Impact of basal diet on obesity phenotype of recipient mice following fecal transfer from obese or lean human donors

Daphne Rodriguez, Niklas Aardema, Abby Benninghoff, Canyon Neal, Tess Armbrust, Sumira Phatak, Michaela Brubaker, Elizabeth Park, Kimberly Campbell, Korry Hintze
OBESITY

34%
METABOLIC SYNDROME

- Cluster of physiological and biochemical factors associated with the development of obesity and heart disease.

Central Obesity
High Blood Pressure
High Triglycerides
High Fasting Plasma Glucose

GUT MICROBIOTA

- Our colon is home to about 100 trillion microorganisms
- 400-500 different species
- 2/3 of those bacteria are found in everyone while 1/3 is unique to the individual

Quigley, E. Gastroenterology & hepatology 9.9 (2013): 560-69
Dysbiosis is a condition that favors pathogenic (harmful) bacteria which may precede disease, including metabolic syndrome, inflammatory bowel syndrome and colorectal cancer.
FACTORS IMPACTING MICROBIOME

- Age
- Birth
- Genetics
- Antibiotics
- Diet
- Stress
OBJECTIVE

Determine the contribution of gut microbiota from lean or obese donors on the phenotype of mice fed one of three diets, control (AIN), Western (TWD) or high-fat (DIO).
STUDY

ENDPOINTS

- Body Weight
- oGTT
- Food Intake
- MRI
- Fecal Collection
- Sacrifice
FOOD AND ENERGY INTAKE

Total food intake (g)

- **Mixed model main effects**
 - Diet: 0.0090
 - Body type: 0.0490
 - Diet x body type: 0.0080
 - Donor ID[body type]: 0.7502

Total energy intake (kcal)

- **Mixed model main effects**
 - Diet: <0.0001
 - Body type: 0.0490
 - Diet x body type: 0.0080
 - Donor ID[body type]: 0.7502
BODY WEIGHT GAIN

Mixed model main effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diet</td>
<td><0.0001</td>
</tr>
<tr>
<td>Body type</td>
<td>0.5054</td>
</tr>
<tr>
<td>Diet x body type</td>
<td>0.8989</td>
</tr>
<tr>
<td>Donor ID[body type]</td>
<td>0.7077</td>
</tr>
</tbody>
</table>

Mixed model main effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diet</td>
<td><0.0001</td>
</tr>
<tr>
<td>Body type</td>
<td>0.6164</td>
</tr>
<tr>
<td>Diet x body type</td>
<td>0.8703</td>
</tr>
<tr>
<td>Donor ID[body type]</td>
<td>0.7218</td>
</tr>
</tbody>
</table>
HCC and PCA for donor and mouse initial

Source	Bacteroidales S24-7	Lactobacillaceae	Streptococcaceae	Veillonellaceae	Bifidobacteriaceae	Enterobacteriaceae	Alcaligenaceae	Barnesiellaceae	Verrucomicrobiaceae	Turicibacteraceae	Anaeroplasmataceae	Planococcaceae	Clostridiaceae	Odoribacteraceae	Paraprevotellaceae	Coriobacteriaceae	Porphyromonadaceae	Erysipelotrichaceae	Rikenellaceae	Prevotellaceae	Bacteroidaceae	Lachnospiraceae	Clostridiales unknown	Ruminococcaceae	
Mouse	L3	O5	O4	O6	L1	L2	Source	Mouse pre-AB	Lean donor	Obese donor	Mouse pre-AB	Lean donor	Obese donor	Mouse pre-AB	Lean donor	Obese donor	Mouse pre-AB	Lean donor	Obese donor	Mouse pre-AB	Lean donor	Obese donor	Mouse pre-AB	Lean donor	Obese donor

PC1 (49.5%) PC2 (23.3%)
HCC and PCA for post FMT
HCC and PCA for Terminal
CONCLUSION

• Diet plays a larger role on the microbiota composition compared to donor microbiota, suggesting that dietary practices may be the most effective way to change the microbiome.

• Source of fecal transfer (lean vs. obese) did not impact body weight gain, body composition or glucose tolerance in recipient mice.

• As expected, mice fed high fat diet gained excess body weight and fat composition and had impaired glucose tolerance. Mice fed TWD were not statistically different from counterparts fed either AIN or DIO diets.

• The microbiome may be more of a correlative as opposed to a causative factor in the etiology of obesity.
ACKNOWLEDGEMENTS

- USTAR Applied Nutrition Research, Utah State University
- Utah Agricultural Experiment Station, Project UTA-01178
- Special thanks to:
 - Abby Benninghoff
 - Korry Hintze
 - Kerry Rood
 - Canyon Neal
 - Tess Armbrust
 - Niklas Aardema
 - Sumira Phatak
 - Ashli Hunter
 - Kevin Contreras
 - Michaela Brubaker
 - Elizabeth Park
 - Kristina Krepinski
 - Emily Speas
 - Kimberly Campbell