XSS-10 Micro-Satellite Flight Demonstration Program

Presented to 17th Annual AIAA/USU Conference on Small Satellites
12 August 2003
Background

- XSS-10 was a technology program to demonstrate basic proximity operations capabilities on-orbit
 - Addressed both technical and operational risks before committing to micro-satellite system development programs
 - Fundamental part of the AFSPC Strategic Master Plan for ensuring space superiority
- Initiated in 1996, the program was realigned several times due to budget and launch changes
- Originally planned for Shuttle launch, NASA withdrew ride in 1998 due to priorities for International Space Station
- Air Force launch secured as secondary payload on Delta II Global Positioning Star satellite operational mission
- Strong senior leadership support throughout program
XSS-10 Program
Pathfinder for Micro-Satellite Proximity Operations

- First on-orbit flight demonstration of micro-satellite proximity operations

- **Demonstrates:**
 - Semi-autonomous and manual control of micro-satellite on-orbit
 - Navigation and inspection of object of interest (Delta 2nd Stage) by micro-sat
 - Demonstration of several advanced micro-sat technology components

- Significant risk reduction for XSS-11

Mini-communications system (SGLS) Integrated imager and star camera Lightweight propulsion system Lithium polymer batteries
XSS-10 Microsatellite Team

- Program Oversight
- CONOPS
- Mission Analysis
- System Integration & Environmental Testing
- Launch Vehicle Integration
- Mission Planning & Operations
- Microsat Support Platform Design & Fabrication

- System Engineering
- Mission Planning
- Systems Safety

- Integration & Test
- Environmental Testing
- Ground Operations

- GN&C Software Design
- Telemetry Display and PIL
- Software Integration & Test

- Mission Operations
- SGLS

- Vehicle Design
- System Integration and Test
- DSP Software Design
- Avionics Design
- Avionics Fabrication
- Avionics Integration & Test
- Software Integration & Test

- Launch System Support
- Delta II Secondary Payload

- Sconce
- Dynamic Model Analysis

- Visual Camera System
Microsat and Support Hardware

- **Sconce Payload Platform**
- **Support Electronics Platform**

XSS-10 Microsat

- **Primary Structure**
- **Avionics Module**
- **Batteries (2X)**
- **Divert Thruster (4X)**
- **ACS Thruster (8X)**
- **Pressurant Module**
- **IMU Structure**
- **IMU**
- **Sensor Assembly**
- **Uni-body Propellant Tanks**
- **SGLS**

31 kg in weight; volume: approximately 43cm x 84cm

Highly energetic vehicle with approximately 300m/s
Satellite Payload Platform

XSS-10 Inside Fairing

XSS-10 Stowed

MicroSat Tipout

MicroSat Release
Program Development Activities

Flight Hardware
- Micro-satellite fabricated at Boeing Rocketdyne Canoga Park facility
- All environmental and space qualification testing complete at Kirtland AFB Aerospace Engineering Facility
- Functional checkout, propellant loading, and integration with Delta II launch vehicle accomplished at CCAFS

Flight Software
- Guidance, Navigation, and Control (GNC) software developed by Octant Technologies
- Digital Signal Processing (DSP) software written by Boeing-Anaheim
- “Air Bearing” Test #2 completed in June ‘01
- Final software “buyoff” of final revisions to flight/mission software completed at Boeing-Anaheim facility in Jan ‘03
XSS-10 Launch Vehicle

- Launched on 29 January 2003 as first Air Force secondary mission aboard a Delta II launch vehicle carrying a GPS satellite on mission IIR-8

- Vehicle configuration: 7925
- Launch site: SLC-17 at CCAFS

Ground Rules: No Impact to GPS!
Launch Operations

- Ground Operations Working Groups (GOWG) established in December 2000
 - Members included Boeing/HB, Lockheed Martin, AFRL, and 45th Space Wing
 - Identified facilities and coordinated integrated schedule
 - XSS-10 Missile System Pre-launch Safety Package developed and approved
- Delta II second stage modified for XSS-10
 - “Fit check” at Pueblo in May 2001
 - Functional check completed at CCAFS in November 2001
- Processing flow:
 - Functional checkouts at NAVSTAR Processing Facility
 - Moved to DSCS Processing Facility, fueling activities
 - Launch pad 17B, integrated onto Delta II
XSS-10 mission operations activities accomplished through SMC Detachment 12 (RSC) utilizing AF Satellite Control Network

Command and telemetry databases completed; commanding ability verified through the AFSCN to the XSS-10 vehicle

High risk, complex mission requirements, never previously accomplished! Short duration mission (<24 hours)

- Proximity operations—*never before attempted*
- Rotating ejection platform
- Single-string experimental space vehicle
- External ranging support is required to assist AFSCN in tracking micro satellite

AFRL/ SMC Det. 12 mission operations team performed flawlessly
XSS-10 Mission Architecture

Mission specifics
- Retrievable elements: none
- Orbital altitude: 800 km
- Orbital inclination: 39.6 degrees
- Lifetime: ~24 hours

Mission Overview
- Eject
- Perform initial orientation ("lost in space")
- Perform inspection at ~100 meters
- Close-in inspection
 - divert to ~50 meters
 - cold gas axial thrust ~35 meters
- Demonstrate low-power (sleep) mode
- Wake and do "extra credit" (rendezvous)

First of its kind flight demonstration of proximity operations on-orbit!
Delta II Trajectory Sequence

- Launch
- Stage 2/3 Separation
- Burn to Raise Perigee
- Burn to Lower Apogee
- Nominal Depletion Burn (Orbit Insertion)

Assumes descending node launch
Mission Pass - Checkout
Microsatellite Camera

(Rev 11.1 NHSB 30 Jan 2003 12:02:03z - 12:16:58z)

- 12:02z AOS @ NHSB as scheduled
- 12:03z Vehicle pre-eject checkout completed and GO/ NO-GO calls made
- Microsatellite views earth limb
- 12:04z eject command sent to vehicle, mission time (MT) = 0
Mission Pass - Ejection
Witness Camera
(Rev 11.1 NHSB 30 Jan 2003 12:02:03z – 12:16:58z)

- MT+0:20 Microsatellite ejected from Delta II 2nd stage
- Pre-eject
- Microsatellite ejection
- Witness camera video eject +

- Witness camera video eject ++

- Microsatellite drifts out at .8m/ sec until ~ 100m from 2nd stage
- Microsatellite completes drift out and turns around to look at 2nd stage

- Range: 100 meters

- Time: MT+2:03
Mission Pass - Ins. Point 0
Microsatellite Camera
(Rev 11.1 NHSB 30 Jan 2003 12:02:03z - 12:16:58z)

- Imaging system autonomously adjusts integration time to desaturate image
- Range: 100 meters
- Time: MT+2:03
- Microsatellite moves to inspection point #1
- Range: 100 meters
- Time: MT+6:00
- Imaging system autonomously adjusts integration time to desaturate image
- Imaging system autonomously adjusts vehicle attitude to center 2nd stage in field of view
- Centroid information is used to update vehicle position knowledge
Microsatellite moves to inspection point #2

Range: 100 meters

Time: MT+7:20

Imaging system autonomously adjusts integration time to desaturate image

Imaging system autonomously adjusts vehicle attitude to center 2nd stage in field of view

Centroid information is used to update vehicle position knowledge
- Microsatellite begins move to inspection point #3
- Microsatellite begins move & stare maneuver
- Initial Range: 120 meters
- Initial Time: MT+8:30
- Final Range: 150? meters
- Final Time: MT+10:00
Vehicle begins move to inspection point #4 (Vbar)
Range: 100 meters
Time: MT+10:30
Early LOS @ NHSB
Inspection point #4 and axial maneuver not observed due to loss of telemetry
Delta II 2nd Stage (100m)
Microsatellite Camera
Launch Vehicle Integration
(Commercial Digital Camera)

On-Orbit
(Microsatellite Visible Imager)
XSS-10 Mission Objectives

Minimum Success Criteria
- Deliver and release one Micro-Sat on-orbit
- Establish real-time RF link between Micro-Sat and AFSCN
- Perform maneuvers about a resident-target
- Perform 3 points of an autonomous inspection about a resident-target
- Acquire and track a resident-target with the Micro-Sat visible sensor
- Demonstrate station-keeping capability relative to a resident-target continuously

Full Success Criteria (min set plus the following)
- Establish real-time RF link between the AFSCN and both the Micro-Sat and ELV-VAS simultaneously
- Perform continuous track during maneuver between two inspection points
- Perform 100% of an autonomous 5-point inspection about a resident-target
- Demonstrate Micro-Sat axial maneuvering while imaging
- Demonstrate life extension (‘Sleep’) mode for a Micro-Sat
- Obtain images of Micro-Sat ejection and initial maneuvers about a resident-target

Additional Mission Objectives
- Reacquire resident-target after Micro-Sat has been in sleep mode
- Demonstrate real-time commanding through the Payload Test Center
- Rendezvous with resident-target to within 200m
- Perform orbit lowering maneuver to reduce Micro-Sat life on-orbit
Impact to Future Missions

- Station keeping and maneuver control logic verified and clears the way for more complex maneuvers on future missions.
- Visible camera and star tracker provided brilliant images of the nearby rocket body.
- Vehicle fault detection and handling was checked out with planned and real anomalies.
- Proven vehicle safety system will be combined with an on-board planner on subsequent missions to demonstrate autonomous proximity operations.
- Developed ground control capability enabled a small team to successfully interpret the real-time data and control the spacecraft during its short mission.
- Future missions will build on this by both further reductions in ground staff and extension to orbit changes and rendezvous with objects.
Preliminary Conclusions

- Proximity operations experiment successful
 - All primary mission objectives achieved!
- Validated the design and operations of the microsatellite
 - Autonomous operations algorithms
 - Visible and Star sensor design
- Demonstrated capability for responsive microsatellite operations
 - Quick activation and checkout
- Detailed mission analysis underway
 - XSS-10 will serve as building block for future missions
 - Results to be provided to AFRL, AFSPC, and other government agencies
Summary

- XSS-10 mission successful; all primary objectives achieved
- AFRL’s AEF provided critical capability for reducing risk and program costs!
- Dedicated team effort; outstanding support from AFSPC, SMC, 45th Space Wing, and contractor team members
- Building block for future microsatellite demonstrations