The Selaginella Genome Identifies Genetic Changes Associated with the Evolution of Vascular Plants
Jo Ann Banks, et al.
Science 332, 960 (2011);
DOI: 10.1126/science.1203810

If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here.

Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here.

The following resources related to this article are available online at www.sciencemag.org (this information is current as of May 19, 2011):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:
http://www.sciencemag.org/content/332/6032/960.full.html

Supporting Online Material can be found at:
http://www.sciencemag.org/content/suppl/2011/05/04/science.1203810.DC1.html

This article cites 176 articles, 95 of which can be accessed free:
http://www.sciencemag.org/content/332/6032/960.full.html#ref-list-1

This article appears in the following subject collections:
Botany
http://www.sciencemag.org/cgi/collection/botany
Evolution
http://www.sciencemag.org/cgi/collection/evolution
Reports

D' (12), ranging between values of 0 (a fully random association) to 1 (a complete association between allele pairs). Because the underlying model assumes random mating within the population from which the sample was taken, it is only appropriate to calculate this statistic for the Leeds sample. D' was high (>0.5) for all markers across the 1.4-Mb sequence examined, defining a region of approximately 400 kb where D' > 0.9, with a maximum D' at locus c (Fig. 2). Interpolation of D' values at loci b, c, and d suggests that the genetic polymorphism controlling the morph phenotype is located within 100 kb on either side of each locus. Further consideration of the “missing” (repulsion-phase) haplotypes separately for *carbonaria* and *typica* (Table 2) emphasizes the deficit of repulsion-phase *carbonaria* haplotypes across all six loci. In contrast, *typica* haplotypes show only weak deficits of *carbonaria*-type marker alleles, which is consistent with the view that these alleles were segregating in the population before the genesis of *carbonaria*. At loci a and b, the deficit for *typica* is greater because the *carbonaria*-type alleles (C and A, respectively) were rare in the ancestral population. These two loci suggest that *carbonaria-*to-*typica* haplotype introgression has been weak.

Bombyx mori chromosome 17 and its orthologs in other lepidopterans are rich in major color-patterning genes, such as the *black moth* and *wild wing spot* (13). These *Bombyx mori* genes do not map closely to the *carbonaria* locus (fig. S5). However, *Bicyclus anynana* LG17 contains two pigment-patterning mutants, 067 and *Bigeve*, that both affect eye spot size, with *Bigeve* predicted to reside within the *carbonaria* region (14). The *Bigeve* and *carbonaria* phenotypes are clearly very different, but they share a large increase in the proportion of melanized scales. The *carbonaria* core region also overlaps the mimic patterning locus in four *Heliconius* species, collectively referred to as the *Yb-P-Yb/Sb-Cr* locus (15–17). The *B. betularia* genes identified in this region so far correspond entirely with those described for the *Yb-P-Yb/Sb-Cr* region. A major feature distinguishing *Heliconius* forms is the amount and distribution of black, as with the various *B. betularia* morphs (4). This unlikely coincidence suggests that the control of melanin pattern formation in these deeply diverged lepidopterans may have a common genetic basis, the functional units of which have yet to be identified.

The rapid spread of an initially unique haplotype, driven by strong positive selection, is expected to generate the profile of linkage disequilibrium we have observed (18), establishing that UK industrial melanism in the peppered moth was seeded by a single recent mutation that spread to most parts of mainland Britain and also colonized the Isle of Man (fig. S4). Paradoxically, although the *carbonaria* morph is now strongly disadvantageous and consequently rare in the United Kingdom, the rapidity of its decline (19) has minimized the eroding effect of *typica* introgression on the molecular footprint of strongly positive selection created during its ascendency.

References and Notes

11. Materials and additional results are available as supporting material on Science Online.

Acknowledgments

This work was funded by Natural Environment Research Council grant NE/C003101/1 to I.J.S. Cytogenetic experiments were financed by Grant Agency of the Academy of Sciences of the Czech Republic grant IA460096925, Entomology Institute project Z50070508, and Grant Agency of the Czech Republic 25106/H042 grants to F.M. and M.D. Specimens for the UK-wide survey were made available by several museums and private collectors, listed in table S4. J. Dell produced fig. S3. GenBank accession numbers are listed in table S1.

Supporting Online Material

www.sciencemag.org/cgi/content/full/science.1203042/DC1

Materials and Methods

Figs. S1 to S5

Tables S1 to S4

References

19 January 2011; accepted 30 March 2011

Published online 14 April 2011;
10.1126/science.1203043

The Selaginella Genome Identifies Genetic Changes Associated with the Evolution of Vascular Plants

the release of haploid spores (Fig. 1C) from the sporophyte and a gametophyte generation that develops independently of the sporophyte. Because the lycophytes are an ancient lineage that diverged shortly after land plants evolved vascular tissues (Fig. 2A) (1), we sequenced the Selaginella genome to provide a resource for identifying genes that may have been important in the early evolution of developmental and metabolic processes specific to vascular plants.

The Selaginella genome was sequenced by whole-genome shotgun sequencing (2). The assembled genome size (212.6 Mb) is twice that determined by flow cytometry (3), indicating that the assembled genome includes two haplotypes of ~106 Mb that are 98.5% identical at the nucleotide level. A deduced haplotype has 22,285 predicted protein-coding genes, of which 37% are supported by expressed sequence tag sequences, and 58 microRNA (miRNA) loci (2, 4). The Selaginella genome lacks evidence of an ancient whole-genome duplication or polyploidy (2), unlike all other sequenced land-plant genomes (5–7). Gene density in Selaginella and Arabidopsis, which has a slightly larger genome size, is very similar (2), and both genomes have gene-poor regions rich in transposable elements (TEs) and other repetitive sequences (2). Although fewer genes and smaller introns (2) contribute to a genome size smaller than Arabidopsis, this is offset by a greater proportion of TEs in Selaginella (37.5% versus 15% in Arabidopsis) (2).

Long terminal repeat retrotransposons are the most abundant TEs, occupying one-third of the Selaginella genome (2).

Fig. 1. Selaginella morphology. (A) The diploid sporophyte body. Bar, 10 mm. (B) A shoot with two ranks of microphylls ("leaves") and strobili. Each microphyll of a strobilus has either a mega- or a microsporangium where mega- or microspores are produced. Bar, 2 mm. (C) An orange microspore on top of a dark megaspore. These single-celled haploid spores represent the beginning of the independent haploid gametophyte generation. The microgametophyte produces motile sperm and the megagametophyte eggs. Bar, 0.1 mm.

1Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA. 2Advanced Science Research Center, Kanazawa University, Kanazawa 920-0934, Japan. 3Ehime National College of Technology, Matsuyama, Ehime 791-8530, Japan. 4National Institute of Basic Biology, Okazaki 444-8585, Japan. 5Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA. 6Department of Biology and Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA. 7Graduate Program in Plant Biology, Pennsylvania State University, University Park, PA 16802, USA. 8Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University Park, PA 16802, USA. 9Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA. 10Department of Biology and Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA. 11Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University Park, PA 16802, USA. 12Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA. 13The New York Botanical Garden, Bronx, NY 10455, USA. 14Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada. 15Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA. 16Department of Genetics, University of Georgia, Athens, GA 30602, USA. 17Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA. 18Department of Molecular Biology, University of Potsdam, Potsdam-Golm 14476, Germany. 19Hazar Newman Center for Bioinformatics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA. 20Heisenberg-Group Biophysics and Molecular Plant Biology, University of Potsdam, Potsdam-Golm 14476, Germany. 21Charles University in Prague, Faculty of Science, Department of Botany, 128 01 Prague 2, Benátska 2, Czech Republic. 22University in Prague, Faculty of Science, Chittussiho 10, 710 00 Ostrava, Czech Republic. 23Department of Botany, The College of William and Mary, Williamsburg, VA 23187, USA. 24Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, Torrey Pines Road, La Jolla, CA 92037, USA. 25Heisenberg Group for Research in Plant Sciences, University of Vienna, 1090 Vienna, Austria. 26Department of Molecular Biology and Pathology, Rutgers, The State University of New Jersey and Wiksman Institute of Microbiology, 190 Frelinghuysen Road, Piscataway, NJ 08854–8030, USA. 27Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey and Wiksman Institute of Microbiology, 190 Frelinghuysen Road, Piscataway, NJ 08854–8030, USA. 28Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA. 29Department of Genetics, Hiroshima University, Sapporo 060-0810, Japan. 30Department of Genetics, Friedrich Schiller University Jena, D-07743 Jena, Germany. 31Institute of Horticulture and Landscape Architecture, Purdue University, W. Lafayette, IN 47907, USA. 32Department of Biology, Martin Luther University Halle-Wittenberg, Halle/Saale 06120, Germany. 33Department of Plant Biology and Biotechnology, University of Copenhagen, Frederiksberg C 1871, Denmark. 34Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan. 35Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. 36Institute for Biotechnology, University of California, Berkeley, CA 94720, USA. 37Department of Genetics, Immunology and Biochemistry, University of Tennessee, Knoxville, TN 37996, USA. 38Department of Biology and Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. 39Department of Biology, University of California, Berkeley, CA 94720, USA. 40Institute for Molecular Biology (FRIYS), University of Freiburg, Freiburg 79104, Germany. 41Department of Chemical Sciences, The University of Tokyo, Tokyo 113-0033, Japan. 42Joint BioEnergy Institute, Feedstocks Division, Emeryville, CA 94608, USA. 43Department of Evolution and Biodiversity of Plants, Ruhr-University Bochum, Bochum 44780, Germany. 44Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA. 45Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan. 46School of Science, Hokkaido University, Sapporo 060-0810, Japan. 47School of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA. 48Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan. 49Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey and Wiksman Institute of Microbiology, 190 Frelinghuysen Road, Piscataway, NJ 08854–8030, USA. 50Japan Science and Technology Agency, Sapporo 060, Japan. 51Department of Biology, University of Washington, Seattle, WA 98195–3525, USA. 52Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada. 53Wellcome Trust Centre for Human Genetics, Oxford, OX3 7BN, UK. 54Sas AG, CH-8634 Hombrechttikon, Switzerland. 55Faculty of Biology, University of Freiburg, Freiburg 79104, Germany. 56BOISS Centre for Biological Signaling Studies, University of Freiburg, Freiburg 79104, Germany. 57Freiburg Initiative for Systems Biology (FISyBS), University of Freiburg, Freiburg 79104, Germany. 58GabiPD team, Bioinformatics Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany. 59Department of Web Science, Universidade de los Andes, Bogotá D.C., Colombia. 60Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA. 61Joint BioEnergy Institute, Feedstocks Division, Emeryville, CA 94608, USA. 62Department of Evolution and Biodiversity of Plants, Ruhr-University Bochum, Bochum 44780, Germany. 63Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA. 64Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan. 65School of Science, Hokkaido University, Sapporo 060-0810, Japan. 66Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA. 67Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA. 68The Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA. 69JLMR INRA 10880CRNS 5184, Université Bourgogne Plant Environment, Dijon, France. 70Department of Biology, Utah State University, Logan, UT 84322-3305, USA. 71Plant Biotechnology, University of Freiburg, Freiburg 79104, Germany. 72Department of Molecular Biology and Pathology, Rutgers, The State University of New Jersey and Wiksman Institute of Microbiology, 190 Frelinghuysen Road, Piscataway, NJ 08854–8030, USA. 73Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92037, USA. 74Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92037, USA. 75Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA.

*To whom correspondence should be addressed. E-mail: banksj@purdue.edu
to epigenetically regulate TE and gene activity (8). Several observations suggest that some aspects of epigenetic or posttranscriptional gene regulation in Selaginella are unique among plants. For one, the proportion of sRNAs 23 to 24 nucleotides (nt) in length is extraordinarily small in the Selaginella sRNA population (2) compared to angiosperms (9). Nearly three-quarters of the Selaginella sRNAs (4) map to MRNA loci and are predominantly 21 nt in length (2). In angiosperms, 24-nt sRNAs, which are generated primarily from TE s, function to silence TE activity through the RNA-dependent DNA methylation pathway (10–12) and accumulate massively in specific cells of the female gametophyte (13).

Because the Selaginella sRNA population was generated from sporophytic tissues, the 24-nt sRNA pathway may only be deployed during gametophyte development in Selaginella. A second distinction is the absence of DCL4, RDR6, and MR390 loci in Selaginella, which are required for the biogenesis of trans-acting siRNAs (tasRNAs) in angiosperms (2). Their absence suggests that tasRNA-regulated processes in angiosperms, including leaf polarity (14) and developmental phase changes in the sporophyte (15, 16), are regulated differently in Selaginella, and possibly reflects the independent origins of foliar organs in the lycophyte and angiosperm lineages (17, 18). Finally, the Selaginella plastome sequence reveals an extraordinarily large number of RNA-edited sites (2), as do other lycophyte organellar genomes (19, 20). This coincides with an exceptionally large number of PPR genes in Selaginella (>800) (2), some of which guide RNA editing events in angiosperms (21).

Because Selaginella is a member of a vascular plant lineage that is sister to the ephyllophytes, we used comparative and phylogenetic approaches to identify gene origins and expansions coinciding with evolutionary innovations and losses in land plants. To identify such genes without regard to function, we compared the proteomes of the green alga Chlamydomonas, the moss Physcomitrella, Selaginella, and 15 angiosperm species; identified gene families that are related by homology by hierarchical clustering (2); and then mapped them onto a phylogenetic tree (Fig. 2B). The 3814 families with gene members present in all plant lineages define the minimum set of genes that were likely to be present in the common ancestor of all green plants and their descendants and include genes essential for plant function. The transition from single-celled green algae to multicellular land plant approximately doubled the gene number with the acquisition of 3006 new genes. The transition from nonvascular to vascular plant is associated with a gain of far fewer new genes (516) than the transition from a basal vascular plant to a basal ephyllophyte whose descendants include the angiosperms (1350). These numbers show that the evolution of traits specific to ephyllophytes or angiosperms required the evolution of about three times more new genes than the transition from a plant having a dominant gametophyte and simple, leafless, and nonvascularized sporophyte (typified by modern bryophytes) to a plant with a dominant, vascularized, and branched sporophyte with leaves.

In a second approach, we analyzed the phylogenies of genes known to function in Arabidopsis development (2). We identified 424 monophyletic groups of developmental genes, each group containing putatively all genes descended from a common land-plant ancestral gene (table S6). Selaginella and Physcomitrella genes are present in 377 (89%) and 356 (84%) of the 424 land-plant orthologous gene groups, respectively, indicating that the common ancestor of land plants had most of the gene families known to direct angiosperm development. Conspicuous expansions of families within different lineages resulted in different numbers of land-plant orthologs in each genome (table S6). The 27 vascular plant-specific orthologous groups likely represent genes associated with developmental innovations of vascular plants. Among them are genes regulating the meristem (CLV1 and CLV2), hormone signaling (GID1 and CTR1), and flowering (TFL2 and UFO). Homologs of genes involved in the specification of xylem (NST and VND) (22) and phloem (APL) (23) in Arabidopsis are present in Physcomitrella and Selaginella, suggesting that the developmental programs for patterning and differentiation of vascular tissues were either present in, or co-opted from, preexisting genetic programs in the ancestral land plant. The 43 groups lacking genes from Physcomitrella and Selaginella (table S6) likely identify genes that were necessary for ephyllophyte or angiosperm developmental innovations. Among this group are genes that regulate light signaling (FAR1, MIF1, OB3P, and PKSI), shoot meristem development (AS2 and ULTI), hormone signaling and biosynthesis (BR11, BSUI, ARF16, ACS, and ACO), and flowering (HUAI, EMFI, FT, TFL1, and FD). Altogether, these results suggest that the evolutionary transitions from a nonvascular plant to a vascular angiosperm included the stepwise addition of components of some developmental pathways, especially those regulating meristem and hormone biology, as previously noted for the gibberellin signaling pathway (24, 25).

Genes involved in secondary metabolism were also investigated because plants synthesize numerous secondary metabolites that they use to interact with their environment. Three gene families involved in their biosynthesis, including those encoding cytochrome P450-dependent monoxygenases (P450s), BAHD acyltransferases (BAHDS), and terpene synthases (TSs), were analyzed. The largest of these in Selaginella is the P450 family, accounting for 1% of its predicted proteome (table S7) (2). All three families show similar evolutionary trends, with the inferred ancestral vascular plant having a small number of genes that radiated extensively but independently within the lycophyte and angiosperm lineages (figs. S6 to S13). BAHD and TS genes, which are known to be involved in the biosynthesis of volatile odorants, are apparent only in seed plants (figs. S12 to S13), likely reflecting the coevolution of seed plants with animals that pollinate flowers or disperse seeds. The independent diversification of these gene families plus the large number of Selaginella genes suggest that Selaginella not only has the potential to synthesize a repertoire of secondary metabolites that rivals the angiosperms in complexity, but that many of them are likely to be unique. Some have been shown to be of pharmaceutical value (e.g., (26)).

We have used the compact Selaginella genome sequence to uncover genes associated with major evolutionary transitions in land plants. Understanding their functions in Selaginella and other taxa, as well as acquiring the genome sequences of other informative taxa, especially charophytes, ferns, and gymnosperms, will be key to understanding the evolution of plant form and function.

References and Notes
2. Details are given in the supporting materials on Science Online.
Chromatin “Prepattern” and Histone Modifiers in a Fate Choice for Liver and Pancreas

Cheng-Ran Xu, Philip A. Cole, David J. Meyers, Jay Kormish, Sharon Dent, Kenneth S. Zaret

Transcriptionally silent genes can be marked by histone modifications and regulatory proteins that indicate the genes’ potential to be activated. Such marks have been identified in pluripotent cells, but it is unknown how such marks occur in descendant, multipotent embryonic cells that have restricted cell fate choices. We isolated mouse embryonic endoderm cells and assessed the epigenetic marks in ENDM1+ and Liv2+ populations. We also used the liver-specific antibody Liv2 to isolate nascent hepatoblasts expressing the liver genes. We used fluorescence-activated cell sorting (FACS) with the ENMD1 antibody to isolate ventral foregut endoderm cells from embryonic day 8.25 (E8.25) mouse embryos with four to six somite pairs (4–6S) (5) (fig. S1), just prior to the induction of hepatic and pancreatic fates (5, 6).

Early pluripotent cells of the mammalian embryo develop into multipotent endoderm, ectoderm, and mesoderm germ layers. In pluripotent cells, silent genes that will be activated later in development often exist with histone modifications and/or bound transcription factors that reflect the chromatin being “poised” for activity (1–3). It is unclear whether such poised states exist for silent genes in germ layer cells and, if so, whether genes poised for different tissue fates exhibit different chromatin features. Further, it is not known whether enzymes that establish chromatin states can control germ layer fate choices. Embryonic germ layer cells are few in number, they have not been purified, and chromatin analysis on small cell populations is challenging (4). Yet germ layer cells represent the first lineage-restricted, multipotent progenitors of the embryo and a paradigm for all subsequent fate decisions.

Ventral foregut endoderm cells undergo a fate choice for liver or ventral pancreas progenitors (5, 6). FoxA1 or FoxA2, GATA4 or GATA6, vHNF1, and Hnf6 (also known as Oc1) are necessary in the endoderm for both liver and ventral pancreas induction (7). In the absence of any set of the factors, the earliest liver marker genes Alb1, Afp, and Ttr and the ventral pancreas transcription factor gene Pdx1 fail to be activated, or expression is delayed, and tissue buds fail to form (7). It is not clear how the same group of factors can be necessary for both liver and ventral pancreas and how signaling promotes the different fates. We sought to map chromatin states at silent liver- and pancreas-specific regulatory sequences in endoderm cells, to discover the factors or relevant histone-modifying enzymes, and test the enzymes’ functions in the liver-versus-pancreas decision.

We used fluorescence-activated cell sorting (FACS) with the ENMD1 antibody to isolate ventral foregut endoderm cells from embryonic day 8.25 (E8.25) mouse embryos with four to six somite pairs (4–6S) (8) (fig. S1), just prior to the induction of hepatic and pancreatic fates (5, 6). We also used the liver-specific antibody Liv2 to isolate nascent hepatoblasts expressing Alb1, Afp, and Ttr from E9.5 embryos (fig. S2) (10). Chromatin marks in ENMD1+ and Liv2+ populations were identified with a low–cell number chromatin immunoprecipitation (ChiP) protocol (4) for H3K9 Ac1–4ac, H3K4me2, H3K4me3, H3K9me3, H3R17me2a, H3K27me3, H3K36me2, H3K36me3, H3K79me2, H4K20me3, H3T3ph, H3S10ph, the histone variant H2A.Z, and the chromatin remodellers Brg1 and Snf2. We assessed the liver-specific promoter and enhancer of Alb1 (11, 12), the liver-specific promoters of Afp and Ttr genes (13, 14), and the I, II, III, and IV upstream elements and local promoter of the pancreatic determination gene Pdx1 (fig. S3). The I, II, and III upstream elements and promoter of Pdx1 reconstitute pancreas-specific activation (15); the IV element may function later (16, 17). All of the target genes are silent in endoderm cells, and only the liver genes become activated in hepatoblasts.

References

4 February 2011; accepted 8 April 2011
Published online 5 May 2011; 10.1126/science.1203810

www.sciencemag.org