Soil aggregation and phosphorus availability following a one-time compost addition in semi-arid organic wheat systems

Idowu Atoloye,
Drs. Jennifer Reeve, Astrid Jacobson and Earl Creech
Utah State University
Areas of semiarid to arid lands across the world

dry subhumid
semiarid
arid
hyperarid
Characteristics of semi-arid organic wheat soils

- Low soil fertility status
- Low soil organic carbon
- Lack of soil structure
- Low soil moisture due to lack of rainfall
- Phosphorus availability is limited due to high sorption and precipitation by soil surfaces and Fe, Al and Ca ions.
- There is a continues decrease in the concertation of available phosphorus
Compost effect on soil aggregates

- Formation of stable macroaggregates has significant impacts on belowground carbon and nutrient cycling
- Water infiltration and erosion
- Root growth and distribution
Fate of phosphorus in calcareous soils
Compost effect on phosphorus sorption and fixation

- Compost application decreases phosphorus sorption in calcareous soils (Khalid et al., 2011)
Objectives

Examines one-time compost effect on:

1. Soil aggregation.

2. Potential bioavailability of phosphorus.
Methods

- Compost applied at rates of 0, 25 and 50 Mg ha\(^{-1}\) in 2016
- 0-10 cm soil sampled in 2017

<table>
<thead>
<tr>
<th>Site Characteristics</th>
<th>Snowville</th>
<th>Blue Creek</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>8.6</td>
<td>6.8</td>
</tr>
<tr>
<td>ECe (µs/cm)</td>
<td>195</td>
<td>84</td>
</tr>
<tr>
<td>CaCO(_3) (%)</td>
<td>18-28</td>
<td>0-20</td>
</tr>
<tr>
<td>Total annual precipitation (mm)</td>
<td>280</td>
<td>420</td>
</tr>
<tr>
<td>Mean Annual Temperature (°C)</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>
Soil aggregate separation

- Sieve 1 (4000 - 2000 µm)
- Sieve 2 (2000 - 1000 µm)
- Sieve 3 (1000 - 250 µm)
- Collecting pan (<250 µm)

Fresh soil

Plant residues and stones removed

Large macroaggregates
Small macroaggregates
Microaggregates

Sieved soil through 4000 µm sieve and cold dried at 4°C
Microbial release of organic phosphorus

4 g soil sample → 7 day incubation, 35 °C

Set A, unfumigated
0.5 M NaHCO₃ → Set B, fumigated

IP = Inorganic P
TP = Total P
OP = Organic P
MicP = Microbial P
Sequential phosphorus fractionation

1 g soil sample

50 ml 0.5 M NaHCO$_3$, 0.5 h → Labile P

50 ml 1 M HCl, 3 h → Moderately labile P

50 ml 0.5 M NaOH, 16 h → Stable P
Relative abundance of soil aggregates

Snowville

Blue Creek

Aggregate size class (mm)

Percentage (%)

Aggregate size class (mm)

Percentage (%)

0 Mg ha⁻¹

50 Mg ha⁻¹
Microbial release of organic phosphorus

Snowville: 216 % increase
Blue Creek: 61.2 % increase
Phosphorus bioavailability

Snowville

<table>
<thead>
<tr>
<th>Inorganic P concentration (mg kg(^{-1}))</th>
<th>Labile</th>
<th>Moderately labile</th>
<th>Stable</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>B</td>
<td>A, A</td>
<td>A, A</td>
</tr>
</tbody>
</table>

Blue Creek

<table>
<thead>
<tr>
<th>Inorganic P concentration (mg kg(^{-1}))</th>
<th>Labile</th>
<th>Moderately labile</th>
<th>Stable</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Mg ha(^{-1})</td>
<td>B</td>
<td>A, A</td>
<td>A, A</td>
</tr>
<tr>
<td>25 Mg ha(^{-1})</td>
<td>B</td>
<td>A, A</td>
<td>A, A</td>
</tr>
<tr>
<td>50 Mg ha(^{-1})</td>
<td>B</td>
<td>A, A</td>
<td>A, A</td>
</tr>
</tbody>
</table>
Phosphorus bioavailability cont’d

Snowville

Organic P concentration (mg kg⁻¹)

Labile Moderately labile Stable

Blue Creek

Organic P concentration (mg kg⁻¹)

Labile Moderately labile Stable

Phosphorus bioavailability cont’d
Conclusions

• Compost had significant effect on aggregate formation at Snowville but not at Blue Creek

• Compost had greater effect on P bioavailability in Snowville than in Blue Creek