Practical Microsat Launch Systems: Technology and Economics

August 14, 2003
Presenter: Matt Bille, Booz Allen Hamilton
Co-author: Robyn Kane, MITRE Corporation

DISCLAIMER: This presentation represents the personal opinion of the authors. It does not represent the position of Booz Allen Hamilton, MITRE, the U.S. Air Force, or any agency of the U.S. Government.
Overview

- Introduction
- The MLS: Status and Requirements
- Recent History and Current Initiatives
- Technology: Factors and Lessons Learned
- Cost Factors and Cost Survey Results
- Costs and Markets
- Guidelines for MLS Development
- Conclusion
Introduction

- What is the MLS?
 - MLS: An affordable, responsive, reliable, dedicated Microsat Launch System
 - MLS Payload capacity: Goal of NASA’s 1996 Bantam program (150 kg to polar LEO)
 is a good definition

- Given potential of U.S. market and difficulties of exporting payloads, a dedicated American-built MLS is vital to realizing the potential of microsatellites
 - Accordingly, focus of this paper is an American MLS

- Can a low-cost MLS be built, and how?
 - Several American efforts in last two decades have failed – not built, or not cheap
 - Need to learn lessons from these programs, or success is unlikely

- True MLS solution must cut costs enough to expand the microsat market, remove launch cost as a constraint
MLS: Status and Requirements

- So far, market has supported only one U.S. small launcher at a time
 - NASA-developed Scout was primary for 30 years
 - Privately-developed Pegasus has been primary last 13 years
 - Pegasus reliable but costly – 280kg (polar LEO) for ~$20M (.071 $M/kg)*

- Current launch options for microsats
 - Shared space only works for certain orbits, schedules
 - Many US payloads have trouble being exported
 - Shuttle rides rarely available
 - Dedicated launchers too expensive for most academic, government programs
 - Hard to keep programs alive while waiting for launch opportunity

- Bottom Line:
 - NO ONE on payload side thinks current situation is good

* NOTE: All cost figures in this briefing converted to Fiscal Year 2004
MLS: Status and Requirements

- Hard to quantify number of microsat projects NOT pursued for launch reasons, but demand is real
 - Examples:
 - DoD Space Test Program can launch only 20% of approved payloads
 - Other DoD projects (Picosat, XSS-10) delayed years for a launch
 - DoD - University Nanosatellite Initiative (planned as 10 satellites on shuttle in 2001) now three missions, but no launch dates
 - Other satellites (CATSAT, Starshine 4/5) in storage, no launch dates

- ASCENT Study (for NASA by Futron, 2003):
 - Small payload market most affected by launch costs
 - Science payloads will show some increase if price is cut moderately
 - A 75% cut in launch costs = 200% increase in science flights through 2021

- Bottom Line:
 - There IS a substantial market for more microsat launches – but NOT at current prices
Lessons from Recent History

- What recent efforts failed, and Why?
 - SSI Percheron – financing failed after first test vehicle exploded
 - EER Conestoga – financing failed after first launch attempt failed
 - PALS Liberty – Financing failed after Pegasus won a DARPA small-launcher contract
 - MicroSat Launch Systems Orbital Express – unable to land contracts, secure financing
 - AeroAstro PA-X – canceled as economically unfeasible
 - NASA Bantam – Goal of 150 kg to 370km polar LEO for $1.65M (FY04 $)
 - Four study contracts let, but NASA felt none would meet cost goal
 - Minuteman-based MSLS (Lockheed-Martin) – severely restricted by DoD policy, Air Force ended up placing no orders
 - Orbital/Suborbital Program (Orbital Sciences) – succeeded, but didn’t cut costs

- Common Threads
 - Inadequate financial resources
 - Inability to recover from initial failure
 - Inability to meet cost targets
Current Initiatives

- Several efforts have reached at least initial hardware development or test.

- Current examples, with performance (approx. to Polar LEO) and cost (total price to customer) goals:
 - Microcosm Sprite – liquid-fuel, modular “pod” design, 220 kg for $2.5M*
 - SpaceDev Streaker, hybrid motor, 315 kg for under $10M
 - Space-X Falcon – liquid fuel, reusable 1st stage, 350 kg for $6M
 - AFRL/VS F-15-launched microsat launcher, solid fuel, 100 kg for $5M
 - DARPA RASCAL – radical high-performance aircraft launch, 110 kg for est. $1.25M

- Other efforts in planning stages include:
 - Balloon-launch systems – JP Aerospace, HARC, Starhunter
 - Ground-launch: Rocket Propulsion Engineering, Thurber Space Systems, E’

- New factor – DoD interest - DARPA pursuing FALCON Small Launch Vehicle
 - Interest in responsive, cheap small launcher offers possible source of R&D funding

*NOTE: Manufacturers’ cost estimates were accepted as given, except to add range and FTS costs if not included
MLS Technology

- **Launch Mode:**
 - All launch modes investigated
 - Pads offer lowest infrastructure costs, with tradeoffs in flexibility
 - Most successful small launchers pad-launched, but Pegasus shows exceptions possible

- **Rocket Design:**
 - Solid, liquid, and hybrid all in development, with 2-5 stages
 - Basic Scout and Pegasus launchers were all-solid
 - Russian/Ukrainian small launchers successful with all liquids
 - Other debates: pressure fed v. pump-fed, composite tanks v. aluminum, all-expendable v. partly reusable, conventional stages v. grouped “pods,” etc.
 - So far, no clear “best practice” in MLS design
MLS Costs

- Small launchers v. large launchers: lower per-mission costs, higher costs per kg
 - Small launchers must be compared in their own category, NOT to larger launchers

- Surveyed for this study: Nine MLS vehicles (two in service (Pegasus and Minotaur), seven in development)
 - Ancillary cost (e.g., range use, licensing, range-accepted FTS) yields a fixed cost of ~$1M range for any MLS launch price

Small Launcher Cost Breakdown

<table>
<thead>
<tr>
<th>Item</th>
<th>% of Launch Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propulsion</td>
<td>25.7</td>
</tr>
<tr>
<td>Mission Support Labor</td>
<td>25</td>
</tr>
<tr>
<td>Amortization of DD&E</td>
<td>21.4</td>
</tr>
<tr>
<td>Assembly Labor</td>
<td>8.6</td>
</tr>
<tr>
<td>Avionics</td>
<td>8.6</td>
</tr>
<tr>
<td>Flight Termination System and Range</td>
<td>7.1</td>
</tr>
<tr>
<td>Structures</td>
<td>4.3</td>
</tr>
</tbody>
</table>

Components of Cost for a Hypothetical “Minimum-Cost” Small Launcher

Source: Presentation by Dr. Antonio Elias, Orbital Sciences, 3 Apr 2003
Microsat Launchers: Payload Weight vs. Cost

Weight vs Cost

R² = 0.4617

(Includes flight-proven systems)
Microsat Launchers: Payload Weight vs. Cost

Weight vs Cost

R² = 0.5567

Capacity to Polar LEO in kg

Cost (FY04$M)

0 5 10 15 20 25

0 100 200 300 400 500

$1.5 $1.3 $2.5 $2.8 $5.0 $10.0

(Excludes flight-proven systems)
Microsat Launchers: Desires of Payload Developers

MLS Developer Estimates of Cost and Performance needs
(Data: Bantam goal, 6 payload developers, one payload market study by a launch company)
Microsat Launchers*: The Possible vs. The Desirable

MLS Developer Estimates of Cost and Performance compared to Payload Developer Desires

*Does not include the flight-proven launches
Analysis: Costs and Markets …The Chicken or the Egg ???

- As demonstrated by the tradespace, there is a demand for an affordable MLS which is not met by the supply.

- There is market elasticity in both directions:
 - If the satellite developers had affordable launches, they would develop more.
 - If the launch developers were assured of more payloads, the cost would decrease.

- What else do the surveys indicate?
 - Need to examine technology to reduce risk (cost and technical).
 - Lower R&D costs would have major impact on the MLS costs.
 - This demonstrates that tension exists between possibly advantageous new technology and the investment needed to develop it.
 - Nevertheless, consistency of cost/payload estimates from different companies using different designs indicates projections on new vehicles are fairly reliable.

MLS development is possible w/in a cost range appealing to the Payload developers’ expectations.
Guidelines

- No single technology path to success:
 - Advantages of technology vs. risk require careful balance
 - Design to cost (including operability, low mission support labor cost) is more important than maximizing performance
 - MUST keep the project simple – no forcing of “pet” requirements or technologies

- Reliance for R&D costs on investors who need near-term payback from launch revenue is unworkable
 - Per Elias estimate, such payback adds over 20% to cost of a launch
 - Breaking cost paradigm requires internal or government R&D funding which will not affect launch prices

- Rules for the Successful MLS Developing Organization:
 - Be lean, dedicated organization with minimal overhead
 - Have access to secure funding without fluctuations
 - Be able to withstand first-launch failure
 - Be able, after demonstrating vehicle, to wait for market to respond
Conclusion

- There is a demand for MLS
- No evidence a lower-cost small booster is NOT possible
 - Challenge: Make MLS cheap enough to expand the market
 - Keys are design and management to minimize cost
- Cost estimates indicate that developers, payload builders can find common ground
- Bottom Line: MLS CAN be done – if done right!

DISCLAIMER: This presentation represents the personal opinion of the authors. It does not represent the position of Booz Allen Hamilton, MITRE corporation, the U.S. Air Force, or any agency of the U.S. Government.