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Abstract 15 
 16 
Mapping the spatial distribution of soil taxonomic classes is important for informing soil use and 17 

management decisions. Digital soil mapping (DSM) can quantitatively predict the spatial distribution of 18 

soil taxonomic classes. Key components of DSM are the method and the set of environmental covariates 19 

used to predict soil classes. Machine learning is a general term for a broad set of statistical modeling 20 

techniques. Many different machine learning models have been applied in the literature and there are 21 

different approaches for selecting covariates for DSM. However, there is little guidance as to which, if 22 

any, machine learning model and covariate set might be optimal for predicting soil classes across 23 

different landscapes.  24 

Our objective was to compare multiple machine learning models and covariate sets for predicting soil 25 

taxonomic classes at three geographically distinct areas in the semi-arid western United States of 26 

America (southern New Mexico, southwestern Utah, and northeastern Wyoming). All three areas were 27 

the focus of digital soil mapping studies. Sampling sites at each study area were selected using 28 

conditioned Latin hypercube sampling (cLHS). We compared models that had been used in other DSM 29 

studies, including clustering algorithms, discriminant analysis, multinomial logistic regression, neural 30 

networks, tree based methods, and support vector machine classifiers. Tested machine learning models 31 

were divided into three groups based on model complexity: simple, moderate, and complex. We also 32 
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compared environmental covariates derived from digital elevation models and Landsat imagery that 33 

were divided into three different sets: 1) covariates selected a priori by soil scientists familiar with each 34 

area and used as input into cLHS, 2) the covariates in set 1 plus 113 additional covariates, and 3) 35 

covariates selected using recursive feature elimination.  36 

Overall, complex models were consistently more accurate than simple or moderately complex models. 37 

covariates selected via recursive feature elimination Random forests (RF) using was consistently the 38 

 between study areas and between covariate most accurate, or was among the most accurate, classifiers39 

sets within each study area. We recommend that for soil taxonomic class prediction, complex models 40 

and covariates selected by recursive feature elimination be used.   41 

Overall classification accuracy in each study area was largely dependent upon the number of soil 42 

taxonomic classes and the frequency distribution of pedon observations between taxonomic classes. 43 

Individual subgroup class accuracy was generally dependent upon the number of soil pedon 44 

observations in each taxonomic class.  The number of soil classes is related to the inherent variability of 45 

a given area. The imbalance of soil pedon observations between classes is likely related to cLHS. 46 

Imbalanced frequency distributions of soil pedon observations between classes must be addressed to 47 

improve model accuracy. Solutions include increasing the number of soil pedon observations in classes 48 

with few observations or decreasing the number of classes. Spatial predictions using the most accurate 49 

models generally agree with expected soil-landscape relationships. Spatial prediction uncertainty was 50 

lowest in areas of relatively low relief for each study area.  51 

Keywords:  52 

Digital soil mapping; Machine Learning; Recursive feature elimination; Random forests; Brier score 53 

 54 
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 55 
1. Introduction 56 
 57 

Maps that predict the spatial distribution of soil taxonomic classes are of interest in many 58 

countries because they inform soil use and management decisions. Digital soil mapping (DSM) may have 59 

advantages over conventional soil mapping approaches as it may better capture observed spatial 60 

variability and reduce the need to aggregate soil types based on a set mapping scale (Zhu et al., 2001). A 61 

key component of any DSM activity is the method used to define the relationship between soil 62 

observations and environmental covariates. Many such methods have been investigated including 63 

expert systems (Smith et al., 2012, Van Zijl et al., 2012, Zhu et al., 2001), unsupervised classification 64 

(Boruvka et al., 2008; Triantifilis et al., 2012), and machine learning (Behrens and Scholten, 2006; Bui 65 

and Moran, 2003; Kim et al., 2012; Stum et al., 2010).  66 

Machine learning is a general term for a broad set of models used to discover patterns in data 67 

and to make predictions (Witten et al., 2011). Although machine learning is most often applied to large 68 

databases, it is an attractive tool for learning about and making spatial predictions of soil classes 69 

because knowledge about relationships between soil classes and environmental covariates is often 70 

poorly understood (Grunwald, 2006). Machine learning techniques have been used to model soil depth 71 

classes (Boer et al., 1996), biological soil crust classes (Brungard and Boettinger, 2012), soil drainage 72 

classes (Campling et al., 2002; Liu et al., 2008) and the presence of diagnostic soil horizons (Jafari et al., 73 

2012).  74 

Several broad types of machine learning models have been applied for digital soil mapping of 75 

soil types, such as logistic regression (Hengl et al., 2007; Jafari et al., 2012; Kempen et al., 2012; 76 

Marchetti et al., 2011), classification trees (Bui and Moran, 2003; Kim et al., 2012; Scull et al., 2005), 77 

random forests (Barthold et al., 2013; Pahlavan Rad et al., 2014; Poggio et al., 2013; Stum et al., 2010), 78 

neural networks (Behrens et al., 2005; Jafari et al., 2013; Moonjun et al., 2010), and support vector 79 
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machines (Kovačević et al., 2010). Although machine learning models have been tested in different 80 

landscapes around the world, it is rare for multiple models to be tested on the same landscape.  81 

Two general approaches have been applied to predicting soil taxonomic classes using machine 82 

learning. The first approach attempts to find and extract soil class-landscape relationships from existing 83 

digitized soil polygon maps when the exact locations (GPS coordinates) of soil pedon observations are 84 

unknown (Behrens et al., 2005; Grinand et al., 2008; Subburayalu and Slater, 2013). The second 85 

approach attempts to construct soil class-landscape relationships from soil pedon observations made by 86 

field sampling at known locations (Barthold et al., 2013; Hengl et al., 2007; Jafari et al., 2012; Kempen et 87 

al., 2012; Kim et al., 2012; Stum et al., 2010). The choice of approach largely depends on the availability 88 

of soil pedon observations with known locations.  89 

There have been few studies that compare DSM methods for categorical data such as soil types 90 

or classes, especially when soil-landscape relationships were developed from soil pedon observations. 91 

Of the studies that used soil pedon observations to construct soil class-landscape relationships (e.g., 92 

Barthold et al., 2013; Jafari et al., 2012; Kempen et al., 2012) few compared more than two machine 93 

learning models, and none compared multiple machine learning models at more than one study area. To 94 

address this knowledge gap, we compared multiple machine learning models for predicting soil classes 95 

in multiple study areas using soil pedon observations. Specifically, we compared eleven machine 96 

learning models for predicting subgroup classes in Soil Taxonomy (Soil Survey Staff, 1999) using soil 97 

pedon observations at three geographically distinct areas in the western United States of America 98 

(southern New Mexico, southwestern Utah, and northeastern Wyoming; Fig. 1). Each study area was the 99 

focus of a digital soil mapping study and represented a broad range of semi-arid landscapes with 100 

different soil-landscape relationships.  101 

Model performance depends on the covariates used to represent soil-landscape relationships 102 

and covariate selection is an important aspect of digital soil mapping (Vasques et al., 2012; Xiong et al., 103 
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2014). Therefore, we also compared the influence of three groups of environmental covariates on 104 

machine learning model performance in each of the three study areas: 1) covariates selected a priori by 105 

soil scientists familiar with each area (expert knowledge; Zhu et al., 2001), 2) the covariates in set 1 plus 106 

113 additional covariates derived from digital elevation models and Landsat imagery at several 107 

resolutions that represented a large suite of potentially useful covariates, and 3) a subset of covariates 108 

identified using recursive feature elimination (Guyon et al., 2002) from covariate sets 1 and 2. 109 

 Identifying which of the many available machine learning models and which of the many 110 

available covariates are appropriate for predicting soil classes from soil pedon observations in a given 111 

landscape would be useful where efficiencies are necessary for operational DSM. In this paper, we 112 

demonstrate that complex models using covariates selected by recursive feature elimination resulted in 113 

the most accurate predictions.  114 

 115 
2. Methods 116 
  117 
2.1. Study Areas 118 
 119 
2.1.1 New Mexico (NM) 120 
 121 

The New Mexico (NM) study area is located on Otero Mesa in the northern reaches of the 122 

Chihuahuan Desert, approximately 130 km northeast of El Paso, TX, USA. Centered at 105.6° W 123 

longitude, 32.5° N latitude (Fig. 1), the area is approximately 190 km2. The underlying geology is 124 

primarily limestone and sandstone (Green and Jones, 1997). Soil parent material is primarily calcareous 125 

alluvium but also includes eolian sands and residuum.  Vegetation is a mix of shrublands (primarily 126 

creosote bush [Larrea tridentata] and tar bush [Florencia cernua]) and grasslands (primarily black grama 127 

[Boutaluoa eriopoda] and tobosa [Pleuraphis mutica Buckley]). Elevation ranges from 1430 to 1915 m. 128 

The soil moisture regime is aridic bordering on ustic. Mean annual precipitation is 354 mm, the majority 129 

of the precipitation arrives between June and December, and mean annual temperature is 130 
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approximately 15 °C (PRISM Climate Group, Oregon State University, http://prism.oregonstate.edu/, 131 

accessed 4 March 2014).  132 

 133 
2.1.2 Utah (UT) 134 
 135 

The Utah (UT) study area is located in the eastern Great Basin physiographic province, 136 

approximately 14 km southwest of Milford, UT, USA.  Centered at 113° W longitude and 38° N latitude, 137 

the area is approximately 300 km2 and consists of mountainous terrain and associated alluvial fans 138 

formed from a complex mix of limestone, dolomite, quartzite, basalt, quartz monzonite, quartz latite, 139 

shale, sandstone, andesite, rhyolite, granite, and ash flows (Best et al., 1989). Elevation ranges from 140 

1540 to 2100 m. Vegetation consists of shrubs (primarily Wyoming big sagebrush [Artemisia tridentata] 141 

and black sagebrush [Artemisia nova]) and bunch grasses (Indian ricegrass [Achnatherum hymenoides]) 142 

at lower elevations, while trees (primarily Utah Juniper [Juniperus osteosperma] and Singleleaf Pinyon 143 

[Pinus monophylla]) dominate higher elevations. The soil moisture regime is aridic bordering on xeric in 144 

lower elevations and xeric in higher elevations. Mean annual temperature and precipitation for the 145 

nearest weather station (Milford, UT) is 11°C and 200 mm, respectively, the majority of the precipitation 146 

arrives in April and October (Western Regional Climate Center, 2013).  147 

 148 
2.1.3 Wyoming (WY) 149 
 150 

The Wyoming (WY) study area is located in the Powder River Basin of Wyoming, USA, part of the 151 

Northern Rolling High Plains (United States Department of Agriculture, 2006), approximately 43 km 152 

southwest from Gillette, WY. Centered at approximately 106° W longitude and 44° N latitude, the area is 153 

approximately 296 km2. Geology in the area consists of variegated mudstone, sandstone, conglomerate, 154 

limestone, shale and coal (Cole and Boettinger, 2006; Green and Drouillard, 1994) . Topography is a mix 155 

of bedrock-controlled, low rolling hills and badlands (locally known as the “Powder River Breaks”) a 156 

system of steep, bedrock-controlled hills and gullies (gullies commonly > 6 m deep) with extremely high 157 

http://prism.oregonstate.edu/
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rates of erosion and low vegetation cover (Cole, 2004). Vegetation is characterized by a mixture of mid-158 

stature cool season grasslands (bluebunch wheatgrass [Pseudoroegneria spicata] and needle-and-thread 159 

[Hesperostipa comata]) and sagebrush shrublands (Wyoming big sagebrush [Artemisia tridentata]) 160 

(United States Department of Agriculture, 2006). Elevation ranges from 1220 and 1600 m. The soil 161 

moisture regime is aridic bordering on ustic. Mean annual temperature and precipitation is 8°C and 310 162 

mm, respectively, with the majority of the precipitation falling between April and October (Western 163 

Regional Climate Center, 2013).  164 

 165 
2.2 Sampling 166 
 167 

Sampling locations for each study area were selected using conditioned Latin hypercube 168 

sampling (cLHS) (Minasny and McBratney, 2006). Covariates used for input into cLHS were chosen by soil 169 

scientists familiar with each study area and assumed to best represent soil-landscape relationships and 170 

anticipated soil forming processes in each area (covariate set 1). The soil scientists who selected cLHS 171 

input covariates for the NM study area had worked inside the study area and in similar landscapes for 172 

approximately ten years. The soil scientist who selected cLHS input covariates for the UT study area had 173 

visited the area, performed three months of field sampling in an adjacent area, and conducted a 174 

literature review to identify important covariates in similar landscapes. The soil scientists who selected 175 

cLHS input covariates for the WY area were Natural Resource Conservation Service (NRCS) soil scientists 176 

who were conducting traditional soil surveys in similar landscapes around the study area.  177 

In each area, soils were manually excavated to a depth of at least 100 cm, or root limiting layer if 178 

shallower, and were sampled and described according to Schoeneberger et al. (2003).  Soil Taxonomy 179 

(Soil Survey Staff, 1999) defines the following hierarchical levels of classification: order, suborder, great 180 

group, subgroup, family, and series. We chose to model at the subgroup class as this level of 181 

classification existed for the soils described in each study area. Rock outcrop and Badland were also 182 
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included at the subgroup level. For each area, subgroup classes with only 1 observation were grouped 183 

with the most similar subgroup class. 184 

 185 
2.2.1 New Mexico cLHS 186 
 187 

Covariates used for cLHS were derived from an October 2006 Landsat 5 TM image and a 5-m 188 

Lidar digital elevation model (DEM). Imagery covariates from Landsat were band 5 (short wave infrared) 189 

plus band 2 (green), band 5 minus band 2, and a normalized band 5/2 ratio ([Band 5-Band 2]/[Band 190 

5+Band 2]). Terrain attributes were aspect in degrees, elevation, slope, and a multipath wetness index 191 

(Shi, 2013) calculated at four slope resolutions (5, 10, 25, 35 m) from the DEM.  A categorical terrain 192 

classification was also used. Imagery covariates were chosen for use in cLHS because they had been 193 

shown to correlate with soil surface properties. Slope and the multipath wetness index, were chosen to 194 

represent potential soil moisture distribution. Aspect and elevation were chosen to represent 195 

microclimate and potential soil moisture (higher elevation, north-facing areas often have more potential 196 

soil moisture than lower elevation, south-facing areas. The terrain classification consisted of seven 197 

classes related to elevation and slope.  198 

Initially 200 potential sampling sites were identified, but because of logistical constraints it was 199 

impossible to visit all 200 sites. To select a smaller set of representative sampling locations cLHS was 200 

used to produce a hierarchical nested set (each smaller sample size was a subset of the previous larger 201 

sample, Webster et al., 2006) of 175, 150, 125 and 100 potential sampling sites from the original 200 202 

sites. All sites in the 100 subset were visited, plus an additional three sites. In total 103 soil sampling 203 

locations were observed (Fig. 2). Each soil observation was classified to family level in Soil Taxonomy. 204 

Ten subgroup classes were extracted from family names (Table 1).  205 

 206 
2.2.2 Utah cLHS 207 
 208 
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Covariates used for cLHS were derived from an atmospherically corrected (Chavez, 1996) July 209 

31st 2000 Landsat 7 ETM+ image and a 10-m hydrologically correct DEM. A soil adjusted vegetation index 210 

(SAVI) was derived from the imagery using an L value of 0.5 (Heute, 1988). Terrain attributes were slope, 211 

inverse wetness index (Tarboton, 2013) and transformed aspect (a measure of northness vs. southness). 212 

Land cover and geologic type were also used. Land cover type was obtained from the Southwest 213 

Regional Gap Analysis Program (Lowry et al., 2007). Geology was obtained from a United States 214 

Geological Survey 1:50,000 geology map (Best et al., 1989). Land cover and SAVI were chosen because it 215 

was anticipated that vegetation type and density was correlated with soil properties such as soil depth. 216 

Geologic type was chosen because the highly complex geology in this area was anticipated to exert a 217 

strong control on potential pedogenesis. Terrain covariates were chosen to represent microclimate, 218 

because microclimate heavily influences soil moisture, which in turn influences pedogenesis.  219 

 Three hundred locations were visited. Soil pedons were excavated, described, and classified to 220 

family level. Subgroup classes were extracted from family names. Three soil observations were excluded 221 

from modeling as they were located in highly disturbed areas. This resulted in 297 soil observations in 222 

15 subgroup classes (Fig. 3, Table 1).  223 

 224 
2.2.3 Wyoming cLHS 225 
 226 

Covariates used for cLHS were derived from a Landsat 5 TM image and a 2-m Lidar DEM. 227 

Imagery covariates were Normalized Difference Vegetation Index (NDVI) and band ratios 5/2 and 5/7. 228 

Terrain derivatives were topographic wetness index, topographic position index, stream power index 229 

(Wilson and Gallant, 2000) and distance to the nearest road. All covariates for cLHS, except distance to 230 

the nearest road, were selected using the Optimum Index Factor (OIF). OIF identifies the combination of 231 

input covariates that maximize variability, with the lowest correlation among covariates (Kienast-Brown 232 

and Boettinger, 2010). Distance to the nearest road was included for a vegetation sampling project not 233 

directly related to soil mapping.   234 
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Similar to the NM study area, cLHS was used to select hierarchical nested sets of 150, 100, and 235 

50 potential sampling sites from 200 original sampling sites. Fifty-seven soil pedon observations were 236 

made: the set of 50 nested cLHS samples plus an additional seven pedon observations (Fig. 4). Each soil 237 

pedon was excavated, described, and assigned to a soil series. Subgroup classes were extracted from 238 

each series using official soil series descriptions (https://soilseries.sc.egov.usda.gov/osdname.asp). This 239 

resulted in 5 subgroup classes (Table 1). 240 

 241 
2.3 Additional covariates 242 
 243 

Additional terrain covariates were created from a 5-m Lidar derived DEM for the NM study area, 244 

a 5-m auto-correlated DEM (Utah Automated Geographic Reference Center, 2013) for the UT study area 245 

and resampling the 2-m WY Lidar DEM to 5-m. Terrain covariates were created in R (R Core Team, 2012) 246 

with the RSAGA package (Brenning, 2008). For each area the following terrain covariates were created: 247 

slope, total curvature, plan and profile curvature, SAGA wetness index, catchment area, catchment 248 

slope, modified catchment area, convergence index, morphometric protection index (Yokoyama et al., 249 

2002), multi-resolution index of valley bottom flatness and multi-resolution index of ridge top flatness 250 

(Gallant and Dowling, 2003), topographic position index, and terrain ruggedness index. Definitions of 251 

individual terrain covariates can be found in Wilson and Gallant (2000) and Hengl and Reuter (2008).   252 

Estimated potential direct, diffuse, total, and the duration of incoming solar radiation of the 253 

approximate growing season in each area were also calculated. All potential incoming solar radiation 254 

was calculated for clear sky and standard atmosphere conditions, and represent potential solar radiation 255 

in the absence of clouds or significant amounts of atmospheric aerosols. All terrain and potential solar 256 

radiation covariates were calculated at 5, 10, 30, 50, and 100 m cell sizes. Digital elevation models with 257 

10, 30, 50, and 100 m cell sizes were created from the 5-m DEMs by averaging over blocks of cells at 258 

these resolutions. The morphometric protection index calculated at 100-m cell size was not used 259 

https://soilseries.sc.egov.usda.gov/osdname.asp
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because at this resolution there was no variance in the covariate. This resulted in 89 terrain covariates 260 

for each area.   261 

For each area, we selected Landsat 5 TM imagery from 2 different dates. Each image pair 262 

consisted of an image acquired during a season of peak vegetation growth and a season of dormant 263 

vegetation. Each image was atmospherically corrected using the “Cost without Tau” method (Chavez, 264 

1996) in the R Landsat package (Goslee, 2011). From each image the following covariates were created: 265 

normalized band ratios 5/2, 5/7, 3/1, and 1/7; NDVI; six bands of the tasseled cap transformation (Crist 266 

and Kauth, 1986); and greenness above bare soil (GRABS) index (Jensen, 2005). This resulted in 24 267 

imagery covariates for each area. Total additional terrain and imagery covariates for each area were 113 268 

(covariate set 2). 269 

These covariates represent a wide range of topographic and spectral derivatives commonly used 270 

for DSM in the western USA (Boettinger, 2010), but these additional covariates are not exhaustive of the 271 

potentially available covariates. For example, in other DSM studies, Heung et al. (2014) included 272 

distance to the nearest stream/river and relative hydrological slope position. Behrens et al. (2010) used 273 

elevation differences from the center pixel of a DEM as predictor covariates. Xiong et al. (2012) used 274 

covariates such as LANDFIRE (Landscape fire and resource management tools project) vegetation maps 275 

and geospatial land cover maps as vegetation related covariates. Poggio et al., (2013) used multi-276 

temporal MODIS (Moderate Resolution Imaging Spectroradiometer) vegetation and drought indices. 277 

Taylor et al. (2013) used potential evapotranspiration from ASTER (Advanced Spaceborne Thermal 278 

Emission and Reflection Radiometer) imagery. Although a wide range of potential covariates exist, we 279 

chose to incorporate the specific terrain and imagery covariates in covariate set 1+2, because they were 280 

easily calculated with the available software with which we were familiar, and because we anticipated 281 

these covariates to adequately characterize soil distribution in these areas. While relatively coarse-282 

resolution (3rd order soil survey; Soil Survey Division Staff, 1993) soil maps were available for the NM 283 
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and WY study areas (the UT area was previously unmapped), we did not include existing soil maps in 284 

covariate set 1+2 for these areas in an effort to keep all covariate sets as consistent as possible. 285 

Geological maps were not included in covariate set 1+2, because only a single geological unit was 286 

mapped in the NM and WY areas.  287 

 288 
2.4 Covariate selection 289 
 290 

Recursive feature elimination (Guyon et al., 2002; Kuhn and Johnson, 2013) was used to identify 291 

an optimal subset of covariates from the set of all available covariates (covariate set 1+2) for each area 292 

(Fig. 5). Recursive feature elimination identifies optimal subsets (lowest misclassification error) of 293 

predictor covariates by constructing a classification model with all predictor covariates, ranking each 294 

predictor covariate, eliminating the covariate(s) with the lowest importance, and repeating this 295 

procedure until a predefined threshold is reached or only one predictor covariate remains. Xiong et al. 296 

(2012) used recursive feature elimination to identify important predictors for digital soil mapping of soil 297 

carbon in Florida. 298 

For each study area, random forests (Liaw and Wiener, 2002; parameters mtry = default and 299 

ntree = 1000) was used to calculate covariate importance, as random forests is not highly sensitive to 300 

non-informative predictors (Kuhn and Johnson, 2013). Random forests identifies important covariates 301 

by generating multiple classification trees (a forest) using bootstrap sampling, randomly scrambling the 302 

covariates in each bootstrap sample and reclassifying the bootstrap sample. The misclassification error 303 

of the bootstrap sample (termed the “out-of-bag” error) using the scrambled covariate is compared to 304 

the misclassification error using the original covariate and the percent difference is used as a measure of 305 

covariate importance (Peters et al., 2007). Important covariates will have a large increase in “out-of-306 

bag” error. For each area, the optimal subset of covariates was identified as the subset of covariates 307 

with the minimum OOB error (Fig. 5).  308 
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For the UT study area, although a set of twelve covariates returned the absolute lowest 309 

misclassification error (OOB error = 0.512), we selected a set of six covariates (OOB error = 0.520) as 310 

optimal for a more parsimonious model. Selected covariates ranked by importance (covariate set 3) are 311 

listed in Table 3. 312 

 313 
2.4 Modeling 314 
 315 

All modeling was performed using the caret package (Kuhn et al., 2013) in R (R Core Team, 316 

2012). We tested eleven classification models for each area (Table 2). Each model was chosen based on 317 

a review of machine learning methods used in other published DSM literature. Selected machine 318 

learning models represented several broad classes of machine learning techniques and included 319 

multinomial logistic regression, tree based classifiers, neural networks, support vector machines, and 320 

clustering methods. An accessible explanation of all tested models can be found in Kuhn and Johnson 321 

(2013) and James et al. (2014). Tested models were divided into three groups based on model 322 

complexity: simple, moderate, and complex (Table 2). Models were assigned to one of the three groups 323 

based on the interpretability and number of parameters of each model. Complex models (e.g., support 324 

vector machines and neural networks) were difficult to interpret (i.e., black-box models) and had many 325 

parameters. Simple models were interpretable and had few parameters, while medium complexity 326 

models were between simple and complex models. 327 

The goal of machine learning is to find a useful approximation of the function that underlies the 328 

predictive relationship between input covariates and desired outcomes (Hastie et al., 2001). In this study 329 

input covariates were derived from DEM’s and Landsat imagery and the desired outcomes were 330 

subgroup classes. Each type of model (e.g., support vector machines, neural networks) has specific and 331 

different required parameters (referred to as tuning parameters) that control how the relationship 332 

between input covariates and outcomes is defined. These parameters must be optimized to generate 333 

the best “fit” possible between covariates and outcomes.  334 
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For each model leave-group-out cross-validation was used to select optimal tuning parameters 335 

(Kuhn, 2014). Leave-group-out cross validation involved randomly splitting the pedon observations into 336 

training and test sets, using the training set for model construction and the test set for model validation, 337 

then repeating this process. We used a 70%/30% training/testing split (70% of the pedon observations 338 

were used for model training and 30% for model testing) repeated 100 times for each area. Although 339 

splitting observations into separate training and test sets (no cross validation) is a standard approach 340 

taken in other DSM studies (e.g., Henderson et al., 2005; Tesfa et al., 2009; Pahlavan Rad et al., 2014) we 341 

observed that use of a single training/test set resulted in accuracy metrics (e.g., Kappa and the Brier 342 

Score; Section 2.5) with high variance. Ninety-five-percent confidence intervals were used to assess the 343 

variability in accuracy metrics over the repeated test sets.  344 

For each required model parameter (the number of required model parameters ranged 345 

between 0 and 2) ten potential candidate values were defined. This resulted in an n x 10 matrix of 346 

potential model tuning parameters, where n = the number of required parameters. Models were tuned 347 

using each set of parameters, and the average Kappa (Section 2.5) was calculated over the 100 repeated 348 

training/test splits. Optimal parameters were chosen using the one-standard-error rule (James et al., 349 

2014), where the simplest (smallest) tuning values within one standard error of the tuning parameters 350 

which produced the maximum kappa, were selected as optimal (Kuhn, 2008). For those models that did 351 

not require tuning parameters (bagged classification tree, linear discriminant analysis) no optimization 352 

was possible.   353 

Each model was applied to three sets of covariates for each area: the soil scientist selected 354 

covariates used as input into cLHS (covariate set 1), the covariates in set 1 plus the 113 additional terrain 355 

and imagery covariates that we created (covariate sets 1 + 2), and those covariates that were selected 356 

by recursive feature elimination from all available covariates (covariate set 3). Because some models 357 

required covariates to have similar ranges (e.g., K-nearest neighbors), all environmental covariates were 358 
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centered and scaled to have mean = 0 and standard deviation = 1 before use. Multinomial logistic 359 

regression and linear discriminant analysis could not be fit using covariate set 1+2. 360 

When using covariate sets 1+2, any cLHS covariate that was duplicated by the additional terrain 361 

and imagery covariates (e.g., slope) was removed. Additionally, geologic type and distance to roads 362 

were removed from covariate sets 1 and 2 for the UT and WY study areas, respectively; because the 363 

geology covariate did not cover the entire study area, and distance to roads was included for another 364 

purpose not thought to be related to soil taxonomic classes (impact of disturbance on vegetation) in the 365 

initial cLHS.  366 

 367 
2.5 Model accuracy comparison 368 
 369 

Kappa analysis and Brier scores (Brier, 1950) were used to compare model accuracy. The kappa 370 

statistic (κ) (Congalton, 1991) is a measure of classification accuracy accounting for chance agreement 371 

(Congalton and Green, 1998). Accounting for change agreement is an important consideration when 372 

dealing with highly imbalanced classes as high classification accuracy could result from classifying all 373 

observations as the largest class (Congalton and Green, 1998). The κ of a random classifier would be 0 374 

whereas a κ of 1 would indicate perfect classification (Congalton, 1991). Kappa values greater than 0.80 375 

represent strong agreement, values between 0.4 and 0.8 represent moderate agreement, and values 376 

below 0.4 represent poor agreement (Congalton and Green, 1998). 377 

Brier scores account for the difference between the true class and probability (or probability-378 

like) estimates of the true class (Johansson et al., 2010) as:  379 

𝐵𝑆 =  
1

𝑛
 ∑ ∑(𝐹𝑖𝑗 − 𝐸𝑖𝑗)

2
𝑛

𝑖=1

𝑟

𝑗=1

 

where r = number of taxonomic classes, n = number of observations in the test set,  Fij is the 380 

probability estimate that observation ni  belongs to class rj, and Eij is an indicator covariate such that Eij = 381 

1 if ni was the subgroup class and 0 otherwise. Brier scores range between zero and two, with lower 382 
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scores indicating better model performance. A Brier score of 1.25 indicates that each taxonomic class 383 

was predicted with the same probability. Brier scores for both linear and radial support vector machines 384 

were not calculated, because support vector machines require more than three observations per class 385 

to calculate probability estimates and several subgroup classes in each area had three or less 386 

observations (Table 1).  387 

Models with the highest κ and lowest Brier scores were determined to be the most accurate 388 

model for each site. T-tests were performed to determine if differences in Kappa and Brier scores 389 

between models were statistically significant at the 0.05 level. The percent correctly classified (PCC) and 390 

producer’s accuracy of individual subgroup classes from the most accurate model, averaged over all 391 

cross-validation repetitions, were also calculated. 392 

In addition to Kappa, and Brier scores, spatial predictions from each model identified as 393 

potentially optimal were visually inspected for pedologically meaningful patterns. The uncertainty 394 

associated with each cell of the spatial predictions was assessed using the confusion index (Burrough et 395 

al., 1997; Odgers et al., 2011):  396 

𝐶𝐼 =  [1 − (𝜇𝑚𝑎𝑥 − 𝜇(𝑚𝑎𝑥−1))] 

Where µmax is the probability value of the class with the maximum probability at each cell and 397 

µmax-1 is the second largest probability value at the same cell. The confusion index ranges between 0 and 398 

1; high CI values indicate greater uncertainty in subgroup class predictions.  399 

 400 
3. Results  401 
 402 

Models built using covariate set 3 had the highest κ for all three study areas (Figs. 6, 8, & 10). 403 

The model with the highest average κ for the NM study area (κ = 0.32 ± 0.09) was support vector 404 

machines using a radial basis function (SVMR; Fig. 6); however, t-tests indicated no significant difference 405 

in κ existed between SVMR and random forests (RF). Random forests (RF) had the highest average κ for 406 

both the UT (κ = 0.19 ± 0.06; Fig. 8) and the WY ± 0.14study areas (κ = 0.53 ; Fig. 10). Kappa values for 407 
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the WY study area represent moderate agreement between observed and predicted subgroup classes, 408 

while κ for the NM and UT study areas represent low agreement between observed and predicted 409 

The models with the highest correctly classified (PCC) subgroup classes. κ also had the highest percent 410 

for each area; PCC was 47 ± 0.07%, 43 ± 0.04%, and 72 ± 0.08%, for the NM, UT, and WY study areas, 411 

respectively.  412 

Models constructed using covariate set 3 had the lowest Brier scores for the NM and WY study 413 

areas (Figs. 7 & 11). The lowest Brier score for the UT area was obtained using covariate set 1+2 (Fig. 9), 414 

but t-tests indicated no significant difference existed between models with the lowest Brier scores from 415 

covariate set 1+2, and covariate sets 1 (t = 5.34, df = 198, p-value = 2.537e-07) and 3 (t = -2.52, df = 198, 416 

p-value = 0.0126) for this area. Random forests (RF) was the model with the lowest average Brier score 417 

± 0.05for the NM (BS = 0.70 ; Fig. 7), UT (0.70 ± 0.01; Fig. 9) and WY study areas (0.46 ± 0.08; Fig. 11).  418 

Average individual subgroup class producer’s accuracy ranged between 0 and 86 percent (Table 419 

1). The number of optimal covariates as determined by recursive feature elimination for each study area 420 

ranged between six and ten and included terrain derivatives at multiple cell sizes as well as several 421 

Landsat derivatives (Table 3). Spatial predictions using the model identified as the most accurate for 422 

each area generally met expected soil-landform patterns (Figs. 12A, 13A, & 14A). Confusion index values 423 

ranged between 0.46 and 0.99 for the NM study area (Fig. 12B), 0.53 and 0.99 for the UT study area (Fig. 424 

13B), and 0.04 and 0.98 for the WY study area (Fig. 14B).  425 

 426 

4. Discussion 427 
 428 
4.1 Model performance 429 
 430 

Random forests (RF) models using covariates selected by recursive feature elimination 431 

(had (covariate set 3) were consistently the most accurate, or was among the most accurate, classifiers 432 

the highest κ and lowest Brier score)  between study areas and between covariate sets within each ,433 



18 
 

study area (Figs. 5-10). Although, single-hidden-layer neural networks (NNET), multilayer-perceptron 434 

neural networks (MLP), and nearest shrunken centroids (NSC) had slightly lower average Brier scores 435 

than random forests (RF) for the UT study area (Fig. 9) the differences were minimal. The consistency of 436 

random forests (RF) and covariate set 3 for producing the most accurate subgroup classifications across 437 

all study areas is likely because random forests was used in the recursive feature elimination procedure, 438 

which optimized covariates for subgroup class prediction (Section 2.4).  439 

In addition to random forests (RF), radial-basis support vector machines (SVMR) and single-440 

hidden-layer neural networks (NNET) had competitive accuracy metrics for subgroup class prediction in 441 

the NM (Fig. 6) and UT (Fig. 9) study areas, respectively. If multiple models are applied for a digital soil 442 

mapping project and accuracy metrics are approximately equivalent between models, then model 443 

averaging (Malone et al., 2014) may be appropriate. 444 

Across all study areas, complex models (Table 2) were better classifiers than simple models. As 445 

recursive feature elimination (RFE) does not require a specific model (although random forests is 446 

convenient for RFE) and as complex models produced more accurate predictions than did simpler 447 

models, this suggests that the most accurate soil taxonomic class predictions will be produced using a 448 

combination of RFE and complex models. Covariate reduction methods similar to RFE, also resulted in 449 

the most accurate soil carbon models in Florida, USA (Xiong et al., 2014).  450 

As the model with the highest classification accuracy for each study area is of most interest for 451 

predicting soil subgroup classes we restrict further discussion to random forests models using covariate 452 

set 3 when discussing differences in classification accuracy between study areas. Differences in 453 

classification accuracy between study areas can be partially attributed to the number of soil subgroup 454 

classes and the frequency distribution (the balance of observations between subgroup classes) of soil 455 

pedon observations. The UT study area was the least accurately modeled, had the most soil subgroup 456 

classes (n = 15), and the most skewed frequency distribution of soil pedon observations between 457 
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subgroup classes. Two subgroup classes for the UT study area contained approximately 70% of the total 458 

soil pedon observations (Table 1). In contrast, the WY study area, the most accurately classified study 459 

area, had the fewest soil subgroup classes (n = 5) and a somewhat more balanced soil pedon 460 

observation distribution frequency. The classification accuracy, number of soil subgroup classes (n = 10) 461 

and soil pedon observation distribution frequency for the NM study area was between those of the UT 462 

and WY study areas. This suggests that overall classification accuracy will be highest when there are 463 

many soil observations, few soil classes, and the frequency distribution of soil observations between 464 

classes is approximately equal.  465 

The frequency distribution of soil pedon observations heavily influenced individual subgroup 466 

class accuracies (Table 1). In general, classes with lower sampling frequencies were modeled less 467 

accurately. This finding is consistent with data presented by others (Barthold et al., 2013; Hengl et al., 468 

2007; Kim et al., 2012; Marchetti et al., 2011; Stum et al., 2010; Taghizadeh-Mehrjard et al., 2012) and is 469 

likely because there are simply not enough observations to separate such classes in feature space.  470 

The number of soil subgroup classes per study area appears related to the inherent variability of 471 

the given landscape. Areas with high geological and topographical complexity likely experience complex 472 

relationships between soil forming factors that lead to increased diversity in soil types. For example, the 473 

geologically and topographically complex UT study area had more subgroup classes than did the less 474 

complex NM or WY sites (Table 1).  475 

The frequency distribution of soil pedon observations between subgroup types in a study area is 476 

likely a result of the sampling strategy used to select sites. Conditioned Latin hypercube sampling is a 477 

sampling method designed to identify sampling sites which represent the multivariate distribution of 478 

input environmental covariates and assumes that the input environmental covariates are related to the 479 

covariate of interest (Minasny and McBratney, 2006). Environmental covariates used as input to cLHS 480 

for each study area were selected to represent broad soil-landscape relationships. Our results suggest 481 
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that in complex landscapes where likely many different soil types exist, such input environmental 482 

covariates result in adequate sampling of the most frequent soil types, but not of rare soil types (e.g., 483 

the UT study area).  484 

As accurate modeling of soil classes depends on the number of classes and the frequency 485 

distribution of soil pedon observations between classes (many classes with few observations = poor 486 

model performance) such imbalance must be addressed for accurate modeling. There are two options 487 

to address such challenges: 1) increase observation number in classes with few observations and 2) 488 

decrease the number of classes.  489 

Increasing the number of observations in classes with few observations may be difficult given 490 

financial and logistical constraints, and because it is likely difficult to identify a priori which classes will 491 

need to be more intensively sampled. However, this might be addressed using a combination of cLHS 492 

and targeted sampling or case-based reasoning (Shi et al., 2009), where the soil surveyor could manually 493 

identify likely locations of rare soil types. This may be especially useful in arid and semi-arid regions 494 

where small, localized areas often contain significant diversity when compared to the majority 495 

landscape.  496 

The second option is to decrease the number of taxonomic classes. This could be accomplished 497 

by: 1) combining similar classes and 2) modeling separate sub-areas. Combining similar subgroup classes 498 

could be accomplished by using higher taxonomic levels such as great group or suborder. Modeling 499 

higher taxonomic levels would likely increase model accuracy (Jafari et al., 2013), but a trade-off 500 

between taxonomic level and soil information usefulness exists. Many decisions about soil use and 501 

management are based on soil differences not captured by higher taxonomic levels (i.e., order, 502 

suborder, and great group), so combining subgroup classes into higher taxonomic levels may miss 503 

important differences in soil function and likely not provide useful information for soil management 504 

decisions.  505 
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Ideally, digital soil mapping would be able to accurately model all levels of Soil Taxonomy 506 

including soil series. Soil series are the finest level of Soil Taxonomy (Soil Survey Staff, 1999) and two 507 

levels finer that what was predicted in this study. However, accurate predictions of soil series may not 508 

possible, because soil series are often defined by soil morphological diagnostic criteria that may not be 509 

well represented by environmental covariates.  For example, the difference between Xeric Haplocalcid 510 

and Durinodic Xeric Haplocalcid subgroup classes (UT study area, Table 1) is based on the occurrence of 511 

cemented silica masses (durinodes). Such differences may not be identifiable with the terrain and 512 

spectral covariates commonly used for digital soil mapping. 513 

Similar classes could also be combined based on a particular soil property (e.g., bedrock 514 

contact). This would result in a focus on the specific property while excluding other potentially 515 

important soil properties. Likely any such decision to group classes by soil property types would best be 516 

made by the user of the soil information. Additional options may be to combine classes with few 517 

observations into a single class denoted as “other soil classes”, or to add rare soil class observations to 518 

larger taxonomic classes. This approach has been taken by others (Pahlavan Rad et al., 2014), but we 519 

decided against doing so, because we suspected that classes with few observations might be 520 

topographically and spectrally distinct and thus be accurately predicted. Although, several subgroup 521 

classes with relatively few observations were predicted with moderate accuracy (e.g., Xeric 522 

Torriorthents in the UT study area (n = 6, average producer’s accuracy = 40%) and Lithic Ustic 523 

Haplocambids in the NM study area (n = 3, average producer’s accuracy = 50%); Table 1) individual class 524 

accuracies (Table 1) generally do not indicate this to be the case, and so in retrospect such a pragmatic 525 

approach is probably wise.    526 

Modeling separate sub-areas might also decrease the number of taxonomic classes by reducing 527 

the area and thus the number of soil types considered in a model. For example, it is likely that the 528 

number of subgroup classes in one model would have been fewer had the UT study area been 529 
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segregated into uplands and alluvial fan sub-areas. Although such an approach would increase the 530 

number of required models in proportion to the number of chosen sub-areas, this is theoretically 531 

appealing as different pedo-geomorphic sub-areas are likely to have different relationships between 532 

subgroup classes and environmental covariates (McBratney et al., 2003).  533 

Another option to increase model accuracy could be to apply a weighting scheme to soil classes 534 

with few observations during model construction. This might improve classification accuracy, but for 535 

highly imbalanced datasets weighting can severely decrease the accuracy of the majority classes and 536 

result in apparent over prediction of the small classes (Stum et al., 2010). Additionally, using taxonomic 537 

distance (Minasny and McBratney, 2007) instead of misclassification error as the loss function to  538 

minimize during model training may result in increased model accuracy. We did not incorporate 539 

taxonomic distance in this study as it does not currently exist for Soil Taxonomy subgroup classes. 540 

Overall, increasing model accuracy is likely to require several of these options (increasing observation 541 

numbers, reducing class numbers, the use of a weighting scheme, and incorporation of taxonomic 542 

distance), and that applicable options will best be identified on a project-by-project basis.  543 

 544 
4.2 Covariate set comparison 545 
 546 

Surprisingly, models using all available covariates (covariate set 1+2) were as accurate, or 547 

slightly more accurate (higher κ, lower Brier scores), than models using the covariates selected by soil 548 

scientists (covariate set 1) for each area (Figs. 6-10). As covariate set 1 was selected by soil scientists 549 

anticipating how soil-landscape relationships would be best represented for modeling, the fact that this 550 

covariate set did not result in the most accurate models suggests that soil scientists may be unable to a 551 

priori identify optimal covariates for predicting taxonomic classes. In hindsight, this is not entirely 552 

surprising given the complexity of soil taxonomic classes and the disparate kinds of knowledge needed 553 

to predict these relationships a priori. Soil taxonomic classes represent multiple soil forming factors 554 

operating over long periods of time (likely decades to millennia) at several scales. Thus choosing optimal 555 
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predictive covariates for modeling requires knowing both 1) how, and the scale at which, multiple soil 556 

forming factors vary across the landscape to produce soil taxonomic classes and 2) how those factors 557 

are best distinguished using spectral and topographic covariates. Being able to do both requires 558 

extensive familiarity with the local landscape and an understanding of terrain modeling and remote 559 

sensing. This suggests a pressing need for further investigation into relationships between specific 560 

environmental covariates and soil forming processes.  561 

In addition to producing models with the highest accuracy, covariate set 3 may also provide 562 

information about the processes controlling soil type distribution across each study area landscape. The 563 

NM area mostly consists of broad, gently sloping, southward facing alluvial surfaces. More than half of 564 

the optimal covariates for this study area were related to catchment-scale patterns of potential soil 565 

moisture (multipath wetness index, catchment area and catchment slope; Table 3). We attribute this to 566 

the correlation of run-on/run-off relationships, landscape stability, and soil formation observed in this 567 

region (Gile et al., 1981). Vegetation related covariates (tasseled cap greenness transformation and the 568 

GRABS index) selected in covariate set 3, were likely related to the strong control of soils in determining 569 

vegetation cover and composition in the study area  (Bestelmeyer et al., 2006, Duniway et al., 2010). 570 

Thus covariates related to catchment scale patterns of potential soil moisture and vegetation indices 571 

may be the best predictors in similar landscape settings. Similar settings include the large alluvial fans 572 

and bajadas (coalesced alluvial fans) that extend from mountain fronts into the valleys of many semi-573 

arid and arid landscapes. Interestingly, topographic shading is an important covariate for both the UT 574 

and WY areas, but not the NM area. This is likely because landforms in the NM area are mostly 575 

southward facing with little vertical relief.  576 

The optimal covariates for the UT study area were related to topographic shading (diffuse 577 

insolation), slope, slope position, and terrain ruggedness (Table 3). The UT area was highly variable in 578 

topographic relief. This local topography strongly influences soil erosion and deposition as well as the 579 
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amount of incoming solar radiation, which in turn influences soil distribution (Beaudette and O’Geen, 580 

2009). As the UT area had the greatest geologic complexity between the three study areas, it is 581 

surprising that covariates related to geology (Landsat band ratios 5/2, 5/7) were not among those 582 

identified as optimal. This may be because the influence of local topography exerted a stronger effect on 583 

soil development than did the relatively larger scale influence of geology. In semi-arid steeply sloping 584 

uplands and mountainous erosional landscapes, covariates related to soil erosion/deposition processes 585 

and solar radiation may be the most useful for predicting soil distribution.     586 

The WY area is generally composed of rounded hills which have been dissected by numerous 587 

small drainages and lacks the topographic relief of the UT area or the broad alluvial slopes of the NM 588 

area. The optimal covariates for this area were plan and total curvature, topographic shading (diffuse 589 

insolation), catchment slope and Landsat band ratio 5/2 (Table 3). As three of the seven optimal 590 

covariates were related to slope curvature which approximates flow convergence/divergence (Wilson 591 

and Gallant, 2000) and as topographic shading was also an important covariate, it is likely that 592 

differences in soil moisture control soil development in this area. Landsat band ratio 5/7 is useful for 593 

distinguishing differences in geologic parent material (Inzana et al., 2003) and likely helps distinguish 594 

differences in inter-bedded geologic types. For much of the northern rolling high plains and possibly for 595 

other areas with rolling hills, curvature, potential solar radiation and geological type are likely useful for 596 

modeling soil distribution.  597 

 598 
4.3 Spatial predictions 599 
 600 

Spatial predictions of subgroup classes using the most accurate model visually correspond to 601 

expected soil-landscape relationships for each study area (Figs. 12A, 13A, & 14A). For the NM and WY 602 

study areas spatial predictions generally agree with published soil surveys (data not shown) although 603 

our predictions show much finer spatial detail. For the NM study area (Fig. 12A), soils with a bedrock 604 

contact (Lithic Ustic Haplocalcids) were predicted on steeply sloping uplands. Calcic Petrocalcids 605 
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(subsurface cemented CaCO3) were predicted on older, stable alluvial surfaces. Ustic Haplocambids 606 

(little soil development) were predicted on what are likely more active and recent geomorphic surfaces. 607 

Petronodic Ustic Haplocalcids (subsurface CaCO3 concretions, possibly approaching cementation) were 608 

predicted on landforms intermediate between where Calcic Petrocalcids and Ustic Haplocambids were 609 

predicted. Ustic Haplocalcids (subsurface CaCO3accumulation) were predicted to occur in an 610 

intermingled pattern with Calcic Petrocalcids and Ustic Haplocambids, but may be over-predicted on 611 

steeply sloping uplands. For the WY study area (Fig. 14A), both Ustic Torriorthents (minimal 612 

development) and Badlands (steep hills and gullies) were predicted on steeply sloping, dissected 613 

landforms near stream channels where active erosion may be occurring. Ustic Haplargids (subsurface 614 

clay accumulation) were predicted on flatter, more stable upland surfaces that likely had enough time 615 

for clay to form and/or translocate in the subsoil.  616 

Although spatial predictions for the UT study area (Fig. 13A) must be treated with caution given 617 

the low accuracy metrics, the spatial patterns of predicted subgroup classes for the UT study area 618 

corresponded with our understanding of soil-landscape relationships. Lithic Xeric Haplocalcids (soils with 619 

a bedrock contact and subsurface accumulation of CaCO3) were predicted on steeply sloping uplands. 620 

Lithic Calciargids (bedrock contact and subsurface accumulation of CaCO3 and clay) were predicted on 621 

concave areas of these steeply sloping uplands where potential soil moisture accumulation is higher, 622 

resulting in greater development of subsurface clay. Rock Outcrops were predicted on the steepest 623 

mountain faces where many cliffs and talus fields were observed. Xeric Haplocalcids (subsurface CaCO3) 624 

were predicted to occur on alluvial surfaces. Xeric Calciargids (subsurface CaCO3 and clay) were 625 

predicted on older more stable alluvial surfaces and in some upland areas.  626 

Spatial prediction uncertainty was generally lowest (lowest confusion index values) in relatively 627 

low relief alluvial channels and run-in areas in the NM (Fig. 12B) and UT study areas (Fig. 13B), and in 628 

lower relief portions of the WY area (Fig. 14B).  This is likely because low relief areas had comparatively 629 
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low covariate complexity and suggests that soil taxonomic class prediction will be least uncertain in 630 

relatively low relief areas.  631 

 632 
5. Conclusions 633 
 634 

This study provides insight into the use of machine learning for mapping the spatial distribution 635 

of soil taxonomic classes. We applied eleven machine learning models to three separate semi-arid study 636 

areas using three different sets of environmental covariates. Random Forests models using covariates 637 

identified by recursive feature selection were consistently the most accurate models between study 638 

areas and between covariate sets within each area. Complex models were consistently more accurate 639 

than simple or moderately complex models. We recommend that for predicting soil taxonomic classes, 640 

complex models and covariates selected by recursive feature elimination be used.   641 

Machine learning models are most accurate when there are few soil classes and when the 642 

frequency distribution of soil pedon observations are approximately equal between classes. The number 643 

of soil subgroup classes depends on the inherent variability of each landscape. The frequency 644 

distribution of soil pedon observations depends on the sampling method. The use of cLHS results in 645 

many soil pedon observations in common soil classes and few observations in “rare” soil classes. 646 

Solutions to this problem could include increasing the number of samples in rare classes by targeted 647 

sampling or case-based reasoning.  Spatial prediction uncertainty is likely to be lowest in relatively low 648 

relief areas.  649 
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Figure Captions:  997 
  998 
Fig. 1. Study area locations in western USA. 999 
 1000 
Fig. 2. Spatial distribution of pedon observation locations in the NM study area overlain on google 1001 
physical map. Total number of pedon observations was 103. 1002 
 1003 
Fig. 3. Spatial distribution of pedon observation locations in the UT study area overlain on google 1004 
physical map. Total number of pedon observations was 297.  1005 
 1006 
Fig. 4. Spatial distribution of pedon observation locations in the WY study area overlain on google 1007 
physical map. Total number of pedon observations was 57.  1008 
 1009 
Fig. 5. Optimal covariate subset selection using recursive feature elimination. Out-of-bag (OOB) error is 1010 
random forests misclassification error. Random forests models were begun with the total available 1011 
covariates and the least important covariate was iteratively removed. Optimal covariate subsets were 1012 
selected as those covariates that returned the lowest OOB error and which had the fewest covariates. 1013 
Arrows indicate optimal covariate subset.  1014 
 1015 
Fig. 6. Average κ for the NM study area. Model with highest κ is the most accurate classifier. Error bars 1016 
are 95% confidence intervals from cross validation. Abbreviations are as follows: Bagged Classification 1017 
Tree (BCT), Classification Tree (CT), K Nearest Neighbors (KNN), Linear Discriminant Analysis (LDA), 1018 
Linear Support Vector Machines (SVML), Multinomial Logistic Regression (MLR), Multilayer-Perceptron 1019 
Neural Network (MLP), Nearest Shrunken Centroids (NSC), Radial-Basis Support Vector Machines 1020 
(SVMR), Random Forests (RF), Single-Hidden-Layer Neural Networks (NNET).  1021 
 1022 
Fig. 7. Average Brier scores for the NM study area. Model with lowest Brier score is the most accurate 1023 
classifier. Error bars are 95% confidence intervals from cross validation. Abbreviations are as follows: 1024 
Bagged Classification Tree (BCT), Classification Tree (CT), K Nearest Neighbors (KNN), Linear Discriminant 1025 
Analysis (LDA), Linear Support Vector Machines (SVML), Multinomial Logistic Regression (MLR), 1026 
Multilayer Perceptron Neural Network (MLP), Nearest Shrunken Centroids (NSC), Radial-Basis Support 1027 
Vector Machines (SVMR), Random Forests (RF), Single-Hidden-Layer Neural Networks (NNET). 1028 
 1029 
Fig. 8. Average κ for the UT study area. Model with highest κ is the most accurate classifier. Error bars 1030 
are 95% confidence intervals from cross validation. Abbreviations are as follows: Bagged Classification 1031 
Tree (BCT), Classification Tree (CT), K Nearest Neighbors (KNN), Linear Discriminant Analysis (LDA), 1032 
Linear Support Vector Machines (SVML), Multinomial Logistic Regression (MLR), Multilayer Perceptron 1033 
Neural Network (MLP), Nearest Shrunken Centroids (NSC), Radial-Basis Support Vector Machines 1034 
(SVMR), Random Forests (RF), Single-Hidden-Layer Neural Networks (NNET). 1035 
 1036 
Fig. 9. Average Brier scores for the UT study area. Model with lowest Brier score is the most accurate 1037 
classifier. Error bars are 95% confidence intervals from cross validation. Abbreviations are as follows: 1038 
Bagged Classification Tree (BCT), Classification Tree (CT), K Nearest Neighbors (KNN), Linear Discriminant 1039 
Analysis (LDA), Linear Support Vector Machines (SVML), Multinomial Logistic Regression (MLR), 1040 
Multilayer Perceptron Neural Network (MLP), Nearest Shrunken Centroids (NSC), Radial-Basis Support 1041 
Vector Machines (SVMR), Random Forests (RF), Single-Hidden-Layer Neural Networks (NNET). 1042 
 1043 



44 
 

Fig. 10. Average κ for the WY study area. Model with highest κ is the most accurate classifier. Error bars 1044 
are 95% confidence intervals from cross validation. Abbreviations are as follows: Bagged Classification 1045 
Tree (BCT), Classification Tree (CT), K Nearest Neighbors (KNN), Linear Discriminant Analysis (LDA), 1046 
Linear Support Vector Machines (SVML), Multinomial Logistic Regression (MLR), Multilayer Perceptron 1047 
Neural Network (MLP), Nearest Shrunken Centroids (NSC), Radial-Basis Support Vector Machines 1048 
(SVMR), Random Forests (RF), Single-Hidden-Layer Neural Networks (NNET). 1049 
 1050 
Fig. 11. Average Brier scores for the WY study area. Model with lowest Brier score is the most accurate 1051 
classifier. Error bars are 95% confidence intervals from cross validation. Abbreviations are as follows: 1052 
Bagged Classification Tree (BCT), Classification Tree (CT), K Nearest Neighbors (KNN), Linear Discriminant 1053 
Analysis (LDA), Linear Support Vector Machines (SVML), Multinomial Logistic Regression (MLR), 1054 
Multilayer Perceptron Neural Network (MLP), Nearest Shrunken Centroids (NSC), Radial-Basis Support 1055 
Vector Machines (SVMR), Random Forests (RF), Single-Hidden-Layer Neural Networks (NNET). 1056 
 1057 
Fig. 12. Spatial predictions of subgroup classes (A), and the confusion index (B) for the NM study area 1058 
using random forests (RF) and covariate set 3. Only predicted subgroups visible at this scale are shown 1059 
(5 of 10 subgroups). Confusion index values near zero indicate low uncertainty in spatial predictions; 1060 
values near one indicate high uncertainty in spatial predictions. Both images are overlain on a hillshade. 1061 
 1062 
Fig. 13. Spatial predictions of subgroup classes (A), and the confusion index (B) for the UT study area 1063 
using random forests (RF) and covariate set 3. Only predicted subgroups visible at this scale are shown 1064 
(5 of 15 subgroups). Confusion index values near zero indicate low uncertainty in spatial predictions; 1065 
values near one indicate high uncertainty in spatial predictions. Both images are overlain on a hillshade. 1066 
 1067 
Fig. 14. Spatial predictions of subgroup classes (A), and the confusion index (B) for the WY study area 1068 
using random forests (RF) and covariate set 3. Only predicted subgroups visible at this scale are shown 1069 
(3 of 5 subgroups). Confusion index values near zero indicate low uncertainty in spatial predictions; 1070 
values near one indicate high uncertainty in spatial predictions. Both images are overlain on a hillshade. 1071 


