarding field analyzer 

was described in general terms and basic functionality of this detector and its efficiencies were 

discussed. The upgrade most relevant to this section was the electrical isolation of the inner grid 

to allow positive surface potential to be measured using the spectral shift method described in 

Section 3.1.3. A DC spectrum taken from a grounded clean polycrystalline gold sample was 

presented as a gold standard from which to gauge all other measurements. Spectra were measured 

with several known external biases placed on the gold sample.  These demonstrated that the 

secondary electron peak measured in the emission spectra was linearly proportional to the applied 

sample bias. It was also shown that other features (inner grid and BSE peak) of the electron 

emission spectra showed no response to the applied electric field of the sample.  This set of 

measurements was used as a surrogate for more complex measurements of induced sample 

potential on insulators, and validated the spectral shift method as a viable, albeit limited, method 

of determining sample potential. 

With the basic operation of the hemispherical grid-retarding field analyzer established in 

the preceding sections, Section 3.2 addressed the more complex measurements using the pulsed 

yield system. The basic operation of this system was developed by Thomson (2004) and has not 

been changed. What has been changed is the versatility and overall capability of this instrument. 

By way of extensive instrument characterization, the range of the primary electron source was 

extended from to 30 eV to 5 keV and the beam spot size was normalized to a FWHM value of 1.7 

mm over the entire range of the gun. This allowed the flux density of each incident pulse to be 

maintained throughout the entire energy range of the Staib gun (Staib Instruments, 2002).  
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Section 3.2.1 was devoted to the concept of charge neutralization.  As incident electrons 

interact with the material during the course of yield measurements, the material will inevitably 

adopt a potential. This potential must be dissipated before further measurements can be made.  

This section described two neutralization methods, namely low-energy thermionic electron 

charge dissipation shown to be effective at dissipating positive charge accumulation, and photon 

flooding to induce the photoelectric effect and dissipate negative potential accumulation (Jbara et 

al., 2001).  It was shown that the flooding of low-energy electrons is very effective at dissipating 

positive surface potential. Unfortunately, due to time constraints, the effectiveness of photon 

flooding could not be fully explored. This validation is included as an item of future work in 

Section 5.2. Also included in Section 3.2.1 was a discussion of the instrumental upgrades that 

have been implemented in the hemispherical grid retarding field analyzer; most notably are 

inclusion of Faraday cups that can be used for beam positioning and beam characterization during 

emission measurements.  

Section 3.2.3 described upgrades in measurement methods that have led to a reduction in 

systematic error from previous work. A timing diagram showed the basic sequence of the pulsed 

yield system with special attention given to the rejection of erroneous data.  There was an 

intermittent noise source of unknown origin identified that corrupts ~15% of the pulsed yield 

data. A method was developed using LabVIEW and a four-channel digital storage oscilloscope to 

examine the signal before and after every pulse, and based on this information, reject the data if it 

exceeded the user defined acceptable limit. These improvements lead to a 60% improvement in 

systematic error in yield measurements over previous studies.   

Also put forward in Section 3.2.3 was the idea that the pulse itself may be able to be used 

for yield determination; due to limited data, this technique was outlined, but not fully explored. 

Throughout the course of this thesis, each incident pulse was integrated with respect to time, 

giving a total flux typically on the order of the few fC.  Since the electronics are fast enough to 



145 
capture the evolution of the yield within each 5 μs pulse with sufficient resolution, it might be 

possible to calculate the yield on a point-to-point basis. This would raise the overall sensitivity of 

the pulse-yield system by at least a factor of 10 and allow greater understanding of the material 

dynamics as it responds to incident charging pulse. This has not been done in this thesis, but is 

presented as an item of future work in Section 5.2. 

With a theoretical framework developed and the instrument characterized and validated 

with both grounded and bias conductors, Chapter 4 presented data measured with the pulse yield 

system on three separate insulating materials. These materials were chosen because of their 

applicability to spacecraft construction, but more importantly because of the varying degrees of 

susceptibility to charge accumulation they possess. Therefore, to determine the effectiveness of 

the pulse yield system for measuring the minimally charged yield of an insulator, we considered a 

progression of more challenging materials. First, we examined CP1, a material similar to Kapton 

HN; CP1 has a low total yield (σmax~1.4) and a low conductivity (~10-19 (Ω-cm)-1) (Dever et al., 

2001; ManTech, 2010). With a bulk conductivity in this range, the charge decay time will be 

several days and will, therefore, dissipate any charge build up in that time frame but not in the 

few seconds each emission measurement requires. Next, the polyimide Kapton HN was examined 

(DuPont, 2010). This material has a slightly higher yield (σmax~2.2), and has low conductivity (10-

19 (Ω-cm)-1), again leading to a decay time of several days. This material is a good test of our 

discharge methods and is representative of most of the materials of interest for space-based 

applications. Finally, we considered polycrystalline aluminum oxide with a high yield (σmax=7) 

and low conductivity (~10-16 (Ω-cm)-1). This material accumulates charge quickly and retains it 

for tens of minutes. This material provided tests of not only our discharge methods, but also of 

our minimum probe pulse current and ultimately our systematic noise floor. 

Section 4.1 presents the data acquired from CP1 and starts in Section 4.2.1 with a detailed 

material characterization including optical reflectivity showing an absorption edge at about 4.8 
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eV, which provided an estimate of the direct bandgap. This section also included optical 

micrographs of the material showing extensive physical damage to the material, attributed to 

manufacturing process or handling of the sample prior to its arrival at USU. Lastly, an estimate 

was given of the penetration depth or range R for CP1.  

Section 4.1.2 presented the electron yield of CP1 as measured with the pulse yield 

system. These data gave a maximum total yield of σ=1.4 at Emax =170 eV and showed little 

evidence of charging at beam energies <E2. Above E2 negative surface potential began to modify 

the yield with a dramatic shift taking place at ~1500 eV when the surface potential reached ≥-50 

and secondary electrons received enough kinetic energy from the electric field of the sample that 

they begin to register as BSE’s. Several methods for determining the crossover energies were 

employed for this material with our best estimates being E1=60±5 eV and E2=640±20 eV.  

Electron emission spectra were also presented, and by using the spectral shift method described in 

Section 3.1.2 the crossover values were validated. A key result in this section was described in 

FIG. 4.8b where the entire yield curve was sectioned into six distinct zones of incident energy and 

the behavior was explained. These explanations for the features seen in CP1 were subsequently 

applied to Kapton HN and aluminum oxide; they provide a qualitative description for the features 

observed in these two additional materials.  

Section 4.1.2.5 presented decay curve data of the yield resulting from charge 

accumulation of numerous features in Section 3.2.1 taken for CP1 at an incident energy of 300 

eV. The yield of this material is low at 300 eV (~1.4), but its conductivity (~2·10-19(Ω-cm)-1) 

should ensure that any accumulated charge would remain for a long period of time. The decay 

curve, however, suggested that this might not be the case; it should have reached an asymptotic 

limit of one in very short order (~40 nC), but did not, suggesting that bulk conductivity was 

dissipating the charge as the beam was depositing it. It was proposed that radiation induced 

conductivity (RIC) could modify the bulk conductivity enough to cause this phenomenon.  In this 



147 
case, the radiation induced conductivity was estimated to be ~2·10-16 (Ω-cm)-1 (about three orders 

of magnitude larger than the dark current conductivity) and would therefore make the charge 

decay comparable to the experimental duration. This was presented as a theory and would need 

further examination for verification.  

Section 4.2 examined the moderate-yield, low-conductivity material Kapton HN and 

began with a thorough material characterization as described above for CP1.  This material was 

found to be very similar to CP1 in that it, too, had extensive physical damage when viewed under 

a microscope. Also, as with CP1, there was little evidence of charging at incident energies < 

E2=775 eV, but at energies greater than E2 the material began to exhibit significant signs of 

charging.  The most notable of these was when the material reached a negative surface potential 

of more than 50 V and secondary electrons gained enough energy to be registered as BSE’s, the 

same phenomenon as was seen for CP1. For clarity, the yield curve was again sectioned into five 

zones and each zone was explained within the context of surface potential. 

Decay curves for Kapton were shown in Section 4.2.2.4 and revealed that the charge 

dissipation techniques for positive potentials (discussed in the instrument characterization Section 

3.2.1) might not be completely effective. Namely, after many hours of pulse yield measurements, 

the decay curves no longer approached an asymptotic limit of unity. His condition was found to 

be alleviated by increasing the bulk conductivity through sample heating to 333 K for 6 hr.  

Decay curves taken after this thermal annealing treatment resulted in an asymptotic approach to 

unity as it is to be expected.   

This discovery led to further investigations in Section 4.2.2.5 of decay curves, including 

the so-called dose decay curves. In these experiments, the yield was measured as a function of 

incident flux and it was found that dramatic changes in the total yield (60%) could be seen with 

relatively small flux changes (~10 fC) (Hoffmann and Dennison, 2006).  This effect was not just 

seen in decay curves, but was also measured across the whole spectrum of energies used to take 
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total yield measurements. These results were discussed in Section 4.2.2.6, where it was shown 

that changing the flux contained in every pulse could have a dramatic effect on the total yield.  

The last section devoted to measurements on Kapton (Section 4.2.3) was a collection of 

measurements made on previously irradiated samples. These materials were subject to intense 

electron beam radiation prior to this set of measurements with the intent of studying the effects 

that radiation damage had on electron yield and emission spectra.  While this section was not 

meant to be a complete treatment of the subject, it was interesting to note that the electron 

emission spectra measured and presented here show dramatic changes in the behavior of Kapton 

after electron beam radiation. Most notably, when a continuous electron-beam of incident energy 

200 eV (σ>1) impinged on the sample to measure surface potential, the spectral shift method 

revealed that the material was charging negatively up to -28 V and that this negative voltage 

evolved over tens of minutes. It was speculated that this is due to the production of increased 

trapping states within the band gap (Connell, 2000; Dever et al., 2001). We also speculated that 

the secondary electron escape energy was determined by the electric field at the point of origin 

rather than by the net electric field at the sample surface. The theories in this section are purely 

speculative, but they do provide tantalizing clues that could provide a wealth of information about 

Kapton and how radiation damage might modify the material. 

From the charging perspective and for the purposes of this study polycrystalline 

aluminum oxide provides the most challenging material and was addressed in Section 4.3. This 

material has a low conductivity (3·10-16 (Ω-cm)-1) (can store charge for tens of minutes) and an 

very high total yield (~7). The combination of these two material properties make polycrystalline 

aluminum oxide exceptionally good at gathering and storing charge, and provides conditions that 

tested the capabilities of the instrumentation and methods developed herein.  Material 

characterization was difficult due to its proprietary nature and limited specific information, but a 

general treatment of aluminum oxide and its possible contamination origins are presented. Results 
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for most of the characterization tests and calculations done for CP1 and Kapton were presented 

for aluminum oxide. 

Section 4.3.2.1 displayed data taken from the pulse yield system on polycrystalline 

aluminum oxide and showed evidence of significant charging at energies between the crossover 

energies (E1=74±8 eV, E2= 3290±50 eV). CP1 and Kapton both showed evidence of charging, but 

always in the negative charging regime where the effects are more easily explained and 

quantified. Polycrystalline aluminum oxide showed little charging effects in the negative charging 

regimes, but dramatic effects in the positive charging regime.  The magnitude of the effects was 

not quantifiable using traditional pulse yield methods. For this reason, in Section 4.3.2.2 the 

material was heated to 348 K to thermally enhance the conductivity of the material, thereby 

reducing its charge susceptibility. This approach showed some relief from the effects of charging, 

but ultimately did not alleviate the problem.   

Therefore, in Section 4.3.2.3 the theory developed in Chapter 2 was employed to 

extrapolate a yield decay curve back to its uncharged value. Decay curves were then taken at a 

spectrum of energies ranging from 200 eV to 5000 eV and all were extrapolated to a zero surface 

potential. In this way, it was possible to use a combination of experimental data and the 

theoretical models from Section 2 to predict an intrinsic yield on materials that would not 

otherwise be measurable. This method not only gave information about the intrinsic yield, it was 

able to predict yield curves as a function of surface potential or equivalently, using the DDLM, as 

a function of incident flux. This method correctly predicted the emergence of the dual peaks seen 

in the data. It also predicted a reasonable value of σmax~7, consistent with other available (but 

limited) yield data for bulk aluminum oxide. Further, it served to corroborate the explanations 

developed to qualitatively describe the numerous features observed in the different energy regions 

of the yield curves attributed to charge accumulation. The agreement between the model for 
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intrinsic yield curves and the measured emission properties of the most challenging aluminum 

oxide samples is the most significant accomplishment of the work presented in this thesis.    

Finally, in Section 5.2, a path forward is presented that further explores all the loose ends 

and ideas that have been presented in this thesis.  Further work in determining dose dependence 

of yield modification is outlined in Section 5.2.1 and includes a method of determining the total 

yields on the fly as the pulse progresses through its 5 μs duration. In Section 5.2.2 a method is 

proposed to recreate literature results using a high flux density beam to take the yield in concert 

with direct surface voltage measurements to confirm or invalidate the idea that RIC might be 

responsible for results seen in the literature. Finally, we will build on the previous section to use 

the surface voltage measurements to support the models put forth in Section 2.3, namely the 

DDLM for internal charge distribution.  

5.2 Future Work 

This work provides a solid foundation for the measurement of electron yields, but there 

are several experiments that could be done to strengthen the argument and prove or improve some 

of the assumptions that have been made throughout the text. This section provides a clear way 

forward for the Materials Physics Group at Utah State University with the overall goal of 

advancing the field of spacecraft charging. It first outlines the concern raised in the text and then 

proposes a set of experiments to answer the associated questions. The experiments described in 

this section are mentioned as an outline only; the details will be left up to future researchers.  

5.2.1 Dose Decay Curves    

The dose decay curves described in Section 4.2.2.5 were taken by measuring the yield at 

constant incident energy, but changing the total fluence in each pulse. In the theory developed in 

Section 3 the total flux is not what is required; rather it is the flux density, given in current per 

unit area. To explore this difference the following measurements should be made.  
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The methods described in Section 3.2.4 should be used to determine settings for beam 

spot sizes of 1 and 5 mm. These settings will bracket the measurements shown here at 1.7 mm. 

Dose curves, like those presented in Section 4.2.2.5, should be taken at 1 mm and 5 mm spot size 

settings. This will establish the dependence of charging on, not only the total flux, but the more 

correct flux density. These results will also have important implications for understanding the 

effects of RIC on electron yield, charging and discharge.  

Changing the duration of the incident pulse will also provide another method of 

establishing the dependence of the charging on the total flux. This will help clarify the total flux 

dependence, but does nothing for the flux density dependence.  

5.2.2 Inclusion of Conductivity in Model for Flux Dependent Yield  

The model developed in Section 2 has been effectively applied to model how the total 

yield will respond to surface potential. This was accomplished by making several assumptions; 

one of which was that the internal charge distribution was static once established. In other words, 

the materials’ total conductivity was assumed to be infinite. This is, of course, not generally a 

valid assumption for all materials and was used only as a proof of concept in this work.  

Inclusion of conductivity should be relativity straight forward and will closely follow the 

work by Roth et al. (2008, 2009). This work models the charge deposited in the material as a 

single slab. It derives the electric field within the bulk of the material and ultimately the current 

moving in two directions. One direction is up/toward the incident surface from the deposited 

charge layer toward the incident beam; the other current moves down/in the opposite direction 

from the charge layer to the grounded substrate. Roth (2009) models the current going up in terms 

of the RIC and the DC conductivity and the current going down in terms of the DC conductivity 

only. This leads to two charge transport terms for the single charge layer in this model. This 

model is extended to ungrounded top surfaces in Hodges (2010) and Sim develops an extensive 

theory of charge accumulation and dissipation from an electron transport perspective (Sim, 2010).  
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This method can be used in our application simply by taking each of the three layers 

predicted by the DDLM in Eq. (2.19) in turn, and applying the same techniques as Roth did for a 

single charge layer. This will give currents flowing both up and down for each layer, and when 

summed, will provide an expression for the total current flowing within the material. It is a simple 

matter after this to relate the current flowing to and from each of the layers to the total charge 

deposited, dissipated and ultimately the surface potential.  

The addition of finite resistivity into the DDLM will increase the model’s applicability to 

the problem of material charging by allowing the measurement of high-yield materials that have 

charge decay times on the order of our experiment (a few seconds). Such a theory could produce 

a fit to electron yield decay curves such as that for CP1 in FIG. 4.12 for CP1 with relatively high 

conductivity. It might also yield new information about the material, such as the DC or RIC 

parameters. These parameters might be fitting parameters to the measured decay curves. This 

would provide a relatively easy method of determining these parameters compared to current 

methods that are both costly and time consuming (Dennison et al., 2007).  

5.2.3 Reproduction of Literature Results  

It is not possible for us to reproduce the exact conditions that are typically used to 

measure the electron yields in insulators in high flux SEM or AES systems; our chamber is not a 

SEM and has no raster capability. However with modest modifications it may be possible to use 

some existing instruments to reproduce SEM conditions. With no modification, however, we are 

able to create a high-fluence pulse. According to the manufacturer of our primary electron gun 

(Staib Instruments, 2002), we can achieve 80 μA of beam current and a spot size of 80 μm. This 

would produce a beam density of 0.02 A-mm-2. While this is considerably less than the beam 

densities seen in a SEM, we estimate the radiation induced conductivity for KaptonTM to be 10-12 

(Ω-cm)-1, with a charge decay of ~1 s. The RIC effect should still play a significant role in 
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dissipating any built up charge and be apparent in the following measurements. The experiment 

would proceed as follows: 

• Use the Faraday cup to determine the settings needed for maximum beam current and 

constant beam spot size.  

• Measure the total and backscatter yields using these settings, with the shortest delay 

possible between pulses, and no flooding on Kapton and polycrystalline aluminum oxide. 

Do this for energies ranging from 50-1500 eV. 

• Use a DC beam and the tightest possible focus to measure the SE and BSE yields on 

polycrystalline aluminum oxide. This will approximate literature test conditions.     

• Repeat the above experiment with electron flooding durations of 1, 3, and 5 seconds. This 

will indicate any dependence on low-energy electron flooding.   

• Use the newly developed surface voltage probe (Hodges, 2010) to measure surface 

voltage during these various experiments to directly measure the net accumulated charge.  

These experiments will approximate the condition in a SEM and provide information 

about the RIC influence and its dependence, if any, on flooding during the pulse yield cycle. If 

RIC is a significant factor, the dual peaks seen in our low-fluence pulsed yield measurement (e.g.  

FIG. 4.30) should not appear. In addition, collaborations are planned with Dr. Jbara at the 

Université de Reims in France to make measurements for comparison using his SEM system. 

5.2.4 Surface Voltage Measurements 

Work is underway to add a moveable noncontact electrostatic field probe (Hodges, 2010) 

to the existing HGRFA detector used in pulse yield measurements. This will allow the 

measurement of the surface potential in situ, while pulse yields are being measured. This upgrade 

will allow the following measurements to be made.   
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Surface voltage measurements will provide the means to verify the decay curve method 

of determining electron yields by measuring the surface potential rather that inferring it from the 

DDLM. While the DDLM is a venerated method of inferring surface potential, it introduces a 

level of uncertainty by using it in the context of this study. By measuring the surface potential 

rather than inferring it, we greatly enhance the strength of the arguments presented here.  

The charge storage method is a very sensitive technique for determining the bulk 

resistivity of highly insulating materials (Fredrickson and Dennison, 2003; Swaminathan, 2004; 

Hodges, 2010). We first charge an insulator up to a large surface potential by depositing a thin 

layer of electrons near the surface using an electron gun. Measurements of the potential are then 

taken with a non-contact electrostatic field (Flipper) probe that can make the measurement 

without disturbing the charge distribution (Hoffmann et al., 2009). Over time, the electrons will 

migrate through the material to the grounded sample mounting plate. This depletion of electrons 

will manifest as a roughly exponential decrease in surface potential (Dennison et al., 2007; Sim, 

2010). By making surface potential measurements over time as charge decays, we can infer the 

bulk resistivity of the material (Green and Dennison, 2008). 

If RIC plays a significant role in discharging the material, as we have suggested, then this 

will be evident in the non exponential nature of the charge decay. RIC persists for >100 sec after 

the radiation is turned off, so we would expect to see a quick decay of the surface potential in the 

initial tens of seconds after the beam is turned off. The rate of decay will then slow until it 

reaches the much lower dark current conductivity. The following set of measurements will 

provide the data needed to examine RIC as an explanation for the discrepancy in our traditional 

pulse yield measurements to those of the literature, as described in Section 4.3.3.  

• Use a well characterized high-fluence electron beam to charge Kapton with a known dose 

and dose rate, and measure the surface potential for several hours after charging has 

ended.  
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• Repeat this basic experiment with different parameters such as dose rate, spot size, beam 

energy, material thickness, and material type. 

Charge layering was postulated as a possible cause for the apparent change in charging 

behavior seen in irradiated Kapton and polycrystalline aluminum oxide in Sections 4.2.3.2 and 

4.3.2.4. This was evidenced by using the spectral shift method of determining surface potential. 

While we have shown that this method is valid, it remains an indirect and less precise method of 

determining surface potential. Measuring the surface potential immediately after spectra, like 

those in the sections mentioned above, are finished will give insight into the nature of the 

phenomenon. This is similar to the work done by Green (Green and Dennison, 2008), and like his 

study, might provide insight into, not only the net surface potential, but also the interplay of 

charged layers as they recombine.  

Throughout Sections 4.2 and 4.3 we have used the idea that the potential at the SE 

production site is the potential barrier that must be overcome to contribute to the yield. This 

supposition could be confirmed by measuring the surface potential as the yield is measured. The 

penetration depth is dictated by the incident electron energy, so it is possible to control the depth 

of the penetration electrons. Using a low-energy beam, it may be possible to determine a 

relationship of penetration depth and surface voltage. 

It would be beneficial to measure charge accumulation curves of surface voltage at 

numerous energies along the CP1, Kapton HN, and Al2O3 to test our speculations about how 

charge is affecting total, SE, and BSE yields. I would recommend that these tests be conducted in 

each of the six zones indentified in FIG. 4.8. 

Surface voltage measurements will also shed some light on the anomalous behavior seen 

in zone 4 in FIG. 4.17. The argument was made that the electric field was enhancing the 

production and escape mechanisms for SE’s. This enhancement was evidenced by an increase in 

the total yield to values above one at beam energies higher than the second crossover. This 
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second peak leads to an effective crossover point at a much higher energy than the first. Data 

regarding the surface voltage will shed some light on this result and allow incorporation of this 

behavior into existing models that currently do not adequately treat the negative charging areas. 

One specific test would be to measure the equilibrium voltage induced by the beam well above 

the effective second crossover energy to determine if the surface voltage is equal to either the 

difference Eo-E2 or Eo-E2
eff. 

 Section 3.2.1.2 develops the idea of using UV photon sample flooding to induce the 

photoelectric effect and dissipate negative surface potential. The instruments are in place, but lack 

of time has forced us to move forward without validation of the charge dissipation method or 

equipment. Having this capability would be of tremendous value. In Sections 4.1.2 and 4.2.2 we 

have shown yield curves that show significant charge related features at energies >E2. We have 

speculated as to the nature of these features, but are unable to make measurements because there 

does not exist a time effective way of dissipating the negative charge that develops in this energy 

range. Using the electrostatic field probe, we could not only validate UV flooding of materials for 

discharging, but we could enhance our understanding of this region (E1>Eo>E2) of the yield 

curve.  

5.2.5 Detector Characterization 

Extensive work has been done to characterize the detector in this work and by previous 

researchers (Chang et al., 1998; Nickles and Dennison, 2000; Nickles et al., 2001; Thomson et 

al., 2003), but there remains a few loose ends to tie up that will remove some minor but lingering 

concerns about detector functionality. Performing the following measurements will reduce error 

bars associated with both yield and spectral measurements.  

Section 3.1.3 provides a treatment of electron emission spectra taken from biased 

conductors to show the basic behavior of the inner grid, sample and BSE peaks. This was used 

throughout Section 4 to infer negative surface potential. To measure spectra from positively 
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biased conductors, it will be necessary to perform a suite of measurements like those in Section 

3.1.3, only with the sample and inner grid held at a positive bias. These measurements should 

contain combinations of positive biases on the inner grid and the sample to establish basic 

behavior. These voltages should not exceed 100 V as the spectral system cannot measure peaks 

any higher than that without upgrading the power supply that controls the discriminating voltage. 

This will allow the use of the spectral shift method of surface voltage determination on insulating 

materials with a positive potential. A better understanding of the effects of grid biasing may also 

be used to minimize the contamination of the SE spectra by the inner-grid peak by shifting the 

peak relative to the sample peak.   

It was also shown throughout Section 4 that there is a small, secondary emission peak of 

roughly consistent intensity centered at ~42 eV. In this work, this small peak has been attributed 

to SE from some unspecified element in the detector and has largely been ignored. The source of 

this peak can be found by applying a few volt bias to each element in the HGRFA and taking an 

emission spectrum of a clean grounded Au sample. When the correct element is biased, the peak 

at ~42 eV will shift by the amount of the applied bias. Once the source of this peak is determined, 

efforts can then be taken to eliminate the peak altogether.  

This work has required some modest modification to the HGRFA, most notable are 

several apertures drilled in the collector for the admission of flooding electrons and photons. 

These holes have reduced the collection area of the hemisphere by <1% and have introduced 

edges in the collection area that might change the overall efficiency of the collector. In order to 

maintain the <5% error in measuring absolute electron yields, we must be sure that the collector 

efficiency is well known. The work done by Thomson (2004) measures the efficiency of the 

detector in Section 4.3 of his dissertation. He finds a correction factor for the total yield of 1.15 in 

agreement with modeling of the detector by Nickles (2002), thus accounting for the 15% loss 

inherent to the HGRFA. I suggest we make the same measurements by taking the uncorrected 
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yield using a DC electron beam on a clean grounded Au sample; we then only need to adjust the 

incident energy until the sample current reads zero. We know by this that we have found the 

crossover energy and that the yield is unity by definition. The efficiency is then given by the ratio 

of the measured yield to the true yield of unity. As a corollary to this recalibration, measurements 

can be made from each detector element (sample, stage, inner grid, bias grid and detector) to 

confirm the separate component currents predicted by the detector modeling of Nickels et al. 

(2001).  

5.2.6 Miscellaneous  

The following measurements are those that do not fall easily into any category, but could 

still yield significant results by extending our understanding   

It was considered in Section 3.2 that it might be possible to extend the limit of the pulse 

yield system to measure yields from insulators with an incident pulse that is an order of 

magnitude smaller that the lowest currently obtainable. This is accomplished, be taking advantage 

of the extremely fast electrometers developed by Zavyalov (2003) that are used to measure the 

currents from the pulsed yield system. These electrometers have rise times on the order of 1 μs. A 

typical pulsed yield is measured by capturing the signal from the electrometer and integrating the 

entire pulse with respect to time to get the total charge from each channel. The charge from each 

channel is then used to calculate the yield of the material. This has proven to be accurate and 

effective, but it might be possible to use the pulse and calculate the yield point-for-point along the 

entire curve instead of integrating it to find total charge. This would require careful 

characterization of the electron gun, HGRFA, electrometers, and any stray capacitance on the 

connecting cabling and inherent in the electrometer amplifiers. Such detailed characterization 

would be time consuming, but the payoff would be an order of magnitude decrease in the 

measurable probe pulse of the pulsed yield system. An added benefit would be that we may be 

able to extract useful information about the electron mobility as this experiment closely resembles 
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a time-of-flight measurement (Samarin et al., 2003). Sim is developing applicable models of such 

time of flight experiments for the MPG systems (Sim, 2010). 

Another set of work that was touched on in Section 4.2.3 is the effect of radiation damage 

on insulating materials. Section 4.2.3 is a brief glimpse into a wealth of data that has yet to be 

analyzed in any meaningful way. We have speculated that the unusual charging behavior is a 

result of the increased number of trap states in the band gap of the material. This would have 

broad implications on the conductivity and the production of SE’s. It would provide a wealth of 

information to review this information using the models developed in Sim (2010). The primary 

goal of his work is to unify all the different models that exist for conduction, ESD, RIC, internal 

charge distribution and SE production and emission. This is based on the fundamental transport 

equations and should give good predictions as to how the basic characteristics of a material will 

change as trap sites are modified. We can then apply these predictions to this body of existing 

data and confirm or refute many of the speculations made in this work. 
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