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Fremont societies of the Uinta Basin incorporated domesticates into a foraging lifeway over a 1,000-year period from AD 300 to
1300. Fremont research provides a unique opportunity to critically examine the social and ecological processes behind the
adoption and abandonment of domesticates by hunter-gatherers. We develop and integrate a 2,115-year precipitation recon-
struction with a Bayesian chronological model for the growth of Fremont societies in the Cub Creek reach of Dinosaur National
Monument. Comparison of the archaeological chronology with the precipitation record suggests that the florescence of Fremont
societies was an adaptation to multidecadal precipitation variability with an approximately 30-plus-year periodicity over most,
but not all, of the last 2,115 years. Fremont societies adopted domesticates to enhance their resilience to periodic droughts. We
propose that reduced precipitation variability from AD 750 to AD 1050, superimposed over consistent mean precipitation avail-
ability, was the tipping point that increased maize production, initiated agricultural intensification, and resulted in increased
population and development of pithouse communities. Our study develops a multidecadal/multigenerational model within
which to evaluate the strategies underwriting the adoption of domesticates by foragers, the formation of Fremont communities,
and the inherent vulnerabilities to resource intensification that implicate the eventual dissolution of those communities.
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Las sociedades de Fremont de la cuenca de Uinta incorporaron a los domesticados en una forma de vida de alimentación dur-
ante un período de 1.000 años desde 300–1300 dC. La investigación de Fremont brinda una oportunidad única para examinar
críticamente los procesos sociales y ecológicos detrás de la adopción y el abandono de los domésticos por parte de los caza-
dores-recolectores. Desarrollamos e integramos una reconstrucción de precipitación de 2.115 años con un modelo cronológico
Bayesiano para el crecimiento de las sociedades de Fremont en el alcance de Cub Creek del Dinosaur National Monument. La
comparación de la cronología arqueológica con el registro de precipitación sugiere que la floración de las sociedades de Fre-
mont fue una adaptación a la variabilidad de precipitación multidecadal con una periodicidad de aproximadamente 30 años en
la mayoría, pero no en todos, de los últimos 2.115 años. Las sociedades de Fremont adoptaron domesticados para mejorar su
resistencia a las sequías periódicas. Proponemos que la variabilidad reducida de la precipitación desde 750–1050 dC, super-
puesta sobre la disponibilidad de precipitación media constante, fue el punto de inflexión que aumentó la producción de maíz,
inició la intensificación agrícola y dio como resultado un aumento de la población y el desarrollo de las comunidades de médu-
las. Nuestro estudio desarrolla un modelo multidecadal/multigeneracional dentro del cual evaluar las estrategias que sustentan
la adopción de domesticados por parte de los recolectores, la formación de comunidades de Fremont y las vulnerabilidades
inherentes a la intensificación de recursos que implican la eventual disolución de esas comunidades.
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Scholars working in the eastern Great Basin
and northern Colorado Plateau have long
recognized the potential of the Fremont

archaeological record to contribute to broad
understandings of the foraging-farming transi-
tion. We follow an inclusive definition of Fre-
mont as those northern Colorado Plateau
Formative societies that cultivated domesticates
from 200 BC (Geib 1996; Roberts 2018; Wilde
et al. 1986) into the AD 1500s in certain loca-
tions peripheral to the region (Creasman and
Scott 1987; Spangler and Jones 2012). Most Fre-
mont groups adopted domesticates relatively late
in prehistory, a period spanning 1,000 years from
AD 300 to 1300, creating large pithouse hamlets
and rock art galleries that have been studied for
more than a century (Montgomery 1894; Morss
1931). Opinions vary in how to best interpret
the record as either an enigmatic northern periph-
ery of the American Southwest (Judd 1926;
Kidder 1924), an historically independent phe-
nomenon (Gunnerson 1969; Marwitt 1970), an
exemplar of behavioral variability as it pertains
to the foraging-farming transition (Madsen and
Simms 1998), or a player in a vast regional sys-
tem (Talbot 2018, 2019). At some fundamental
level, all of these perspectives are correct. The
regional adoption of maize agriculture overlaps
chronologically with the final centuries of the
Basketmaker II period on the southern Colorado
Plateau (Matson 1991), and many Fremont com-
munities likely represented a mix of indigenous
foragers and immigrant farmers (Simms
2008:199–205).

Madsen and Simms (1998) isolate the prob-
lem of Fremont behavioral variability by focus-
ing on the concepts of adaptive diversity and
residential cycling. In the Fremont example,
one facet of adaptive diversity refers to the timely
incorporation of cultigens in a primarily foraged
diet, while residential cycling describes the
movement of individuals into and out of semi-
sedentary horticultural communities and life-
ways throughout their life histories. Both
processes characterize the vast frontier between
true foraging and farming societies of western
North America (Upham 1994). Within this con-
text, we must consider the Fremont archaeo-
logical record, particularly the formation of
pithouse communities, as a generational process

that unfolded over the course of a few decades to
a century at most (Simms 2008:189). The poten-
tial provided by a generational (∼25 years; Whit-
tle and Bayliss 2007) framework for the
foraging-farming transition is something that
cannot be attained in other global case studies
of this critical but repeated moment in human
history. However, coarse-grained chronologies
based primarily on long-lived radiocarbon sam-
ples currently applied to the Fremont record
(Massimo and Metcalfe 1999; Spangler 2000,
2002; Talbot and Wilde 1989) limit our potential
to realize a generational perspective on commu-
nity formation during the foraging-farming
transition.

This study provides the first steps toward
developing generational-scale approaches to the
Fremont record by examining the formation of
a pithouse community in the Cub Creek reach
of Dinosaur National Monument in eastern
Utah’s Uinta Basin. We propose that the devel-
opment of high-precision archaeological chron-
ology and a high-resolution precipitation
reconstruction are essential to achieving a gener-
ational perspective of the Fremont foraging-
farming transition. High-precision chronology
in our analysis means three things. First, sam-
pling strategies focus as much as possible on
short-lived annuals that target specific events.
Second, new dating methods yield small stand-
ard errors in individual radiocarbon ages that
reduce the probabilities of calibrated age ranges.
Third, formal Bayesian models that incorporate
archaeological information such as sample loca-
tion and site type and that enable potential
inbuilt-age samples (e.g., “old wood”) to be sta-
tistically accounted for reduce the potential to
overestimate the spans of target events to be
dated (Bayliss et al. 2007; Bronk Ramsey
2009). Formal Bayesian models provide poster-
ior densities, which estimate ages for the begin-
ning and end of Fremont occupations that
approach multidecadal, multigenerational scales
of analysis. Bayesian model output is different
from more commonly used summed probability
distribution (SPD) models in that posterior prob-
ability densities are age ranges reducing uncer-
tainty in the timing of events of archaeological
interest rather than a continuous time series repre-
sented by SPDs. As such, Bayesian age models
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are not subject to issues of taphonomic loss
(Surovell et al. 2009) that are often considered
in regard to SPDs. In addition, and most impor-
tant to this study, SPDs provide coarse-grained
regional analyses that lack the small-scale and
site-specific resolving power of Bayesian age
models. We wish to make clear that the Bayes-
ian age model output does not provide a con-
tinuous time series that can be correlated with
a continuous environmental reconstruction like
the one we present. Rather, our interpretation
is based on a comparison of event timing in
both the archaeological and paleoenviron-
mental records.

Developing high-resolution climate recon-
structions based on long tree-ring chronologies
has not been a central focus of Fremont environ-
mental archaeological studies. We produce a new
regional precipitation reconstruction based on
tree-ring widths that spans the last 2,115 years
and captures precipitation variability in the cen-
turies leading into and out of the Fremont period.
Strong, multidecadal trends in interannual pre-
cipitation variability emerge from the analysis
that we compare directly with our chronological
model of Cub Creek. Generational-scale shifts in
predictable precipitation regimes likely con-
trolled the shifts between foraging and horticul-
ture. We suggest that the low-level adoption of
cultigens was a successful response to multideca-
dal climate variability that offset shortfalls of for-
aged foods. Furthermore, the intensification of
maize horticulture and pithouse community for-
mation occurred during a 300-year period that
corresponds to a breakdown of the dominant
multidecadal variability regime when precipita-
tion, on average, would have been more predict-
able, increasing maize yields. We propose that
similar processes structured the formation of
other Fremont communities across the northern
Uinta Basin and that the phase of resource
intensification may have been at the center of
emergent social hierarchies and intercommunity
conflict noted in the regional archaeological
record.

In the following study, we review the Cub
Creek archaeological record as it pertains to our
analysis. We present the methods and results of
our high-precision chronology and high-
resolution precipitation reconstruction. This

chronology allows us to capture behavioral vari-
ability that Madsen and Simms (1998) proposed
in order to characterize the Fremont foraging-
farming transition. Our reconstruction of Uinta
Fremont culture history is incongruent with
Spangler’s (2000) Uinta adaptation, including a
hypothesis of regional abandonment after AD
1050, which we suggest is based on an aggre-
gated, coarse-grained, and therefore imprecise
chronology. We conclude with suggestions
about how high-precision chronologies of Fre-
mont community formation can be exported to
other sites across the Uinta Basin and the Fre-
mont world as a whole.

The Cub Creek Archaeological District

The Fremont archaeological record has a long
history of scientific investigation in the eastern
Great Basin and northern Colorado Plateau, ran-
ging from excavations along the Wasatch Front
near Salt Lake City as part of the 1893 Chicago
World’s Fairs to the Harvard PeabodyMuseum’s
1928–1931 Claflin-Emerson Expedition (Gun-
nerson 1969; Morss 1931). This body of research
is reviewed by Madsen and Simms (1998),
Simms (2008), and Spangler (2013). Archaeol-
ogists divide the Fremont area into five region-
ally distinct variants (Ambler 1966; Marwitt
1970). Here, we focus on the Uinta Fremont.
Spangler (2000, 2002) provides comprehensive
reviews of the Uinta Basin record. Our review
covers the Cub Creek Archaeological District
in the Utah portion of Dinosaur National
Monument.

History of Investigations

The Cub Creek Archaeological District is located
along a first-order tributary of the Green River
that receives most of its water from the slick-rock
surface of Split Mountain immediately north of
Cub Creek, which recharges numerous local
springs at the base of the mountains and provides
surface run-off to the perennial stream (Figure 1).
Split Mountain, so named in 1869 by John Wes-
ley Powell for the canyon that the Green River
cuts through the massive uplift, is an extensive
exposure of Late Paleozoic Weber Formation
Sandstone flanked by flatirons of Triassic Chinle
Formation Sandstone, and various Jurassic
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deposits, including the cross-bedded eolian
Nugget Sandstone and the fossil-bearing Morri-
son Formation (Gregson et al. 2010). The local
combination of hard-rock stratigraphy, geo-
morphology, and hydrology made ideal environ-
mental conditions for Fremont horticulture and
the eventual formation of an extensive pithouse
community—most importantly, a source of
sandy alluvium for field locations and a stable,
shallow water table.

Work at Cub Creek took place from 1963 to
1965, which is when University of Colorado
crews conducted preliminary archaeological sur-
veys across Dinosaur National Monument as
well as excavations at Cub Creek (Breternitz

1970; Leach 1966), Deluge Shelter (Leach
1970a), Swelter Shelter (Leach 1970b), and sev-
eral other rockshelters in the Jones Hole reach of
the Monument (Burton 1970; Sheets 1969). The
Fremont archaeology of the Yampa River canyon
country was well known at the time, particularly
through work at Mantles Caves (Burgh and
Scoggin 1948), Marigold Cave (Burgh 1950),
and Hells Midden (Lister 1951)—all preliminary
studies in a failed Bureau of Reclamation effort
to dam both rivers at Echo Park (Stegner
1955). The recognized potential of the Monu-
ment’s archaeological record was one of several
tools leveraged in the movement to stop dam
construction.

Figure 1. Location of the Cub Creek Archaeological District in the northern Uinta Basin. Major Fremont communities
are shown on the regional map. The inset map illustrates the general location of sites formalized in the age model.
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Breternitz’s 1964–1965 Cub Creek excava-
tions focused on 11 Fremont sites in the valley,
including Boundary Village (Leach 1966),
Whole Place Village (Birkedal and Hayden
1970), Wagon Run (Maronde 1970), and Burnt
House Village (Biggs 1970). Leach’s (1966)
work at Boundary Village provided the frame-
work for subsequent analysis and interpretation
where Type I and Type II houses were recog-
nized as representing a key developmental con-
struction sequence observed in superposed
stratigraphic position. Both Type I and Type II
houses are roughly circular in outline and shal-
lowly excavated into sandy substrate. The key
difference between house types is the formaliza-
tion in Type II structures of a four-post center
framework, clay-lined floors, and adobe-collared
fire hearths. Other house forms in Cub Creek
include rectangular, rock-outlined structures
appearing either as single features or contiguous
“rooms.” Bell-shaped storage cists are common
inside houses, as well as extramural work areas.
Abundant grayware pottery, formalized ground
stone along with two-handed manos and trough
metates, varied stone and bone tool assemblages,
faunal remains, and maize macrofossils are evi-
dence for a characteristically diverse but intensi-
fied mixed foraging-farming economy. The
absence of formalized middens at any site indi-
cates a probably semisedentary community. Bre-
ternitz’s crew excavated 36 pithouses and 131
features (i.e., hearths, cists, pits, and bins) in
the Cub Creek pithouse hamlets. With no abso-
lute chronological information, Breternitz
(1970:160–161) suggested the Cub Creek
Phase occupied a narrow window from AD
1000 to 1150, a period that became deeply
entrenched in local cultural historical frame-
works (Spangler 2000:122). This short chron-
ology was at odds with a long view of Fremont
culture history argued by Jennings (1978). As
in other Uinta Fremont communities, status dif-
ferentiation is difficult to discern through house
size, human interments, and material remains,
although elaborate anthropomorphs in numerous
Classic Vernal rock art panels attest to emergent
heterarchical leadership.

Reinvestigating Cub Creek. In the decades
following Breternitz’s (1970) excavations, the
Cub Creek sites remained unanalyzed along

with other Uinta Basin sites that the University
of Colorado and University of Utah crews exca-
vated in the 1960s. During a short tenure at Dino-
saur National Monument, Truesdale (1993)
added the first AMS radiocarbon ages of Cub
Creek pithouses, leading to the conclusion that
construction occurred from approximately AD
450 to 750. Otherwise, in many Fremont over-
views (Madsen and Simms 1998; Spangler
2000), the sites became lumped into the Dino-
saur National Monument sites or, generally, as
Cub Creek Village. This added a level of confu-
sion about the valley as a whole and what each
site might individually contribute to understand-
ing the importance of the Fremont horticultural
transition.

We revisited the area in 2016–2017 with the
aim first to document the impacts of tourism on
extensive rock art galleries, which quickly
expanded to include revisiting the pithouse ham-
lets, as well as a few known open-air sites and
rockshelters. In the Monument files, we dis-
covered an additional set of approximately 30
unreported sites that had been documented in
2002–2003 with the repeated theme of “roasting
feature.” By the end of the 2017 field season, we
understood Cub Creek to consist of approxi-
mately 70 sites, including the originally reported
pithouse hamlets, rock art galleries, and rock-
shelters, as well as six storage sites—one of
which is a proper cliff-side granary—and >120
roasting features. Roasting features are roughly
circular charcoal and ash stains averaging 4 m
in diameter, with extensive surface scatters of
fire-cracked rock and informal ground stone
assemblages with manos of Uinta Group Forma-
tion Quartzite coming from Quaternary alluvium
of the Green River and slab metates of Jurassic
sandstone available on-site. Pottery is notably
absent from these sites. In contrast with pithouse
hamlets, which occur on Quaternary terraces and
pediments immediately adjacent to the main stem
of Cub Creek, roasting features are found almost
exclusively in the uplands, sheltered by massive
sandstone flatirons and fins. Our knowledge of
these roasting features comes from surface obser-
vations only, and it is possible theymay represent
early pithouse forms similar to those observed in
the Steinaker Lake area (Talbot and Richens
2004). Our working hypothesis is that these
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features represent stone boiling of maize in a pre-
pottery context similar to Basketmaker sites in
southeastern Utah’s Cedar Mesa (Ellwood et al.
2013).

This site sample is the basis for our chrono-
logical model of Fremont community formation.
In subsequent discussions, we use the terms
Upland and Lowland occupations to reference
roasting sites and pithouse hamlets, respectively.
Elevation differences between the two categories
are minimal, and instead, the terms describe
fundamental differences in the geomorphic
position of roasting features in weathered Paleo-
zoic and Mesozoic sandstone landforms and
pithouse hamlets adjacent to Quaternary alluvial
landforms.

Methods

Age Model Background

Knowledge of the development of Fremont soci-
eties has been based on radiocarbon dates from a
range of both long-lived (e.g., feature charcoal,
internal rings of structural timbers) and short-
lived samples (e.g., maize, twigs, sagebrush,
external rings of structural timbers). Fremont
communities are often dated with a single sample
from one pithouse, such as charcoal from a
hearth (Spangler 2000; Truesdale 1993). These
ages are then calibrated to calendar years for
each site and compared with other sites to form
our understanding of variability in Fremont com-
munity formation.

Interpretations of calibrated radiocarbon age
distributions to understand archaeological site
histories can lead to misinterpretations caused
by the statistical scatter and imprecision resulting
from old-wood problems (Dean 1978; Schiffer
1986) and calibration effects (Bayliss et al.
2007; Bronk Ramsey 2009; Whittle and Bayliss
2007). For this reason, developing high-
precision chronologies requires formalized mod-
els that constrain the inherent scatter in the cali-
bration process. Solely calibrating a set of
radiocarbon ages does not enable researchers to
formally incorporate other archaeological infor-
mation such as site type, diagnostic cultural
material, or stratigraphy into the production of
calibrated age distributions. Considering these

problems, the past two decades have seen a rise
in the development of more formalized chronolo-
gies using Bayesian statistics that enable the
incorporation of this other archaeological infor-
mation. This “informative prior information”
(Bronk Ramsey 2009) enables the development
of parameters (e.g., the start or end of occupa-
tions, or the transition between two occupation
phases) in the formal model that, once modeled
alongside the actual radiocarbon samples of
interest, can be assigned 68% and 95% posterior
probability density ages. The formalization of
archaeological chronologies using Bayesian
approaches provides estimates that are more pre-
cise for probable ages of target archaeological
events and can provide chronologies on the
scale of human generations (Bayliss et al. 2007,
2011). By human generations we mean ∼25
years (Whittle and Bayliss 2007). Considering
previous interpretations of Fremont pithouse
communities being occupied on generational
scales (Simms 2008:189), merely calibrating
sets of single dates from pithouses without the
development of formal models that incorporate
other “prior” archaeological information will
not suffice. Understanding the generational
scales of Fremont community formation requires
these recent advances using Bayesian statistical
analyses.

One challenge toBayesian chronological anal-
ysis is the quality control of legacy radiocarbon
ages—samples of limited or unknown context
and with large standard errors (Hamilton and
Krus 2018). Legacy dates from Cub Creek are
limited to seven AMS ages that Truesdale
(1993) reported from specific pithouse contexts
and on wood from construction timbers and
hearth charcoal. Reported standard errors of
these ages range from 50 to 90 years (Table 1).
We added 34 ages from our 2016–2017 work,
which included new samples collected from
upland roasting features, maize macrofossils
from rockshelter surfaces, and twigs from the
construction mud of a jacal masonry granary.
Upland roasting feature samples were bulk or
fragmentary charcoal collected from surface fea-
tures. We also added curated samples from Bre-
ternitz’s 1964–1965 excavations. Curated
samples were from provenienced pithouses and
features collected at the time of excavation with
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Table 1. Radiocarbon Samples and Context for the Cub Creek Archaeological District.

Lab Number Site Site Name Context Sample Type 14C Agea

D-AMS-024928 42UN8679 Surface Feature Seed Modern
D-AMS-024929 42UN8678 Surface Feature Charcoal 1804 ± 31
D-AMS-024930 42UN8678 Surface Feature Charcoal-Rich

Sediment
634 ± 30

D-AMS-024931 USU2017-T2 Surface Feature Charcoal-Rich
Sediment

1016 ± 31

D-AMS-024932 42UN8701 Surface Feature Charcoal 1308 ± 27
D-AMS-024933 42UN8699 Surface Feature Charcoal 1094 ± 29
D-AMS-024934 42UN8699 Surface Feature Charcoal 1751 ± 27
D-AMS-024935 42UN8695 Surface Feature Charcoal 1206 ± 35
D-AMS-024936 42UN8695 Surface Feature Charcoal 836 ± 33
D-AMS-024937 42UN239 Arrowhead Point

Campsite
Surface Feature Charcoal-Rich

Sediment
802 ± 28

D-AMS-024938 42UN239 Arrowhead Point
Campsite

Surface Feature Charcoal 1679 ± 34

D-AMS-024939 42UN8674 Hoopes Shelter Surface Maize 1629 ± 34
UGAMS-33083 42UN8674 Hoopes Shelter Surface Maize 1700 ± 20
UCIAMS-198892 42UN225 Wagon Run Structure 1, Collared Fire

Pit
Charcoal (Artemisia) 1050 ± 15

UCIAMS-198893 42UN225 Wagon Run Pithouse 2, Hearth Fill Charcoal 1110 ± 15
UCIAMS-198894 42UN225 Wagon Run Structure 3 Charcoal (Artemisia) 1120 ± 15
UCIAMS-198895 42UN225 Wagon Run Pithouse 4 Maize Macrofossil 1040 ± 15
Beta 30450b 42UN225 Wagon Run Structure 4, Collared Hearth Charcoal 1340 ± 50
UCIAMS-198896 42UN236 Boundary Village Pithouse 1, Structural

Timber
Wood (Juniperus) 1905 ± 15

UCIAMS-198897 42UN236 Boundary Village Pithouse 5, Roof Material Charcoal 2820 ± 15
UCIAMS-198898 42UN236 Boundary Village Pithouse 9 Maize Macrofossil 1000 ± 15
UCIAMS-198899 42UN279 Burnt House Structure 1, Feature 12 Maize Macrofossil 1125 ± 15
UCIAMS-198900 42UN279 Burnt House Structure 4, Hearth 2, Fill Charcoal 1125 ± 15
Beta 33907b 42UN279 Burnt House Structure 1, Posthole, SW

Corner
Wood 1920 ± 70

UCIAMS-198901 42UN280 Dam Site Feature 1 Maize Macrofossil 1045 ± 15
UCIAMS-198902 42UN280 Dam Site Feature 3, Hearth Fill Charcoal 1210 ± 15
Beta 33908b 42UN280 Dam Site Feature 1, Collared Hearth Charcoal 1510 ± 90
UCIAMS-198903 42UN282 MacLeod Site Feature 6 Charcoal 1270 ± 15
UCIAMS-198904 42UN81 Wholeplace Village Pithouse 1, Beam Charcoal 1170 ± 15
UCIAMS-198905 42UN81 Wholeplace Village Pithouse 2, Hearth 1 Fill Charcoal 1615 ± 15
UCIAMS-198906 42UN81 Wholeplace Village Pithouse 4, Collared Fire Pit Charcoal 1130 ± 15
UCIAMS-198907 42UN81 Wholeplace Village Feature 12 Maize Macrofossil 1155 ± 15
Beta 30451b 42UN81 Wholeplace Village Structure 2 Charcoal 1310 ± 50
UCIAMS-198908 42UN7693 Roadcut Hamlet Feature A, Hearth Fill Charcoal 155 ± 15
UCIAMS-198909 42UN7693 Roadcut Hamlet Feature B, Hearth Fill Charcoal 105 ± 15
UCIAMS-198910 USU2017-T7 Elder Springs Shelter Surface Maize Macrofossil 1410 ± 15
UCIAMS-198911 USU2017-T7 Elder Springs Shelter Surface Maize Macrofossil 1190 ± 15
Beta 445425 42UN82 Cub Creek Granary #1 Jacal Masonry Twig 1000 ± 30
Beta 33906b 42UN83 Fremont Playhouse Feature 1, Posthole, NE

Corner
Wood 1560 ± 60

Beta 38589b 42UN1773 Corner Culvert Site Pithouse Charcoal 1530 ± 50
Beta 38588b 42UN1773 Corner Culvert Site Pithouse Charcoal 1550 ± 60

aConventional radiocarbon age (± 1σ error) reported in radiocarbon years before AD 1950.
bSamples originally reported in Truesdale (1993).
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the intent of future radiocarbon dating. We prior-
itized maize macrofossils, hearth charcoal, and
the outer rings of construction timbers in that
order to reduce interpretive error between target
and dated events.

Building the Cub Creek Age Model

We developed our Bayesian age model for
the Cub Creek Fremont using OxCal v4.3
(Bronk Ramsey 2009). Calibrated dates within
the model were produced using the IntCal13
calibration curve (Reimer et al. 2013). The
model structure is defined in Figure 2. The
brackets in Figure 2 denote the structure of
the model, and the first terms (e.g., Phase,
Sequence, Boundary, After) denote the
OxCal Command Query Language 2 that are
the specific algorithms employed to produce
the model (OxCal CQL2 terms listed in bold).
The model produces 68% and 95% posterior
density estimates for the parameters defined
by the model structure. These posterior density
estimates are quoted in italics and rounded to
five years, following the protocol established
by Bayliss (2015).

A central challenge in the development of the
model was incorporating legacy dates from
Truesdale (1993) on charcoal samples from
unspecified species and unspecified wood sam-
ples (e.g., “structural timber”) that have larger
standard errors, with our dates on unspecified
charcoal and short-lived samples, that have
much smaller standard errors. Due to this likely
inbuilt age problem with many of our samples,
we included all charcoal and wood samples in
the model as termini post quos, which means
that we model each of these samples as taking
place during a time before the final deposition
of the sample. We do this using the After com-
mand in OxCal (Figure 2).

Our central aim is to produce a model that will
provide highest posterior density (hpd) estimates
for the start and end Boundaries of both the
Upland and Lowland Fremont occupations in
Cub Creek that can be compared to our
tree-ring-based precipitation reconstruction. We
therefore developed an overlapping Phase
model for the Fremont uplands and lowlands at
Cub Creek. Within each upland and lowland
Phase, we developed a Phase for each site

(Figure 2). The code for this model can be
found in Supplemental Information.

Tree-Ring-Based Precipitation Reconstruction

Multi-millennial-length tree-ring chronologies
can provide relatively localized records of envir-
onmental variability at annual resolution. Here,
we reconstruct precipitation for the last 2,115
years using the previously published reconstruc-
tion from Harmon Canyon (Knight et al. 2010), a
tributary of Nine Mile Canyon in the West Tava-
puts Plateau, and a newly developed Bristlecone
pine chronology from the Fish Lake Plateau area
of central Utah. We chose annual precipitation
over a water year (previous August to current
July) to reflect environmental conditions that
could control agricultural development. Awater-
year index integrates previous winter snowpack
effects on spring soil moisture with both spring
rain and monsoon rain that might occur during
the growing season. Tree-ring-based climate
reconstructions require instrumental climate
data against which to calibrate. Because there
are no long-term climatic data collected within
Dinosaur National Monument, we used monthly
precipitation at 4 km resolution from the
Parameter-elevation Regressions on an Inde-
pendent Slopes Model (PRISM Climate Group
2018) dataset. Monthly data were cumulated
into water-year total data by summing over the
previous August through current July water
year, a period that best captures the peak in cool-
season precipitation delivery and that includes
spring rainfall before entering into the mid-
summer drought period (starting approximately
in July) before late-summer American monsoon-
derived rainfall materializes in August. To
extend the record of growing-season rainfall for
a period of >2,000 years, we limited the suite
of potential predictor variables to those that had
sufficient expressed population signal (EPS,
>0.85; Wigley 1984). Therefore, we considered
both regional tree-ring chronologies that were
previously published and those that were cur-
rently under development.

Tree-Ring Sampling and Preparation. Incre-
ment cores and cross-sections were collected
from low-elevation, dry sites with skeletal soils,
where the presumption was that precipitation
drives growth increment. Increment cores were
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Figure 2. Age model multiplot comparing the Cub Creek Upland and Cub Creek Lowland sequences.
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mounted to accentuate the transverse section and
sanded with progressively finer grades of sand-
paper. Cores were cross-dated using the marker
year method and verified using the program
COFECHA (Holmes 1983). Chronologies were
built by detrending individual series using a
very flexible Friedman filter. Autoregressive
modeling was applied to remove any autocorrel-
ation before series were averaged with a robust
method in the program Arstan (Cook 1985).
We ultimately chose two chronologies for the
precipitation reconstruction in the study, includ-
ing one unpublished and one previously pub-
lished study (Knight et al. 2010; Table 2).

Tree-Ring Response to Climate. Ring-width
response to historical climate variability was
examined for the tree-ring chronologies using a
general response function analysis in the treeclim
package (Zang and Biondi 2015) in the R statis-
tical environment (Bunn 2008), following a sea-
sonal correlation approach (Meko et al. 2011).
Monthly precipitation andmaximum temperatures
from the PRISM dataset for the period AD 1895–
2010 were used to conduct bootstrapped correl-
ation function analysis showing that both sites
exhibit pronounced response to growing season
precipitation (maximum response to a 12-month
cumulative growing season ending in June and/
or August), which suggested that the chronologies
were appropriate to reconstruct growing season
precipitation. Moving response function windows
were calculated for 30-year periods over the histor-
ical data, and they indicated that the response to
precipitation had temporal fidelity.

Precipitation Reconstruction. To reconstruct
water-year precipitation for Dinosaur National
Monument, we carefully examined the PRISM-
derived data and truncated the earliest years
due to insufficient station data available to accur-
ately model the earliest precipitation records (see
Knight et al. 2010). We ultimately settled on the
period 1920–2005 since 2005 is the latest calen-
dar year in the Harmon Canyon chronology
(Table 2), yielding 86 years for statistical ana-
lysis. The water-year precipitation exhibited no
significant autocorrelation. A reconstruction
model for August–July water-year precipitation
was built using multiple linear regressions with
water-year precipitation as the dependent vari-
able and the two tree-ring chronologies as

independent variables. We also explored the
use of t + 1 and t− 1 lags on precipitation data,
but neither contributed to any additional explan-
ation of variance. Linear regression model
assumptions were evaluated by inspection of
residual plots to ensure that there was no pattern
in error variance. Normality of model residuals
was evaluated graphically by examining a
histogram and tested statistically using the
Kolmogorov–Smirnov test. An autocorrelation
function of the residuals was examined visually,
and the Durbin–Watson D statistic was used to
evaluate the assumption of independence in the
predictor variable (Savin and White 1977). Pear-
son’s correlation coefficient (r), the coefficient of
determination (R2), and adjusted coefficient of
determination (adj. R2) were used to evaluate
model skill. We also calculated root-mean
squared-error (RMSE) from the model as an indi-
cator of variability in the reconstruction.

Model Calibration and Verification. Split
calibration/verification was performed in two
ways: (1) by splitting the period of historical
record in half and building independent linear
models for the early (1920–1962) and late
(1963–2005) periods, and then reversing the
time periods; and (2) by splitting the historical
record into even and odd years and repeating
independent model building, then reversing and
repeating. The reduction of error (RE), an indica-
tor of skill compared to the calibration-period
mean, and the coefficient of efficiency (CE), an
indicator of skill compared to the verification-
period mean, were used to assess the model
and calculated using equations from Cook and
colleagues (1999). The ability of the model to
reproduce the mean and variance of the instru-
mental data was assumed if values of RE and
CE were greater than 0 (Fritts 1976). We also
conducted a sign test to evaluate the fidelity of
year-to-year changes in the reconstructed pre-
cipitation to the tree-ring predictors (Fritts 1976).

Precipitation Variability Analyses. While
year-to-year rainfall can be quite variable in the
region, lower-frequency changes in the amount
of precipitation likely cued social response to pre-
cipitation due to the effects onmaize yields. There-
fore, we tested the precipitation reconstruction for
the presence of multidecadal regimes by assessing
the spectral properties of the annual precipitation
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time-series using a continuous wavelet transform
in the dplR package in R (Bunn 2008). The wave-
let transforms a time-series from the time domain
to a time-frequency space that can indicate inter-
mittent periodicities over time (Grinsted et al.
2004). The ability to visualize significant power
of precipitation variability in the frequency domain
at various points in time is crucial for our assess-
ment of Fremont adaptive strategies. The wavelet
transform was calculated under an assumption of
red noise, and significance levels were interpreted
at p = 0.05. Because the analysis was padded with
zeros to prevent wraparound effects, care must be
taken not to interpret outside the cone of influence.

To reflect generational-scale perceptions of
precipitation variability, we also computed a
21-year running standard deviation on the annual
reconstruction. This time period reflects gener-
ational memory of precipitation conditions con-
sistent with chronological reconstructions as
suggested by Whittle and Bayliss (2007). Signifi-
cant shifts in mean of the 21-year running vari-
ation were tested using a changepoint analysis
using the changepoint library in R (Killick and
Eckley 2014). A linear computational cost
approach was applied to indicate significant
changes in mean (Killick et al. 2012). This
approach uses log-likelihood (Akaike’s Informa-
tion Criterion) to indicate likely shifts, and we
used a minimum segment length of 200 years to
minimize false positive changepoints in the
21-year time series.

Results

Cub Creek Age Model

The Bayesian model successfully provides 68%
and 95% hpd ranges for the start and end of the

Upland and Lowland Fremont sites in Cub
Creek, as well as the overall span of each
(Figure 3; Table 3). The start of the Cub Creek
Uplands is estimated to have occurred from cal
900 BC to AD 395 (95.4% probability), most
probably from cal AD 100 to 380 (68.2% prob-
ability). The end of the Cub Creek Uplands is
estimated to have occurred from cal AD 1285
to 2295 (95.4% probability), most probably
from cal AD 1300 to 1585 (68.2% probability).
The total span of the Uplands lasted from about
930 to 2330 years (95.4% probability), most
probably 980 to 1515 years (68.2% probability).
The start of occupation in the Cub Creek Low-
lands, and therefore the start of Fremont pithouse
villages, occurred from cal AD 840 to 960
(95.4% probability). The end of the Lowlands
occupation, and therefore the end of Fremont pit-
house villages, occurred from cal AD 995 to
1080 (95.4% probability). The overall span of
the pithouse occupation lasted from 55 to 220
years (95.4% probability).

Precipitation Reconstruction Results

A multiple linear regression model that used an
unpublished Bristlecone pine residual chron-
ology and a previously published Douglas fir
residual chronology (Table 2) as predictors
resulted in an overall reconstruction model that
accounted for 55.4% of the variation in historical
Dinosaur National Monument, August–July
water-year precipitation for the period 1920–
2005. Inspection of residual plots using the Kol-
mogorov–Smirnov test indicated that the resi-
duals were normally distributed ( p < 0.0001).
An autocorrelation function plot of the residuals
showed no significant first-order autocorrelation,
and the Durbin-Watson test statistic fell well
above the threshold to fail to reject the null

Table 2. Chronology Statistics for the Two Predictors of Dinosaur National Monument Precipitation.

Site Species
Interseries
Correlation

Average Mean
Sensitivity #Trees/Cores

Mean
Length

Year EPS
>0.85

Harmon Canyona Douglas fir 0.853 0.482 59/74 480 −217
Red Canyon Bristlecone pine 0.742 0.386 60/114 668 −114
aKnight and others (2010), International Tree-Ring Data Bank contribution ut530. All tree-ring data are available for download
from the International Tree-Ring Data Bank (https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring).
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hypothesis of no autocorrelation at the alpha =
0.01 level, which indicated that residuals were
normal and validated that the predictor variables
were independent. Calibration and verification
statistics indicated strong fidelity between predic-
tors and predictand for both the early and late
model data split and for the even-odd year data
split (Table 4). Calibrating on the early period
resulted in slightly less predictive skill than cali-
brating on the later period with the early/late cali-
bration and was slightly better between even and
odd (Table 4). However, RE and CE statistics
were all well above 0, which indicates predictive

skill for all the calibration, verification, and full
model periods (Table 4). The sign test was sig-
nificant at the 0.01 level, which indicated that
78% of the time, year-to-year changes in the
direction of predicted flow followed that of the
instrumental data, while 22% of the time, they
did not (Table 4).

Fifty-year and 100-year splines fit through the
annual reconstruction highlighted the extreme
variability found in dry lowland environments
of the western United States over approximately
the past 2,000 years (Figure 4a). There were
marked periods of longer-term increases and
decreases in water-year precipitation. Huge
droughts centered on AD 0, 100, 200, 500,
1250, and 1600 indicate periods of well-
below-average precipitation. The 21-year run-
ning variation of the reconstruction revealed
wide fluctuations in the inherent multidecadal
precipitation variability, with the highest peak
at AD 300, followed by AD 1500, early AD
1600s and 1300, then AD 900 and 100
(Figure 4b). The changepoint analyses
(Figure 4b; Table 5) indicated the first three shifts
in mean precipitation occurred early in AD 100,

Figure 3. Modeled 95% posterior probability density functions for the start, end, and span of the Cub Creek Upland
and Cub Creek Lowland sequences.

Table 3. Posterior Probability Densities of the Primary
Model.

Highest Posterior Density
(95.4% Probability)

Start Cub Creek Uplands 900 BC–AD 395
End Cub Creek Uplands AD 1285–2295
Span Cub Creek Uplands 930–2,330 years
Start Cub Creek Lowlands AD 840–960
End Cub Creek Lowlands AD 995–1080
Span Cub Creek Lowlands 55–220 years
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324, and 539. Somewhere around AD 1000,
mean precipitation dropped (Table 5). The wave-
let power spectra revealed a strong pattern of
annual variability (2–8 years) that appeared AD
100–300, 500–1000, 1200–1700, and then in
the 1800s (Figure 4c). Multidecadal variability
less than approximately 30 years was largely
lacking from the reconstruction but appeared
AD 200, 600, 1000, and 1300–1500. Longer-
term decadal variability on the order of 30-plus
years was also apparent circa AD 0–750 before
it disappeared abruptly, and it returned circa
AD 1050. These specific moments where pre-
cipitation mean and multidecadal variability
shift were significantly critical to year-to-year
and decade-to-decade patterns in subsistence
decisions that Fremont forager-farmers would
have faced.

Fremont Community Formation in Cub
Creek

Integrating Archaeological and Paleoecological
Records

Radiocarbon dating, Bayesian chronological
modeling, and reconstructed precipitation pro-
vide a coherent framework within which we
reconstruct the development of the Cub Creek
Fremont community. We find remarkable corres-
pondence between key archaeological and envir-
onmental events. Maize agriculture began at Cub
Creek circa AD 300 with two direct ages on sep-
arate maize macrofossils from an upland rock-
shelter (Table 1). These ages correspond with
the earliest reported maize from Steinaker Gap
(Talbot and Richens 1996), although the Steina-
ker Gap age is from charcoal rather than directly

from the macrofossil and may reflect an inbuilt
age. The appearance of maize agriculture in
Cub Creek corresponds with the highest mea-
sured generational-scale precipitation variability
over the last 2,000 years (Figure 4b). In other
words, transitional forager-farmers began culti-
vating maize at a time when year-to-year precipi-
tation was least predictable. Although our
specific knowledge of the resource base in the
centuries leading up to this moment remains
unknown, as Barlow (2002) suggests, declining
environmental productivity may have been a
key factor in the initial adoption of maize agricul-
ture as diet breadths increased. Small garden
plots located in the well-protected, spring-fed
box canyons along the base of Split Mountain
were a low-investment agricultural strategy that
supplemented a foraged diet. These first farmers,
however, could not simply plant and walk
away—some minimal investment in weeding,
pest control, and garden tending was required
to ensure continuity in a seed corn supply (Free-
man 2012). These are the same decisions
that transitional forager-farmers made time and
again in many global settings, although our
data show that this decision happened within a
context of extreme year-to-year precipitation
variability.

Once maize agriculture was adopted in Cub
Creek, the Fremont residents created a low-level
horticultural system that focused settlement on
the uplands at the base of Split Mountain and
above Cub Creek. Runoff from Split Mountain
recharged springs and created numerous oppor-
tunities for garden plots along its base.
The sandstone flatirons and fins surrounding
the uplift provided protected campsites in well-
drained sand sheets and dunes populated by

Table 4. Model Skill and Calibration Verification Statistics for the Dinosaur National Monument Precipitation Reconstruction.

R2 Adj. R2 RE CE Sign Test RMSE

Calibrate (1950–1981) 0.531 0.508 0.524 0.442
Calibrate (1982–2012) 0.620 0.601 0.471 0.321
Calibrate (even years) 0.564 0.542 0.558 0.533
Calibrate (odd years) 0.576 0.555 0.526 0.488
Full model 0.565 0.554 67/19a 2.50

Note: (R2) = coefficient of determination, (adj. R2) coefficient of determination adjusted for degrees of freedom, RE = reduction
of error statistic, CE = coefficient of efficiency statistic, RMSE = root mean-squared error. Full model: 7.2188 + 4.375 ×HAR +
6.8263 × RCB.
aSign Test significant at the alpha <0.01 level (Fritts 1976).
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Figure 4. Precipitation reconstruction charts: (a) full reconstruction periods (114 BC–AD 2005) for Dinosaur National
Monument water-year precipitation, with 50-year and 100-year cubic smoothing splines to accentuate multidecadal and
centennial variability; (b) 21-year precipitation variability over the entire reconstruction with changepoint analysis in
red; horizontal lines are significant changes in mean (at 95% confidence); (c) wavelet analysis over the entire precipi-
tation reconstruction; dark lines indicate significant variability at the 95% confidence level.
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mixed pinyon-juniper woodland that would have
been a reliable source of foraged foods while pro-
viding access to upland resources. The redundant
record of >120 features replete with fire-cracked
rock scatters, expedient ground stone technol-
ogy, and a notable absence of pottery inform
our preliminary interpretation that these sites
served as stone boiling features to process
maize and other foraged foods. We suggest that
this horticultural system was designed to offset
the effects of multidecadal droughts that the
wavelet analysis indicates happened with a peri-
odicity of 30-plus years (Figure 4c). Specifically,
the AD 500–542 event had little impact on the
Cub Creek community. Interestingly, coming
out of the AD 500–542 drought, mean precipita-
tion increased for roughly the next 400 years
(Figure 4b). Regardless, as our age model
shows, the upland occupation continued uninter-
rupted for the duration of the 1,000-year commu-
nity history (AD 300–1300).

A surprising feature of the Cub Creek age
model is the narrow occupation range of the
lowland pithouses, which is constrained to the cen-
turies between AD 840 and AD 1080 (Figure 3).
Most importantly, the Cub Creek village phase
corresponds to the window when the dominant
pattern in 30-plus-year multidecadal precipitation
variability became quiescent (Figure 4c). Inside
that period, mean generational-scale precipitation
was more predictable from year to year and decade
to decade with an immediate consequence of
increased maize yields. What had been a system
designed to offset subsistence shortfalls structured
by regular, multidecadal droughts suddenly
became one of economic intensification. This
would have been accompanied by an investment

in infrastructure—pithouses, storage features,
ground stone, pottery, and locally adapted land-
races ofmaize—all elements of a classic Uinta Fre-
mont strategy. Although an emergent social
hierarchy is difficult to demonstrate in the Fremont
world writ large (Janetski 2002), the Cub Creek
village phase may have also corresponded with
the creation of elaborate rock art galleries depicting
the portraits of local village leaders. Bone pen-
dants illustrated in the portraits were common in
Cub Creek pithouses and as a cache in oneWhole-
place Village storage pit (Birkedal and Hayden
1970), indicating that emergent leadership pos-
sibly accompanied subsistence intensification.

Just as surprising as the rapid appearance of
the Cub Creek village phase was its swift aban-
donment around AD 1050. Posterior probabil-
ities of the radiocarbon age model indicate that
the phase ending spans 85 years (Table 3) from
AD 995 to AD 1080. This event corresponds
with the return of the dominant 30-plus-year pre-
cipitation variability pattern that characterized
the reconstruction. An important feature of the
age model is that the upland strategy continued
as a viable option through the pithouse occupa-
tion. The return of predictable variability at AD
1050, combined with a reduction in mean pre-
cipitation, led the Cub Creek residents to quickly
abandon the lowland pithouse hamlets in favor of
the upland settlement pattern. This apparently
stable strategy encompassed the three key events
of the Medieval Climate Anomaly (MCA), and
like the AD 500–542 event, the MCA had no
apparent impact on the Cub Creek community.
We suggest that even though environmental con-
ditions tipped local communities into a phase of
economic intensification that may have included
incipient social stratification, the Cub Creek
community may have never moved far enough
from a stable, low-level foraging-farming econ-
omy to quickly move back to that strategy as
required. This socioeconomic flexibility, more
than anything else, is the defining feature of the
Fremont lifeway (Madsen and Simms 1998).

Operationalizing Fremont Behavioral
Perspectives

A major objective of our study has been to fulfill
the aims of Madsen and Simms’s (1998) Fre-
mont behavioral perspective by focusing on the

Table 5. Changepoint Dates from 21-Year
Precipitation Variability.

Mean

Year (AD) Precipitation (cm)

100 7.57
324 9.47
539 5.55
928 8.54
1217 6.86
1455 9.99
1656 11.36
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dynamics of life as conceptualized in their mod-
els of behavioral options, matrix modification,
symbiosis, and switching strategies. Four key
historical factors underlie these models: (1) the
forager-farmer transition cannot be explained
by the interaction of foragers and farmers
alone—the underlying resource base must be
considered, (2) the introduction of maize horti-
culture changed Fremont lifeways no matter
their choice to adopt domesticates or continue a
foraging pattern, (3) the impact of horticulture
on foraging societies was not unidirectional—
the presence of foraging populations likewise
conditioned the success of farmers, and (4) con-
texts of selection ultimately defined cultural vari-
ability. As Simms (2008:189) later suggested,
these dynamics played out over the lifetime of
individuals or across generations. We demon-
strate that these dynamics can be realized through
development of robust and congruent archaeo-
logical and environmental chronologies that
combine Bayesian posterior density estimates
with a multidecadal precipitation reconstruction.
In other words, multidecadal environmental vari-
ability is the context of selection for cultural vari-
ability during the foraging-farming transition.
For example, the adoption of maize horticulture
in Cub Creek at approximately AD 300, corre-
sponding with peak precipitation variability,
likely occurred within a context of selection
where returns on foraged foods declined below
a critical threshold. In this situation, maize horti-
culture was a behavioral option that leveled eco-
nomic variability across years and decades—the
time scale of human generations. Following the
adoption of maize horticulture, the Cub Creek
community developed a pattern of stable upland
occupation that remained in place for the next
1,000 years. Our reconstruction suggests that
the upland strategy was a solution to resource
shortfalls introduced by the predictable 30-
plus-year precipitation variability pattern. The
upland strategy is consistent with the idea of
matrix modification, which refers to changes in
the context of selection for foragers brought
about by the introduction of farming. As Madsen
and Simms suggested (1998:283) matrix modifi-
cation is less about the spread and style of traits
and more about the circumstances that shaped
behavior. These circumstances were both

environmental and economic in scope. Matrix
modification also explains the 300-year flores-
cence of the Cub Creek village because the
absence of predictable droughts and the develop-
ment of more regular precipitation were the cir-
cumstances that changed the context of
selection, which resulted in an apparent phase
of economic intensification. Again, we demon-
strate that these contexts of selection can be oper-
ationalized on the order of multidecadal, or
generational, timescales.

We find the concepts of symbiosis and
switching strategies more difficult to operational-
ize within the context of our analysis. Madsen
and Simms (1998:285) suggest that symbiosis
is closely related to matrix modification where
foraging and farming populations become mutu-
ally dependent as individuals move between life-
ways, which is consistent with the idea of
residential cycling observed among Great Salt
Lake Fremont communities (Coltrain and Leavitt
2002). Switching strategies, similarly, refers to
residential cycling between foraging and farming
lifeways, but the key difference is the ease with
which individuals or groups can move into or
out of one or the other strategy. For example,
it may have been easier to switch strategies dur-
ing the upland phase at Cub Creek compared to
the lowland village phase due to the relative
investment in maize horticulture. Low-level
investment in maize horticulture allowed main-
tenance of more permeable boundaries, keeping
mobility as a viable alternative strategy, whereas
economic intensification required a more stable
residential strategy focused on maize processing
and storage. We suggest that the lowland strategy
was at odds with the greater mobility afforded by
the upland strategy, which was one reason for its
quick abandonment and the switch back to the
upland strategy at AD 1080 as the predictable
30-plus-year precipitation regime—including
the events of the MCA—returned to the northern
Uinta Basin.

Finally, Madsen and Simms (1998:286) cau-
tion that symbiosis and switching strategies
should not be an invitation to falsely dichotomize
foragers and farmers in the archaeological record
since neither strategy is mutually exclusive. We
suggest that this is the key problem underlying
Spangler’s (2000) Uinta adaptation, which—
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coupled with a coarse-grained chronology based
on unmodeled radiocarbon ages, including the
problematic dates from Truesdale’s (1993) Cub
Creek work—produces a framework of occupa-
tion and abandonment that our results do not rep-
licate. Based on these findings, we urge caution
with Spangler’s (2000) framework for Uinta
Basin culture history. Specifically, whereas
Spangler (2000) suggested Uinta Fremont vil-
lage florescence prior to AD 750 and abandon-
ment of the northern Uinta Basin after AD
1000, we find that Cub Creek village florescence
occurred from AD 840 to AD 1080, and there is
no evidence for regional abandonment. Further-
more, in a summed probability distribution of
more than 500 radiocarbon ages, including
those Spangler (2000, 2002) used in his recon-
struction, Hora-Cook (2018) identified peak
occupational intensity of the Uinta Basin at AD
750–1050, coincident with the Cub Creek village
florescence. This reconstruction is more in keep-
ing with Spangler’s (2002) refined hypothesis of
Uinta Basin population shift rather than regional
abandonment. We suggest that our model of
Uinta Fremont community formation can be
tested at other Fremont communities across the
northern Uinta Basin, and that Madsen and
Simms’s (1998) behavioral perspectives will
continue to highlight the dynamics of the Fre-
mont foraging-farming transition at the edge of
maize horticulture in western North America.

Conclusion

Variability has been repeatedly mentioned as one
of the hallmarks of Fremont societies (Madsen
and Simms 1998; Simms 2008). This variability
provides unique perspectives not only on the
diverse processes through which foragers incor-
porated domesticates into their lifeways but
also the processes through which foragers aban-
doned the use of domesticates. Embedded within
these processes are the development of pithouse
hamlets and villages and the development of
incipient heterarchies controlled by aggrandizing
leaders—both men and women (Simms 2008).
These processes played out on generational
scales (Simms 2008). In this paper, we argue
that traditional approaches to Fremont chronolo-
gies that rely on inbuilt age samples and informal

chronologies without considering other archaeo-
logical information have produced ages that are
too old for the events that they seek to under-
stand. Traditional chronologies also overestimate
the span of Fremont community formation. This
has generated dichotomous models for Fremont
societies that are unable to capture the gener-
ational scales at the heart of Fremont variability.
Capturing generational scales requires emphasis
on higher-precision chronologies based on short-
lived samples, small standard errors, the use of
outlier models minimizing the impact of inbuilt
age samples, and formal models enabling other
prior archaeological information needs to be
taken into account. Formal Bayesian models pro-
vide posterior probability densities that can then
be integrated into high-resolution environmental
constructions like the one we presented here.
Rather than understanding the Uinta Basin Fre-
mont in terms of a dichotomous abandonment
model (Spangler 2000) that fails to provide a
basis for building knowledge about Fremont vari-
ability, our higher-precision approach enables the
components of Fremont lifeways to be broken
down in order to understand how they worked
together to establish the distinct variability of Fre-
mont forager-farmer societies within dynamic
Late Holocene environments in the semiarid
Desert West. This window into the foraging-
farming transition is one of the main contribu-
tions we can make through close analysis of the
Fremont archaeological record.
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