Escort: A Microsatellite for On-Orbit Inspection of Space Assets

Aaron Jacobovits, Thomas Vaneck, PhD

17th Annual AIAA/USU Conference on Small Satellites
SSC03-IV-7
August 12, 2003
A small Idea

- New Critical Need for **BIG** Satellites:
 - On-Orbit Proximity Inspection by **small** “Escort” Satellites
 - Investigate Anomalies
 - Verify Safety
 - Monitor Performance
 - Aid Deployment and Calibration
 - AeroAstro Says: “**small** is Useful”
 - Escort Does Not:
 - Rendezvous, Dock
 - Perform Maintenance, Upgrades
Movement

- Escort Does Not Rendezvous Itself
- Escort Still Needs to Get to BIG Satellite
 - Most Commonly in GEO

OK, it’s There
- Commence Proximity Operations
- Escort Orbits the BIG Satellite at Close Range
- Can Make Small Adjustments to Relative Orbit
- Could Fly Non Keplerian Trajectories – Depletes Propellant Faster

Option 1
Self-Release from BIG Satellite

Option 2
Use Third Party Services
Large Reusable Orbit Transfer Vehicle
Small Expendable Orbit Transfer Vehicle ~ SHERPA
Escort Inspection Payloads

- **RF Probe**
 - Analyzes Near Field RF Signals Emanating from BIG Satellite
 - Uses Calibrated Wideband Antenna and RF Front End
 - Back End is Intelligent Spectrum Analyzer with DSP
 - Can Detect and Characterize Signals

- **Visual Imager**

- **IR Imager**
 - Radiation Sensor
 - ESD Sensor
General Payload Capabilities

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Inspections Enabled</th>
<th>Potential Problems Diagnosed</th>
<th>Corrective Actions Possible</th>
</tr>
</thead>
</table>
| IR Camera | • Thermal mapping | • Failed heat pipes
• Alpha degradation | • Change heater control plan |
| Visual Camera| • Macro-scale damage
• Micro-scale damage
• ADCS anomalies | • Damaged solar arrays
• Failed deployment (solar arrays, antenna reflectors, etc.)
• Separation failure
• Micrometeorite strikes
• Damaged optics
• Damaged antenna
• Frayed or cut wiring
• Erroneous spin rate
• Pointing inaccuracies
• Propellant leak
• ESD arcing
• Blanket damage | • Use images to determine whether or not to use thruster assisted deployment or switch to redundant units |
| RF Probe | • Mapping of antenna gains
• Transponder anomalies
• Inspection of waveguide assemblies
• Inspection of spacecraft processors and clocks | • Antenna gimbal misalignment
• Transponder malfunction
• Processor stuck in continuous loop | • Re-point antenna
• Use Escort as a data relay
• Streamlined in-orbit tests (calibration of gimbaled antenna)
• Alerts operators to switch to redundant systems |
Economic Rationale to Use Escort

- 100’s of BIG GEO Satellites
 - Assume US $400M Each Fixed Cost (inc. Launch)
 - Assume 10 Year Design Life
 - Value of Extending 1 Satellite Life 1 Year = $40M
- Escort Must Extend Lifetime of BIG GEO Sufficiently to Justify Cost
 - Small Satellite Like Escort Easily Costs << $40M
 - Especially In Higher Volume Production
- How To Extend Life?
 - Accelerate Initial Deployment and Calibrations
 - Diagnose Problems Faster – “IF I COULD ONLY SEE IT!”
 - Avoid Same Design Problem on Other Satellites On Ground
 - Prevent Same Operations Problem on Other Satellites In Space
Escort Technology Infusion: SBIR/STTR

SCOUT Architecture:
Small, Lightweight
Universal. Compat.
Low Cost
Rapid Response
Flexible
Field Configurable
Modular
Scalable
Extensible

Nitrous Oxide Propulsion

Miniature Star Tracker:

RF Probe
Nitrous Oxide Propulsion

- AeroAstro working with VACCO MEMS and Titanium Technology
- Hot Gas Monopropellant
- Low Pressure (~800 psia) Allows Non-Conventional Tanks
 - Rectangles – Not Spheres
 - More Efficient Use of Volume

- Non-Toxic, Low-Cost, Storable
- Very Low Freezing Temperature
- 120 < Isp < 200
- Low MIB
- Self-Pressurized by Own Vapor – Liquid and Gas Phases Mix
 - No Diaphragm Needed
 - Special Plenum Ensures Only Gas Gets to Thrusters
Attitude Sensor Selection

- Robust Design Meets Requirements for Multiple Frames
 - Multiple ST FOV prevents Sun, Moon, Earth induced loss of lock
 - Insensitive to orbit selection
 - Allows for autonomous initial acquisition and Lost in Space mode
 - Sun and rate sensors allow easy autonomous detumble and power-safe modes

- Potential Component Vendors
 - AeroAstro Medium Sun Sensors
 - AeroAstro Miniature Star Trackers
 - Systron Donner BEI Gyrochips (Rate Sensors)

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Axes/Frame</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>2/Sun</td>
<td>4</td>
</tr>
<tr>
<td>Rate</td>
<td>1/Body</td>
<td>3</td>
</tr>
<tr>
<td>Star</td>
<td>3/Inertial</td>
<td>4 FOV, 2 CPU</td>
</tr>
<tr>
<td>Imaging</td>
<td>3/Primary</td>
<td>1 (PL Module)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 × 20 × 6 cm</td>
</tr>
</tbody>
</table>
Attitude Actuator Selection

<table>
<thead>
<tr>
<th>Figure of Merit</th>
<th>Spin Stabilized</th>
<th>Momentum Bias Wheels</th>
<th>Reaction Wheels</th>
<th>Bang-Bang Thrusters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imager Complexity</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Pointing Stability</td>
<td>Moderate</td>
<td>Moderate</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Slew Capability</td>
<td>Low</td>
<td>Moderate</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Power Draw</td>
<td>Low</td>
<td>Moderate</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Mass</td>
<td>Low</td>
<td>Moderate</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>AD&C Complexity</td>
<td>Low</td>
<td>Moderate</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Cost</td>
<td>Low</td>
<td>Moderate</td>
<td>High</td>
<td>Low</td>
</tr>
</tbody>
</table>

> Thrusters also very good choice because they can supply needed propulsive maneuvering capability
Attitude Requirements

- Require Ability to Image ~70% of Intended FOV
 - Typical Escort Imager FOV: 5° Full-Angle
 - Require Pointing Control Accuracy: ±1.5°

- Require Unblurred Images
 - Require Attitude Rate Control Accuracy: < ±0.1°/sec

- Require Attitude Determination Accuracy = 1/3 Attitude Control Accuracy

- Selected Components Easily Meet Requirements
Propulsion Sizing

- ~100 Days Active Mission Life
- Total Attitude Impulse: ~5000 Nms
 - Environmental Disturbances
 - Bang-Bang Limit Cycle (~100× more Nms)
- Total Delta-V Budget: ~35 m/s
 - Initial Separation
 - Coupled Radial / In-Track Maneuvering (100 m per day)
 - Cross-Track Maneuvering (100 m per day)
 - North-South Station-Keeping
 - East-West Station-Keeping
 - Orbit Translation Bang-Bang Limit Cycle
 - Disposal to Super-GEO
 - Attitude Control Compensation for Thruster Offset Disturbance During Translational Maneuvers

~40 kg Dry Mass
~5 kg Propellant Mass
Relative Orbit Dynamics Overview

- Escort Passively Orbits BIG Sat Most of Time
- Could Lead or Trail Also
- Relative In-Track and Radial Motion are Coupled
 - In-Track = 2 × Radial
 - Can Manipulate in Terms of Apogee and Perigee
- Relative Cross-Track Motion is Independent
 - Can Manipulate in Terms of Inclination
- Smaller Radius of Relative Orbit → Slower Motion Relative to Primary
 - Safer
 - Longer Dwell Time on Small Features
- 100 m < Radius < 1500 m
- Imager can Meet Requirements Well Within Close and Far Distances:
 - 1 cm Resolution at 100 m
 - 50 m Projected Field of View at 1500 m
Operations Concept

- Payload Data Downlink from GEO Very Power Consuming
 - Suspend Operations Temporarily
- Leads to “Campaign” Operations Concept
- ~ 3 to 4 Campaigns Per Day
 - Maneuver
 - Collect Payload Data
 - Downlink and Recharge
- Each Shift of Operators Conducts Single Campaign
- Long Term Hibernation Also Possible
 - Avionics Reliably Radiation Tolerant for ~ 1 Year