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ABSTRACT 

 

 

Statistical Analysis of the USU Lidar Data Set with Reference to Mesospheric Solar 

Response and Cooling Rate Calculation, with Analysis of Statistical  

Issues Affecting the Regression Coefficients 

 

 

by 

 

 

Troy A. Wynn, Doctor of Philosophy 

 

Utah State University, 2010 

 

 

Major Professor: Dr. Vincent B. Wickwar  

Department: Physics 

 

 

 Though the least squares technique has many advantages, its possible limitations as 

applied in the atmospheric sciences have not yet been fully explored in the literature. The 

assumption that the atmosphere responds either in phase or out of phase to the solar input 

is ubiquitous. However, our analysis found this assumption to be incorrect. If not 

properly addressed, the possible consequences are bias in the linear trend coefficient and 

attenuation of the solar response coefficient.

 Using USU Rayleigh lidar temperature data, we found a significant phase offset to the 

solar input in the temperatures that varies ±5 years depending on altitude. In addition to 

introducing a phase offset into the linear regression model, we argue that separating what 

we identify as the solar-noise is to be preferred because (1) the solar-noise can contain 

important physical information, (2) its omission could lead to spurious conclusions about 

the significance of the solar-proxy coefficient, and (3) its omission could also bias the 
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solar proxy coefficient. 

 We also argue that the Mt. Pinatubo eruption caused a positive temperature 

perturbation in our early mesopause temperatures, exerting leverage on the linear trend 

coefficient. In the upper mesosphere, we found a linear cooling trend of greater than 

−1.5 K/year, which is possibly exaggerated because of leverage from the earlier 

temperatures and/or collinearity. In the middle mesosphere we found a cooling trend of 

−1 K/year to near zero. 

 We use the autocorrelation coefficient of the model residuals as a physical parameter. 

The autocorrelation can provide information about how strongly current temperatures are 

affected by prior temperatures or how quickly a physical process is occurring. 

 The amplitudes and phases of the annual oscillation in our data compare favorably 

with those from the OHP and CEL French lidars, as well has the HALOE satellite 

instrument measurements. The semiannual climatology from the USU temperatures is 

similar to that from the HALOE temperatures. We also found that our semiannual and 

annual amplitudes and phases compare favorably with those from the HALOE, OHP, and 

CPC data.  

 The computer code used to generate the author’s figures included in this dissertation 

is given in Appendix I. 

 (280 pages)  
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CHAPTER 1 

 

INTRODUCTION 

 

1. Carbon Dioxide and Climate 

 Over the past several decades there has been increasing interest in the effects of green 

house gases on the Earth’s climate and temperature. There is particular concern that 

increased carbon dioxide levels could drastically alter the terrestrial atmosphere’s mean 

temperature structure. Because carbon dioxide is not chemically active, it is expected to 

persist in the Earth’s atmosphere for decades to centuries. CO2 measurements from 

Mauna Loa Observatory, Hawaii show a 22% increase in CO2 levels from 1959 to 2008 

[Tans, 2008]. Ice core measurements indicate CO2 levels have increased 33% since 1850 

[Ledley et al., 1999], with the bulk of the increase having occurred in the last fifty years. 

Climatological simulations predict that in response to increased CO2 levels the middle 

atmosphere will cool and the troposphere will warm [Roble and Dickinson, 1989; Rind et 

al., 1990; Khosravi et al., 2002; Gruzdev and Brasseur, 2005; Fomichev et al., 2007]. 

Consequently atmospheric scientists are looking for troposphere warming and middle 

atmosphere cooling as evidence of what is colloquially referred to as global warming, a 

term concomitant with discussions about global climate changes. 

 Climate models suggest the effects of global climate change will not be evenly 

distributed, geographically or seasonally. Some regions might experience increased 

precipitation while others might experience less; some regions might experience warmer 

winters and others could experience little or no change during summer; some regions 

might become warmer and wetter while others could become cooler and dryer. The net 
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effect, however, is elevated global temperatures in the troposphere. Some of the 

consequences are increased evaporation, changes in freshwater availability and ground 

water replenishment, changes in ocean temperatures that could affect fish and other 

aquatic species, and a rise in sea levels that could affect costal and river basin areas 

[Parry et al., 2007]. 

 Naturally the possibility of damage to the ecosystem and its consequent human cost 

coupled with the possibility of increased government intervention makes the issue serious 

and politically controversial. This has fueled skepticism about the seriousness and reality 

of global warming. I once tried to explain global warming to a friend. He countered my 

arguments with a news article from the 1970s that mentioned a predicted global cooling. 

It turns out that in 1975 Newsweek published an article called The Cooling World and in 

1974 Time published an article called Another Ice Age? (Newsweek, 28 April 1975; Time, 

24 June 1974). 

 There is a great deal of climate skepticism among the public. And, unfortunately, the 

recent e-mail scandal that emerged in November 2009 only encouraged these doubts. 

Hundreds of hacked e-mails at the Climatic Research Unit (CRU) at the University of 

East Anglia (UEA) in Norwich, UK were released to the public, some of which contained 

comments that, at face value, suggested members of the CRU had attempted to keep 

publications not in harmony with the global warming thesis out of the next International 

Panel on Climate Change (IPCC) report. Dubbed Climategate, this scandal naturally 

caused a great deal of embarrassment for climate scientists and fueled skepticism about 

the verity of the global warming thesis. A December 2009 Rasmussen Report indicates 

that 52% of Americans believe there is significant disagreement about global warming in 



3 

  

3
 

the scientific community [Rasmussen Reports, 2009]. According to a March 2010 Gallup 

poll 52% of Americans believe that most scientists believe global warming is occurring, 

down from 65% just two years ago. This report also indicates that 50% of Americans 

believe increases in global temperatures are due to human activities, down from 61% in 

2003 [Newport, 2010]. This emphasizes the importance of a thorough statistical analysis 

of all available data. (See also BBC [2010], Leiserowitz et al.[2010], and Spence et al. 

[2010] for more polling results.) 

 Though an independent panel set up by the UEA in consultation with the Royal 

Society concluded that the CRU research was honest and scientifically justified, they did 

express regret that ―so few professional statisticians have been involved in this work 

because it is fundamentally statistical‖ [Oxburgh et al., 2010]. 

 It should be added that the IPCC report is not without its flaws. After reviewing some 

of the criticisms of the latest IPCC report, an editorial from The Economist online 

concludes, ―A suspicion thus gains ground that the way in which the IPCC synthesises, 

generalises and checks its findings may systematically favour adverse outcomes in a way 

that goes beyond just serving the needs of policy makers‖ (5 July 2010). 

 The controversy surrounding the issues of global warming is intense. This only 

strengthens the need for the greatest possible precision in the statistical analysis of the 

available data. 

 

2. Statistical Issues 

 Several statistical issues affecting the least squares regression technique have already 

been addressed in the literature. The effects of autocorrelation have been discussed by 
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Frederick [1985], Tiao et al. [1990], Krzyścin [1997], and Weatherhead et al. [1998]. 

Weatherhead et al. also reviewed the effects of interventions such as volcanic eruptions, 

as well as instrumentation adjustments that might affect linear trend estimates.  

Kerzenmacher et al. [2006] addresses the problems of bias that accompany model 

selection. Mäder et al. [2007] mentions that collinearity could negatively impact a 

stepwise variable selection procedure. Kerzenmacher et al. also did Monte Carlo 

simulations to calculate the errors that occur from model underspecification, though it is 

likely he used simulations because he did not distinguish between coefficient bias and 

coefficient attenuation, as the bias calculation is rather simple. 

 One subject not covered in the literature is the problem of linear-trend bias that arises 

from including a fixed-phase solar proxy in a temperature model under circumstances 

where a variable phase proxy is more appropriate. By fixed proxy we mean a solar proxy 

that does not change its phase with altitude; it is fixed. By variable phase we mean a 

proxy that contains a phase that can vary continuously with altitude, such as sin[ωt + 

φ(z)].

 Model misspecification occurs when a model omits important variables and/or 

includes unimportant ones. If the model is under specified, that is, if important variables 

are omitted and no unimportant variables are included, then the model coefficients will be 

biased. If the model is over specified, that is, if all essential model variables are included 

along with some unimportant ones, then the correctly specified variables are unbiased 

and the coefficients of the unimportant variables are zero. If the model is cross specified, 

that is, if some correct variables are excluded and unimportant variables are included, 

then the correctly specified variables will be biased and the incorrectly specified variables 
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are attenuated versions of the omitted, true-model coefficients. 

 Some researchers will deliberately over specify a model to reduce the danger of 

coefficient bias. However, this introduces the danger of collinearity, or illconditioned 

data. If two variables have near linear dependence, this can lead to coefficient correlation: 

If one coefficient is high, then the other will be low or high depending on the sign of the 

correlation. Of interest here is the correlation that exists between the solar proxy and 

linear trend coefficients. (These two variables are found in nearly all middle atmosphere 

temperature models.) Depending on the phase of the solar cycle relative to the data, a 

significant correlation problem can arise, and it is possible to identify cases that do not 

suffer from this difficulty. Thus greater confidence may be placed in those results. The 

main criteria for identification of collinearity problems depend principally on the phase of 

the solar cycle relative to the data and the length of the data set. 

 As already mentioned, the magnitude of the atmospheric solar response is often 

extracted using least squares regression techniques. To approximate the solar input a 

solar proxy is included in the model—typically the F10.7 radio emission; Mg II core-to-

wing ratio; or sunspot number. The resulting regression coefficient may be positive or 

negative. A positive coefficient indicates an in-phase atmospheric response. A negative 

coefficient indicates an inverted response. Positive and negative solar responses have 

been found in both stratospheric and mesospheric temperatures. One problem with using 

a fixed-phase proxy is that, in doing so, an implicit assumption is made: The atmosphere 

is responding either in phase or out of phase to the solar input. And besides failing to 

capture a phase offset it creates another problem. A positive coefficient at one altitude 

and a negative coefficient at another means the coefficient value must go through zero at 
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some point, potentially masking changes in the amplitude of the atmospheric solar 

response. Moreover, if a fixed-phase proxy model is applied when a variable-phase 

model is more appropriate, the fixed-phase proxy assumption amounts to model 

misspecification which can introduce significant bias to the linear trend coefficient and 

attenuate the solar proxy coefficient. 

 Because of the ongoing effort invested in detecting changes in the Earth’s 

climate, knowing when models do and do not suffer from bias, attenuation, or collinearity 

can be of value to those in the scientific community trying to detect cooling trends and 

model the Earth’s complex chemical, dynamical, and radiative processes. 

 

3. Review of Literature 

 Because of the complexity of the Earth’s atmosphere, climate models are needed to 

assess the long-term effects of increased carbon dioxide levels. A CO2 doubling 

simulation conducted by Fomichev et al. [2007] using the Canadian Middle Atmosphere 

Model (CMAM) compared two different CO2 levels. The first was at a baseline level of 

338 ppmv, corresponding approximately to 1986 levels. In the second the CO2 level was 

doubled from the baseline value. Significant differences between the two model runs 

were then noted. Their simulations predict that for January and July at 40ºN 

(approximately the same latitude as the USU lidar) the mesosphere should cool from 4 to 

10 K. If the current rate of CO2 increase continues then a CO2 doubling from its 1986 

level should occur around the year 2100, putting the cooling rate between −0.35 and 

−0.9 K/decade. Gruzdev and Brasseur [2005] did a simulation using the SOCRATES 

model where they investigated mesosphere thermal and chemical responses to changes in 
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greenhouse gas concentrations that occurred over the past 50 years. They predicted a 3 to 

7 K mesopause cooling and a 4 to 6 K cooling in the middle mesosphere. This amounts to 

a cooling rate of −0.6 to −1.4 K/decade for the mesopause and nearly the same rate for 

the middle mesosphere. Using the Spectral Mesosphere/Lower Thermosphere model, 

Akmaev and Fomichev [2000] investigated the thermal response of the atmosphere to 

changes in CO2 levels that occurred from 1955 (313 ppm) through 1995 (360 ppm). They 

found a mesosphere cooling of approximately 3 K, which amounts to a cooling rate of 

−0.75 K/decade. Rind et al. [1990] investigated the impact of a doubled CO2 climate on 

the thermal atmosphere using the GISS Global Climate Middle Atmosphere Model 

(GCMAM). Starting with a CO2 baseline of 315 ppm (corresponding to approximately 

1959 levels) then increasing it to 630 ppm (corresponding to approximately 2090 by my 

estimate) they found a mesosphere cooling of 4 to 11 K, which corresponds roughly to 

−0.3 to −0.8 K/decade. In an updated paper Rind et al. [1998] reproduced some of their 

earlier CO2 doubling simulations using the latest version of the GCMAM model and 

found a mesosphere cooling between 8 and 12 K at 40ºN which, based on the CO2 levels 

used in their simulation, amounts to −0.06 to −0.09 K/year. When all are taken together 

these simulations indicate a middle atmosphere cooling rate in the neighborhood of −0.3 

to −1.4 K/decade. 

 Middle atmosphere cooling has been found by many researchers. However, the 

magnitudes are, needless to say, all over the place. Table 4 from Beig et al. [2003] lists 

mesosphere (50-79 km) linear trends from various data collection sites. The cooling rates 

range from −10 to −0.24 K/decade. Table 5 from the same paper lists several mesopause 

(80-100 km) temperature trends ranging from −10.5 to +5 K/decade. (Figure 1.1 for 
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histograms.) Published radiosonde temperatures also indicate significant variability. 

Table 3 from Ramaswamy et al. [2001] lists several lower stratosphere cooling trends 

ranging from −4.5 to +4.1 K/decade, with a median value of −0.4 K/decade. In both 

Ramaswamy et al. and Beig et al. the majority of the temperature trends are negative and 

consistent in sign with the predicted middle atmosphere cooling. 

 In addition to increased levels of CO2, the variation of solar input during the 

approximate 11-year solar cycle also has a direct impact on middle atmosphere 

temperature structure, principally through exothermic chemical reactions involving ozone 

and atomic oxygen, which are strong absorbers of UV radiation. And, as with cooling 

rates, calculating the atmospheric response to variations in solar irradiance requires 

computer models to handle the complex physical and chemical processes.  

 One simulation by Huang and Brasseur [1993] shows a temperature variation of 1 to 

 
Figure 1.1. Histograms of reported temperature trends tabulated in Beig et al. [2003]. 

Histogram (a) is for temperature trends near the mesopause (80-100 km) from Table 5. 

Histogram (b) is for mesosphere trends (50-79 km) from Table 4. For cases where the 

temperatures were reported as −1.4 to −2.1 K/decade (for example) both the upper and 

lower limits were treated as data points. 
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10 K (depending on the altitude) for the mesosphere at 40ºN for the September model 

run. Using the NCAR Whole Atmosphere Community Climate Model, version 3 

(WACCM3), Marsh et al. [2007] found a temperature change from solar maximum to 

solar minimum from 0.50 to 3 K between 45 and 90 km at 40ºN. Simulations run using 

the SOCRATES model by Khosravi et al. [2002] found a max-min mesosphere (50-90 

km) solar response at 40ºN between 0.5 and 5 K. 

 Measurements indicate a more varied response. Chanin [2006] lists temperature 

responses from six sites ranging in location from 37ºN to 54ºN. The following examples 

are from 30 km. The solar response coefficient at Primrose Lake, Canada has a value of 

−8 K, the negative sign indicating that the atmospheric solar response is 180º out of phase 

with the solar input; at Riori, Japan it is statistically insignificant; at Volgograd, Russia it 

is −2 K but also statistically insignificant; at Wallops Island, Virginia it is approximately 

2.5 K and statistically insignificant; at Shemya, Alaska it is negative and statistically 

insignificant; the OHP lidar (44ºN) in France shows 0 K atmospheric solar response. The 

altitudes where the solar response passes through zero are 50 km at OHP and 42 km at 

Shemya; it does not go through zero at Wallops Island ; at Volgograd it occurs at 24 and 

50 km; at Ryori it stays near zero between 24 and 50 km; at Primrose Lake it is zero from 

50 to 60 km. 

 Each of these groups used a fixed-phase proxy in their regression analysis, which 

opens up the issues of model specification and collinearity. Are these variations due to 

actual amplitude differences? Or are they due to phase differences with the solar input 

that differ geographically? Is the atmospheric solar response zero or is it 90º out of phase 

with the solar input? These questions are difficult if not impossible to address if a fixed-



10 

  

1
0
 

phase proxy is used in the least squares analysis to determine the atmospheric solar 

response. 

 

4. Research Objectives 

 Standard linear regression models usually include a solar proxy to approximate the 

solar UV input. We have found that if the atmosphere is not responding with a phase 

difference of 0 or π radians, then the linear trend and solar proxy coefficients are 

possibly, respectively, bias and attenuated. We derive and discuss equations estimating 

the bias and attenuation. These equations also allow us to identify conditions that might 

be immune from this problem. 

 Along with the assumption that the middle atmosphere responds in phase or out of 

phase to the solar input is the assumption that the atmosphere responds in phase to short-

term solar variations, or solar noise. We argue that because large-scale solar responses 

are likely to be driven by dynamics and shorter scale variations are more likely to 

represent photochemistry and radiative transfer the 11-year solar variation and the solar-

noise variations are best modeled as separate terms. Additionally, if these two variations 

are not separated, there exists a risk of a false positive on the significance of the solar 

proxy coefficient. A climatology of the solar-noise is also included. 

 Equations are derived that aid in understanding the collinearity problem and allow us 

to identify cases that are severe, as well as cases that do not suffer from coefficient 

correlation between the linear term and the solar proxy. We also report our findings on 

the amplitudes and phases of the annual oscillation (AO) and the semiannual oscillation 

(SAO), the linear trend coefficient, and the amplitudes and phases of the atmospheric 
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solar response. These sections are mostly comparative. An SAO climatology from our 

temperatures is also discussed and compared to an equivalent climatology from the 

Halogen Occultation Experiment (HALOE) instrument on the UARS satellite. 

 Tools were developed for estimating the autocorrelation coefficient that allowed us to 

estimate the residual autocorrelation and create an autocorrelation climatology, which 

provides additional insight into the seasonal variations of the residual standard deviation. 

We also investigate the possible effect the Mt. Pinatubo eruption may have had on the 

linear trend estimate. 

 

5. Summary of Chapters 

 Chapter 2 contains a discussion of the collinearity issues, how they come about, and 

how they can affect regression models that contain a linear trend and a fixed-phase solar 

proxy. Equations for describing the collinearity are derived and discussed. Chapter 3 

contains a derivation of the bias and attenuation of the linear coefficient and the 

atmospheric solar response coefficient, respectively. We briefly look at the amplitudes 

and phases of the atmospheric solar response and also some fixed-phase proxy results. 

We discuss cases where the amplitude and phase of the solar proxy will not bias the 

linear trend or attenuate the solar proxy coefficient. We argue that separating the solar-

noise from the proxy is to be preferred and perform some statistical tests to support this 

claim. In Chapter 4 we discuss more fully the linear trend term and how collinearity and 

bias may be affecting the linear trend estimate. The eruption of Mt. Pinatubo is  

considered as a possible influence on our early temperatures and evidence is given to 

support this thesis. We also take a closer look at the amplitude and phase of the 
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atmospheric solar response and compare our results to what others have found. This 

includes fixed-proxy results. We also compare SAO climatologies from the USU and 

HALOE temperatures and look at the amplitudes and phases of the annual and 

semiannual oscillations. Chapter 5 contains an examination of the residuals from the full 

OLS (ordinary least squares) regression model used in this dissertation. This includes a 

residual standard deviation climatology. We compare our climatology to others from the 

literature. We look at the autocorrelation and discuss a climatology of the autocorrelation 

coefficient and use it to better understand the seasonal variation in the residual standard 

deviation. We develop and examine a climatology of the solar-noise response and use it 

to make inferences about the seasonal dependence of the atmospheric response to the 

solar-noise. Chapter 6 contains a summary and statement of future work. Additional 

information is included in the appendices. 

 

6. Global Warming Basics 

6.1. Introduction 

 Theories positing a connection between elevated atmospheric CO2 levels and 

increased global temperatures have existed for over 100 years [Callendar, 1938; Held 

and Soden, 2000]. Though in the past there has been some debate as to whether or not 

industrialization would produce global warming or global cooling, over the past several 

decades the literature has increasingly favored the global warming thesis, which states 

that significant increases in the amount of atmospheric CO2 results in elevated global 

temperatures in the troposphere. 

 In addition to CO2, other important greenhouse gases are ozone, water vapor, 
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methane, and nitrous oxide. The dominant radiatively active gases are water vapor, 

carbon dioxide, and ozone, followed by methane and nitrous oxide. Several authors have 

emphasized that water vapor is the most important greenhouse gas [Held and Soden, 

2000; Soden, 2005]. By this they mean that water vapor dominates troposphere radiative 

heating and cooling mechanisms. When the atmosphere is divided into spheres 

(troposphere, stratosphere, mesosphere), each region has its own unique combination of 

dominant chemical, radiative, and dynamical processes. (For atmosphere regions see 

Figure 1.2.) The warming is confined to the lower atmosphere (the troposphere), which 

contains nearly all the atmospheric water vapor. Carbon dioxide and ozone dominate the 

radiative-thermal properties of the stratosphere and mesosphere, commonly referred to as 

the middle atmosphere. While other gasses do influence the radiative and thermal 

properties of the atmosphere, the increase of atmospheric CO2 concentrations from 

preindustrial times coupled with its radiative properties has lead many climate scientists 

to believe that global climate change is principally driven by increased CO2 levels. 

 Atmosphere models predict that increasing CO2 concentrations increase heat retention 

in the troposphere and heat loss in the stratosphere and mesosphere. By the end of the 

century surface temperatures are expected to increase by about 1.5 to 4ºC while the 

middle atmosphere is expected to cool between 4 to 11ºC [Rind et al., 1990, 1998; Held 

and Soden, 2000; Fomichev et al., 2007]. 

 

6.2. Solar Heating and Terrestrial Cooling 

 The principal source of terrestrial heat is from the sun, which emits about 

4×10
26

 watts of power. The Earth receives between 1412 to 1321 W/m² depending on the  
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Earth-sun distance. When averaged over the entire Earth’s surface the incident energy 

flux is approximately 350 W/m
2
. Roughly 50 to 70% of this reaches the Earth’s surface. 

The rest is either reflected back into space or absorbed in the atmosphere or at the Earth’s 

surface. For our purposes here, the incoming energy flux may be considered to be 

constant. This assumption simplifies the mechanism behind global warming: solar 

heating and terrestrial cooling. The sun warms the Earth and the Earth radiates heat back 

into space. If the heating and cooling balance, then the Earth is in radiative equilibrium 

and the average temperature is stable. If the cooling rate decreases, the planet will warm. 

If the cooling rate increases, the planet will cool. 

 A great deal of research indicates that increased CO2 levels will increase global 

temperatures. In other words, increased CO2 levels depress the net cooling rate and cause 

 

Figure 1.2. A model atmosphere temperature profile based on temperatures from the 

MSISe00 model. 
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the planet to retain more heat. The question now becomes why increased carbon dioxide 

levels decrease the global cooling rate. 

 The first thing to address is the temperature difference between the sun and the Earth. 

The temperature of the sun is approximately 5700 K and emits most of its radiation in the 

250 to 2500 nm region with a peak in the visible spectrum around 500 nm. The average 

temperature of the Earth is about 290 K and emits radiation from 2.5 μm to well past 

30 μm and peaks around 13 μm. Several atmospheric gases absorb radiation in this 

spectral range and can act to suppress the cooling rate. Figure 1.3 shows the spectral 

distribution of a blackbody at 220 K corresponding to a layer of atmosphere at 15 km and 

is nearly identical to the spectral distribution emitted from the Earth’s surface. The peak 

of the distribution is near the 15 μm CO2 absorption band. There is also a small CO2 

absorption band near 4 μm, but because it is far from the maximum it has a much smaller 

impact on the radiative properties of the atmosphere. There is also a significant O3 peak 

near 9 μm. 

 

6.3. The Role of Carbon Dioxide 

 The following discussion will be limited to the 12-18 μm CO2 band. This narrow 

consideration provides a basic understanding of the physics involved, and though 

simplified, has pedagogical value. 

 In any gas, a strong absorption band also corresponds to a strong emission band. If a 

gas strongly absorbs in the 15 μm region, it will also strongly emit in that region. 

Likewise, a weak absorption band corresponds to weak emission band. An absorption 

coefficient of one indicates that a gas absorbs all external radiation passing through it and 
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that it emits radiation as a perfect blackbody. If the absorption coefficient is zero, then 

nothing is absorbed or emitted. If absorption is greater than zero but less than one, then 

the gas emits a fraction of the blackbody radiation and absorbs a fraction of the radiation 

passing through it. 

 For a given spectral band, if the atmosphere has zero absorption, then the downward 

radiation is zero because the atmosphere does not emit in that band, and all of the upward 

radiation originating from the Earth’s surface passes into space. Thus the upward 

radiation is equal to the blackbody level corresponding to the Earth’s temperature and the 

downward radiation is zero. If atmospheric absorption increases, then the downward 

radiation increases but emits at less than blackbody levels. The upward radiation from the 

Earth’s surface is partially blocked, and to this is added the upwelling radiation from the 

atmosphere. The net effect is that the upwards radiation slightly exceeds blackbody levels 

and the downwards radiation is slightly less than blackbody levels. Increasing the amount 

 

Figure 1.3. The spectral distribution from a layer of atmosphere at 15 km. (This figure is 

a reproduction of Figure 1 from Houghton [1965], p. 545. Used with permission of the 

Royal Society.) 
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of atmospheric CO2 increases the opacity of the atmosphere, decreasing the 

upwardradiation and increasing the downward radiation. The upward radiation decreases 

toward blackbody levels and the downward radiation increases toward blackbody levels. 

The net effect is a decrease in the radiation emitted into space. The cooling rate is 

depressed and the planet warms. 

 The actual temperature change is more complicated. The temporal cooling rate 

in K/year is given by 

 

, 

 

where ρ is the density, cp is the specific heat at constant pressure, F↑ is the upwards 

radiation and F↓ is the downward radiation [Lenoble, 1993]. The temporal evolution of 

the temperature is proportional to the divergence of the net flux. When applying these 

equations to the problems just described, the heating and cooling rate can be estimated. 

Since the flux is temperature dependant and the temperature varies with altitude, the 

greatest heating and cooling occurs where the temperature gradients are greatest, near 

stratopause. 

 

6.4. The Role of Water Vapor 

 A theoretical case for global warming can be made purely in terms of increased CO2 

levels, but water vapor is also important. Though the two dominant radiative gases in the 

troposphere are carbon dioxide and water vapor, water vapor emits a great deal more heat 

than carbon dioxide does. One reason for this is that water vapor emits radiation over a 

very broad spectral range whereas the radiative effects of CO2 are restricted to well-
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defined regions. Additionally, water vapor density decreases rapidly with decreasing 

temperature—colder air holds less water vapor. Consequently there is little water vapor 

in the upper troposphere and above. The temperature of the troposphere drops off at a rate 

of about 6.5 K/km. This temperature gradient causes the water vapor density to decrease 

with increasing altitude and creates a transition from opacity to transparency that occurs 

much faster than if the water vapor were uniformly mixed. For uniformly mixed gases 

this transition occurs over a greater altitude range. Consequently, adding a uniformly 

mixed gas to an atmosphere with a significant amount of water vapor suppresses the 

cooling effect of the water vapor by slowing the transition from opacity to transparency. 

Clough and Iacono [1995] note that ―increases in uniformly mixed gases have the effect 

of reducing the cooling rate associated with water vapor alone while at the same time 

increasing the downward flux at the surface...in the region from 640 to 690 cm
−1

 the 

radiative effects of water vapor are effectively eliminated due to the strong absorptive 

properties of carbon dioxide.‖ 

 Carbon dioxide has a constant mixing ratio up to about 80 km. According the 

calculations done by Clough and Iacono [1995] carbon dioxide moderates the strong 

cooling associated with water vapor due to its strong absorptive characteristics coupled 

with the fact that uniformly mixed trace gases, like CO2, in atmospheres containing 

significant amounts of water vapor offset the water vapor cooling and increase the 

downward flux. 

 In the middle atmosphere the situation is somewhat different. A great deal of the 

outgoing longwave radiation in the 15μm band is absorbed in the troposphere so there is 

less upwards radiation in that band. And in contrast to the troposphere the middle 
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atmosphere has very little water vapor. Consequently increased CO2 levels increases both 

the outgoing flux and the cooling rate. 

 The global effect of increased carbon dioxide levels is warming in the troposphere 

and cooling in the middle atmosphere. This is illustrated in Figure 1.4, which shows the 

difference in atmosphere cooling rate according to altitude and spectral region from two 

CO2 baseline levels of 335 ppm and 710 ppm. The scale is in terms of cooling so a 

negative number indicates warming. 

 The region of maximum troposphere warming surrounds the 667 cm
−1

 (15 μm) band 

and ranges from 550 cm
−1

 to 800 cm
−1

, with a noticeable gap at the center of the band, 

which corresponds to the region where CO2 has its strongest absorption. In contrast, 

middle atmosphere cooling in that band is significantly greater, 10 to 80 K·d
−1

 (cm
−1

)
−1

 at 

the stratopause. Other important spectral regions are the 980 to 1080 cm
−1

, 1080 to 

1200 cm
−1

, and 2050 to 2150 cm
−1

 ozone bands. However, according to the differences of 

the two baseline levels, these spectral regions have a much smaller influence on 

atmosphere cooling, a maximum of 0.5 K·d
−1

 (cm
−1

)
−1

. 

 

7. The USU Rayleigh Lidar 

7.1. Scattering Theory 

 The scattering of light by particles that are very small compared to the wavelength is 

called Rayleigh scattering. It occurs when 2πr/λ ≪ 1, where r is the radius and λ the 

wavelength. The backscatter cross section of unpolarized light in air is given by 

[Measures, 1984]:  



20 

  

2
0
 

 

, 

 

where λ is the wavelength, N is the number density, and n is the index of refraction of the 

gas. The return lidar signal for Rayleigh scattering from a layer of atmosphere at altitude 

z and thickness Δz is  

 

, 

 

where I0 is the number of photons emitted, N(z) is the number density at altitude z, T is 

 

 
 

Figure 1.4. The change in heating and cooling rates by spectral region and altitude for 

the lower and middle atmosphere. These show the difference in cooling between CO2 

levels of 335 ppmv and 710 ppmv. The top and bottom figures are identical except for 

the vertical scale. (A wave number of 667 cm
−1

 corresponds to 15 μm.) Plate 5 from 

Clough and Iacono [1995], used with permission. 
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the atmospheric transmittance, which is squared because of the return path; K is the 

optical efficiency of the system, and A is the telescope area [Hauchecorne and Chanin, 

1980]. 

 The temperature reduction equation is derived from hydrostatic equilibrium and the 

ideal gas law:  

 

     P = nkT,       (1.1) 

dP/dz = −mgn,       (1.2) 

 

where n is the number density, T is temperature, k is Boltzman’s constant, P is the 

pressure, g is the gravitational constant, and m is the mean molecular mass. Substituting 

(1.1) into (1.2) and integrating between altitudes zl and zh yields  

 

, 

 

and lastly  

 

, 

 

where T(zh) is the initialization temperature and n(zh) is the measured, relative 

initialization number density at altitude zh . The number densities are taken from the lidar 

equation  

 

. 

 

T(zh) is typically taken from a temperature climatology or an atmosphere model. The 
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mean molecular mass m(z) is taken from the MSIS atmosphere model [Beissner, 1997; 

Herron, 2004]. Because the temperature integration includes a ratio of number densities, 

the constants 4π, k, A, I0, ζπ
R
, and Δz divide out leaving only a ratio of the signal strengths 

and altitudes. 

 The number density increases exponentially with decreasing altitude. After 15 km the 

initial temperature guess becomes insignificant because it is multiplied by n(zh)/n(zl). 

This means that the system does not need external calibration and the temperatures from 

less than 80 km are very accurate. The temperature reduction was done by Dr. Joshua 

Herron. For more information about the temperature reduction see Beissner [1997] and 

Herron [2004, 2007]. 

 

7.2. Description of USU Lidar 

A diagram of the USU lidar system is shown in Figure 1.5. The USU Rayleigh lidar 

consists of a Nd:YAG (neodymium:yttrium-aluminum-garnet) Spectra Physics laser. The 

 
 

Figure 1.5. A diagram of the USU Rayleigh lidar system.  
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pulse width is 7-8 ns. The telescope is a 0.44 m (16 in) Newtonian with an effective area 

of 0.152 m
2
 and a 2 to 3 mrad field of view and a 201 cm focal length. The collected light 

is focused into the plane of an optical chopper that blocks out strong lower altitude 

signals. It is then collimated and passes through a narrow band-pass filter and into a 

photo multiplier tube (PMT).  
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CHAPTER 2 

 

COLLINEARITY BETWEEN THE SOLAR PROXY 

 

AND LINEAR TREND COEFFICIENTS 
 

Abstract. Collinearity arises in a linear model when one or more of the explanatory 

variables have near linear dependence with one or more of the other variables. Its effects 

can be correlated regression coefficients, inflated standard errors, difficulty in identifying 

significant model variables, and coefficient sensitivity to model specification. 

 This paper focuses on the specific problem of coefficient correlation between the 

solar proxy and time (linear) regressors in a simple ordinary least squares model. For this 

case, collinearity arises when there is a near linear relationship between the solar proxy 

and time regressors, and varies according to the phase of the solar proxy and length of the 

data set. If the solar proxy maximum occurs in the middle of the second half of the data 

set, there is significant positive correlation between the time and solar regressors. 

Conversely, if the solar proxy maximum occurs in the middle of the first half of the data 

set, they possess significant negative correlation. This leads to correlation between model 

estimates of the time and solar coefficients. The optimal phase of the solar proxy relative 

to the data is for the solar proxy maximum or minimum to occur at the time center of the 

data set. In that particular case the correlation between the linear and solar proxy terms is 

minimized, along with their coefficient correlation. When the data set spans 

approximately 1.3 solar cycles or more, correlation between the time and solar 

coefficients is minimal and may be ignored. The difficulties created by the presence of 

collinearity are independent of the magnitude of the solar and the linear coefficients. 
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1. Introduction 

 There is compelling evidence that the Earth’s climate is undergoing long-term 

change, and there is a strong consensus among scientists that this is largely due to 

anthropogenic influence [IPCC, 2007]. Model calculations have shown that increases in 

the level of carbon dioxide cause the lower atmosphere (troposphere) and middle 

atmosphere (stratosphere and mesosphere) to react differently: the lower atmosphere 

warms and the middle atmosphere cools. Furthermore, the rate of temperature change in 

the middle atmosphere is expected to be about ten times greater than that in the lower 

atmosphere [Roble and Dickinson, 1989; Rind et al., 1990; Fomichev et al., 2007]. 

Additionally, simulations by Khosravi et al. [2002] show that the middle atmosphere 

cooling rate and solar response are additive, which justifies independent linear and solar 

terms in an ordinary least squares model. Because of the expected higher cooling rate in 

the middle atmosphere many researchers have focused their efforts on trend detection in 

the stratosphere and mesosphere. Information about how atmospheric temperatures are 

evolving on decadal time scales, as well as seasonally, and to external influences such as 

solar variability, are often extracted using ordinary least squares regression (OLSR). 

However, OLS regression results can be affected by a variety of factors, many of which 

have already been considered. The effects of autocorrelation have been discussed in 

Frederick [1985], Tiao et al. [1990], Krzyścin [1997], and Weatherhead et al. [1998]. 

The effects of interventions such as volcanic eruptions and adjustments in 

instrumentation have been reviewed by Weatherhead et al. [1998]; and the effects of 

variable selection by Kerzenmacher et al. [2006] and Mäder et al. [2007]. Mäder et al. 

considers the possible effect of collinearity on the stepwise variable selection procedure. 
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But as yet no one has considered the possibility of collinearity on least squares model 

coefficients. 

 The OLSR technique provides the best linear unbiased estimator (BLUE), provided 

each measurement is unbiased and the errors are uncorrelated. Looking at it in a different 

way, a column of temperature data is projected onto a column space of independent 

variables so as to minimize the variance of the residuals. If the relevant independent 

variables are included in the model, then OLSR minimizes what the model cannot 

explain. However, even in the presence of collinearity the model coefficient estimates are 

still BLUE. 

 This consideration of collinearity was prompted by the analysis of 11-years of 

Rayleigh-lidar mesospheric temperatures from Utah State University [Wickwar et al., 

2001; Herron and Wickwar, 2010]. A simple OLSR analysis of the USU data from near 

the mesopause produced a cooling rate greater than 1 K/year (10 K/decade) and a 

questionable dependence on solar input. These results, which have not yet been 

published, did not seem right—we found a much greater linear cooling trend and a 

weaker solar response than those predicted and inferred from other data at slightly higher 

altitudes, e.g., Offermann et al. [2004]. 

 In this paper a simplified regression model is employed, and the nature of the 

collinearity problem, as it applies to it, is discussed. The model, which contains a linear 

term and solar proxy only, is introduced in section 2. Section 3 explores the problem of 

collinearity between the time and solar regressors when the data set spans one solar cycle, 

and one half solar cycle. It was found in our simplified model that if the data set spanned 

one solar cycle or less, the model is susceptible to a strong collinearity problem, 
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depending on the phase of the solar proxy relative to the data. If the data set spans less 

than one solar cycle the problem can be severe. This is especially applicable to our USU 

Rayleigh-scatter lidar temperatures; our data set spans one solar cycle and the phase of 

the solar proxy is such that there exists a strong collinearity problem. In section 4 the 

special case of minimal collinearity is addressed. In section 5 we address the cause of the 

problem as it applies to the simplified model under consideration. Section 6 contains a 

discussion of a different situation, how a step function explanatory variable modeling an 

instrumentation change introduces a collinearity problem between regressors. In section 7 

the collinearity problem as it applies to the USU temperature model is illustrated and 

briefly discussed. In section 8 the final conclusions are listed. 

 

2. The Problem 

 The problems of collinearity (sometimes referred to by its redundant term 

multicollinearity) arise in the presence of near linear dependence among model variables. 

But near linear dependence is not a simple matter of regressors failing to be strictly 

linearly independent. Near linear dependence arises when v1A1 + … + vnAn = c, where c 

is a small number. In other words, collinearity arises when one or more regressors nearly 

lies in the space spanned by one or more of the other regressors. If such a relationship 

exists between two variables, or between groups of variables, the problems of collinearity 

arise. One might assume that if two variables are uncorrelated or orthogonal they have no 

near linear dependence. However, that is not necessarily the case. Two regressors can be 

perfectly correlated and orthogonal: For example, the two vectors (−1, −1, −1, √3)
T
 and 

(1, 1, 1, √3)
T
 are orthogonal and have a correlation of +1. Two regressors can be 
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uncorrelated and oblique: For example, the vectors (2,  −3,  −2, 1)
T
 and ( 0 , −3 , 3, −2)

T
 

have zero correlation and inner product of +1 [Rodgers et al., 1984]. And collinearity can 

arise when two regressors are uncorrelated and oblique, or correlated and orthogonal. 

Uncorrelated or orthogonal regressors make collinearity unlikely, but not impossible. 

Near linear dependence problems can still arise, and diagnosing the number of near 

dependences is not a simple matter of looking at correlations between regressor pairs. 

However, general collinearity is not the focus of this paper, but rather the correlations 

that can arise between estimated regression coefficients. Belsley [1991] has noted that 

correlated coefficients are a sufficient (but not a necessary) condition for collinearity. Our 

treatment of collinearity focuses on this sufficient condition. 

 If one or more regressors are strongly correlated with one or more other regressors 

then the problems of collinearity are likely to arise. In a simple model with two 

explanatory variables, if they are positively (negatively) correlated their estimated model 

coefficients will be negatively (positively) correlated. In general, the partial correlation 

between two regressors is the negative of the correlation between their regression 

coefficients. The correlation inflates coefficient standard errors (SEs), increasing the 

chance of determining a coefficient to be insignificant when in fact it is significant, or 

visa versa. In the absence of collinearity the regression coefficients indicate the effect of 

a one-unit change on such regressors. For example, if the coefficient of the time regressor 

(the cooling trend) is –0.3 K/year, then for every year the temperature decreases by 0.3 K. 

However, when regressors are correlated their coefficients are also likely to be correlated 

and, if so, a joint inference must be made. Because many models include time and solar 

regressors, understanding the nature of the collinearity between them, and being able to 
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identify when it occurs, is important.  

 OLSR on atmospheric temperatures generally includes the following explanatory 

variables: annual oscillation and semiannual oscillation, linear trend, and a solar proxy 

representing changes in solar input. It might also include information about the quasi-

biennial oscillation, or short-term effects such as changes in atmospheric optical depth 

due to volcanic eruption. Consider the following model,  

 

Ti = w + b·ti + s·spi  + A1sin(2π·ti) + A2cos(2π·ti) + B1sin(4π·ti) + B2cos(4π·ti) + εi,   

(2.1) 

 

where Ti is the temperature at time ti, time is in years, w is the intercept term; b is the 

linear trend coefficient, s is the solar response coefficient, A1 and A2 give the amplitude 

and phase of the annual oscillation; B1 and B2 give the amplitude and phase of the 

semiannual oscillation; εi is the residual and sp is a solar proxy term. Because time may 

be measured from any given moment, the location of t = 0 is arbitrary. So we choose t = 0 

to be the time center of the data set. Furthermore, several solar proxies have been 

employed as approximations to solar UV input: sunspot number, F10.7 solar flux, Mg II 

index, and the He I 1083-nm line. In place of a solar proxy Remsberg [2002] employs a 

sine function with a phase offset. 

 These six explanatory variables form a column space onto which the temperature 

column T is projected: (1) t, (2) sp, (3) sin(2π·t), (4) cos(2π·t), (5) sin(4π·t), (6) cos(4π·t), 

and (7) a column of 1s for the intercept. Under ideal conditions they would form an 

orthogonal column space, in which case collinearity is unlikely. When model variables 

are mean centered, orthogonality is equivalent to being uncorrelated, and visa versa. 
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Obviously (3), (4), (5), and (6) are orthogonal to each other. The sine and cosine 

functions are also nearly mean centered. And, as mentioned above, there is no special 

commitment to any particular solar proxy, so we take the liberty of mean centering (2). 

Since any mean-centered regressor is orthogonal to a constant vector, (1-6) are each 

orthogonal to (7). Also, correlation of (1) with (3-6), and (2) with (3-6) is minimal. So a 

simplified model may be considered, 

 

Ti = 0 + b·ti + s·spi + εi ,                    (2.2)  

 

where T, t, b, sp, and ε are as indicated above. The coefficients b and s are the linear trend 

and solar proxy coefficients respectively. The temperatures T are also mean centered, 

allowing the regression to be forced through zero, indicated by the zero on the right hand 

side of Equation (2.2). Because the other regressors are orthogonal and/or uncorrelated to 

the model variables in Equation (2.2) removing them from the model should not affect 

the other coefficient estimates. It is generally recommended that mean centering not be 

used when diagnosing collinearity problems [Belsley, 1991; Draper and Smith, 1998]. 

However, as the sines and cosines are nearly mean centered and the location of t = 0 is 

arbitrary and because we have no special commitment to any particular solar proxy, we 

employ mean centering here. Furthermore, mean centering does not affect coefficient 

estimates, hence coefficient correlations, which are the focus of this paper, will be 

unaffected.  Mean centering can otherwise mask underlying general collinearity 

problems. To further simplify, a sine function with unit amplitude and 11-year period 

(approximately equivalent to one solar cycle) was used in place of a solar proxy. 

Gaussian noise was added to the sine solar proxy in such a way as to simulate the greater 
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random variability observed in solar proxies at solar maximum (see Figures 2.1a, 2.2a, 

2.3a, and 2.4a for examples). The phase of the solar proxy is referenced to the time center 

(t = 0) of the data set; the phase will be measured from the point where the solar proxy is 

halfway between solar maximum and solar minimum. 

 The data for this analysis is drawn from data simulations. A time series of 

temperatures was generated having a cooling rate of −0.4 K/year and a 4 K solar 

response. Gaussian noise (σ = 12.2 K) was added to the temperatures. Both the cooling 

rate and magnitude of the solar response are for the upper mesosphere and were taken 

from Keckhut et al. [1995]; 12.2 K is the average standard deviation of the residuals of an 

OLSR on the USU temperatures from the MLT region. Equation (2.2) was then applied 

to the simulated data. The nature of the collinearity problem under investigation is 

independent of the magnitude of the estimated solar and linear trend coefficients. 

 

3. Strong Collinearity 

The equation for the correlation between any two estimated regression coefficients is 

ρmn = smn/√(snn·smm), where smn, is the (m,n)th element of the variance covariance matrix 

se
2
(X

T
X)

-1
. One way to visualize how the coefficient estimates are correlated is through a 

technique called bootstrapping. After an initial OLSR, coefficient estimates, residuals and 

predicted values are obtain. The residuals are then randomly sampled with replacement 

and added to the predicted values E(T) = b·t + s·sp. Replacement means that for n data 

points n residuals are selected in such a way that any given residual may be selected more 

than once or not at all. These sampled residuals are then added to the predicted values  

E(T) = b·t + s·sp, creating a new data set. An OLSR is done on this new data set from 
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which new (and slightly different) coefficient estimates obtain. This process is repeated 

approximately 500 to 2000 times, producing a set of coefficients from each bootstrapped 

regression. From these coefficient sets the distribution of each estimate may be inferred. 

(For more on bootstrap methods see Shalizi [2010] and Hollander and Wolfe [1999].) 

This technique has the advantage of avoiding assumptions about the underlying 

coefficient distribution. By plotting one set of coefficients against another, the effect of 

coefficient correlation becomes apparent; the pattern is similar to that in Figure 2.1b,  

which shows time and solar coefficients from 1500 bootstrapped regressions plotted 

against each other. The elliptical pattern in Figure 2.1b is that of a bivariate normal 

 

Figure 2.1. Simulated solar proxy and correlation scatter plots. Plot (a) shows a 

simulated solar proxy with zero mean. Plot (b) shows a pairs plot of linear trend and solar 

coefficient estimates from bootstrapped regressions when the solar proxy has 0
o
 phase 

and spans one solar cycle.  The plot shows coefficient estimates from 1500 bootstrapped 

regressions of Eq. (2.2). The solar response coefficients were multiplied by 2 to put them 

on a scale of K (solar max – solar min). 
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distribution and indicative of the kind of collinearity under consideration. 

 If there were no collinearity the elliptical pattern would be horizontal, vertical, or 

circular (e.g., in Figure 2.3b and 2.4b the coefficients are uncorrelated), and the 

confidence intervals would indicate, to a specified level of confidence, the region that 

presumably includes the true value of the estimator. Also, the possible values of one 

coefficient would say nothing about the possible values of the other. But when 

coefficients are correlated the elliptical pattern has a clear slant to it (e.g., Figures 2.1b 

and 2.2b). In such cases the region covered by the indicates possible coefficient values 

from any given regression. As mentioned previously, the data have a −4 K/year cooling 

rate and 4 K solar response. The phase of the solar proxy is indicated in Figures 2.1a and 

2.2a. The dashed gray lines indicate the 2σ or 95% confidence intervals for each 

coefficient. In Figure 2.1 they indicate a likely cooling rate between      

 
 

Figure 2.2: Same as Figure 2.1 except for a data set spanning half a solar cycle.
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–0.2 and –0.6 K/year and a likely solar response between 2.2 and 5.7 K. But because the 

coefficients are correlated joint inferences cannot be made freely. For example, the 

regressions indicate it would be highly unlikely that the true value of the solar response  

be 2.5 K and the true value of the time coefficient be –0.6 K/year. Those two values when 

taken together are outside the elliptical region jointly covered by the bootstrapped time 

and solar coefficient estimates. Also, if an inference is made from an independent source 

that the true value of the solar response is 4.7 K, then at s = 4.7 K the horizontal and 

vertical width of the elliptical region is quite narrow and the cooling rate is restricted to 

approximately –0.54 to –0.40 K/year, which is much narrower than the overall spread. 

Similarly, if it is independently inferred that the cooling rate is −0.3 K/year, then the solar 

response is approximately between 2.7 and 3.9 K. If the value of one is specified then a 

 

Figure 2.3: Linear and solar coefficient estimates from bootstrapped regressions when 

the solar proxy has a 90
o
 phase. (Solar max is at the time center of the data set.) Figures 

(a) and (b) are otherwise the same as in Figure 2.1. The coefficients are uncorrelated. 
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narrow confidence interval for the other obtains. The important point is that when 

coefficient estimates are strongly correlated, inferences about one coefficient cannot be 

made independent of inferences about another to which it is correlated. 

 Each coefficient value in Figures 2.1b-2.4b can also be thought of as a possible mean 

value for solar and time coefficient estimates obtained from an OLSR on local 

measurements from 1500 different data collection sites. Assuming that the temperature 

data at every site has a –0.4 K/year cooling rate and a 4 K solar response, and assuming 

that the same model is fit to the data, then the distribution shown in Figure 2.1b 

represents possible OLSR time and solar coefficients from 1500 sites. Since the standard 

error estimates (SEs) are unaffected by mean coefficient values, they each have a 

bivariate distribution similar to the overall pattern but centered on their own mean 

 

Figure 2.4: Same as Figure 2.2 except the solar proxy maximum is at the time center of 

the data set. (A solar proxy phase angle of 90
o.
) 
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coefficient value. Using Figure 2.1b as an example, if the time coefficient estimate from a 

given site has a smaller magnitude (i.e. a greater cooling rate) than the actual cooling rate 

the solar coefficient estimate is likely to be too small. But if the cooling rate estimate is 

larger than the actual cooling rate then the solar coefficient estimate is likely to be greater 

than the true solar response. However, true values are typically unknown, making it 

difficult to know if the results from any given site have a high/low or low/high tendency. 

 Figure 2.2b illustrates another example of extreme coefficient correlation. It differs 

from the first case in that the simulated data extends one-half solar cycle. In this case the 

correlation between coefficients is extreme and the error is unacceptably high. 

 One might consider omitting the solar proxy altogether. However, if there is a 

significant solar response in the temperature data this could introduce significant bias to 

the linear trend coefficient. 

 

4. No Collinearity 

 When the solar proxy phase angle is ±90
o
, that is, when the solar proxy maximum or 

minimum is at the time center of the data set, there is no correlation between the time and 

solar coefficient estimates. Figures 2.3b and 2.4b show cases with no coefficient 

correlation for data sets spanning 1 and ½ solar cycles, respectively. Under these 

conditions, there is no coefficient correlation between the estimated time and solar 

response coefficients. The true value of the solar and time coefficients is within the 

elliptical region, but the value of one coefficient estimate says nothing about the value of 

the other; inferences about one may be made without reference to the other. Also, when 

compared to the spread in Figures 2.1b and 2.2b, the overall spread in Figures 2.3b and 
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2.4b is substantially narrower. 

 The phase of the solar proxy can have a significant impact on the estimated 

coefficient SEs. In going from Figure 2.3b to Figure 2.1b the standard deviation of the 

time and solar coefficient estimates each increased 59%. In going from Figure 2.4b to 

Figure 2.2b, the standard deviation of the solar coefficient estimates increased 96%, and 

that of the time coefficient 327%. 

 

5. Effect of Collinearity on Standard Errors 

 High standard errors can indicate greater sample-to-sample variation; however, 

collinearity can also inflate coefficient standard errors, increasing the possibility that a 

given coefficient estimate is far from its true value. The reason behind larger standard 

errors can be seen more clearly from the equation for the SE of a regression coefficient 

 

kk

e
bk

TSSR

s
SE

)1( 2
,     (2.3)  

 

where SEbk is the estimated standard error of the coefficient for the Xk regressor. se is the 

residual standard deviation, Rk
2
 is the coefficient of determination obtained by regressing 

Xk on the other X variables, and TSSk is the total sum of squares,    , where 

 is the average of Xk. The factor (1 – Rk
2
)
-1 is called the variance inflation factor (VIF). 

High VIFs can indicate a collinearity problem. (As with correlated coefficients, high 

VIFs are sufficient but not necessary for collinearity. Also, the number of near 

dependences cannot be determined from VIFs, and there is no objective standard to 

determine how high a VIF must be to indicate a collinearity problem.) Because there are 
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only two explanatory variables in the model under consideration, the coefficient of 

determination Rk
2
 becomes the square of the correlation between the time and solar 

regressors, and the total sum of squares may be written as TSSk = ΣXki
2
 = |Xk|

2
 = Xk,1

2
 + … 

+  Xk,n
2
. 

 Applying these changes to Equation (2.3) and writing the equations for the standard 

error estimates for the time and solar coefficients we get the following two equations: 
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where ρs,t is the coefficient of correlation between the solar and time regressors, and |sp|
2
 

and |t|
2
 are the square of the magnitudes of the solar and time explanatory variables, 

respectively. That is,  
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With the SEs written in this form it is easier to see how the interaction of the two 

independent variables and length of the data set influence the SE estimates. A high 

correlation between the solar proxy and time regressors, i.e. ρs,t approaching 1, increases 

the standard error. In contrast, a longer data set has a larger |sp|
2
 and |t|

2
, which lowers the 

standard error.  
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 However, it was found from simulations that if the data set spans 1.3 solar cycles or 

more, then |sp|
2
 and |t|

2
 are sufficiently large and the correlation between the time and 

solar regressors is sufficiently small that the SEs are not greatly inflated and the 

coefficient correlation between their respective coefficients negligible. 

 

6. Effect of Instrument Changes on Collinearity 

 If there is a large temperature perturbation near the beginning or end of a data set, 

there is likely correlation between the regressor modeling the perturbation and the time 

and/or solar regressor. A correlation problem would also apply to calibration step 

functions sometimes used in regressions on rocketsonde temperatures. Over time 

instrumentation changes may have introduced bias into the temperature measurements, 

and a step function is sometimes used to account for these changes. Such temperatures 

from various sites can span several decades (Ryori, Japan [Keckhut and Kodera, 1999]; 

US rocketsondes in North and South America [Keckhut, 1999]; and Volgograd, Russia 

[Kubicki et al., 2006]).  

 As an illustration, temperatures from the Volgograd site shown in Figure 2.5a were 

taken from Kubicki et al. [2006]. These temperatures have an instrumentation change in 

the first half of the data set.  The present authors applied an OLSR model to the data, 

containing a unit step function, solar proxy, and time regressor. From this initial 

regression, sets of coefficient estimates were calculated using the bootstrap method. 

Figure 2.5(b, c, and d) are pairs plots of the solar, time, and step function coefficient 

estimates obtained from bootstrapping. There is a clear correlation between the step 

function and time coefficient estimates (Figure 2.5d), if there were no correlation the 
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elliptical pattern would be horizontal, vertical, or circular. If the value of the step function 

coefficient is unimportant, the correlation between it and the linear trend coefficient need  

not be considered. Also, there is a weak correlation between the estimated solar and step 

function coefficients (Figure 2.5c). However, it appears small enough to be neglected. 

 

7. The USU Lidar Data 

 The USU data used for this dissertation consists of 593 data points at 45 km spanning 

a time from September 1993 to August 2003. For a review of the number of data points 

and the seasonal distribution of the nightly observations see Chapter 5. The collinearity  

between the linear term and solar proxy from Equation (2.1) as applied to the USU 

temperatures at 45 and 90 km is shown in Figure 2.6, where the solar proxy is the MgII 

 

Figure 2.5: (a) Average rocketsonde temperatures above Volgograd Russia from 55-

75 km from January 1969 to September 1995, taken from Figure 1 of Kubicki et al. 

[2006]. The vertical line shows a sensor change that occurred April 1978. The solid 

gray line shows the predicted values from an OLSR that include linear trend, solar 

proxy, and step function terms. (b) The bootstrapped coefficient estimates for the solar 

proxy and time explanatory variables. The coefficient correlation is small. (c) Same as 

(b) but for solar and step function coefficient estimates. (d) A pair’s plot of the 

estimated step function coefficients and linear trend coefficients. The coefficient 

correlation is strong. 
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data. The effects of collinearity was shown, as before, by the bootstrapping technique 

using the trend and solar terms found in the OLSR. The correlation between the linear 

terms and solar proxy terms is nearly the same at both altitudes because the correlation is 

based on the model and not the temperatures. (At 45 km the correlation between the 

sin ωt term and the linear term is −0.86. At 90 km it is −0.88.) The standard deviations 

determine how wide the elliptical pattern is. The slope of a line going through the  

principal axis of the elliptical pattern shown in Figure 2.6 is given by a = ρ·SEb/SEs,  

where a is the slope, ρ is the correlation between the b and s coefficients (linear trend 

coefficient and solar proxy coefficient), and SEb and SEs are the standard errors of the b 

 

  

Figure 2.6: A realistic collinearity simulation. Plot (a) shows the MgII data used in the 

regression. Plots (b) and (c) illustrate the collinearity between the linear term and solar 

proxy term for Equation (2.1) applied to the USU temperatures at 45 and 90 km. 
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and s coefficients. The SE of the MgII coefficient at 90 km is nearly 5 times larger than 

its SE at 45 km. This is also true for the linear term: Its SE at 90 km is nearly 5 times 

larger than at 45 km. It is also noteworthy that at 90 km the atmospheric solar response is 

such that it is possible to get a change in sign. If the linear trend is −2 K/year, then the 

atmospheric solar response will go from negative to slightly positive. At 45 km if the 

linear trend is +0.1 K/year, then the solar response goes from −1 K/solar cycle to near 

zero. 

 

8. Conclusions 

 In most cases not much can be done about collinearity. Even in cases where the time 

and solar regressors are collinear the coefficient estimates are still BLUE. However, for 

collinearity problems where coefficient estimates are correlated their possible values are 

restricted to an elliptical region shown by the bootstrapped coefficient estimates.  

 The simulations in this paper show that models giving questionable trend and solar 

responses can arise because of problems relating to collinearity.   

 (1) Collinearity between the time and solar proxy variables leads to their respective 

coefficient estimates being correlated if solar maximum or minimum does not occur near 

the time center of the data set. For a step function regressor, if the location of the step 

transition (i.e. where step transitions from low to high) is near the time center of the data 

set, then there will be a strong correlation between the time and step function regressors, 

thus their coefficient estimates are also likely to be correlated; the strongest correlation 

between the time and step function regressors occurs when the step is in the time center 

of the data set. More generally, any explanatory variable modeling a temperature 
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oscillation should be considered for possible coefficient correlation with the other 

coefficient estimates. For example, data modeling a temperature spike due to volcanic 

eruption could be correlated with the time and/or solar regressors. (2) Coefficients of 

collinear regressors are likely to be correlated. (3) The SEs of correlated regressors will 

be inflated. (4) The effects of coefficient correlation can be visualized using the bootstrap 

method. This is an easy method that does not make assumptions about the underlying 

coefficient distributions and allows a visual representation of the region of possible 

coefficient values. (5) In the case of collinearity between time and solar regressors, the 

effects of collinearity can be mitigated by extending the data set. Our simulations indicate 

that extending the data set to 1.3 solar cycles significantly reduces the coefficient 

correlation between the estimated time and solar coefficients. In the case of a step 

function regressor, the maximum coefficient correlation between the step function and 

time regressors occur when the step is near (or at) the time center of the data set. If the 

step is closer to the beginning (or end) of the data set, as would happen as data is added to 

the data set, the coefficient correlation is diminished. (6) If one regressor has a near linear 

dependence with another, a joint interpretation is unnecessary if the coefficient estimate 

of one of the regressors is unimportant. (7) Inflated SEs and the degree of coefficient 

correlation are independent of the magnitude of the coefficient estimates themselves. 

 This may also explain some of the results reported in Table 5 of Beig et al. [2003] in 

which temperature trends were derived using various methods such as OH emission 

layer, lidar, rocketsonde, etc., from the MLT region and ranged from +5 K/decade to 

−10.5 K/decade. Several of the data sets listed span approximately one solar cycle or 

less. As far as the USU data set is concerned, our data set spans one solar cycle, and the 
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addition of three to four years of additional data could effectively eliminate the 

collinearity problem.  
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CHAPTER 3 

 

SOLAR CYCLE VARIABILITY: 

 

AMPLITUDE AND PHASE ANGLE 

 

Abstract. Determining the atmospheric temperature response to solar input is typically 

done by fitting a linear model to time-series temperature data using a least squares 

approximation. These models typically include a solar proxy that follows the 11-year 

solar UV intensity variation and a linear term to estimate the cooling rate. One difficulty 

encountered by researchers is separating the atmospheric solar response from solar-like 

variations of decadal timescale; the atmospheric solar-like response could be out of phase 

with the solar-like input. If so, and a fixed-phase solar proxy is employed, the phase 

difference between the solar input and the atmospheric solar response can significantly 

bias the linear regression coefficient and attenuate the solar proxy coefficient. The nature 

of the bias and attenuation is investigated. Also, sine and cosine solar-like terms were 

fitted to USU lidar data, as well as the stratopause ERA and CPC temperatures, to check 

for signals of a decadal timescale that are out of phase with the solar input. The ERA and 

CPC data are nominally from the location of the USU Rayleigh lidar (41.74ºN, 

111.81ºW). The sine and cosine terms describing the atmospheric solar response were 

found to be statistically significant at some altitudes but not others. The phase difference 

between the solar input and the solar-like atmospheric response can vary from 0 to 2π 

rad. The magnitude of the solar-like response (max – min) varies from 3.5 K at 45 km to 

0.5 K between 50 and 60 km and, then, from 60 to 90 km it steadily increases to around 

4.5 K (max – min). Also, a solar-noise term was included in the least squares model and 
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was found to be of statistical significance in the lower and upper mesosphere (45-54 km 

and 75-87 km respectively), but not the middle mesosphere. 

 

1. Introduction 

 The solar electromagnetic flux follows an approximate 11-year intensity variation. 

The solar ultraviolet output in the near and middle UV is of particular interest because of 

its significant impact on stratosphere and mesosphere temperature structure. While 

overall solar intensity varies less than 1%, the shorter UV spectrum varies from 5% at 

205 nm increasing to 50% in the Lyman-α line [Donnelly et al., 1982; Donnelly, 1991]. 

The shorter wavelengths less than 300 nm are nearly completely absorbed by the Earth’s 

middle and upper atmosphere [Rottman, 1988]. This large variation in short wave 

radiation affects photochemical ozone production and can alter middle atmosphere 

thermal characteristics which can, in turn, alter the propagation of planetary waves and 

global circulation patterns affecting heat advection and chemical transport [Calisesi and 

Matthes, 2007]. Given the scale and influence of these mechanisms it is important to 

determine how the atmosphere responds to variations in solar input. 

 Various methods have been employed to determine how the atmosphere responds to 

variations in solar input. The most direct method involves looking for elevated 

temperatures at solar maximum and depressed temperatures at solar minimum 

[McCormack and Hood, 1996; Chanin, 2006]. This direct inspection method makes no 

assumptions about how the atmosphere is responding to solar input and does not have the 

problems that sometimes accompany the least squares modeling approach, model 

misspecification and collinearity. But this method lacks the precision of a least squares 
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analysis. Two other methods employ a solar UV proxy: (1) deseasonalized temperatures 

can be checked for correlation with a fixed-phase solar proxy, and (2) a least squares 

model containing a solar proxy can be fit to time series data. The first cannot determine 

the existence of a phase offset between solar input and any decadal scale solar-like 

atmospheric responses. If atmospheric, the solar-like response is 90
o
 out of phase with the 

solar input, the correlation between the deseasonalized temperatures, and the solar proxy 

will be approximately zero. The second method suffers from a similar problem. By 

including a fixed-phase solar proxy in a least squares model, an implicit assumption is 

made. The atmosphere responds only in phase or out of phase to the solar input. 

However, if the atmospheric response differs from solar input by a phase of 90º, then the 

solar proxy coefficient will be approximately zero. 

 There are several choices of solar proxy: Sunspot number, F10.7 flux, He I 1083 nm 

line, Mg II core-to-wing ratio, and Plage index. (See Lean [1991] for a short list.) Based 

on the findings of Keckhut et al. [1995] and our own experience, we have employed the 

Mg II proxy in this analysis. The daily Mg II data we employ are from the NOAA Space 

Weather Prediction Center website. Missing data points were interpolated and the data 

were smoothed using an 81 day boxcar average to suppress oscillations of periods less 

than 81 days.  

 

2. Section Summary 

 In section 3, the issues of model specification are addressed. It is shown that when a 

decadal scale variation is out of phase with the solar input and a fixed-phase solar proxy 

is used in a least squares model, the phase difference can lead to significant bias in the 
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linear trend coefficient and attenuate the amplitude of the fixed-phase proxy coefficient. 

However, in cases where a fixed-phase proxy is used, if the proxy is sine-like (as opposed 

to cosine-like) the solar proxy will not bias the linear terms, regardless of the phase of the 

atmospheric response. Other cases where the linear term is unbiased by the solar term is 

where the atmosphere is responding directly in phase or out of phase to the solar input. In 

cases where a fixed-phase proxy is used, this would most likely occur where the absolute 

value of the solar proxy coefficient is at a maximum value. In section 4, evidence is 

presented for the existence of a decadal scale atmospheric temperature perturbation with 

a variable phase to the solar input. It is then argued that an independent solar-noise term 

should be included in a least squares mesosphere temperature model. Various models are 

also applied to USU lidar data. In section 5, this is repeated for the stratopause CPC and 

ERA temperature data and the model coefficients are checked for statistical significance. 

A Mallow’s Cp test is employed to determine if the solar-like terms and the solar-noise 

terms are present in any of the favored sub-models (models made from subsets of the full 

model terms). Section 6 contains a discussion of the results from section 4 and a short 

discussion of the amplitude and phase profiles found in the USU data, as well as in situ 

variations in the atmospheric solar response found by other researchers. Section 7 

contains a short discussion of possible causes of a phase lag between atmospheric solar 

response and solar input. Section 8 contains a summary and conclusions. 

 

3. Derivation of Bias and Attenuation 

 If a model is not correctly specified, then problems of coefficient bias and attenuation 

can arise, as well as collinearity. While both are important linear regression issues, the 
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collinearity problem will not be addressed here: It has been addressed more fully in 

Chapter 2. We instead focus on model specification. There are three kinds of 

specification applicable to linear models. A model may be over specified, under 

specified, or cross specified. If over specified the proposed model has all true model 

regressors, and additional terms. The correctly specified terms will, on average, have 

unbiased coefficients, and the additional terms will have zero coefficient values. If the 

model is under specified, that is, if the proposed model has some but not all true model 

regressors and no others, then the coefficients of the correctly specified terms will be 

biased. If the model is cross specified, that is, if the proposed model contains some but 

not all true model regressors and additional regressors, the true model terms will have 

biased coefficients and the extra terms will have coefficients that are functions of the true 

model terms and extra terms. Examples of this follow. For our purposes cross 

specification is of primary interest. 

 For an over specified model, if the true model is E(Y) = α1x1 + α2x2 and the proposed 

model is E(Y) = α1x1 + α2x2 + α3x3, then the correctly specified terms have unbiased 

coefficients and the extra x3 term has a zero coefficient value, that is, the expected 

coefficient values are E(a1) = α1, E(a2) = α2, E(a3) = 0. For an under specified model, if 

the true model is E(Y) = α1x1 + α2x2 + α3x3 and the proposed model is E(Y) = α1x1 + α3x3 

the expected coefficient values E(a1) and E(a3) will be biased. These results are 

well known and the derivations are given in Appendix B. 

 For cross specification, if the true model is E(Y) = α1x1 + α2x2 and the proposed 

model is E(Y) = α1x1 + α3x3, the expected coefficient values E(a1) and E(a3) are given by  
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E(a1) = α1 + α2[(x1
T
 x2 )(x3

T
 x3) – (x1

T
 x3)(x2

T
 x3)]/Δ , 

  E(a3) = α2 [(x1
T
 x1)(x2

T
 x3) – (x1

T
 x2)(x1

T
 x3)]/Δ , 

 

where Δ is the determinant of the X
T
X matrix, where X = [x1, x3]. (See Appendix B for 

derivation.) Notice the coefficient value for a3 is a function of the true model regressors 

x1 and x2 and the extra regressor x3. This result will now be applied to a standard least 

squares middle-atmosphere temperature model. 

 A least squares model for middle atmosphere temperatures typically looks something 

like this, 

 

Tij = Ij + βjti + γ1jcos(2π·ti) + γ2jsin(2π·ti) + η1jcos(4π·ti) + η2jsin(4π·ti) + αjSPi + εij. 

 

The subscripts i and j are the time and altitude indices, respectively. T is a time series of 

atmospheric temperatures, t is the time of each measurement, I is the intercept, SP is the 

fixed-phase solar proxy, and ε is the residual; β is the linear cooling rate and α is the 

magnitude of the atmospheric solar response. The other four terms comprise the annual 

and semiannual oscillation. Because the correlation between the annual and semiannual 

terms is quite small, omitting them will not significantly affect the other regression 

coefficients. Consequently, both terms may be omitted from the following analysis, 

permitting consideration of a simplified model, 

 

    Tj = βj·t + αj·SP + εj .      (3.1) 

 

This model is mean centered so the intercept term is omitted—mean centering does not 

affect the coefficient values. Let Equation (3.1) represent the proposed model, or applied 



56 

  

5
6
 

model (the model that will be applied to the temperature data). From here the subscripts 

will be dropped for convenience. Now suppose the correct model (the model we should 

have applied to the temperatures) is  

 

 T = β·t + α·sin(ωt + φ) + ε     (3.2a) 

  

which may also be written as  

 

E(T) = β·t + α·SLR ,      (3.2b) 

 

where φ is the phase of the atmospheric solar response, β is the linear trend coefficient, α 

is the amplitude of the atmospheric solar response, ε is the residual, SLR = sin(ωt + φ), 

and E(T) are the expected values for the model. This model contains a decadal scale 

solar-like sin(ωt + φ) term with phase offset φ and frequency ω = 2π/(11 yr). (Though the 

solar cycle can vary from 10 to 12 years, for our purposes we assume an 11-year solar 

cycle. This will not impact the conclusions.) The SLR = sin(ωt + φ) is shorthand for SLR1 

= sin(ωt1 + φ), SLR2 = sin(ωt2 + φ), etc., where ω and φ are not time varying. Since the 

phase offset can be measured from any time, the time center of the data set is selected for 

convenience. This also applies to the proposed model. Because data acquisition may 

begin at any point during the solar cycle the solar proxy has a phase which is also 

measured from the time center of the data set. Writing the solar proxy with a phase offset 

as we did with the SLR term we get SP = sin(ωt + θ), where θ is the phase of the solar 

proxy, also measured from the time center of the data set. The applied model, represented 

by Equation (3.1), becomes 
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T = β·t + α·sin(ωt + θ) + ε,     (3.3a) 

    

which may be written as    

 

E(T) = β·t + α·SP .      (3.3b) 

 

It needs to be pointed out that in both the solar-like SLR term and the solar proxy SP 

term ω, φ, and θ are not determined by the regression, their values can be thought of as 

predetermined; only the β and α terms are solved for in the regression. In standard normal 

form the expected values of the Model (3b) coefficients is given by 

 

E(g) = (X
T
X)

-1
X

T 
E(T), 

 

where X = [t, SP] is the data space, E(T) are the expected values of the time series of 

atmospheric temperatures, and g = [b, a]
T
. E(g) are the expected values for the model 

coefficients and the X
T
X matrix is n×n. If there is no coefficient bias or attenuation then 

we expect that E(b) = β and E(a) = α, where b is the regression estimate for the true linear 

trend β and a is regression estimate for the true atmospheric solar response amplitude α. 

Substituting Equation (3.3b) into E(T) in the above equation and solving for E(b) and 

E(a) we get 

 

E(b) = β + α{ (SP
T
SP)(SLR

T
t) – (SP

T
t)(SP

T
SLR)} / Δ,   (3.4) 

 

E(a) = α{ (t
T
t)(SP

T
SLR) – (SP

T
t)(SLR

T
t)} / Δ,   (3.5)

 

 

where t
T
t, SP

T
SLR, SP

T
t, etc, are inner products, and Δ is the determinant of X

T
X. These 
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equations indicate a biased linear trend term and an attenuated solar response amplitude. 

For reasons that will be made clear later, the linear term is unbiased if the solar input is 

sine-like (as opposed to cosine-like). (Figure 3.1.) 

 The expected values for Equations (3.2a) and (3.3a) are  

 

E(T) = β·t + α·sin(ωt + φ),     (3.6) 

E(T) = β·t + α·sin(ωt + θ).     (3.7) 

 

Model (3.6) is the true model (the model we should have used) with a solar like response 

sin(ωt + φ); Model (3.7) is the applied model with solar proxy sin(ωt + θ). The parameter 

θ is determined by the phase of the solar proxy and φ is determined by the way the 

atmosphere responds to solar input and can vary with altitude. The φ – θ is the phase 

difference between the atmospheric solar response φ and the solar input θ. 

 To further develop Equations (3.4) and (3.5) the inner products must be evaluated. 

The inner products are summations, which can be approximated as integrals. Because we 

are assuming mean centered time, (tmax – tmin)/2, the integrals are evaluated from –t0 to 

+t0, where t0 is the maximum time of the time-centered, time regressor; if tmax = 12 years 

and tmin = 2 years then t0 = 5 years. For example, evaluating t
T
t gives δt·∑titi ~ ∫t

2
 dt. 

Integrating from –t0 to +t0 we get 2/3 t0
3
, the δt term is an analogue to dt and in Equations 

(3.4) and (3.5) divides out. Evaluating the other inner-product terms in a similar manner 

gives the following expressions for E(b) and E(a). 

 

 E(b) = β + α{[t0 – s2cos(2θ)/2ω – 2s1
2
sin

2
θ/t0ω

2
][2·cos(φ)(s1 – ωt0c1)/ω

2
] –  

[t0cos(φ – θ) – s2cos(φ + θ)/2ω – 2s1
2
sin(φ)sin(θ)/t0ω

2
]  
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[2·cos(θ)(s1 –ωt0c1)/ω
2
]}/δ .    (3.8) 

 

E(a) = α{ [2t0
3
/3][ t0cos(φ – θ) – s2cos(φ + θ)/2ω – 2s1

2
sin(φ)sin(θ)/t0ω

2
] − 

 cos(θ)·cos(φ)·[2(s1 – ωt0c1)/ω
2
]
2
}/δ ,   (3.9) 

 

where δ = (t
T
t)(SP

T
SP) – (SP

T
t)

2
 = { [2t0

3
/3]·[t0 – s2cos(2θ)/2ω – 2s1

2
sin

2
θ/t0ω

2
] – 

[2·cos(θ)( s1 − ωt0c1)/ω
2
]
2
 }, s1 = sin ωt, c1 = cos ωt, and s2 = sin 2ωt. E(a) is the 

expected value for the atmospheric solar response coefficient and E(b) the expected value 

for the linear trend coefficient. (A more detailed derivation is given in Appendix G.) 

 To test the accuracy of these equations, a least squares simulation was done with data 

generated from the true model given by (3.2a) with the regression model given by (3.3a). 

The quantities a/α and b – β were compared to the attenuation and bias predicted by 

Equations (3.8) and (3.9). That is, regressions were done with known values of α and β 

with combinations of phase angles of φ and θ; the error of (b – β) and (a/α) was checked 

 
 

Figure 3.1. MgII proxy and solar noise: (a) shows the mean centered, smoothed, scaled 

MgII index covering the time span of the USU data set; (b) shows the solar-noise term 

obtained by subtracting sin ωt from the Mg II data. Only the points for the times for 

which we have data are shown. Plot (b) is scaled such that the standard deviation is equal 

to 1. 
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against the bias and attenuation predicted by Equations (3.8) and (3.9). The angles θ and 

φ were varied from 0 to 2π in steps of 0.017 rad (~1º), and every combination of θ and φ 

were checked. The amplitude of the atmospheric solar response was α = 1 K and the 

linear trend was β = −0.4 K/year. It was found that the maximum absolute value 

difference of (a − α) and (b − β) was on the order of 1×10
-4

 for both. 

 The next question is how well do Equations (3.8) and (3.9) predict the attenuation and 

bias for the solar response and linear trend coefficients when an annual oscillation (AO) 

and semiannual oscillation (SAO) are included in the model. Simulated temperature data 

was generated as mentioned above but with an AO and SAO included. The regression 

model also contained an AO and SAO. The angles θ and φ were varied from 0 to 2π in 

steps of 0.017 rad (~1º), and every combination of θ and φ were checked. The amplitude 

and linear trend were left at α = 1 K and β = −0.4 K/year, respectively. In this case the 

maximum absolute value difference of (a – α) and (b – β) were 0.008 K and 

0.003 K/year, respectively. These are larger than those in the previous paragraph because 

of the inclusion of the AO and SAO oscillations in the test signal. Because the AO and 

SAO oscillations cover several periods over the course of a solar cycle their amplitudes 

and phases will not affect the linear trend and solar response coefficients. Consequently 

we did not vary the amplitudes and phases of the AO and SAO. 

 To check for more realistic conditions the above simulation was repeated, this time 

replicating the number of data points and data gaps in the USU data set. The maximum 

absolute value difference between (a – α) and (b – β) were 0.39 K and 0.075 K/year, 

respectively. As these results would apply to the USU data, the maximum error between 

the bias and attenuation predicted by Equations (3.8) and (3.9) and the fixed-phase proxy 
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amplitude and the linear trend is about 0.39 K and 0.075 K/year, respectively. These are 

larger than the results from the previous two paragraphs because of the presence of data 

gaps in the signal simulation. 

 Neither these results nor Equations (3.8) or (3.9) can be used to make corrections to 

any of the linear regression coefficients reported in the literature because the phase and 

amplitude of the atmospheric response are unknown when a fixed-phase solar proxy is 

employed in the regression model. 

 What follows is an explanation of some special cases of interest. If the phase of the 

solar proxy is θ = 0 radians, that is, where the solar proxy is sine-like, then E(b) = β  and 

E(a) = α·cos(φ). If θ = π, then E(b) = β and E(a) = −α·cos(φ). Also, with the addition of 

more data the bias approaches zero but E(a) approaches α·cos(φ – θ). Another interesting 

case is where θ = φ, or θ = φ ± π, that is, where the atmospheric solar response is in phase 

or out of phase with the solar proxy. In the case of θ = φ, E(b) = β and E(a) = α. In the 

case of θ = φ ± π, E(b) = β and E(a) = −α. 

 The attenuation of the true atmospheric solar response amplitude cannot be greater 

than one, so altitudes where the fixed-proxy coefficient is at a maximum or minimum 

value seem more likely to be regions where the atmosphere is directly in phase or out of 

phase to the solar input. Given this special case, in models where a fixed-proxy regressor 

is employed, altitudes where the fixed-proxy coefficient is at a maximum or minimum 

value are ideal for identifying the maximum of the atmospheric solar response and the 

magnitude of the linear trend coefficient. In these regions the bias is likely to be smaller 

and the proxy coefficient is more likely to represent the true atmospheric solar response 

amplitude. In between those levels the magnitude of the fixed-proxy coefficient is  
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determined principally by the amplitude and phase of the decadal scale solar-like 

atmospheric signal and the solar proxy phase. Naturally, one cannot be sure a maximum 

or minimum fixed-proxy coefficient value exactly coincides with an in phase or out of 

phase atmospheric solar response. But it seems unlikely the atmospheric solar response 

could affect a fixed proxy coefficient significantly more than the phase difference (φ – θ) 

does because the proxy coefficient cannot go negative without a phase offset. 

 Figure 3.2 shows the maximum absolute-value of the bias as a function of the length 

of the data set as calculated from Equation (3.8) for the case where the atmospheric solar 

response amplitude α is 1 K. The linear trend bias drops off rapidly with the addition of 

more data and has a maximum absolute value of 0.96 K/year at 5 years (t0 = 2.5 y), 

0.24 K/year at 10 years (t0 = 5 y), and 0.13 K/year at 12 years (t0 = 6 y). (The parameter t0 

is the maximum value of the time centered time regressor. In other words if t0 = 2.5 years 

then the time span of the data is from −2.5 to +2.5 years, or 5 years long.) Given that the 

expected middle atmosphere cooling is in the neighborhood of 0.1 K/year, this amount is 

not insignificant. (See section 3 in Chapter 1 for references.) To calculate the linear trend 

bias for different atmospheric solar responses, multiply the appropriate value from Figure 

3.2 by α. For example, if the amplitude of the atmospheric solar response is 2 K then the 

maximum absolute value of the bias becomes 1.92 K/year at 5 years, 0.48 K/year at 10 

years, and 0.26 K/year at 12 years. Also, the bias goes to zero at 15.6 years and again at 

26.8 years (t0 = 7.812 and 13.43 years, respectively). This occurs because for t0 values of 

7.812 and 13.43 years, s1, defined as sin ωt, equals ωt0c1, where c1 = cos ωt. That is, 

sin(ωt) = ωt0cos(ωt). 
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4. Applied to USU Data 

 In this section we look at the amplitude and phase of the atmospheric solar response 

found in the USU temperature data. The USU data consists of 593 nightly observations 

from September 1993 to August 2003 ranging from 45 to 90 km in altitude. The 

following model was fit to the USU temperature time series data, 

 

 Ti = IOi + C1sin(ωti) + C2cos(ωti) + εi,    (3.10) 

 

where IOi is a placeholder for Ii + β·ti + γ1sin(2π·ti) + γ2cos(2π·ti) + η3sin(4π·ti) + 

η4cos(4π·ti), I is the intercept, β is the linear trend coefficient, γ1 and γ2 the coefficients for 

the annual oscillation, η3 and η4 the coefficients for the semi-annual oscillation, and t is 

the time. The subscript i is the time index. From C1 and C2 one can calculate the 

 

The statistical significance of coefficients C1 and 

C2 from the model above. 

 
 

Figure 3.2. Maximum absolute value of the bias calculated from Equation (3.8); (b) 

shows a magnified view of the 15-30 year range. The amplitude of the atmospheric solar 

response α is 1 K. To get bias for different solar response amplitudes multiply by the 

amplitude of the atmospheric solar response. If α = 2 K then everything is doubled. 
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amplitude and phase of the solar-like response; ω = 2π/11 y
−1

. It was found that at some 

altitudes only the sine term C1 was statistically significant at greater than 95%. At others 

only the C2 cosine term was significant at greater than 95%. And there were altitudes 

where both terms were significant at greater than 95%. The sin ωt and cos ωt are 90º out 

of phase and when this phase difference is expressed in terms of the 11-year solar cycle, 

they are about 2.75 years out of phase. Consistent with the USU findings, it has been 

found by several researchers that the solar proxy coefficient for a fixed solar proxy can be 

negative at some altitudes and positive at others, indicating a phase offset of 180º, or 5.5 

years. This means that the phase difference between the solar input and atmospheric 

solar-like response can be 0º, 90º, 180º, 270º, or some other value. 

 To further test for the presence of an out-of-phase solar-like response, the following 

test models were applied to the USU data: 

 

E(T) = IO + α1·MgII.      (3.11) 

E(T) = IO + α2·sin(ω·t) .     (3.12) 

E(T) = IO + α3·sin(ω·t + φ).    (3.13) 

 

IO is as mentioned above; the Mg II data was scaled to fit sin ωt (Figure 3.1), ω is the 

frequency of the solar cycle. There was some difficulty getting a non-linear least squares 

technique to converge using Model (3.13). We worked around this problem by first 

fitting E(T) = IO + C1·sin(ωt) + C2·cos(ωt) and calculating the phase φ = atan(C1/C2) 

then refitting Model (3.13) with a fixed phase in sin(ωt + φ) and solving for α3 using 

ordinary least squares. Our main interest is in the magnitude of α3 and its p-value, which 

is a measure of the statistical significance of α3. We found the differences between α3 and 
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√(C1
2 
+ C2

2
) to be minute. Model (3.11) is a typical model for middle atmosphere 

temperatures. Model (3.12) substitutes a sin ωt for MgII. These two equations assume the 

atmosphere response either in phase or out of phase to the solar input. Model (3.13) 

assumes the atmosphere can respond with any phase to the solar input. Models (3.11)-

(3.13) were fit to the USU time series temperature for every altitude bin. The confidence 

levels of α1, α2, and α3 are shown in Figure 3.3a. The α3 term, corresponding to sin(ωt + 

φ), is statistically significant over a greater altitude range than the other solar related 

terms, and with the exception of a region between 50-53 km none of the other solar-like 

terms have greater statistical significance than α3. One thing that stood out was the 

similarity between the confidence levels of α1 and α2 (corresponding to MgII and sin ωt), 

between 65 and 75 km. 

 The only significant difference between the sin ωt and MgII terms is the short term 

noise variations, suggesting the solar-noise, or short term solar variations, might be of 

physical importance at some altitudes but not others. With this in mind, a separate solar-

noise term was added to Model (3.13). This term is simply the residuals obtained from 

fitting sin(ωt + θ) to the solar proxy (Figure 3.1a,b). The addition of a solar-noise term in 

the model did not alter the other coefficient values to any significant degree and SEs were 

only marginally affected. (See Chapter 4 for coefficient correlations.) As can be seen 

from Figure 3.3b, between 45 and 53 km, and between 76 and 82 km, the solar-noise 

term is statistically significant at or above the 95% confidence level. In fact, from 45 to 

50 km the solar-noise term had a confidence level greater than 99%. Between 52 and 

76 km the solar-noise term has very low significance. Between 65 and 73 km, where α1 

and α2 have high statistical significance, the solar-noise term is statistically insignificant. 
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 The differing significance of the solar-noise term and the sin(ωt + φ) term possibly 

points to differing physical mechanisms driving the middle atmosphere temperature 

response to solar input. The solar-noise could be taken as a proxy indicative of how the 

atmosphere responds to short-term solar variations and the solar-like term indicative of 

longer period, i.e. 11-year, dynamical effects. 

 

5. Applied to CPC and ERA Data 

 To further test the applicability of both a solar-like atmospheric response and a solar-

noise term, the following two models were applied to CPC and ERA temperatures. The 

CPC temperatures are from 2 and 1 hPa (45 and 48 km), and the ERA temperatures are 

from 3, 2, and 1 hPa (41, 45, and 48 km). These geopotential altitudes are close to 

stratopause and at the bottom of our altitude range. The ERA data is from the European 

 

Figure 3.3. Confidence levels for regression terms: (a) shows the confidence levels for 

the MgII, sin(ωt) and sin(ωt + φ) terms. Only the 0.85 level and greater are shown; (b) 

shows confidence levels for the solar-noise term.
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Centre for Medium-Range Weather Forecasts and the CPC data is from the NOAA 

Climate Prediction Center. The ERA and CPC data are complied and calculated from 

radiosonde, balloon, aircraft, and satellite measurements and the latitude/longitude data is 

calculated using forecasting computer models. Both the CPC and ERA data is nominally 

from the location of our USU lidar. The two models applied to the ERA and CPC data 

are,  

 

T = IO + C1·sin(ωt) + C2·cos(ωt) + D·solnoise + ε .       (3.14) 

 

T = IO + C·MgII + ε .           (3.15) 

 

Model (3.14) captures the variable phase relationship where α3 = √(C1
2
 + C2

2
) and the 

phase φ = atan(C1/C2). Again, sin(ωt) = {sin(ωt1), ...} and cos(ωt) =  {cos(ωt1), ...}. The 

data covers almost exactly the same time period as our USU data. One goodness-of-fit 

statistic is the Adjusted R-squared values. This is similar to the R-squared value, but is 

adjusted for the number of variables included in the model. Based on the Adjusted R-

squared values, Model (3.14) provides an overall better fit to the CPC data at 1 hPa and 

to the ERA data at 3 hPa than did Model (3.15). For the other altitude levels, the Adjusted 

R-squared differences were minute. The statistical significance of the coefficients and 

Adjusted R-squared values for each data set are given in Table 3.1. The Adjusted R-

squared values indicate the quality of the fit. An Adjusted R-squared value near 1 

indicates that the model is a near perfect fit to the data. Also listed in Table 3.1 are the 

significance levels of the model terms. A significance level near 1 indicates that the 

regressor has high explanatory value in the model. A significance level of 0 indicates that 
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it has no explanatory value and should probably be omitted. Often researchers will 

include regressors that have a significance level of 0.8 or greater, but there is no strict 

cutoff rule to determine this. 

 Though most terms from the two models have high statistical significance when 

applied to the CPC data, for Model (3.14) both the sine and cosine solar-like terms, as 

well as the solar-noise term, have high significance at 1 hPa (48 km). At 2 hPa (42 km) 

the sine and solar-noise terms have high statistical significance but the cosine solar-like 

term is significant at the 74% level. For the ERA data the results are mixed. For Model 

(3.14) at 3 hPa, both solar-like terms have high statistical significance and the solar-noise 

term has questionable significance at 77%, whereas for Model (3.15) at the same altitude 

the MgII term is not significant, being at the 31.5% level. At 2 hPa, the solar-like terms in 

(3/14) have high to moderate statistical significance, whereas for Model (3.15) at that 

same altitude the MgII coefficient is significant at only the 21% level. At 1 hPa, the 

confidence level of the MgII coefficient in (3.15) is high, but in Model (3.14) the 

confidence level of the solar-like sin ωt term is low, at only 11.9%. It should also be 

pointed out that the Mg II data for the time period of these data sets is nearly sine-like, 

Table 3.1. The statistical significance of the coefficients for the terms in Model (3.14) 

and (3.15) applied to the CPC and ERA data sets. 

 
 CPC Data ERA Data 

 1 hPa 2 hPa 1 hPa 2 hPa 3 hPa 2 hPa 1 hPa 3 hPa 2 hPa 1 hPa 

Model (15) (15) (14) (14) (15) (15) (15) (14) (14) (14) 
Intercept 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Linear Term 1.000 1.000 1.000 1.000 1.000 0.981 0.613 1.000 0.126 1.000 
sin 2πt 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
cos 2πt 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
sin 4πt 1.000 1.000 1.000 1.000 0.309 1.000 1.000 0.233 1.000 1.000 
cos 4πt 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

MgII 1.000 1.000 * * 0.315 0.205 1.000 * * * 
sin ωt * * 1.000 1.000 * * * 1.000 0.972 0.119 
cos ωt * * 1.000 0.744 * * * 1.000 0.830 1.000 

solar-noise * * 0.998 0.986 * * * 0.773 0.331 0.996 

Adj. R-squared 0.665 0.769 0.680 0.768 0.706 0.655 0.599 0.721 0.656 0.6028 
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which means it is not likely to bias the linear trend coefficient.  

 Though the sine-like Mg II proxy and the solar-like sin ωt term are unlikely to 

significantly bias the linear trend regressor, there will be significant collinearity between 

the MgII term (and the sin ωt term) with the linear trend, indicating correlation between 

the coefficients of those two terms. (For collinearity see Chapter 2.) The change in 

statistical significance between the linear term and the solar proxy (and solar-like term) in 

Model (3.14) and (3.15) at both 44 and 49.6 km for the ERA data is symptomatic of this 

problem. At 2 hPa, the statistical significance of the linear term is 98.1% for Model 

(3.15) but drops to 12.6% when Model (3.14) is applied to the data. Whereas the sine-like 

MgII term in Model (3.15) is low at 20.5%, the sin ωt term jumps to 97.2% when Model 

(3.14) is applied. There is a similar reversal occurring at the 1 hPa level: The MgII term 

in (3.15) is significant at 100% and the linear term is at 61.3%, but for Model (3.14) the 

sin ωt term is significant at 11.9% and the linear term jumps to 100%. There is not much 

that can be done about these reversals, except to point them out. However, the cosine 

term is significant at 80% or higher at all three altitude levels. Because the cos ωt term is 

orthogonal to the sin ωt term, as well as the time regressor, its coefficient is uncorrelated 

to either regressor’s coefficients. Consequently the significance of the cos ωt term is 

unlikely to be a collinearity artifact. 

 To further investigate which model terms should be included in an OLSR applied to 

the CPC and ERA data, a Mallows’ Cp test was conducted on sub-models of (3.14). The 

Mallow’s Cp statistic is often used in variable selection methods to find suitable sub 

models from a collection of proposed explanatory variables. The danger in putting too 

many variables in a model is collinearity. Selection methods, such as the stepwise 
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method, test various combinations of these explanatory variables to find combinations 

that provide a good fit to the data. One tries to find a model with a Cp value nearly equal 

to p, which is the number of regressors in the model including the intercept. These 

models provide the least amount of bias in the coefficient estimates. When doing this test, 

it is possible to get ambiguities when different sub-models produce Cp values equally 

close to p, at which point individual experience must be applied [Mallows, 1973]. This 

method is used here to build a case for the inclusion of the solar-noise term, and the 

sin ωt and cos ωt terms, in the least squares model. Their presence in the preferred sub 

models is taken as evidence that they should be included in similar middle atmosphere 

temperature models. The results from these tests are shown in Table 3.2, with the xs 

indicating terms included in the preferred sub-model. It was found that the solar-noise 

term was included in all sub-models for the CPC and ERA data. For the CPC data the 

cos ωt and sin ωt were included at 1 hPa, but only the sin ωt at 2 hPa. For the ERA data 

both the sin ωt and cos ωt terms are included at 3 hPa. At 2 hPa only the sine term was 

included; at 1 hPa only the cosine term was included. Similar results were obtained when 

applying the Mallow’s Cp test to Model (3.14) applied to USU data. The solar-noise term 

was present in the preferred model in 19 out of 46 altitude bins, both the sine and cosine 

terms were included in 8 bins; the sine term without a cosine term occurred in 10 bins 

 

Table 3.2. The results of a Mallow’s Cp test of the coefficients for the terms in (3.14) and 

(3.15) as applied to the CPC and ERA data sets. 
 

 Altitude Int. time sin 2πt cos 2πt sin 4πt cos 4πt sin ωt cos ωt 
solar 
noise 

p Cp 

C
P

C
 2 hPa x x x x x x x  x 8 8.3 

1 hPa x x x x x x x x x 9 9 

ER
A

 3 hPa x x x x  x x x x 9 7.1 

2 hPa x  x x x x x  x 7 6.9 

1 hPa x x x x x x  x x 8 7.5 
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and the cosine term without a sine term occurred in 13. This emphasizes the value of the 

solar-noise in the linear regression model. 

 

6. Discussion of Results 

 Atmospheric solar-response amplitudes and phases were obtained by fitting E(T) = β·t 

+ α1·sin(ωt + φ), E(T) = β·t + α2·sin ωt, and E(T) = β·t + α3·MgII to the USU data after 

removing the annual and semiannual variations from the temperatures. The phase angle φ 

was determined as previously described in section 4. The αs are subscripted for 

convenience. The coefficient profiles for the αs and for φ are shown in Figure 3.4. (See 

 

Figure 3.4. Solar amplitude and phase plots. Plot (a) is the magnitude (solar max – solar 

min) of the solar-like proxy α2; (b) is the phase of the solar from solar maximum; (c) 

shows the magnitude (solar max – solar min) of the fixed-phase coefficients α1 

corresponding to sin ωt, and α3 corresponding to the MgII proxy. The circles and triangles 

in (a) and (b) are amplitudes and phases from data 40ºN adapted from Table 10 and 11 in 

Remsberg [2007]; the solid triangles are the same but for 50ºN. The phase data is repeated 

every 11-years to aid in comparison. 
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Appendix C for the methodology on calculating the error limits.) One interesting feature 

is the rapid change in φ between 57 and 60 km. At 57 km it is in phase with the solar 

input and at 60 km it is nearly 180º out of phase. The fixed-proxy coefficients α2 and α3 

also go from positive to negative at about 58 km. There are several ways zero α2 and α3 

values could occur. The most likely are a near zero amplitude in α1, an out of phase 

atmospheric response attenuating the amplitude of the true atmospheric solar response α, 

or a combination of both. The fixed-phase coefficient cannot go negative without a phase 

offset, which does exist at that altitude. The amplitude of the variable-phase solar proxy 

α1 also approaches zero at 57 km, the magnitude being 0.4 K. So both causes are 

involved. A small solar amplitude in this region is consistent with findings from other 

researchers. Kubicki et al. [2008] reported an atmospheric temperature response 

transitioning from positive to negative at 59 km during winter and 52 km during 

summer. Keckhut and Kodera [1999] found a temperature change from positive to zero at 

52 km for winter but a fairly uniform temperature response of 1 K from 30-55 km for 

summer. A similar sign reversal near 50 km was found by Keckhut et al. [1995], as well  

as Cossart and Taubenheim [1987]. Chanin et al. [1987] show deseasonalized 

temperatures from 1979 to 1985 from 40 to 65 km along with the F10.7 solar flux for that 

time period. At 40 km there is a clear negative response, at 50 km the temperature 

response is zero, and at 65 km it is positive. This result from Chanin et al. is noteworthy 

because the comparison does not rely on linear regression techniques, and thus the 

problem of coefficient attenuation is not an issue. Though the altitude of this zero-

response feature varies geographically and with altitude, its existence as found by several 

researchers suggests a zero or near zero atmospheric temperature response to the solar 
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input in the upper stratosphere/lower mesosphere region.  

 In analyzing data from the Halogen Occultation Experiment (HALOE) Remsberg 

[2002] fit a variable-phase solar proxy to the data. They found a phase lag in the 

atmospheric temperatures of 2.3 years from solar maximum at 40ºN and 0.05 hPa (~ 

70 km). They also report a lag of 1.9 and 1.5 years at 0.03 hPa and 0.02 hPa (~75 km and 

77 km) respectively at the same latitude. At that time they were working with 9.5 years of 

data spanning from late 1991 to early 2001. In an updated paper, Remsberg [2007] 

analyzes 14 years of temperature data and reports phase lags of 1.3 years at 0.03 hPa and 

0.9 years at 0.02 hPa, at 40ºN. These changes indicate the phase estimate is sensitive to  

the length of the data set. Significant phase lags are again reported in Remsberg [2009]. 

These are shown in Figure 3.5 for a range of latitudes. This most recent paper shows that 

the phase lags are confined mostly to the Northern Hemisphere middle atmosphere, 

which coincides with the location of the USU Rayleigh lidar. A comparison of our USU 

solar response amplitudes and phases with those taken from Table 10 of Remsberg [2007] 

are shown in Figures 3.4a and b. Above 65 km our solar amplitudes are about 1 K larger  

than those from Remsberg. Between 60 and 65 km their data matched to within our 95% 

error limits. There is also similarity around 50 km. However, between 50 and 60 km the  

data from Remsberg is warmer by about 1.5 K. Between 73 and 83 km there is agreement 

within our error limits, or nearly so. The difference in the height of the phase offset in our 

data may be due to local variations in atmospheric solar response, whereas the HALOE 

data is a zonal mean. Large zonal differences were produced in simulations by Hampson 

et al. [2005] who found zonal asymmetries in atmospheric solar response of up to 10 K at 

49 km. There also exists the possibility that a Pinatubo effect could be influencing the 
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phase and amplitude of any decadal scale atmospheric signals in our data. According to 

She et al. [1998] a temperature perturbation on the order of 8 K occurred at 87 km in mid  

1993, which is approximately when our data set begins, the temperature spike occurs 

during solar minimum. This, coupled with the shortness of our data set, decreases the 

reliability of our phase calculations. A similar concern was expressed by Remsberg 

[2002] and Remsberg [2007], where the results were considered exploratory. Owing to 

the shortness of our data set, the utility of our solar-like amplitude and phase results 

should likewise be considered exploratory. Also, above 80 km the error bars on our phase 

data are large enough that little can be said about the phases in that region. 

 As indicated in Figure 3.4c, there is a noticeable difference in the amplitude of the 

MgII coefficient and the solar-like sin ωt term in the upper and lower mesosphere. The 

Mg II data was scaled by fitting it to the sin ωt term, which makes the coefficients 

comparable. The regions of greatest difference coincide with the regions where the solar-

 
 

Figure 3.5. The phase of the solar-like term from the HALOE data. (Image is Figure 6 

from Remsberg [2009]. Used with permission of American Geophysical Union.)  
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noise term has its greatest significance, from 45 to 53 km and from 75 to 87 km. In these 

regions the amplitudes of the solar-like sin ωt proxy is shifted to smaller values (to the 

left) by about 1 to 2 K. The Mg II data includes short-term solar variations, so one might  

be tempted to think that inclusion of a separate solar-noise term is redundant. So an 

additional test was employed to determine if this temperature shift was caused by the 

inclusion of the solar-noise term. 

 The models (a) E(T) = β·t + α2·sin(ωt) + SN·solnoise, and (b) E(T) = β·t + α3·MgII +  

SN·solnoise were fit to the data, the MgII proxy being scaled as already described. It was 

found that α3 closely matched α2. The average absolute value difference between α3 and 

α2 from 45 to 90 km was 0.15 K. The α2 coefficient was little affected by the inclusion of 

the solar-noise term, having a maximum of difference of 0.1 K when the solar-noise was 

omitted. The fact that y = β·t + α2·sin(ωt) + SN·solnoise produced nearly identical αs as y 

= β·t + α3·MgII + SN·solnoise suggests the solar-noise term is not redundant. 

 There are additional reasons for including the solar-noise as a separate term in the 

linear regression model. One reason is the decadal scale variation may be out of phase 

with the solar input, so one would want to include an out of phase solar-like variation in 

the model. The other reason is more compelling. The idea behind least squares is to 

project a vector of data onto a column space of explanatory variables in such a way as to 

minimize the residual sum of squares (RSS). A traditional solar proxy has both a noisy 

signal and a decadal signal. Which of the two reduces the residual sum of squares to a 

greater degree? To test this question a Monte Carlo simulation was done to see how 

influential the noise was in determining the confidence levels on a solar proxy 

coefficient. A times series of temperatures was constructed having the following 
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structure: y = 5·sin(ωt) + sn + n, where ω is the frequency of the solar cycle, sn is 

generated from Gaussian noise with ζ = 1 K, which is then autocorrelated with a 

correlation coefficient of 0.5, n is an additional Gaussian noise term added on top of this 

with ζ = 1 K. To this data the following model was fit: y ~ sol, where y is the 

temperatures just mentioned and sol = cos(ωt) + sn. Note that sol has completely the 

wrong shape to it, but it does have the correct solar-noise (Figure 3.6a). It was found that 

the statistical significance of sol was on average 95.3%, even though it had completely 

the wrong shape. It should also be pointed out that the correlation between y and sol was 

0.094 on average. This was also true when sol was changed to cos(3ωt) + sn (Figure 

3.6b). The average correlation was about 0.095 and the statistical significance of sol was 

about 95.4%. It appears that if a signal has the wrong shape and the right noise there is a 

good chance it will appear to be statistically significant. The noise seems to have a much 

greater RSS reducing effect than longer time scale signals. When a solar proxy is 

included in a least squares model the coefficient of interest is the amplitude. If the noise 

in the solar proxy follows the noise in the atmospheric temperatures and the solar proxy 

has completely the wrong shape to it, there is a risk that the amplitude coefficient could 

be considered significant when, in fact, it is not. As it applies to atmospheric 

temperatures it seems safer to separate the solar-noise from the decadal-scale solar signal. 

 

7. Cause of the Phase Lag 

 The cause of the lag between the sine-like solar input and sine-like atmospheric solar 

response is unknown. Remsberg  [2002] suggested the effects of wave forcing on 

mesospheric circulation induced by stratospheric solar forcing effects. Hampson et al. 
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[2005] suggest in situ wintertime wave activity over a given lidar site may be responsible 

for variations in lidar temperature profiles with the zonally average HALOE responses. 

There is also the possibility of a solar cycle interaction with the QBO [Soukharev and 

Hood, 2001]. There are several positive and negative correlations between solar outputs 

such as the 27-day solar rotation, the 11-year solar cycle, and the 22-year Hale cycle with 

weather and climate measurements. Though it remains uncertain how these physical 

phenomena are coupled to correlations between solar indices and state variables they do 

provide impetus for continued investigation [Tsiropoula, 2003]. 

 

8. Conclusions 

 A positive solar response coefficient at one altitude and a negative coefficient at 

another means the coefficient value must go through zero somewhere in between, which 

could mask decadal-scale signals that are out of phase with the solar input. This, along 

with issues of coefficient bias and attenuation, emphasizes the importance of including a 

variable phase solar-like term in a linear regression model of middle atmosphere 

 

Figure 3.6. Simulated time series temperatures: (a) shows a simulated temperature time 

series indicated by the black circles and the solar-noise regressor, sol, indicated by the 

gray inverted triangles; (b) shows the same for a different sol regressor.  
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temperatures. 

 The general conclusions are as follows. (1) If a fixed phase solar proxy is employed 

in a OLS temperature model and the atmosphere is responding out of phase to the solar 

input, the solar response coefficient can be attenuated and the cooling rate severely 

biased. Consequently, a variable phase solar proxy is preferable to a fixed solar proxy. (2) 

For cases where a fixed solar proxy is used, if the solar-proxy phase angle is 0 or π 

radians the bias on the linear trend coefficient will be reduced. At altitudes where the 

atmospheric solar response is in phase or out of phase with the solar input (where φ = θ  

or φ = θ ± π), the bias on the linear term is likewise reduced. In cases where a fixed proxy 

is employed, where the proxy coefficient has a maximum or minimum value the 

magnitude of the proxy coefficient at those altitudes seems more likely to better 

approximate the magnitude of the true atmospheric solar response at those altitudes. (3) 

Our data show evidence of near zero amplitude atmospheric solar response between 50 

and 60 km, consistent with findings from other researchers. (4) A significant phase lag 

exists between the solar input and the atmospheric solar response at some altitudes. Our 

phases differ generally from Remsberg [2007], which might be due to zonal asymmetries 

and uncertainties related to the shortness of our data set. (5) The solar-noise term is 

statistically significant in the lower and upper mesosphere, but not in the middle 

mesosphere. Altitudes where the solar-noise term is statistically significant coincide with 

altitudes with the greatest difference between the MgII coefficient and the sin ωt 

coefficient values. This difference can be as great as 2 K. Based on analyzing the CPC 

and ERA data, as well as the USU data, a Malows’ Cp test indicates that the inclusion of 

the solar-noise term is justifiable. Based on Monte Carlo simulations, including an MgII 
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term in a least squares model does not reveal information about the short term variations 

or out of phase solar responses. A two-proxy model is needed to bring out any such 

variations. (6) Researchers should be aware of the danger of fitting a regressor to 

temperature data if the noise of the regressor closely matches the noise in the temperature 

data. This can occur when the noise in the fixed-phase solar proxy is correlated to the 

noise in the temperatures. Such a correlation increases the risk of a false positive. The 

solar-proxy regressor might be considered statistically significant even if the large-scale 

sine-like variation is 90º out of phase to the atmospheric solar response. 

 While both our measurements and those from the HALOE instrument have shown 

that a significant variable phase proxy exists, and an analysis of our data and the CPC and 

ERA data shows that the solar-noise term is significant, it is now up to the theoreticians 

and modelers to explain the why these terms are found in middle atmospheric 

temperatures. 
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CHAPTER 4 

 

SUMMARY AND COMPARISON OF THE TEMPERATURE DATA 

 

FROM THE USU RAYLEIGH LIDAR 

 

Abstract. This chapter contains a study of the temperature time series from the USU 

Rayleigh Lidar located at 41.74ºN, 111.81ºW. The database covers a time span from 

September 1993 to August 2003 and an altitude range of 45 to 90 km, and contains 593 

nightly profiles. Cooling trend profiles, annual and semiannual amplitude and phase 

profiles, solar response amplitudes and phases are calculated. Collinearity and coefficient 

bias are considered as possible influences that could affect the regression results. The 

possibility that the Mt. Pinatubo eruption increased our early mesopause temperatures 

resulting in large mesopause linear cooling trends is considered. The linear trends are 

compared to those in the review by Beig et al. [2003]. These results are compared to 

others, in particular the semiannual oscillation from USU temperatures and the Halogen 

Occultation Experiment (HALOE) on the UARS satellite. There is also a brief 

description and comparison of the USU annual and semiannual amplitudes and phases 

with others found in the literature. The USU solar response amplitudes and phases are 

compared to those from the HALOE data. 

 

1. Introduction 

 A theoretical connection between elevated atmospheric CO2 levels and increased 

global temperatures has existed for over 100 years [Callendar, 1938; Held and Soden, 

2000]. In the past, there was some debate as to whether or not industrialization would 

produce global warming or global cooling. However, over the past several decades the 
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literature has increasingly, heavily favored the global warming thesis, which states that 

significant increases in the quantity of atmospheric CO2 results in elevated global 

temperatures. According to calculations made by the author, the atmosphere could 

experience a doubling of CO2 from preindustrial levels between the years 2070 and 2100. 

Atmospheric models predict that doubling the amount of atmospheric CO2 will increase 

heat retention in the troposphere and increase heat loss in the stratosphere and 

mesosphere. Surface temperatures are expected to increase by about 1.5 to 4 C, while the 

middle atmosphere is expected to cool between 8 to 10 C, depending on the model 

simulation, location and altitude [Roble and Dickinson, 1989; Rind et al., 1990, 1998; 

Held and Soden, 2000; Fomichev et al., 2007]. Hence, because of the larger temperature 

change many scientists are looking for evidence of global warming in middle atmosphere 

secular temperature trends. 

 Ordinary least squares (OLS) models are frequently employed as a way to extract 

useful information from temperature time series data about atmospheric parameters of 

interest, such as the amplitude and phase of the annual and semiannual oscillations, the 

atmospheric solar response, the linear cooling rate, the effects of interventions, such as 

the Mt. Pinatubo eruption [She et al., 1998], the quasi-biennial oscillation, and the 

turnaround time and recovery for ozone levels [Reinsel et al., 2002, 2005]. Least squares 

has many advantages. It minimizes what the model cannot explain, it offers the best 

linear unbiased estimator (the BLUE assumption) when certain conditions are satisfied, it 

is simple and the results are typically easy to interpret. Two difficulties sometimes 

associated with OLS are coefficient correlation (collinearity) and model specification. 

Serial autocorrelation also occurs in the residuals and can affect the regression results. 
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Collinearity and model specification are more specifically addressed in Chapters 2 and 3. 

Serial correlation is discussed in Chapter 5 and Appendix E. 

 This paper presents an analysis of the USU mesosphere time series of temperatures 

from the USU lidar database. Of interest here are the mesosphere cooling trends, the 

amplitudes and phases of the annual oscillation (AO) and semiannual oscillation (SAO), 

as well as the amplitudes and phases of the atmospheric solar response. 

 

2. Summary of Sections 

 Section 3 contains a short description of the principal regression model used in this 

dissertation. Several reasons for separating the solar-noise from the solar proxy and 

introducing it as a separate model regressor are given. Section 4 contains a discussion of 

the linear trend coefficient, its time evolution, and the effects of collinearity including 

coefficient correlation and inflated standard errors (SEs). The effects of model 

specification on the linear trend coefficient and the solar proxy coefficients are discussed. 

Comparisons of linear trends from the USU temperatures are made with linear trends 

from the literature. Section 5 presents evidence for the existence of a Pinatubo effect in 

mesopause temperatures and the effects it may have had on our linear trend estimates are 

discussed. In section 6 the discussion from section 5 is continued. In particular, the 

collinearity and model specification issues from section 4 are expanded upon and 

summarized. In section 7 the atmospheric solar response is discussed. Solar response 

amplitudes and phases of the USU temperatures are discussed and compared with those 

from the HALOE instrument reported in Remsberg [2007, 2009]. For comparison, 

amplitude profiles for a fixed-proxy model are included and compared with model 
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simulations, as well as results reported by other researchers. The summer and winter 

profiles are briefly examined. Section 8 contains a short discussion of the annual and 

semiannual oscillations. Our findings are compared to those from other researchers. An 

SAO climatology of the USU temperatures is discussed and compared to an HALOE 

SAO climatology. Section 9 contains the final conclusions. 

 In this paper, least squares is used quite heavily. It is therefore convenient to use a 

short hand notation to refer to different models. For example, y ~ x1 + x2 indicates a 

column of y data projected onto the column space X = (1, x1, x2), or y = I·1 + a·x1 + b·x2 

+ ε. In the shorthand notation the intercept I, the noise ε, and the coefficients are implied. 

This follows the convention of the R programming language. Another shorthand 

convention is sin(ωt), which should be taken to indicate that sin(ωt) is evaluated at each 

time value: sin(ωt) = {sin ωt1, sin ωt2, sin ωt3, ... , sin ωtn}. 

 

3. The Model 

 Unless otherwise stated the regression model for this chapter is 

 

T(z) = α(z)ι + β(z)·t + A1(z)cos(2π·t) + A2(z)sin(2π·t) + B1(z)cos(4π·t) + B2(z)sin(4π·t)  

+ C1(z)sin(ωt) + C2(z)cos(ωt) + D(z)·solnoise + ε(z),  (4.1) 

 

where z is the altitude, α is the intercept, β is the linear trend, A1 and A2 yield the 

amplitude and phase of the annual oscillation, B1 and B2 are the same for the semiannual 

oscillation, C1 and C2 yield the amplitude and phase of the solar-like atmospheric 

response with ω ~ 2π/11-year
−1

, the frequency of the solar cycle. The solnoise term is 

obtained by fitting MgII ~ sinωt + cosωt, where the solar-noise are the model residuals. 
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The daily Mg II data were obtained from the NOAA website. A handful of missing Mg II 

data points were interpolated and the time series was smoothed using an 81-day boxcar 

average. For convenience, this will hereafter be referred to as Model (4.1). 

 One justification for separating the solar-like oscillation from the solar-noise is the 

possibility of a phase lag between the solar input and the atmospheric solar response. 

There is good reason to believe that the atmospheric response to the solar input can be 

significantly out of phase with the solar input. Remsberg [2002] found a phase lag of 2.3 

years at 40ºN and 0.05 hPa (~69 km), a lag of 1.9 years at 0.03 hPa (~73 km), and 1.5 

years at 0.02 hPa (~76 km), at the same latitude. (See Table 7 in that paper.) In an 

updated paper Remsberg and Deaver [2005] analyzed HALOE data from 1991-2004 and 

reported a phase lag of 3.8 years at 0.05 hPa and 2.2 years at 0.03 hPa. The existence of 

an altitude-dependent phase lag is confirmed again in Remsberg [2008], which reports a 

phase lag of 4.5 years at 69 km and a phase lag of about −1.5 years between 58 and 

63 km. 

 Also, if the solar noise is omitted from the model, spurious results can arise at 

altitudes where the solar-noise is correlated with the model residuals. The least-squares 

technique minimizes a quantity called the residual sum of squares (RSS), and in several 

exemplifying simulations the solar-noise was found to reduce the RSS much more than a 

sine-like solar oscillation did. Consequently, if the two are not separated, the reduction of 

the RSS by the solar-noise could lead to a false positive: The solar proxy coefficient 

could be considered statistically significant when the atmospheric response is 

significantly out of phase with the solar proxy. By separating them, the problem is 

avoided. Additionally, the magnitude of the solar-noise coefficient might contain 
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information about how the atmosphere is responding to short-term solar input. This 

information cannot be retrieved without separating the solar-noise from the solar proxy. 

For more information about how the solar-noise can affect regression results see Chapter 

5 and Appendix D. 

 

4. Linear Trend Coefficient 

 The magnitude of the linear trend coefficient is commonly used as an indicator of the 

strength of middle atmosphere cooling. One challenge in interpreting the linear trend 

coefficient is the evolution it undergoes as more data is added to the data set. The 

following Monte Carlo simulations illustrate this point. A simulated temperature time 

series was generated containing a linear trend of −0.4 K/year, a 4 K solar response with 

an 11-year period, and Gaussian noise with zero mean and 9 K standard deviation, all of 

which are realistic parameters for upper mesosphere temperatures. Each simulation starts 

with 10 years of data and continues until 13.5 years are covered. A least squares 

regression is done on the simulated data and, as more data are added, new coefficients 

obtained, giving an idea of how the linear coefficient can evolve. The results from four 

different Monte Carlo runs are shown in Figure 4.1. The first simulation starts with a 

cooling trend of −0.4 K/year. The magnitude of the trend estimate then decreases to 

−0.3 K/year over the period of a year. Then, within a half-year, the magnitude increases 

to −0.5 K/year and quickly decreases again to −0.4 K/year. The second simulation starts 

with an estimated cooling of −0.15 K/year. The magnitude of the trend estimate steadily 

increases over the next two years to −0.4 K/year before decreasing only slightly. The 

fourth simulation starts with a trend estimate of −0.4 K/year, which increases in  
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Figure 4.1. The time evolution of the linear trend coefficient from four Monte Carlo 

simulations. The simulations start with 10 years of data and continue to 13.5 years. 

These four simulations were selected to demonstrate the possible variations that can 

occur over a period of 3.5 years. The two middle simulations are extreme examples. 
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magnitude steadily over a period of two years to −0.6 K/year and then decreases to 

−0.5 K/year. 

 These results indicate that the linear trend coefficient not only has an inherent 

variance that depends on the model specification and residual standard deviation, but that 

it also undergoes significant temporal variability as the length of the data set increases. 

Given enough time the linear trend coefficient will approach its true value, but 

convergence might not be immediate or initially in the right direction.  

 Likewise, linear estimates from various sites can have different starting values and 

exhibit very different time evolutions. For example, Figure 4.2 shows the linear trend 

profiles from the combined data series from the French CEL (Centre d'Essais des Landes, 

44ºN) and OHP (Observatoire de Haute Provence, 44ºN) lidars from 1979-1994 [Keckhut 

et al., 1995] and an updated profile based on data from 1979-1998 [Ramaswamy et al., 

2001]. The addition of four years of data noticeably altered the vertical profile. At 64 km 

the magnitude of the difference is 0.3 K/year, which is significant considering the linear 

trend profile itself varies from –0.1 to −0.4 K/year. One way to deal with this variation is 

 
 

Figure 4.2. Linear trend profiles from the OHP and CEL lidars. The profile for 1979-

1994 is from Keckhut et al. [1995]; the 1979-1998 profile is from Ramaswamy et al. 

[2001].  



90 

  

9
0
 

to compare linear trend estimates from different sites. But individually there is not much 

that can be done about the time evolution of the linear trend coefficient, except to bring 

out the fact that significant variation can occur and that different linear trend profiles 

obtained from observations can look very different from each other. This demonstrates 

the importance of a very long data set. It should be added that despite this variation, none 

of the Monte Carlo simulations showed a zero or positive cooling trend. 

Another difficulty in interpreting the linear trends is the problem of coefficient 

correlation (collinearity). This problem arises from the model itself and is unrelated to the 

temperature data. Depending on the degree of linear dependence between regressors, 

their coefficients can be correlated. A more in depth analysis of this is given in Chapter 2. 

In short, if two regressors are highly correlated then their coefficients are also likely to be 

correlated. 

 The coefficient correlations for Model (4.1) are given in Table 4.1. The highest 

correlation is −0.83 and is between the linear trend coefficient β and the solar-like 

coefficient C1 belonging to sin ωt. The next strongest correlation is 0.52, between β and 

the other solar-like term C2 belonging to cos ωt. A negative correlation between β and C1 

Table 4.1. The coefficient correlations for Model (4.1). The strongest correlation is 

−0.83 between the solar-like sine term and the linear trend. The next strongest correlation 

is 0.56 between the linear trend and the solar-like cosine term. The intercept is of no 

interest and was omitted. Some of the sine and cosine terms are not completely 

orthogonal because of gaps in the data.  
 

             β           A1          A2         B1         B2           C1          C2        D 
β       1.000    -0.173     0.191     0.078    -0.045     -0.829     0.516   -0.011 
A1    -0.173     1.000    -0.222    -0.01      -0.199     0.215     0.139     0.077 
A2     0.191    -0.222     1.000     0.107     0.233    -0.106    -0.044     0.048 
B1     0.078    -0.010     0.107     1.000    -0.001     0.016     0.119    -0.065 
B2    -0.045    -0.199     0.233    -0.001    1.000     -0.014    -0.041   -0.103 
C1    -0.829     0.215    -0.106     0.016    -0.014     1.000    -0.413     0.024 
C2     0.516     0.139    -0.044     0.119    -0.041    -0.413     1.000    -0.013 
D      -0.011    0.077     0.048     -0.065    -0.103     0.024    -0.013     1.000 
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indicates an inverse relationship. If β is higher than its true value then C1 will be lower 

than its true value; conversely, if β is low then C1 will be high. Two other effects of 

collinearity are inflated standard errors and sensitivity to model specification. When two 

regressors are correlated their SEs are also inflated; and, if regressors are added to or 

removed from the model, the coefficient values undergo large changes. 

 To check for coefficient sensitivity to model specification, regressions on the USU 

temperatures were done using models with the sine and cosine terms omitted, with the 

MgII term in place of the sine and cosine terms, with both the sine and cosine terms 

included, and with only the sin ωt term included. With the exception of the regressions 

containing the MgII term, all the models included a solar-noise term. It was found that, 

with the exception of the model omitting the sine and cosine terms, the linear coefficient 

estimates were quite similar between 50 and 70 km. However, all the profiles were 

confined to the 95% confidence intervals of the linear estimate for Model (4.1), 

indicating that the linear term is not highly sensitive to model specification. The linear 

trend estimates may be confined to the region of the error limits shown in Figure 4.3a 

and b. 

There is a large cooling rate in the upper mesosphere, about −1.9 K/year 

(−19 K/decade) at 88 km. Only a few researchers report similarly large cooling trends. In 

a review of mesosphere temperature trends, Beig et al. [2003] lists several of those 

reported in the literature. Histograms for these mesopause and mesosphere trends are 

shown in Figure 4.4. If the trends are interpreted as a distribution, the median mesopause 

trend is not different from zero, but the median mesosphere trend is clearly different from 

zero. The median mesopause trend is approximately −0.05 K/year and the median 
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mesosphere trend is approximately −0.35 K/year. 

 There are four cases reported in Beig et al. where the mesosphere and mesopause 

trends are around −10 K/decade. A mesopause trend from OH φairglow intensities over 

Argentina was reported by Resin and Scheer [2002] at −10.5 K/decade; and a wintertime 

−9 K/decade trend from OH* rotational bands was reported by Semenov et al. [2002]. 

Both are from mid-latitudes. The data used in Semenov et al. is from several data 

collection sites spanning from North America to Russia. Two large mesosphere trends 

were found in rocketsonde temperatures reported in Golitsyn et al. [1996] who found a 

−10 K/decade trend at high latitudes and a −8.8 K/decade trend at mid-latitudes. 

 

5. Pinatubo Eruption 

 The Mt. Pinatubo eruption occurred during June 9-17 1991 and was, according to the 

    

Figure 4.3. Two linear trend profiles. Part (a) is the linear trend profile for Model 

(4.1). Part (b) contains the linear trend profile for Model (4.1) and the model 

variations indicated in the legend. The error limits from (a) are included for 

comparison. Note the scale change. 
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U.S. Geological Survey, the second largest volcanic eruption of the 20
th

 century. This 

eruption produced 20 to 30 megatons of new aerosol sulfate particles, mainly from 

chemical reactions with sulfur dioxide [McCormick and Veiga, 1992]. These particles 

scatter light at the visible wavelengths but absorb radiation in the IR and near IR spectral 

regions. The net effect is heating [Thomas et al., 2009]. 

 She et al. [1998] found a 9 K and 12.9 K warming at 86 and 100 km, respectively. 

The maximum of these warmings occurred in mid 1993 and early 1993, respectively, 

approximately two years after the eruption. Keckhut et al. [1995] reported a temperature 

increase of 2 to 3 K between 30 and 40 km in their temperature residuals occurring from 

1992 to the summer of 1993, which they attributed to the Pinatubo eruption. They also 

included an optical depth parameter in their regression model and found it to be 

 

Figure 4.4. Histograms of temperature trends. Histograms of the temperature trends 

from Beig et al. [2003]. Histogram (a) is based on mesopause trends (80-100 km) from 

Table 5. Histogram (b) is based on mesosphere trends (50-79 km) from Table 4. For 

cases where the temperatures were reported as, for example, −1.4 to −2.1 K/decade, both 

the upper and lower limits were treated as data points.  
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statistically significant between 30 and 35 km and between 60 and 74 km. Bittner et al. 

[2002] also found evidence of a possible Pinatubo effect in temperatures spanning from 

1987 to 1997 in the OH layer (~ 87 km) above Wuppertal, Germany (51ºN). They found 

a phase shift in the AO and SAO temperatures occurring 1 year after the Pinatubo 

eruption and a large increase in the amplitude of a ter-annual signal occurring 

approximately two years after the eruption. These AO and SAO phase and amplitude 

shifts were not found in the USU temperature data and the time of their occurrence is a 

little earlier than the effects reported in Keckhut et al., She et al., and Bittner et al. 

attributed these differences in timing to zonal asymmetries. 

 The difficulty in determining the presence of a Pinatubo effect in the USU data is that 

our temperatures begin late 1993, which is when the temperature peak is likely to have 

already reached its maximum. So our early temperatures are expected to be perturbed 

higher. But this presents a problem when trying to detect a secular trend. Any initial 

temperature perturbation will exert leverage on the β coefficient increasing its magnitude. 

One way to test for the presence of leverage is to divide the data into subsets and 

perform linear regressions on each. A one-year gap occurs four years from the beginning 

of our data set, so that seemed like a good place to divide the data. Let S1 indicate data 

from September 1993 to April 1997 and S2 indicate data from May 1998 to August 2003. 

S1 consists of 251 nightly profiles and S2 consists of 333, at 45 km. The solar terms were 

excluded from the model because, owing to the shortness of S1 and S2, the collinearity 

problem was extreme, to say the least. With both the sin ωt and cos ωt terms included, 

the linear trend for S1 was −14 K/year! This was clearly a case where the collinearity 

problem was so extreme it would be better to eliminate some variables and risk 
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coefficient bias. 

 First the USU data was deseasonalized by removing the annual and semiannual 

oscillations from the temperatures. This is justifiable because the annual and semiannual 

sine and cosine terms are not correlated with the other model terms. (See Table 3.1.) The 

model fit to data subsets S1 and S2 was T ~ t, where t is time and T the deseasonalized 

temperatures. The regression profiles for both S1 and S2 are shown in Figure 4.5a. Below 

50 km there is a maximum difference of 1 K/year between the linear trends for S1 and S2. 

S1 has a warming of 0.39 K/year and S2 has a cooling of −0.45 K/year. From 50 to 71 km 

the difference is less than 0.2 K/year and averages to about 0.2 K/year. Above 71 km they 

sharply diverge. The linear trend for S1 is on average 2.1 K/year less than the linear trend 

for S2. The error limits are not shown because our main interest is the difference in the 

mean β coefficient values. 

 A linear trend profile was also calculated with the first year omitted from the data set. 

The new data set S3 consists of data from September 1994 to August 2003 and 531 

nightly profiles. The linear trend profiles are shown in Figure 4.5b. From 50 to 80 km 

they are nearly identical to the OLS linear trends from the full data set. An exception is at 

65 km where the S3 linear trend is slightly smaller in magnitude than the OLS trend from 

the full data set. Above 80 km the linear trends for S3 are smaller in magnitude than the 

OLS trends from the full data set by about 0.2 K/year. 

 This suggests that between 80 and 90 km the temperatures at the beginning of the 

data set are greater than those from remainder of the data set, suggesting a temperature 

perturbation consistent with a temperature increase from the Pinatubo eruption. 
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 There is an additional difficulty in determining the presence of a Pinatubo effect. The 

atmospheric solar response can be out of phase with the solar input. When a model 

includes a traditional fixed-phase solar proxy, a sine-like signal can remain in the 

residuals. An example of this is shown in Figure 4.6 where the residuals for the model y ~ 

t + AO + SAO + sinωt + solnoise are plotted, where y are the temperature time series from 

45 km. A fourth order polynomial is added to the figure to bring out the structure. A clear 

sine-like variation remains in the residuals, possibly suggesting an early Pinatubo effect 

or an unaccounted for solar-like atmospheric response. When this is done with 

temperatures from 85 km an underlying signal also remains. The residuals are shown in 

Figure 4.7 where it is evident that the earlier residuals drop off quickly and then level out. 

 
 

Figure 4.5. Comparison of the linear trends from an OLS model applied to S1, S2, and 

the entire data set. Figure (a) shows linear trends from the first half S1 and second half S2 

of the data set, as well as the linear trends for the entire data set. Figure (b) shows the 

linear trends for the entire data set, as well as those with the first year omitted from the 

data. Note the different horizontal scale.  
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Figure 4.6: Some model residuals from 45 km. The residuals from the model y ~ t + 

AO + SAO + C1 + solnoise, where C1 is the solar-like sin ωt term and y are the 

temperatures from 45 km. A fourth order polynomial was fitted to make the underlying 

sine-like structure in the residuals more visible. 

 

 

 

Figure 4.7. Some model residuals from 85 km. The residuals from the model y ~ t + 

AO + SAO + C1 + solnoise, where C1 is the solar-like sin ωt term and y are the 

temperatures from 85 km. A fourth order polynomial is fitted to make the underlying 

structure in the residuals more visible.  
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This is indicative of a strong temperature perturbation at the beginning of the data set and 

could indicate a Pinatubo effect, an unaccounted for solar-like response, or both. 

 

6. The Effects of Collinearity on Error Limits 

One symptom of collinearity is a large change in the coefficient values when a model  

variable is inserted or omitted. As shown in section 4, this is not the case with the linear 

trend coefficient, which does not exhibit large changes when various solar-proxies are 

included or omitted from the model. Collinearity also inflates the standard errors which 

has a direct bearing on the confidence limits. If one model variable is highly correlated 

with another, the standard errors of both are inflated. This affects the confidence placed 

in the results. In linear regression problems, a typical null hypothesis is something like 

H0: θ = 0, where θ is a regression coefficient. The p-value gives evidence on whether to 

assert or reject H0 given the data. If the evidence strongly indicates that H0 is false, then 

H0 is usually rejected and some confidence is placed in the regression results. Higher SEs 

increase the error limits, consequently increasing the chance of accepting H0 when it is 

false. 

 To illustrate the point, two models were fit to the data. Model (4.1) is the full model 

and Model (4.2) is simply Model (4.1) with the solar-like terms omitted. Figure 4.8 

shows the 95% linear trend error limits for Models (4.1) and (4.2) along with the linear 

trend profiles from each model. On average, the error limits from Model (4.2) are 48% 

smaller than those from Model (4.1). With the error limits increased, the chances of 

determining the linear trend coefficient to be indistinguishable from zero increases. That 

is, H0: β = 0 is more likely to be accepted. The large changes in the error limits shown in 
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Figure 4.8 are principally due to collinearity between the linear term and solar-like sin ωt 

term. 

 At 45, there is a warming trend of about 0.36 K/year for the full model, and about 

0.24 K/year for Model (4.2). The trends for Model (4.2) indicate a warming of about 

0.17 K/year between 46 and 56 km. For the full model, there is no statistically significant 

warming or cooling between 46 and 73 km. The cooling rate between 65 and 90 km for 

Model (4.2) ranges from −0.2 to −1.7 K/year. For the full model there are no significant 

cooling trends between 47 and 72 km. The full model indicates a statistically significant 

cooling between 73 and 90 km, but with two exceptions at 77 and 78 km that are just 

below the 95% level. 

 The linear trends for models (4.1) and (4.2) differ by a maximum of 0.6 K/year. On 

average they differ by 0.2 K/year. The maximum linear trends for models (4.1) and (4.2) 

 
Figure 4.8. Two linear trend profiles. The linear trend profiles from Model (4.1) and 

Model (4.2) with 95% confidence levels given. 
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are −1.9 K/year at 88 km and −1.7 K/year at 90 km, respectively. It should also be 

pointed out that the upper mesosphere is where the linear trend has its greatest 

uncertainty. For Model (4.1) the uncertainty is ±1.25 K/year to the linear trend, and for 

Model (4.2) it is ±0.6 K/year. The larger mesopause error limits arise partly from 

increased noise levels above 80 km, but also because there are fewer data points from the 

upper mesosphere than from 45 km. 

 There is no way to get around the fact that our mesopause cooling rates are larger 

than what other researchers have found. The natural thing to do is point to the influence 

of the Pinatubo eruption. Unfortunately because we do not have data before the eruption, 

a clear assessment cannot be made. It also appears that in the upper mesosphere, the first 

year’s temperatures (Figure 4.5b and Figure 4.7) exert some leverage on the linear trend 

coefficient, though this amounts to only 0.2 K/year which means the cooling rate remains 

quite high. This also suggests that the Pinatubo effect, if it is present in the USU 

temperatures, is greatest between 70 and 90 km.  

 Naturally the results from Model (4.1) are preferred because this is the full model. 

Because a possible Pinatubo effect casts some doubts on upper mesopause cooling trends 

our greatest confidence can be place in the results between 73 and 80 km where a 

statistically significant linear trend from −0.5 to −1 K/year was found for the full model. 

Below that, down to 47 km, the cooling trends vary from −0.5 to +0.3 K/year and are not 

statistically significant. At 45 and 46 km there is a warming of about 0.35 K/year. 

 

7. Atmospheric Solar Response 

 The approximate 11-year variation in solar output is known to affect middle 
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atmosphere temperatures and chemistry. In the middle atmosphere, the solar ultraviolet 

output is of particular interest because of its significant impact on stratosphere and 

mesosphere temperature structure. While overall solar intensity varies less than 1% over 

the 11-year solar cycle, the shorter UV spectrum varies from 5% at 205 nm, increasing to 

50% in the Lyman-α line [Donnelly et al., 1982; Donnelly, 1991]. This large variation in 

short-wave radiation affects photochemical ozone production and can alter middle 

atmosphere thermal characteristics, which can, in turn, alter the propagation of 

atmospheric waves and global circulation patterns affecting heat advection and chemical 

transport [Calisesi and Matthes, 2007]. 

 In the Mesosphere Lower Thermosphere (MLT) region, species such as O and H 

become long lived and can be transported to other parts of the atmosphere where they 

loose their energy as heat [Smith, 2004]. This can delay the atmospheric response for 

several months but cannot account for a delay of several years. As argued in Chapter 2, 

the temperature response to solar input can vary from ±5 years. This delay is not a time 

delay as such; that is, the atmosphere does not wait five years to respond to the solar 

input, but rather, the driving of the atmosphere by the 11-year solar variation causes an 

out-of-phase atmospheric response. An example is the inverse solar response found at 

some altitudes. When the solar input is at a maximum, the atmospheric temperatures are 

at a minimum, which amounts to a 180º phase change which can be expressed as ±5 

years. A similar argument could apply to any phase offset between the solar input and the 

atmospheric temperature response. 

 At the upper mesosphere, the principal driver of temperature change on solar cycle 

timescales is from chemical heating [Aikin et al., 1991; Huang and Brasseur, 1993]. The 
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bulk of which is provided by odd oxygen (Ox) reactions such as O + O + M  and O + O2 + 

M, along with a contribution by direct solar heating [Huang and Brasseur, 1993]. From 

solar maximum to minimum, the number density of odd oxygen constituents decreases by 

more than 40%. This decrease precipitates a decrease in ozone production and increases 

the levels of the OH catalytic agent, which enhances ozone loss and further depresses 

ozone levels during solar minimum [Huang and Brasseur, 1993; Khosravi et al., 2002; 

Smith, 2004; Brasseur and Solomon, 2005].  

 Below 80 km, the temperature response to solar input is smaller than that at the 

mesopause. This is largely due to a smaller change in ozone mixing ratio over the period 

of a solar cycle. In this region atmospheric models predict a negative or near zero change 

in ozone mixing ratio from solar maximum to solar minimum. The O + O2 + M → O3 + 

M reaction which dominates odd oxygen partitioning also has a negative temperature 

dependence [Froidevaux et al., 1989; Jonsson et al., 2004; Marsh et al., 2007].  

Consequently, ozone production slightly increases with decreasing temperature, which 

offsets some of the temperature change over the solar cycle. 

 An early simulation by Garcia et al. [1984] modeled the effects of the 11-year solar 

cycle on middle atmosphere temperatures. This was a zonally averaged two-dimensional 

model with coupled photochemistry and dynamics, and covered and altitude range from 

16 to 116 km. Their max-min temperature response was 2 K at 46 km and 40ºN, and 

about 1 K between 50 and 76 km. Above 76 km it steadily increased to 6 K at 90 km. 

Huang and Brasseur [1993] using a two dimensional interactive mesosphere-stratosphere 

model found a max-min response of 1.5 K at the stratopause that increased to around 

10 K near the mesopause, at 40ºN. Using the SOCRATES 2-D model Khosravi et al. 
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[2002] found a max-min temperature response of less than 1 K at 50 km and 40ºN, 

increasing to 5 K at 90 km. A similar temperature max-min profile was found by Schmidt 

et al. [2006] using the HAMMONIA model, which simulates interactive dynamics, 

chemistry and radiation up to 250 km. A somewhat smaller response was found by Marsh 

et al. [2007] in a simulation using the NCAR Whole Atmosphere Community Climate 

Model (WACCM), a general circulation model with interactive chemistry. They found a 

0.75 to 2 K atmospheric solar response at 40ºN and between 45 and 80 km. A different 

simulation run on the MSDOL model (developed from the NCAR ROSE model) was 

done by Hampson et al. [2005] who found a max − min atmospheric solar response of 

< 1 K in the upper stratosphere and lower mesosphere region. They also found the solar 

response to be notably stronger during winter (~1.8 K) than during summer (~0.5 K) in 

the same atmospheric regions.  

 

7.1. Analysis and Comparison of USU Data 

 As described in Chapter 3, three models were fit to the deseasonalized USU 

temperatures: E(T) = β·t + α1·sin(ωt + φ), E(T) = β·t + α2·sin ωt, and E(T) = β·t + α3·MgII, 

where E(T) are the expected values for the temperature models. The profiles for α1, α2, 

and α3 are shown in Figure 4.9a,b,c. Figure 4.9a shows the amplitudes (max – min) of the 

atmospheric solar responses in the USU temperatures along with similar solar response 

amplitudes found in the HALOE temperatures reported in Remsberg [2007, 2009]. 

Between 50 and 64 km, our amplitudes are on average 1 K smaller than Remsberg’s, with 

a maximum difference of nearly 2 K. In the upper half of the mesosphere Remsberg’s 

amplitudes are about 0.1 to 2 K smaller than ours, but most are within or nearly within 
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 Figure 4.9b shows the phase differences between the atmospheric solar response and 

solar maximum found in the USU temperatures and similar phase differences reported in 

Remsberg [2007] and Remsberg [2009]. To make our data more comparable with 

Remsberg’s our phases were measured as years from 1/1/2002, which is where Remsberg 

began measuring his phases. Remsberg’s phases are from 40 and 50ºN. The USU solar 

 

Figure 4.9. Various linear trend profiles. The solar response profiles from using a fixed-

phase model on in situ rocket-sonde and lidar temperatures from various sites. (Figures 

are from Figure 8 in Chanin [2006]. Used with permission of Springer Publishing 

Company.) 
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response is out of phase with the solar input at 45 km and nearly in phase with it at 

55 km. Above 55 km the phase difference slowly decreases with increasing altitude until 

it reaches near zero at 88 km, above which it becomes out of phase with the solar proxy. 

Between 66 and 80 km the 40ºN Remsberg phases are within or nearly within our 95% 

error limits, which span nearly three years in the upper mesosphere. Below 66 km both 

our phases and Remsberg’s show little similarity except for two points at 54 and 58 km 

where the phase offset is about −1.8 years. 

 Figure 4.9c shows the amplitude profiles of the sin ωt and MgII proxies obtained by 

fitting E(T) = β·t + α2·sin ωt and E(T) = β·t + α3·MgII to the USU temperature data. The 

Mg II data was scaled to fit the sin ωt proxy, which puts the amplitudes on a similar 

scale. The motivation for fitting both the MgII and sin ωt regressors was to illustrate the 

degree to which the solar-noise affects the amplitudes. With the exception of the middle 

and very top of the mesosphere where the differences are essentially zero, the differences 

between the two coefficients are at most 2 K. In regions where there is a significant 

difference between the sin ωt and MgII coefficients, the sine amplitudes are 

systematically lower, shifted toward the left. This holds whether the amplitude is positive 

or negative and it points to a possible model specification problem. Regions where there 

is a significant difference between the MgII and sin ωt coefficients coincide with regions 

where the solar-noise has its greatest significance in Model (4.1). This suggests that if the 

solar-noise term is omitted from a temperature model, the omission could result in a 

biased solar proxy coefficient. When the solar-noise is included in a model containing an  

MgII proxy, the MgII coefficients closely match the sin ωt coefficients. That is, when the 

MgII coefficients from (A) y ~ time + AO + SAO + MgII + solnoise are compared to the 
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sin ωt coefficients from (B) y ~ time + AO + SAO + sinωt + solnoise, they are very 

similar. The maximum absolute-value difference between them is 0.4 K, and the average 

absolute value difference is 0.15 K. Even though the MgII regressor already contains the 

solar-noise, some of the effects of the solar-noise are not captured in the regression 

results if it is not separated from the solar proxy. 

 Also notice that at most altitudes where the phase difference is ±π/2, the sine proxy 

goes through zero. This is expected. The attenuation of the solar proxy term is zero where 

the phase difference is ±π/2. (See Chapter 3 and Appendix G.) For a fixed-phase model 

the amplitude of the sin ωt proxy converges to α·cos(ρ), where ρ is the phase difference 

between solar input and the atmospheric solar response, and α is the amplitude of the 

atmospheric solar response. 

 

7.2. Fixed-proxy Comparisons 

 Comparing our fixed-proxy amplitudes in Figure 4.9(c) to those from the other sites 

shown in Figure 4.10, one sees obvious differences in the shapes of the vertical profiles. 

The atmospheric solar response at Ryori Japan (39ºN) shows a near zero amplitude 

between 20 and 50 km. At Wallops Island, Virginia (37ºN) there is a positive response of 

2.5 K to 5 K between 40 and 70 km which is nearly statistically significant at 95%. 

Temperatures above Shemya, Alaska (52ºN) shows a solar response of −2 K between 40 

and 50 km but not at the 95% level. At Vologograd, USSR (48ºN) there is a slightly 

negative −2 K response at 35 km but it is not statistically significant. Above 55 km there  

is a 2.7 to 7 K atmospheric solar response at greater than 95% confidence. Primrose Lake, 

Canada (54ºN) does not show a statistically significant atmospheric solar response above 
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40 km. The USU temperatures have a sin ωt amplitude of 1 K at 52 km, –4 K at 70 km, 

and 4 K at 87 km. The maximum magnitude solar responses in Figure 4.10 are from 

about 2.5 to 7 K and are roughly comparable to the USU maxima and minima and 

roughly consistent with model predictions. However, the vertical profiles are very 

dissimilar. 

 Several researchers have found that the middle atmosphere solar response is stronger 

during winter than it is during summer [Schwentek, 1971; Hood, 1987; Keckhut et al., 

1995; Pertsev and Perminov, 2008]. This has been repeated in simulations by Hamson et 

 
 

Figure 4.10. Solar response amplitudes and phases. Part (a) shows the amplitude (max – 

min) of the solar-like proxy α1. Part (b) shows the phase φ of the solar proxy in years 

from 1/1/2002. Part (c) shows the amplitude (max – min) of the fixed-phase coefficients 

α2 corresponding to sin ωt, and α3 corresponding to the MgII proxy. The circles and open 

triangles in (a) and (b) are amplitudes and phases from 40ºN adapted from Remsberg 

[2007] and Remsberg [2009]; the solid triangles are the same but for 50ºN. The phase 

data is repeated every 11 years to aid with comparison. 
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al. [2005] who found a middle atmosphere winter response that is slightly greater than 

the summer response by about 1 K at 52.5ºN. A stronger winter response was also seen in 

the French temperatures reported by Keckhut et al. who found a maximum solar response  

during summer of 3 K and a 7 K response during winter. 

 Figure 4.11 shows the summer and winter amplitude profiles of the atmospheric solar 

response for T ~ t + sinωt + cosωt + solarnoise shown in Figure 4.11a, and for the two 

fixed-proxy models T ~ t + MgII shown in Figure 4.11b, and T ~ t + sinωt + solarnoise 

shown in Figure 4.11c. For the atmospheric solar response from Model (4.1), between 60 

and 74 km the summer response is stronger than the winter response, the maximum  

difference is about 6 K. From 74 to 90 km the winter response is stronger than the 

summer response, the maximum difference is about 6.5 K. Below 60 km there is at most 

a 1 K difference between the winter and summer amplitudes for Model (4.1). 

 Our summer/winter results shown in Figures 4.11b and c show a more complex 

structure than those from other groups shown in Figure 4.10. It is possible that these 

differences are due simply to zonal and latitudinal differences in the atmospheric solar  

response, but because the other groups used fixed proxies, their amplitudes could have 

been exaggerated by an unaccounted-for atmospheric solar response. The differences  

between most of the profile shapes of the solar responses shown in Figure 4.10 are big. 

Only the OHP and Volograd profiles are similar. Our fixed-phase profiles are also 

considerably different from the variable-phase profiles. Comparing ours to the OHP and 

Volgograd profiles there are apparent phase differences manifested in the different signs 

of the fixed-phase proxy coefficient. From 46 to 55 km our maximal amplitude is about 1 

K whereas the OHP and Volgograd show a maximal amplitude of −2 to −3 K. In the 
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upper half of the mesosphere both the OHP and Volgograd profiles show a positive  

amplitude of about 4 to 5 K. However, the USU lidar shows a negative response between 

55 and 80 km of about −4 K and a positive response between 81 and 88 km of about 4 K. 

At 90 km it becomes negative again at −4 K. 

 

8. Annual and Semiannual Oscillation 

 Amplitudes and phases of the annual and semiannual temperatures for the USU data, 

the French OHP and CEL lidars, the HALOE instrument, and semiannual amplitudes and 

phases from the SABER instrument are shown in Figure 4.12. The French data are taken 

 
 

Figure 4.11. Seasonal amplitudes and phases of solar response. The solar response 

profiles for summer and winter. Figure (a) shows the magnitude (max – min) of the 

solar-like proxy α2. Figure (b) shows the magnitude (max – min) of α3 corresponding to 

the MgII proxy. Figure (c) shows the magnitude (max – min) of the coefficient α1 

corresponding to sin ωt. Summer is taken to be from March 21 to September 21 and 

winter is from September 22 to March 20. Four-month winters and summers were not 

attempted because of the limited number of data points. 
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from Leblanc et al. [1998]. The HALOE temperatures are from the http://haloe.gats-

inc.com. The HALOE data is nominally from the location of the USU lidar. The SABER 

amplitudes and phases were taken from Figure 4.10 in Huang et al. [2006]. The SABER 

(Sounding of the Atmosphere using Broadband Emission Radiometry) instrument is 

aboard the TIMED satellite and currently provides middle atmosphere temperature 

measurements. 

 

8.1. Annual Oscillation 

 The annual oscillation is well known. Below 65 km the familiar warm summer and 

cold winter seasons in the lower mesosphere are caused by radiative effects related to the 

tilt of the Earth’s axis as it orbits the sun. Above 65 km the annual oscillation  

dramatically shifts phase causing the upper mesosphere to experience warm winters and  

cold summers. This phase shift is caused by the effects of gravity wave activity and the 

Coriolis effect, which creates a summer to winter meridional flow. Because of mass 

continuity, the flow expands and cools adiabatically as it rises through the summer  

mesosphere. In the winter hemisphere the downwelling flow undergoes adiabatic 

compression and heating as it descends through the mesosphere. The upwelling air also 

has higher concentrations of CO2 than the air near and above the mesopause level, which  

further enhances radiative cooling at the summer mesopause, and the downwelling air in 

the winter mesopause is depleted in CO2 which depresses the cooling rate [Garcia and 

Solomon, 1985; Smith, 2004]. 

 Below 80 km the USU annual oscillation amplitudes follow approximately those 

from the HALOE temperatures. Between 64 and 70 km our AO is slightly greater than 

http://haloe.gats-inc.com/home/index.php
http://haloe.gats-inc.com/home/index.php
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the HALOE AO, with a maximum difference of about 1 K at 65 km. From 65 to 80 km 

 they follow each other very closely. Above 80 km our AO is ~2 K greater than the 

HALOE AO. From 45 to 50 km they follow each other very closely. From 50 to 65 km 

our AO is smaller by about 1 K.  

 From 55 to 80 km the French AO profiles follow the same profile shape as the USU 

profile, though the French amplitudes are about 2 K less than ours between 65 and 77 km 

and 2 K greater between 73 and 78 km. The French amplitudes between 45 and 55 km 

vary from 5 to 6 K. This is in contrast to both the USU and the HALOE AO, which have 

an amplitude of 10 K at 45 km, decreasing to 6 K at 55 km. Although it is not shown, the 

MSISe00 model closely follows the USU temperatures between 45 and 55 km. 

 
 

Figure 4.12. AO and SAO amplitudes and phases. The annual and semiannual 

amplitudes and phases from the USU, OHP, CEL, and HALOE temperatures. SABER 

SAO amplitudes and phases are also shown.  
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 The AO phase profiles follow a similar overall pattern. Below 60 km the temperature 

maximum is around June. From 60 to 65 km it transitions rapidly to January and then 

slowly moves toward December with increasing altitude. The USU phase shift is more 

gradual than the OHP, CEL, and HALOE phase shifts. Overall, the phases of the AOs 

shown in Figure 4.12c are similar, as a whole they vary at most by one month between 45 

and 60 km and between 65 to 90 km. Between 60 and 65 km the phase shifts 

dramatically. In this region the phases can differ by several months but this is due to the 

flatness of the slope, so the variation is probably best understood as local altitude 

variations rather than phase variations. 

 

8.2. Semiannual Oscillation 

 The semiannual oscillation (SAO) is a seasonal, twice-yearly oscillation in middle 

atmosphere temperatures and winds. It was previously thought that the origin of the SAO 

was the semiannual variation in solar irradiance: The solar zenith angle reaches a 

maximum twice every year at the equator. However, according to Reed [1966] this could 

not account for the westerly acceleration of the semiannual zonal wind. (See also 

Dunkerton [1979].) It is now believed that the stratosphere westerly accelerations in the 

wind field are caused by Kelvin waves and the easterly accelerations are caused by 

momentum advection across the equator. The mesopause SAO is believed to be caused 

by gravity wave breaking between 80 and 90 km associated with the easterly and 

westerly wind accelerations; it is also believed that the amplitude of the SAO is 

modulated by the quasi-biennial oscillation [Dunkerton, 1979; Garcia et al., 1997; 

Brasseur and Solomon, 2005; Watanabe and Takahashi, 2005]. 
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 There is much larger variability between the SAO amplitude profiles than there are in 

the AO amplitude profiles. For the USU, SABER, CEL and OHP amplitudes, there is a 

maximum near 60-65 km and a second maximum between 70 and 85 km. The minima are 

located at 45-50 km, 65-70 km, and 80-90 km. The HALOE profile appears to be a 

few kilometers higher than the others. The biggest differences are with the French 

amplitudes at the lower-altitude maxima (60-65 km) where the USU, SABER, and 

HALOE amplitudes are smaller by about 2 to 3 K. This altitude is also where the SAO 

amplitude is greater than the amplitude of the AO by a few Kelvin. It is also where the 

AO amplitude is at a minimum and where the AO phase makes a rapid π phase change. 

 The SAO phase profiles also follow similar overall patterns. Because of the way the 

phases were calculated, both the earlier phase (April/May at 45 km) and the later phase 

(December/January at 45 km) are identical with the exception that the earlier phase is 

about six months earlier (or later) than the first. We therefore discuss only the first phase 

of the SAO. At 45 km the temperature maximum is about one month before solstice. It is 

gradually pushed back to February at 80 km, which puts the upper mesosphere SAO 

nearly out of phase with the lower mesosphere SAO. Above this it starts to move later in 

the year until at 90 km it occurs around April-May. There is fairly good agreement 

among the five profiles between 55 and 80 km. Below 55 km our SAO phase occurs 

around mid May, whereas the others are closer to solstice. Above 80 km, our phase 

occurs later in the year than the SABER and HALOE phases do. The HALOE 

semiannual phase is about two months earlier, and the SABER phase is about 15 days to 

one month earlier. 
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8.3. Semiannual Climatology 

 The climatologies of the semiannual oscillation for the HALOE and USU 

temperatures are made by removing the intercept, linear trend, annual oscillation, solar-

like sin ωt and cos ωt variations, and the solar-noise terms from the data, leaving only the 

semiannual and residual components. These were made into a composite year and 

smoothed with a 61 day moving average. The USU SAO climatology is shown in Figure 

4.13. The HALOE climatology is shown in Figure 4.14. 

 At 45 km for both the USU and HALOE SAO climatologies the temperature maxima 

occur at April-May and December and move toward earlier in the year with increasing 

altitude, up to 80 km. Above 80 km the USU phase moves toward later in the year with 

increasing altitude, but the HALOE climatology does not clearly show this reversal. 

Below 80 km the second-phase amplitudes in the USU climatology are stronger than the 

first by about 2-4 K. This is also true for the HALOE climatology. Above 80 km, in the 

USU climatology, the first phase is stronger than the second by about 2 K. In the HALOE 

climatology the second-phase amplitudes are stronger than the first throughout the 

altitude range and above 80 km the temperature differences between the first and second 

phases are about 2-4 K. This is greater than the difference in the USU climatology.  

 There is also a weakening of the SAO amplitude at 65 km that occurs in April and 

again at 73 km during August-September. This weakening is also found in the HALOE 

climatology at 67 km in April and at 73 km in August-September. Both climatologies 

also show a 1 K warming that starts at 45 km during September, two to three months 

before the second phase, and penetrates up to 60 km during October. This September-

October warming and the difference in temperature between the two maxima are likely  
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Figure 4.13. USU SAO climatology as seen over Logan, Utah.  

 

 

 
Figure 4.14. A HALOE SAO climatology. Derived from the HALOE data from the 

approximate location of the USU Rayleigh lidar.   
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the effect of higher order terms that were not included in our model. 

 

9. Final Conclusions 

 While there are several factors that may contribute to the large upper mesosphere 

cooling rate found in our temperatures, it does not appear to be an artifact of the model 

specification or coefficient bias. One possibility for the large cooling trend is the 

influence that the Mt. Pinatubo eruption may have had on the mesopause temperatures. 

There is independent evidence that the eruption altered the mesopause temperature 

structure, and because the USU lidar came online at about the time the temperature 

perturbation was at its peak, this seems like a plausible explanation. The temperatures 

from the first years exert some leverage on the linear coefficient which is suggestive of 

elevated temperatures which lead to a large cooling rate. There also appears to be 

elevated temperatures in the residuals at 85 km, but this could be an unaccounted for 

solar-like response. Because we do not have data before the Pinatubo eruption, it is 

difficult to assess if these elevated temperatures are a result of a Pinatubo effect, an 

unaccounted-for solar-like oscillation, or both. At 45 km there are depressed temperatures 

in our early data, which might be related to the Pinatubo eruption; but owing to the fact 

that we do not have prior data this, too, cannot be assessed with any certainty. Another 

possibility is collinearity, or more specifically, coefficient correlation, but the presence of 

this is also difficult to determine. 

 All the linear trend profiles from the various model perturbations fell within the  

error limits for the Model (4.1) linear term, suggesting the value of the linear trend 

coefficient is not strongly affected by the solar-like sine and cosine terms. Inclusion of 
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the solar-like sine and cosine terms nearly doubles the linear trend error limits, but 

omitting them can bias the linear trend estimate. 

 When the solar-like terms were omitted from Model (4.1) the cooling rate was −0.3 to 

−1.0 K/year between 67 and 80 km at the 95% level. When the solar-like terms are 

included the cooling rate was −0.5 to −1.0 K/year between 73 and 80 km. On average the 

mesosphere cooling trends tabulated in Beig et al. [2003] are about −0.35 K/year, but 

four of the trends were in the neighborhood of −1 K/year. Our most reliable linear trend 

estimates are between 70 and 80 km.  

 Additional data would allow us to avoid the Pinatubo years without the detrimental 

effects that arise from shortening the data set. Also, collinearity could be affecting our 

linear trend estimate such that our linear trend values are larger or smaller than the true 

value. Given that our linear trend estimate is much larger than what other researchers 

have found, it seems more likely that if coefficient correlation is affecting our linear trend 

estimate, it is larger than the true value. This problem would be diminished by additional 

data.  

 The amplitude of the atmospheric solar response ranges from 3 K at 45 km to 5 K 

between 85 and 90 km. Remsberg’s mesosphere phases between 66 and 82 km are within 

or nearly within our error limits. In the lower mesosphere there is little correlation 

between Remsberg’s phases and ours. To my knowledge, Remsberg is the only other 

group to have allowed for a phase offset to the atmospheric solar response. Our 

amplitudes are within ±2 K to Remsberg’s amplitudes. 

 When a fixed-phase model is applied to our temperatures the sin ωt coefficient is 

systematically lower than the MgII coefficient by about 1 K in the lower and upper 
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mesosphere. These differences coincide with the areas where the solar-noise term is 

statistically significant. When the solar-noise is added to a model containing an MgII 

proxy, the proxy coefficient closely matches the sin ωt coefficient. It is possible that 

omitting the solar-noise term from the model biases the MgII coefficient estimate. 

 Other groups that employed a fixed-phase proxy have found a maximum solar 

response magnitude ranging from 2.5 to 7 K, which is roughly consistent with model 

predictions. The fixed-phase models applied to the USU data exhibits a seasonal 

response. It shows amplitude magnitudes of 1 and ±4 K. The USU data shows that the 

middle mesosphere (60-74 km) solar response during summer is stronger than the winter 

response by about 6 K. In the upper mesosphere (74-88 km) this was reversed, but the 

maximum difference was still about 6.5 K. Other groups found a stronger atmospheric 

solar response only during winter. 

 Between 45 and 80 km our AO amplitudes and phases agree with the AO amplitudes 

and phases from the HALOE data to within a few Kelvin. Above 55 km our amplitudes 

follow the OHP and CEL amplitudes, but are larger by about 2 K. Below 55 km the OHP 

and CEL lidars show an amplitude between 5-6 K, whereas our amplitude starts at 10 K 

at 45 km and decreases to 6 K at 55 km. Our AO phases closely follow the phases found 

for the OHP, CEL, and HALOE, with the minor exception that our AO phase has a more 

gradual transition at 65 km. 

 Our SAO amplitudes show a minimum at 45 km, a maximum near 62 km, another 

minimum near 70 km, a second maximum near 78 km, and a minimum at 90 km. All the 

SAO amplitude profiles have this double peak profile. The HALOE semiannual 

amplitude profile appears to be shifted a few kilometers higher than the others. 
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 The SAO phases also have a similar profile. At 45 km the USU SAO phase is about a 

month before solstice, around mid May. The phase moves earlier in the year with 

increasing altitude until 80 km, where it is around February. Above this the phase moves 

toward later in the year. 

 A climatology of the USU SAO shows that the amplitude of the second phase of the 

SAO is stronger than the first by about 2-4 K. A similar stronger second phase is also 

seen in the HALOE climatology. There is also a weakening of the first phase of the SAO 

at 65 km that occurs April-May, and again during the second phase at 75 km around 

September-October. This is also seen in the HALOE climatology. The USU climatology 

shows that near the mesopause the amplitude of the first SAO phase is stronger than the 

second phase; for the HALOE climatology the second phase is stronger than the first. 

There is also a temperature anomaly that starts at 45 km during September and persists to 

65 km in October. This feature is about 1 K and is found in both the HALOE and USU 

climatologies. It, and the amplitude difference between the first and second phases, are a 

likely indication of the existence of higher order terms in the temperature time series. 
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CHAPTER 5 

 

EXAMINATION OF THE MODEL RESIDUALS 

 

 

Abstract. When doing ordinary least squares regression (OLSR), one common 

assumption is constant residual standard deviation. But for atmospheric temperatures, this 

assumption is rarely true. In this chapter we examine the residuals and some of their 

variations. We examine some of the variations in the residual standard deviation, the 

residual autocorrelation, the 11-year variation in the residual standard deviation, and 

seasonal variations of the solar-noise coefficient. As part of this, we examine 

climatologies of the autocorrelation coefficient and solar-noise coefficient. We attribute 

the seasonal variation in the autocorrelation coefficient to seasonal temperature 

perturbations that evolve over a period of a day or more. We briefly examine the 

downward control principle described in Bittner et al. [2002]. We did not find evidence 

for this principle in our data, but owing to the shortness of our data set this was 

inconclusive. 

 

1. Introduction 

 If the standard deviation of the model residuals is constant over time they are said to 

be homoscedastic. If they change over time they are said to be heteroscedastic. 

Coefficient standard errors (SEs) are based on the assumption of constant residual 

standard deviation. Ideally the residuals are independent and identically distributed, the 

i.i.d. assumption. Identically distributed means every residual is taken from the same 

distribution and consequently has the same standard deviation; independent means there 

is no correlation between residuals. The difficulty as it applies here is that with 
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atmospheric temperatures that assumption is rarely true. The residuals are strongly 

heteroscedastic. The standard deviations are greater during winter and evolve with the 

solar cycle; the residuals are autocorrelated and the correlation follows a seasonal cycle.  

 

2. Section Summary 

 Section 3 presents the model from which the residuals are taken. Section 4 contains a 

brief description of the number of nights of data and how they vary with altitude and 

season. In section 5 we discuss the seasonal variation in residual standard deviation and 

present a plot of the seasonal standard deviation and discuss it in connection with gravity 

wave activity. In section 6 we look at the seasonal change of the solar-noise coefficient. 

In section 7 we look at the residual autocorrelation and present an image plot of the 

seasonal variation in the autocorrelation. In section 8 we look at the 11-year variation in 

the residual standard deviation in conjunction with the downward control principle.  

 

3. The Model 

 The model from which the residuals are drawn is  

 

T(z,t) = α(z) + β(z)·t + A1(z)cos(2π·t) + A2(z)sin(2π·t) + B1(z)cos(4π·t) + B2(z)sin(4π·t) +  

C1(z)sin(ωt) + C2(z)cos(ωt) + D(z)·solnoise + ε(z,t),  (5.1) 

 

where α is the intercept, β is the linear trend coefficient, A1 and A2 give the amplitude and 

phase of the annual oscillation, B1 and B2 give the same for the semiannual oscillation, C1 

and C2 give the amplitude and phase of the atmospheric solar response, D is the solar-

noise coefficient, and ε is the residual. 
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4. Number of Data Points 

 The number of nights is one of the factors that determine the coefficient SEs. More 

data generally mean smaller SEs, which permit a more accurate appraisal of the 

significance of the coefficient values. Shown in Figure 5.1 are the number of nights of 

data by season and altitude, as well as the total number of nights. For each three-month 

season the number of data points is fairly constant up to about 80 km where it starts to 

drop off. The drop off is due to observing conditions and lower power. When conditions 

are very good the lidar can detect signals up to 100 km, which permits a higher starting 

altitude in the temperature reduction. But observing conditions are rarely that good and 

on many nights the temperature integration must start from a lower altitude. The seasonal 

differences are set by a combination of operator availability and weather conditions. We 

have twice as many observations during summer as during spring and winter. 

 

 
 

Figure 5.1. The total number of observed nights according to altitude and season.  
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 For the analysis in this dissertation, all temperatures greater than 3σ from the mean 

for a given altitude and time series were considered outliers and omitted from the data 

set. Nine data points were omitted at 45 km leaving 584 data points. Only two data points 

were omitted at 80 km and one data point was omitted at 90 km. 

 

5. Seasonal Changes in Temperature Variability 

 Between 45 and 75 km, there is the characteristic high standard deviation during 

winter and low standard deviation during summer. The likely cause of this seasonal 

difference is variable gravity and planetary wave activity, which follows an annual 

variation, being strongest in winter. According to theory, gravity wave amplitudes 

increase proportionally to p0
−1/2

, where p0 is the background pressure. As the wave 

propagates upward, the wave amplitude grows until it reaches a region where wave 

instabilities cause it to break and deposit its energy. This condition can be characterized 

by a low Brunt-Väisälä frequency and/or high vertical wind shear. These conditions can 

be combined in what is sometimes called the gradient Richardson number or the local 

Richardson number, defined as  

 

Ri = N
2
/S

2
 = N

2
/ ( (∂u/∂z)

2
 + (∂v/∂z)

2
 ),  

 

where N
2
 is the Brunt-Väisälä frequency, u and v the are zonal and meridional winds, and 

S is the total vertical wind shear. This number is a ratio of the convective instability 

represented by N
2
 and the dynamic instability (shear) represented by S

2
. When the 

Richardson is 0 > Ri < 1/4 (when N
2
 is small and/or S

2
 is large) the atmosphere is 

considered to be dynamically unstable and causes gravity wave breaking [Hines, 1971]. 
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The Richardson number determines to what altitude the waves will propagate. When they 

break, they deposit their energy affecting local temperature, composition, and winds. 

 Though the cause of the seasonal variation is not well understood, there are three 

mechanisms that are believed to play a role. (1) A seasonal variation in the gravity wave 

sources such as orography, convective activity such as weather fronts and thunder storms, 

and wind shear. (2) The initial properties of gravity waves may vary seasonally according 

to phase speed, direction of propagation, and background flow. And (3), the atmosphere 

could act as a selective filter blocking the vertical propagation of lower altitude waves 

differently in different seasons [Wilson et al., 1991]. The cause of the variation is an open 

question. Rauthe et al. [2008] did not find a seasonal variation in gravity wave 

wavelengths or a correlation between the strength of gravity wave activity and wind 

direction or wind speed, nor did they find a correlation between a change in wind 

direction and the strength of gravity wave activity, item (3). However, as Rauthe et al. 

pointed out, the tilted propagation of gravity waves means that local vertical lidar 

measurements might not be influenced by the local wind field. Kafle [2009] did not find a 

seasonal variation in vertical wavelength, but was able to infer the presence a seasonal 

variation in horizontal wavelength. Though the cause of the seasonal variation is not yet 

settled, the vital role of gravity waves in determining atmospheric circulation, variability, 

and composition is well established. 

 The USU mean standard deviations were calculated by forming the Model (5.1) 

residuals into a composite. The standard deviation was then calculated using a 30-day 

window. This result includes variations from geophysical variability and photon 

counting. The USU standard deviation plot is shown in Figure 5.2a. Figure 5.2b is a 
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similar looking standard deviation plot of Figure 5.2b from Hauchecorne et al. [1991] 

and is on the same color scale as Figure 5.2a. Figure 5.3 is a more detailed contour plot 

from Hauchecorne et al. of Figure 5.2b. The French standard deviations are taken from 

the temperatures themselves which were smoothed with a 30-day Hanning window. 

However, for the level of detail that we are interested in, and, given that both we and the 

French were looking at a 30-day window, the differences in technique are minimal. 

 Overall, the USU standard deviations are similar to those in Figure 5.2b and Figure 

5.3. The first thing to notice is below 75 km there is the characteristic high standard 

deviation during winter and low standard deviation during summer. In both the USU and 

French climatologies the summer lower-mesosphere standard deviations are 2 to 4 K and 

the winter standard deviations are 5 to 8 K. The middle mesosphere (60 to 75 km) 

summer standard deviations are about 4 to 7 K and the winter standard deviations are 

about from 6 to 12 K. Above 75 km there is little seasonal variation. A seasonal variation 

in standard deviation was also found by Bittner et al. [2002] at 1 hPa (~47 km; 

50ºN/5ºE), who found a winter maximum of 11 K and a summer minimum of 1.5 K in 

SSU temperatures. They found this pattern was repeated in radiosonde (48ºN/11ºE) 

measurements from 31 km where the winter standard deviation is 8 K and the summer 

standard deviation is about 2 K. At 87 km they found a constant standard deviation in the 

OH bands (51ºN/7ºE) of 5.5 K, which showed no seasonal variation. 

 Another short-term standard deviation plot from Rauthe et al. [2008] is shown in 

Figure 5.4 and shows the seasonal temperature fluctuations obtained from two Leibniz-

Institute of Atmospheric Physics lidars (54ºN). Their climatology shows the characteristic 

seasonal variation below 75 km. The lower mesosphere standard deviations are about 2 K 
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Figure 5.2. Seasonal variation of residual standard deviation. Plot (a) shows the 

climatology of the standard deviation of the residuals from Model (5.1). Plot (b) shows 

the climatology of the standard deviation from Table 4 of Hauchecorne et al. [1991] 

covering a period from 1984 to 1989. Both (a) and (b) are on the same color scale. 

 

 

 
 

Figure 5.3. Seasonal variation in temperature standard deviation. A more detailed plot of 

Figure 2b, provided for comparison with Figure 2a and 2b. (This figure is Plate 3 from 

Hauchecorne et al. [1991]. Used with permission of the American Geophysical Union.) 
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during summer and about 4 K during winter. The mid-mesosphere standard deviations 

are 2 K during summer and 6 K during winter. In the upper mesosphere they range from 

5 K during summer to about 7 K during winter. 

 Two interesting seasonal features in the USU standard deviations are the increases 

around mid May and early October at 88 km that reach approximately 20 K, and perhaps 

a third in December. They are strong, but it is difficult to determine if they are 

anomalous, seasonal, or due to unique local conditions. A similar peak was found in the 

Hauchecorne et al. climatology at 81 km during May. There were no similar peaks found 

in the Rauthe et al climatology. Near 50 km there is a decrease in the standard deviation 

in May-June and also August-September. We see similar dips in the French climatology 

at 52 km and in the Rauthe et al. climatology at 45 km. Another common feature occurs 

at 57 km near August where the climatology shows a standard deviation increase that 

declines with altitude. A similar feature can be seen in the USU data where it occurs 

 
 

Figure 5.4. Seasonal variation of nightly mean temperature fluctuations derived from the 

two Leibniz-Institute of Atmospheric Physics lidar; 236 nights of measurements are 

smoothed with a ±15 day, ±2 km Hanning filter. (Image is Figure 7 from Rauthe et al. 

[2008]. Used with permission.) 
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about a month earlier and starts about 5 km higher. This feature is not found in the 

Rauthe et al. climatology. 

 

6. Seasonal Changes in Solar Response 

 The seasonal solar-noise coefficient may be used to infer a seasonal atmospheric 

response to solar-noise. To calculate this variation, temperature data from a 121-day (~4-

month) window was selected; the same 121 days were selected from each year for which 

we have data. For example, for each year, all the data between the day-of-year days 5 and 

126 were selected and Model (5.1) was fit to that data. From that fit, the solar-noise 

coefficient was obtained. This selection window was advanced day by day and Model 

(5.1) was fit to the selected data. Consequently, the data was not compiled into a 

composite year calculation for this calculation. From this we got an idea of the seasonal 

variation of the strength of the solar-noise coefficient. The results are shown in Figure 

5.5. The atmospheric solar-noise response is greatest at 85 km October-December where 

 
 

Figure 5.5. Seasonal variation in solar noise coefficient. Plot (a) shows the seasonal 

variation of the coefficient of the Model (5.1) solarnoise term. Plot (b) shows confidence 

levels of the coefficient. The confidence levels are between 0 (the lowest confidence 

level) and 1 (the highest confidence level). 
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the SN coefficient reaches 8 K. There is another strong response that is about 5 km lower 

and reaches a maximum of 3 K during January-March. In the middle mesosphere there is 

a statistically significant SN response from August to January which ranges from 2 K 

near October to −1 to −2 K from November to January. In the lower mesosphere there is 

a weakening of the solar-noise term that occurs from June to November and is 

statistically significant throughout most of the year. 

 Between 80 and 90 km, the solar-noise response is stronger during winter than it is 

during summer, which is similar to findings from other researchers who found the winter 

solar response in the upper mesosphere to be stronger than the summer solar response 

[Schwentek, 1971; Hood, 1987; Keckhut et al., 1995; Pertsev and Perminov, 2008].

 From Figure 5.5b, it is clear that the solar-noise term is either highly significant or 

insignificant. The rapid transition from high to low significance is due to the rapid 

transition in coefficient value from positive to negative.  

 

7. Calculating the Residual Autocorrelation Coefficient 

 The autocorrelation coefficient indicates the degree to which yesterday’s 

temperatures are correlated to today’s temperatures. The autocorrelation coefficient 

varies between 0 (no correlation) and 1 (perfect correlation). This could be interpreted as 

a stronger memory in the time series or indicate the duration of a process. For example, 

yesterday’s temperature could be strongly influencing today’s temperatures or a 

temperature perturbation could be occurring over a period of a day or more. Given that 

we are measuring temperature variations and that planetary waves are likely responsible 

for a significant portion of the variation, we prefer the second interpretation. Because of 
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the prevalence of planetary waves in winter, the autocorrelation should be bigger in 

winter. (Finding a method for calculating the autocorrelation coefficient from 

discontinuous data was challenging. The method for this is described in Appendix E.) 

 The autocorrelation profile using the entire data set is shown in Figure 5.6. At 45 km 

the autocorrelation starts at 0.7 and decreases to around 0.6 at 50 km. From 50 to 65 km it 

oscillates around 0.55; from 65 to 80 km it decreases to 0.15. Above this there is a slight 

increase before it decreases to zero. On average the autocorrelation decreases at a rate of 

0.015 km
−1

. 

 It is widely accepted that the seasonal variation in the temperature standard deviation 

is caused by gravity and/or planetary wave activity. We also know that temperature 

inversions below the mesopause can last for several days. These processes can inflate 

temperature standard deviations. Because autocorrelation also inflates residual standard 

deviations (see Appendix H) a possible connection exists between the autocorrelation and 

the residual standard deviation. Because the standard deviation follows a seasonal 

pattern, this opens the question of a seasonal variation in the autocorrelation. To check 

for this, the residuals were selected as they were for the solar-noise coefficient 

calculations, according to the method described in the previous section. Residuals from a 

121-day (~4-month) window were selected. For example, for each year, all the residuals 

between the day-of-year days 5 and 126 were selected and the autocorrelation coefficient 

was calculated for that data. From that fit the solar-noise coefficient was obtained. By 

advancing the selection window day by day, we created a 365-day climatology of the 

autocorrelation coefficients, which is shown in Figure 5.7. 

  It is evident that below 75 km the autocorrelation follows a pattern very similar to  
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Figure 5.6. The autocorrelation in the residuals of the entire USU data set.  

 

 

 

 
 

Figure 5.7. Seasonal variation in autocorrelation.  
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that of the standard deviation in Figure 5.2a: high winter and low summer activity. Like 

the standard deviations, above 75 km the autocorrelation does not show a seasonal 

variation. In contrast to the standard deviations, the autocorrelation is small above 75 km 

and the standard deviation is large. One may infer from the autocorrelation climatology 

that different physical processes are involved. The elevated wintertime correlations below 

75 km originate from processes that occur on time scales of at least a day, and above 75 

km, the lower autocorrelations indicate the causative processes are occurring over a 

shorter time scale. 

 

8. Solar Cycle Variation 

 In addition to the usual seasonal variation in standard deviation there is also a 

standard deviation variation that occurs on solar cycle time scales. To check for this the 

data were divided into four period sections, each 2.5 years long. For each section the 

standard deviation of the Model (5.1) residuals was calculated. These are shown in 

Figure 5.8. 

 While there is a small variation below 70 km, above 70 km there is a marked higher 

variation from 2.5 to 7.5 years, with the maximum difference occurring near 80 km. The 

time divisions for the standard deviations are shown in Figure 5.9 along with the Mg II 

solar flux proxy. In section I (0 to 2.5 y) the standard deviation is around 10 K at 80 km. 

In section II (2.5 to 5 y) it increases to 14 K. In section III (5 to 7.5 y) it is about 16 K. 

Finally, in section IV is decreases back to 10 K. Höppner and Bittner [2007] found a 

similar solar-cycle variation in the temperature standard deviation in the hydroxyl (OH*) 

layer above Wuppertal, Germany (51ºN, 7ºE) at about 87 km. (See also Bittner et al. 
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Figure 5.8. The temporal variation in the residual standard deviations over an 11-year 

period. Each profile is calculated from a 2.5 year block of data. 

 
 

[2000, 2002] for earlier analyses with similar results.) They found that the temporal 

evolution of the yearly mean standard deviation of the temperatures reached a maximum 

about four years before the 2000 solar maximum. (Figure 5.10.) Their standard deviations 

are considerably smaller than ours. Our max-min difference is about 6 K while theirs is 

about 2 K. The phases relative to the solar cycle are similar. 

 This temporal variation in temperature standard deviation was discussed in a paper by 

Beig et al. [2003]. In it they discuss results from Bittner et al. [2002], which is an earlier 

study related to Höppner and Bittner [2007]. Beig concludes that it is unlikely the 

temporal variation in standard deviation is due to measurement error. The standard 

deviation is a fairly robust statistical parameter and insensitive to instrument bias. 

Consequently the standard deviation as an atmospheric parameter is sui generis, unique 

or particular in itself. The later results of Höppner and Bittner [2007], as well as our 

results, support their original conclusions regarding the existence of an 11-year evolution 
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Figure 5.9. The variation of the residual standard deviation from 1994 to 2002. The 

vertical lines indicate the four data sections. The solid line represents the 81-day 

smoothed Mg II values. The dashed line indicates the standard deviations at 80 km.  

 

 

 
 

Figure 5.10. The variation of the temperature standard deviation from 1980 to 2005. The 

solid line shows the temporal evolution of the temperature standard deviation from 1981 

to 2005. The dotted line indicates the solar F10.7 solar flux. (Taken from Figure 4a from 

Höppner and Bittner [2007]. Used with permission.) 

 

 

of the standard deviation. 

 As far as the differences in the standard deviation between our data and the 

Wuppertal temperatures is concerned, Bittner et al. [2002] found similar differences in 

the standard deviations between their data and the French data reported in Leblanc et al. 

[1998]. The maximum standard deviation was 12 K at 80 km in the French data, which is 

closer to our results from the same altitude and latitude. Bittner et al. suggested the 

smaller standard deviation in their data was due to an inherent smoothing effect owing to 
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the broadness of the OH layer. 

 One of the theories tested by Bittner et al. [2002] is the so called downward control 

principle, or wave-driven circulation. This theory says that during winter, increased wave 

breaking at high altitudes increases temperatures at lower altitudes. So there should be a 

correlation between changes in wave activity and lower altitude temperatures [Holton et 

al., 1995; Haynes et al., 1991]. To test for this, they calculated the temperature standard 

deviations at approximately one-year intervals. They did the same for the monthly mean 

temperatures from November to March and selected the lowest values for a given year in 

order to reduce the influence of sudden stratospheric warmings. From this a correlation 

between the lower altitude temperatures and the higher altitude standard deviations was 

calculated. The lower altitude temperatures are the SSU temperatures from 1 hPa (~47 

km). 

 They found a statistically significant (~95%) correlation of 0.51 for a time lag of 1.5 

years, which they tentatively interpret as evidence for the downward control principle. A 

similar calculation was performed on the USU temperatures by dividing the temperatures 

from 80 km into sections of 1.5 years and taking the temperature standard deviation for 

each section. Because of data gaps, we ended up with only seven data points; smaller 

divisions seemed impractical. The temperatures from 45 km for the months of November 

through March were selected and from those months temperatures greater than the 

monthly mean were omitted in order to reduce the influence of sudden stratospheric 

warmings. The monthly temperatures were averaged and compared to the standard 

deviations from 80 km. A negative correlation of −0.56 was found. However, as we had 

only seven data points, this was not statistically significant and because we had so few 
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points, we were unable to lag our standard deviations. Taking a closer look at the Bittner 

et al. results, it is possible their correlation was strongly influenced by outliers. When the 

two outermost points were omitted, the correlation dropped to 0.25 and had a significance 

of 78%. Their correlation calculation was based on 14 data points, which is barely 

enough for statistical analysis. 

 

9. Conclusions 

 There is a strong seasonal variability in the residual standard deviations below 75 km. 

They show the characteristic low summer and high winter variance. Our seasonal 

variances compare favorably with those from Hauchecorne et al. [1991] and Rauthe et al.  

[2008]. We found a low standard deviation of 2-4 K in the lower and mid mesosphere 

during summer and a high standard deviation during winter, 4-12 K from the same 

regions. There were two low points at 50 km during May-June and August-September at 

about 2 K. Similar low points were found in the French data at the same altitude and time 

of year. Above 75 km the residual standard deviations are fairly constant and relatively 

high. 

 The solar-noise coefficient was stronger during winter in the upper mesosphere. In 

the middle mesosphere it was positive and statistically significant during October-

November and negative and statistically significant during December-January. 

Throughout the remainder of the year is was not statistically significant. In the lower 

mesosphere it was statistically significant nearly throughout the year, though it was 

slightly stronger during winter. A strong winter solar response has been found by several 

researchers and our results from the upper and lower mesosphere show a similar 
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behavior. 

 We found a seasonal variation in the autocorrelation coefficient for the residuals 

below 75 km that correlates strongly with the seasonal variation in the residual standard 

deviations. A high autocorrelation coefficient indicates a strong correlation between 

earlier temperatures and later ones. The high autocorrelations are possibly indicative of 

long-period gravity waves or planetary waves. Above 75 km the autocorrelation 

coefficient is small and fairly constant. 

 We investigated the 11-year variation in the residual standard deviation and found an 

11-year variation in the middle mesosphere (73-85 km) that leads the 11-year solar cycle 

by about three years. A similar lag and variation in standard deviation was found by 

Höppner and Bittner [2007]. Bittner et al. [2002] also found evidence for wave-driven 

circulation (downward control) by correlating standard deviations from 87 km with 

temperatures from 1 hPa (~47km). We did not find any significant correlation, which was 

expected because we had only seven data points. 

 Time series plots for the model residuals from every altitude bin are given in 

Appendix F.  
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CHAPTER 6 

 

SUMMARY AND FUTURE WORK 

 

 

1. Summary of Research 

 We have examined collinearity, model specification, solar-noise, atmospheric solar 

response, linear cooling trends, the possibility that the Pinatubo volcanic eruption 

affected our initial temperature measurements, and the standard deviation and 

autocorrelation of the residual noise. 

 Collinearity can affect an ordinary least squares (OLS) model in several ways. We 

closely examined two: coefficient correlation and inflated standard errors (SEs). 

Coefficient correlation arises when two or more regressors have some degree of linear 

dependence. For a positive correlation, when one coefficient is higher than its true value 

the other will also be higher than its true value; when they are negatively correlated they 

have an inverse relationship. There is no a priori way to determine if a coefficient is 

larger or smaller than its true value. But determining the correlation is a simple 

calculation and the correlation numbers should be reported. Bootstrapping can be used to 

better visualize the correlation. In our OLS models there is a strong negative correlation 

(−0.83) between the linear trend and the sin ωt proxy. This means that if the linear trend 

is higher than its true value, the sin ωt coefficient is lower than its true value; or if the 

linear trend is lower than its true value the sin ωt coefficient is higher than its true value. 

At 90 km we have detected a large linear trend that is greater than −1.5 K/year and also a 

negative sin ωt coefficient. This means if our linear trend is lower (more negative) than 

its true value then the sin ωt coefficient will be high, that is, shifted in the positive 
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direction, which means the magnitude of the sin ωt coefficient is likely to be smaller than 

its true value. But as already mentioned, there is no a priori way to determine if a given 

coefficient is lower or higher than its true value.  

 Another issue related to collinearity is inflated standard errors. The inclusion of the 

solar-like terms increases the linear trend SEs and limits the confidence that can be 

placed on the values of the linear coefficient. We found the error limits on the linear 

coefficient were 45% smaller when the solar-like sin ωt and cos ωt terms were omitted 

from the model. Under most circumstances if the solar-like terms are not included the 

model is under specified and consequently there exists a risk of biasing the linear trend 

coefficient. However, this is not the case if the phase of the solar proxy (or the sin ωt 

term) is near the time center of the data set, which is the case for the USU temperatures. 

Another symptom of collinearity is sensitivity to model specification. We found that our 

linear trend coefficient is fairly stable under model perturbations. When a fixed solar 

proxy was included in the model, the amplitudes were not abnormally high or low. When 

the solar proxy was omitted, the linear trend coefficient was still high. Taken together it 

does not appear that collinearity is behind the large cooling trends in our temperatures. 

 There is sound evidence that the Pinatubo eruption increased the temperatures of the 

mesopause region [Keckhut et al., 1995; She et al., 1998; Bittner et al., 2002]. When we 

divided our data set in half the mesopause temperatures from the first half show a linear 

trend of approximately −4 K/year and the linear trend from the second half is 

approximately –1 K/year. Between 76 and 50 km both the first and second halves show a 

near zero trend. Below 50 km the second half of the data has a cooling trend of 

−0.5 K/year and the first half data has a warming trend of +0.5 K/year. If the first year is 
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omitted from the data set then from 80 to 87 km the linear trends are near −1.3 K/year; 

for the full data set they are about −1.5 K/year. Between 50 and 80 km the linear trends 

are nearly identical to those from the full data set. Below 50 km the shortened data set has 

a −0.1 K/year cooling trend and the full data set has a 0.2 K/year warming trend. The 

differences of the linear trends between 80 and 90 km supports the thesis that a Pinatubo 

related heating increased our early temperatures in that altitude region. An examination 

of the residuals at 85 km also shows what appears to be a temperature perturbation of 

about 10 to 15 K at the beginning of the data set. But this is only true for a fixed-proxy 

model and may be an unaccounted for solar-like variation. Stronger cooling rates above 

70 km at the beginning of the data set are consistent with the existence of a Pinatubo 

warming effect in our early temperatures. But because we do not have data prior to 1993, 

we cannot assess for certain if this is the case. 

 A second OLS issue is model specification. If a model is under specified, then the 

correctly specified terms in the model are likely to be biased. If the model is cross 

specified, then the correctly specified terms will also be biased. If a fixed-phase solar 

proxy is included in a model and a variable phase solar proxy is more appropriate, then 

for a data set of 12 years, the maximum linear trend bias would be 0.1 K/year for a 1 K 

solar response. For a 2 K solar response the bias would be 0.2 K/year. This result is not 

small considering that scientists modeling mesosphere cooling are anticipating cooling 

trends on the order of 0.1 K/year. 

 Most researchers looking for secular trends in middle atmosphere temperatures 

include a fixed-phase solar proxy in their models. Our analysis of the USU temperatures 

indicates a significant out-of-phase temperature response to the solar input at several 
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different altitudes. Again, the use of a fixed-phase solar proxy when there is a significant 

phase difference in the temperatures can lead to bias in the linear trend coefficient. But 

even in cases where a model has a fixed-phase solar proxy, a selection criteria may be 

applied to reduce the risk of bias by selecting trends from altitudes where the atmospheric 

solar response is at a maximum or minimum value. Because the attenuation of the 

atmospheric solar response cannot exceed one, altitudes where the fixed-phase proxy 

coefficient has a maximum or minimum value are more likely to be closer to the true 

value of the atmospheric solar response. These altitudes may be emphasized as locations 

where the atmospheric solar response is likely to be in phase or out of phase with the 

solar input, with the understanding that where the solar response is in phase or out of 

phase with the solar input the linear term is likely to be less biased. 

 We have concluded that the solar-noise should be included as a separate term in the 

temperature model. We found this term to be statistically significant at 90% or better 

between 45 and 54 km and between 75 and 86 km. At 45 km the statistical significance 

was greater than 99.9%. A Mallow’s Cp test was done on the CPC and ERA temperature 

time series, as well as for every altitude in the USU temperatures. The results confirmed 

our earlier conclusion that the solar-noise should be included in the temperature models. 

We also found that if the solar-noise term is not included, the omission could bias the 

solar proxy coefficient. 

 We found a seasonal variation in the solar-noise coefficient in the upper mesosphere. 

The effect of the solar-noise was stronger during winter than during summer, but it was 

also divided into two distinct periods from January to March and from September to 

November, the second period being much stronger than the first by about 3 K and higher 
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in altitude by about 5 km. In the middle mesosphere the solar-noise response is near zero 

except for October-November when it reaches about 2 K, and November-December at 

−2 K. During winter the lower mesosphere response is weaker than it is during summer. 

 As mentioned in connection with model specification, we examined the atmosphere 

response to solar cycle variations, allowing for a variable phase. The magnitude of the 

maximum – minimum value of the atmospheric solar response above Logan, Utah is 

about 3.5 K at 45 km and about 1 K at 50 km. It then steadily increases to about 4 K at 

the mesopause. Only Remsberg has allowed for a variable phase proxy. The amplitudes 

of the atmospheric solar response from Remsberg [2007, 2009] are comparable to ours. 

At 49 km it is near 1 K. At 80 km it is near 3 K and within or nearly within our error 

limits. Their lower mesosphere amplitudes are slightly greater than ours and in the upper 

mesosphere, our amplitudes are slightly greater than theirs. We found significant phase 

differences in the atmospheric response to the solar input. However, they differed from 

those found by Remsberg [2007, 2009] in the HALOE temperatures. In the lower 

mesosphere the HALOE data shows a phase of about 10 years (equivalent to −1 year) 

whereas ours range from 0 to ±5 years. In the upper mesosphere the HALOE phases are 

close to zero. Our upper mesosphere phases occur later by about one to two years.  

 We also found a seasonal response to the solar input in the upper mesosphere. The 

solar response during winter was stronger than it was during summer by a few Kelvin. In 

the middle mesosphere the solar response was stronger during summer by about the same 

amount. 

 We looked for annual and semiannual oscillations in the temperatures. Our annual 

oscillation (AO) compares favorably in amplitude and phase with the HALOE AO. It also 
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compares well with the French OHP and CEL AO, with the exception that at 45 km the 

French AO is 5 K and increases to 6 K at 55 km. The USU AO amplitude is 10 K at 

45 km and steadily decreases to 6 K at 55 km. All the AO phases are similar and exhibit 

warm summers and cold winters in the lower mesosphere and reversed seasons in the 

upper mesosphere. 

 Our semiannual amplitudes exhibit a double peak profile, that is, two maxima near 62 

and 80 km. The OHP, CEL, HALOE, and SABER data also show the same double-peak 

pattern. The HALOE profile was a few kilometers higher than the others. The peaks in 

the OHP, CEL, and SABER SAO coincide with those in our data. The lower altitude 

peak in the OHP and CEL amplitudes are greater than ours by about two Kelvin. The 

higher altitude peak of the CEL has a magnitude close to ours; the OHP peak was smaller 

than ours by about 1 K. 

 The phases of the SAOs are also similar. At 45 km the first SAO phase is about a 

month before summer solstice, in mid May. The phase steadily transitions to earlier in the 

year with increasing altitude until at 83 km it occurs around February. Above 83 km the 

USU, HALOE, and SABER SAO phase profiles exhibit a shift toward later in the year. 

This shift is greatest in the USU data, occurring in May at 90 km. At 45 km the USU 

phase is earlier than the OHP and HALOE phases by about a month. The CEL phase is a 

month latter. The second SAO phase occurs six months later. Because of the way we did 

the analysis the second phase is otherwise identical to the first. 

 A temperature climatology emphasizing the SAO was found by removing the linear 

trend, AO, solar response, and solar-noise from the temperatures. These results are more 

complicated than those found for the SAO using least squares. Below 75 km the 
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climatology shows that the second phase of the SAO is stronger than the first by about 

4 K; this is also true for the comparable HALOE climatology. Above 75 km the first 

phase of the USU climatology is stronger than the second by about 2 K, while in the 

HALOE climatology the second phase is stronger than the first by about 4 K. There is 

also a weakening of the SAO amplitude during the first phase at 65 km during March-

April and again in the second phase at 70 km during August-September. This feature is 

also found in the HALOE data. Finally, there is a 1 K temperature anomaly that starts at 

45 km during September and penetrates up to 60 km in October and is found in both the 

USU and HALOE climatologies. The apparent differences between the first phase and 

second phase SAO amplitudes and the September-October anomaly likely arise from the 

influence of higher order terms. 

 In the residual standard deviations, we found a strong seasonal pattern below 75 km 

where standard deviations (SDs) are lowest during summer and highest during winter. In 

the lower mesosphere, from May to September, the SD of the residuals are 1 to 2 K. 

From November-March they are 6 to 8 K. In the middle mesosphere the SDs, are 8 to 

12 K from November to February, and 4 to 8 K from March to October. Above 75 km the 

residuals show a fairly constant SD around 12 K, though there were two peaks at April-

May and September, and perhaps a third in December, that reached as high as 20 K. 

 Our SD climatology is similar to others in the literature. Hauchecorne et al. [1991] 

published a SD climatology that matches ours in both seasonal pattern and in the 

magnitudes of the SDs. Their climatology also shows SD minima around 52 km that 

occur May-June and September-October. A similar feature is found in our SDs as well. 

At 48 km there are minima around May-June and August-September; there are also two 
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additional minima at 55 km, which occur a month earlier. Our data also shows a slight 

SD increase of 2-10 K that occurs near 75 km during April and penetrates down to 

55 km. In the Hauchecorne et al. climatology this feature is not as strong. 

 At 80 km we found signs of elevated SDs that correlated with the 11-year solar 

variation that occurred nearly three years before solar maximum. A similar variation at 

87 km was also found by Höppner and Bittner [2007] whose SDs reached a maximum 

four years before the solar maximum at 87 km. Bittner et al. [2002] found a positive, 

statistically significant correlation between the temperature SDs at 87 and SSU 

stratopause temperatures. We did not find a similar correlation in our data, but this could 

be because of the shortness of our data set.  

 We created a climatology of the autocorrelation coefficients for the Model (5.1) 

residuals and found that below 75 km the autocorrelation is considerably stronger during 

winter than it is during summer. From September to April the correlation averages around 

0.6. From May to August it is about 0.35. What this tells us is that during winter, below 

75 km, the temperature SDs are inflated because of a seasonal autocorrelation in the 

residuals. This suggests that the large autocorrelation coefficient in winter arises from 

planetary waves and mesospheric inversion layers that last more than a day. Above 

75 km the autocorrelation remains small throughout the year, near 0.3 with no seasonal 

variation. In contrast, this region is where the SDs reach their maximum value, but 

similarly they have no seasonal variations. The smaller autocorrelation suggests that 

above 75 km the cause of the elevated SDs is a physical process that is likely occurring 

on timescales of less than 24 hours. 
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2. Final Comments 

 

 Some of the statistical techniques employed in this dissertation have been used 

before, such as the SD climatology and least squares analysis, to detect cooling trends, 

the atmospheric solar response, and the influence of the Pinatubo eruption. However, 

several new tools have been added: The solar-noise term and its climatology along with 

the autocorrelation coefficient and its climatology. We have also included a mid-latitude 

SAO climatology (of which there are few). Equations have been derived that can be used 

to estimate the bias and coefficient attenuation in models that contain a fixed-phase solar 

proxy, and we used these to developed arguments that address the dangers of linear trend 

bias in the presence of an atmospheric response that is not in phase to the solar input. We 

show that altitudes where the fixed-proxy coefficient is at a maximum or minimum value 

are ideal for identifying middle atmosphere cooling, as well as the magnitude of the 

atmospheric solar response. We also more fully considered the effects of collinearity 

between the linear trend and fixed-proxy coefficients. 

 

3. Future Work 

 Work needs to be done to calculate the coefficient correlations from the OLS models 

used in the literature. Researchers do not report their coefficient correlations and do not 

take these correlations into account in their analysis. However, researchers do report their 

models and that is all that is needed to calculate the coefficient correlations. Further, if 

error limits are given it might be possible to estimate the height and width of the elliptical 

correlation pattern. 

 Also needed is an understanding of how collinearity affects the amplitudes and phases 
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of the variable-phase solar proxy. For a fixed-phase proxy such as MgII this is simple. 

But the amplitude of a variable-phase regressor is [(C1)
2
 + (C2)

2
]
1/2

, which is non-linear. 

The phase angle is given by tan
-1

(C1/C2) and is monotonic from –π/2 to π/2, but further 

investigation is also needed. We also did not touch on how collinearity affects the solar 

proxy coefficients. 

 The error analysis of the autocorrelation coefficient needs to be more fully developed, 

and a formal proof showing that a correct guess of the autocorrelation coefficient 

minimizes the residual SD is needed. A better physical interpretation and explanation of 

the residual temperature autocorrelations needs to be worked out. 

 Because autocorrelation inflates the residual SDs (see Appendix H) it also inflates 

coefficient SEs. If the autocorrelation coefficient can be accurately estimated, it might be 

possible to reduce the coefficient SEs. Another thing that needs inquiry is whether 

including the solar-noise term in the model reduces autocorrelation in the residuals. 

 Also needed is a theory connecting gravity-wave activity, the SD variation, and the 

seasonal variation in the autocorrelation. The effects of the solar-noise also need a 

physical interpretation. 

 One interesting result from our solar-noise analysis that we were unable to 

incorporate into this dissertation because of time constraints is a lag between the solar-

noise term and the temperature residuals. When the solar-noise is lagged by 30 days, the 

correlation between the solar-noise and the temperature residuals increases from 0.17 to 

0.20. This was also found in the CPC data, but the correlations were much smaller. We 

need to check for a lag with other solar proxies and determine if the lagged solar-noise 

improves the model results. This lagged correlation might also be of value in predictive 
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models. 

 More data will improve our analysis. Most of the parameters we worked with are 

affected by the length of the data set. The collinearity problem can be nearly eliminated if 

we could acquire about 2.5 more years of data. We could also better estimate the linear 

trend coefficient and the amplitude and phase of the atmospheric solar response and 

check for continued variation in the temperature standard deviation with the solar cycle. 

 The addition of the HALOE data to this dissertation came late and we were unable to 

fully incorporate in it into the analysis. All the analysis applied to the USU temperatures 

can also be applied to the HALOE temperatures. It is also possible to repeat our analysis 

on temperature data available from the National Weather Service Climate Prediction 

Center (CPC). 
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APPENDIX A 
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material, subject to the following conditions: 

 

1. Full acknowledgement is given to the original source, with full 

details of the author(s), title, figure/page numbers, year of 

publication and the publisher. 

 

2. The permission of the author(s) or the author's estate is obtained 

where practical. 

 

3. The material is to be used only as described in your email and this 

permission is granted for one-time use only. 

 

Yours sincerely 

 

Jennifer Kren 

Editorial Administrator 
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Dear Dr. Wynn: 

 

Thank you for requesting permission to reproduce material from American 

Association of Physics Teachers publications. 

 

Permission is granted – subject to the conditions outlined below – for 

the following: 

 

Figure 8 from Gilbert N. Plass, "Infrared Radiation in the Atmosphere," 

American Journal of Physics -- May 1956 -- Volume 24, Issue 5, pp. 303-

321 

 

To be used in the following manner: 

 

Reproduced in your Ph.D dissertation titled, STATISTICAL ANALYSIS OF 

THE USU LIDAR DATA SET WITH REFERENCE TO MESOSPHERIC SOLAR RESPONSE AND 

COOLING RATE CALCULATIONS, WITH ANALYSIS OF STATISTICAL ISSUES 

AFFECTING THE REGRESSION COEFFICIENTS,  

 

for submission to Utah State University. 

 

1. The American Association of Physics Teachers grants you the right to 

reproduce the material indicated above on a one-time, non-exclusive 

basis, solely for the purpose described. Permission must be requested 

separately for any future or additional use.  

 

2.  This permission pertains only to print use and its electronic 

equivalent, including CD-ROM or DVD. 

 

3.  The following copyright notice must appear with the material 

(please fill in the information indicated by capital letters): 

"Reprinted with permission from [FULL CITATION]. Copyright [PUBLICATION 

YEAR], American Association of Physics Teachers.”   

 

Full citation format is as follows: Author names, journal title, Vol. 

#, Page #, (Year of publication).  

 

For an article, the copyright notice must be printed on the first page 

of the article or book chapter.  For figures, photographs, covers, or 

tables, the notice may appear with the material, in a footnote, or in 

the reference list.   

  

4.  This permission does not apply to any materials credited to sources 

other than the copyright holder. 

 

5.  If you have not already done so, please attempt to obtain 

permission from at least one of the authors. The author’s address can 

be obtained from the article.  

 

Please let us know if you have any questions. 

 

Sincerely, 

Susann Brailey 
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Dear Troy, 

 

The HALOE data are in a public archive, so no acknowledgment is 

required. However, I suggest that you say the form of the data (Level2 

files?) and from where (Website or archive) you accessed the dataset 

that you used. 

 

Best wishes in finishing your degree work, 

 

Ellis Remsberg  
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Dear Troy Wynn, 

 

It is a pleasure for me to give the permission to reproduce the Figure 

6 from the publication "Seasonal Changes in gravity wave activity 

measured by lidars at mid-latitudes, Atmos. Chem. Phys., 8, 6775-6787, 

2008". I would like to ask you to cite the Figure correctly and it 

would be nice to get the finished Ph.D. dissertation. Please send the 

dissertation to monika.rauthe@dwd.de because since January 2010 I'm 

working at the Deutscher Wetterdienst. 

 

Sincerely, 

 

Dr. Monika Rauthe  
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APPENDIX B 

 

DERIVATIONS FOR COEFFICIENT BIAS 

 

AND ATTENUATION 
 

 

The proofs for under specified models and cross specified models were worked out by the 

author. The proof for coefficient bias in under specified models was taken from Draper 

and Smith Applied Regression Analysis, 3
rd

 edition, pp. 235-236.  

 

1. Under Specified Models 

 Suppose the proposed model is  

 

E(Y) = X1b1.      (B1) 

 

The least squares coefficient estimates are 

 

E(b1) = (X1
T
X1)

-1
X1

T 
E(Ytrue).     (B2) 

 

Now suppose the true model is this, 

 

E(Ytrue) = X1β1 + X2β2.     (B3) 

 

Putting these together gives  

 

E(b1) = (X1
T
X1)

-1
X1

T 
(X1β1 + X2β2),     (B4) 

E(b1) = (X1
T
X1)

-1
X1

T 
X1β1 + (X1

T
X1)

-1
X1

T
X2β2,    (B5) 

E(b1) = β1 + (X1
T
X1)

-1
X1

T
X2β2.    (B6) 

 

 If the proposed model is under specified, that is, if some but not all of the true model 
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variables are in the model, and the model contains no spurious explanatory variables, 

then the coefficients of the proposed model will be bias. 

 

2. Over Specified Models 

 If the proposed model is  

 

E(Y) = X1b1 + X2b2,     (B7) 

 

and the true model is  

 

E(Ytrue) = X1β1,     (B8) 

 

where b1 and b2 are vectors of coefficients. X1 and X2 are matrices of explanatory 

variables. The correctly specified variables will have unbiased coefficients and the 

incorrectly specified explanatory variables will have coefficients of value zero. The proof 

is as follows. The expected values for the coefficients b1 and b2 are  

 

  .    (B9) 

 

This equation may be rewritten as  

 

   ,    (B10) 

 

where A, B, C, and D are submatrices. A and D are symmetric. A = X1
T
X1, B = X1

T
X2, C 

= X2
T
X1, D = X2

T
X2.The matrix inverse can be calculated using blockwise inversion. That 

is, 



169 

  

1
6
9
 

 

  

  
 ,  (B11) 

 

Where A and D must be invertible and therefore square. This formula can be easily 

checked by multiplying it by the original matrix. Thus 

 

b1 = [(A
-1

 + A
-1

B(D – CA
-1

B)
-1

CA
-1

)A – A
-1

B(D – CA
-1

B)
-1

C]β1 = β1  (B12) 

b2 = [ –(D – CA
-1

B)
-1

CA
-1

]A + [(D – CA
-1

B)
-1

]C = 0  (B13) 

 

 For an over specified model all the relevant explanatory variables are included in the 

proposed model along with some spurious (not-true-model) explanatory variables. The 

coefficient values for the spurious explanatory variables are zero and the correctly 

specified variables are unbiased.  

 

3. Cross Specified Models 

 Suppose the proposed model is this,  

 

E(Y) = X1b1 + X2b2,      (B14) 

 

and the true model is this  

 

E(Ytrue) = X1β1 + X3β3,     (B15) 

 

where b1, b2, β1, and β3 are coefficients vectors. X1, X2, X3 are matrices of explanatory 

variables. The matrix X1 contains explanatory variables common to both the true and 

proposed models.  The coefficients b1 and b2 are  
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  .   (B16) 

 

This may be rewritten as  

 

   ,    (B17) 

 

where Q = X1
T
X3, and R = X2

T
X3, A = X1

T
X1, B = X1

T
X2, C = X2

T
X1, D = X2

T
X2. The 

matrix may be inverted using the blockwise inversion method mentioned above. Again, A 

and D are symmetric. From this we get  

 

 b1 = {[A
-1

 + A
-1

B(D – CA
-1

B)
-1

CA
-1

]A – A
-1

B(D – CA
-1

B)
-1

C}β1 +   

 {[A
-1

 + A
-1

B(D – CA
-1

B)
-1

CA
-1

]Q – A
-1

B(D – CA
-1

B)
-1

R}β3 =  

   = β1 + {[A
-1

 + A
-1

B(D – CA
-1

B)
-1

CA
-1

]Q – A
-1

B(D – CA
-1

B)
-1

R}β3 = β1 + bias.   (B18) 

 

 b2 = { –(D – CA
-1

B)
-1

CA
-1

A + (D – CA
-1

B)
-1

C }β1 +   

 { –(D – CA
-1

B)
-1

CA
-1

Q + (D – CA
-1

B)
-1

R }β3 =  

 0 + { –(D – CA
-1

B)
-1

CA
-1

Q + (D – CA
-1

B)
-1

R }β3 = (Attenuation Factor) β3.   (B19) 

 

 The correctly specified explanatory variables have bias coefficients and the 

incorrectly specified coefficients are the attenuated, omitted true model coefficients.  
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APPENDIX C 

 

CALCULATING THE STANDARD ERRORS 

 

IN NONLINEAR REGRESSION MODELS 

 

 

 The formula for the standard errors of coefficients b is found from the estimated 

variance-covariance matrix of b 

 

var(b) = (A
T
A)

-1
·ζ

2
,      (C1) 

 

where A forms the bases of the regression; ζ
2
 is the mean variance. If the ζ

2
 is unknown 

then s2 may be used. The square roots of the diagonal elements are the SEs of the 

elements of b. This calculation is simple for linear models like  

 

y = I·ι + β·t + A1·sin(2π·t) + A2·cos(2π·t) +  

B1·sin(4π·t) + B2cos(4π·t) + C1sin(ω·t) + C2·cos(ω·t) + ε .    

 

The data space is A=(ι, t, sin(2π·t), cos(2π·t), sin(4π·t), cos(4π·t), sin(ω·t), cos(ω·t)). 

However, the following model covers the same data space.  

 

y = I·ι + β·t + S·sin(2π·t + γ) + B·sin(4π·t + φ)  + C·sin(ω·t + θ) + ε              (C2) 

 

The SEs for (C2) are calculated by taking the partial derivatives with respect to the 

coefficients of interest. An iterative procedure may be used to solve for I, β, S, γ, B, φ, C, 

and θ. Once found, their SEs may be calculated by applying Equation (C1), where b = (I, 

β, S, γ, B, φ, C, θ) and A is comprised of the partial derivatives of (C2) with respect to the 

coefficients of interest. That is A = [∂Iy, ∂βy, ∂Sy, ∂γy, ∂By, ∂φy, ∂Cy, ∂θy], or A = [ι, t, 
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sin(2π·t + γ), S·cos(2π·t + γ), sin(4π·t + φ), B·cos(4π·t + φ), sin(ω·t + θ), C·cos(ω·t + θ)]. 

This is used in Equation (C1). The square root of the diagonal elements of the RHS of 

(C1) are the SEs of the coefficients of b. 
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APPENDIX D 

 

ISSUES RELATING TO COMMON NOISE 

 

Abstract. One issue of concern is whether a model regressor has a noise component that 

is correlated to the noise in the dependant variable. That is, if the noise in a signal x is 

correlated to the noise in y then the possibility of diagnosing x as a good regressor for y is 

not insignificant, even when x and y are otherwise very dissimilar. 

 

1. Introduction 

 One of the issues affecting the confidence levels in regression coefficients is noise 

between independent and dependent variables. Our simulations show that if there is a 

correlation between the noise in x and y, there is a non-negligible risk that x will be 

considered a good regressor for y even though the underlying signals may be unrelated. 

This is important to address because in many cases where an ordinary least squares 

(OLS) regression is used, it is the coefficient value and not the noise that is of particular 

interest. 

 Here we assume that x = s2 + n2 and y = s1 + n1, where s1 and s2 are the underlying 

signals and n1 and n2 are the noise components. We derive equations for the correlation 

between x and y when s1 and s2 are orthogonal and uncorrelated and a correlation exists 

only between the noise. We derive an equation for the statistical significance of the 

coefficient b in y = I + b·x + ε, where I is the intercept and ε the residual. We use this 

result to get the equation for the statistical significance of b when s1 and s2 are 

uncorrelated and orthogonal. 

 One of the models employed in this dissertation is,  
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T = I + LT + AO + SAO + SOL + N, 

 

where I is the intercept, LT is the linear term, AO comprises the annual oscillation, SAO 

the semiannual oscillation, SOL is a solar proxy, and are N the residuals. The coefficients 

are implied. This model assumes that T is a function of I, LT, AO, SAO, and SOL. The 

explanatory variables I, LT, SO, and SAO are either constant or functions (such as sin ωt 

and cos 4πt) and consequently do not have noise components. The remaining variable 

SOL is typically a solar proxy, which does have a noise component. It is the noise in SOL 

that can be correlated to the noise in T. An example is shown in Figure D1. Though the 

two underlying functions are dissimilar the correlation between them is 0.10 because of 

correlation between their noise components; the confidence level for x regressed on y is 

99.1%.  

 

 
 

Figure D1. A plot of two signals having common noise. Fitting x to y produced a 

statistical confidence level of greater than 99.1%, even though the two signals have 

unrelated shapes. 
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2. Some Notation 

 But before going further, there are some notation issues that must be addressed. One 

quantity that is frequently used in statistical analysis is the Total Sum of Squares (TSS). 

For a single variable this is  

 

TSSx = ∑i (Xi – X)
2
,  

 

where X is the mean of the Xis. For two variables, TSSxy is 

  

TSSxy = ∑i (Xi – X)(Yi – Y). 

 

3. Derivation of Correlation 

 The two signals of interest are y = s1 + n1 and x = s2 + n2, where s1 and s2 are the 

underlying signals, and n1 and n2 the noise components. For simplicity y, x, s1, s2, n1, and 

n2 are mean centered. We assume that s1 is uncorrelated with n1 and that s2 is 

uncorrelated with n2. The correlation between x and y is given by  

 

r = TSSxy/√(TSSx·TSSy),      (D1) 

 

where  

 

TSSx = ∑s2,i
2
 + ∑n2,i

2
 = s2

2
 + n2

2
,  

TSSy = ∑s1,i
2
 + ∑n1,i

2
 = s1

2
 + n1

2
,  

TSSxy = ∑yixi = ∑(s1,i + n1,i)·(s2,i + n2,i) = TSSs1,s2 + TSSn1,n2. 

 

For this case we assume s1 and s2 are uncorrelated and orthogonal. In terms of a linear 

regression this means that x has no explanatory value for y. With these assumptions we 
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then have TSSxy = ∑n1,i·n2,i. We take n12 ≡ ∑n1,i·n2,i. Putting these terms into (D1) we get 

 

 ,   (D2) 

 

where ρ is the correlation between n1 and n2. (D2) can be rewritten as  

 

 .      (D3) 

 

From (D3) we see that the correlation between x and y is directly proportional to the 

correlation between their noise components. The ratio terms in the denominator are the 

variance of the signal to the variance of the noise. 

 

4. Statistical Test on b 

 The equation for the linear coefficient b from y = I + b·x is  

 

b = (yixi)/ xi
2
 

 

A t-test can be applied to determine its level of significance. It was easier to work with 

the squared t-statistic, which is  

 

 

t
2
 = b

2
/SE

2
, 

 

where SE
2
 = se

2
/ xi

2
 and

 
se

2
 = ( yi

2
 – ( xiyi)

2
/ xi

2
 )/( n – 1 ). If ttheoretical ≤ tcoef then b is 

considered statistically significant to the predetermined level of confidence. Substituting 

se
2
 and SE

2
 into t

2
 we get 
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–

–

. 

 

Some simplifying steps 

 

–

, 

–

, 

–

, 

– , 

, 

, 

 

until we get 

 

.      (D4) 

 

For 95% confidence with n>100 tth = 1.96, which can be rounded to 2. Recognizing that 

the RHS term is the squared correlation we get  

 

.      (D5) 
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If this inequality holds, then x will be considered a good regressor for y with at least 95% 

confidence. As n increases this will become more likely. A correlation of 8% will satisfy 

the minimum requirement for a data set of 593 data points. A correlation of 6% will 

satisfy this requirement for a data set of 1000 points. 

 We can now use Equation (D4) to look at cases where s1 and s2 are uncorrelated and 

orthogonal, where the correlation is between n1 and n2. Applying this condition to 

Equation (D4) we get  

 

.    (D6) 

 

For b to considered statistically significant at 95% or greater, we apply the same 

condition for the t-statistic as in the previous case (n>100, t = 2). We now get  

 

  ,    (D7) 

 

where the σs are variances of s1, s2, n1, and n2; ρ is the correlation between n1 and n2, and 

n is the number of data points. As with Equation (D5), Equation (D7) shows us that more 

data increases the statistical significance of b, and consequently the likelihood that x will 

be considered a good regressor for y when, in fact, this is not true. 

 This result has particular significance in correlation studies. Several studies posit a 

relationship between solar input and an atmospheric response by looking for a correlation 

between a solar proxy and atmospheric temperatures. For example Beig and Fadnavis 

[2009]: ―In order to detect whether real solar signal is present in the time series, the 
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correlation between the time series (before subjecting to the regression model) and 

F10.7 cm solar flux is computed at every altitude‖ (parenthesis original). Another 

example of this is from Mohanakumar [1985] who found correlations between sunspot 

number and temperatures ranging from −0.13 to 0.95. Yet another example is from 

Höppner and Bittner [2007] who note that Batista et al. [1994] found a positive 

correlation between the F10.7 cm solar flux and OH* temperatures over Paulista, Brazil 

for the time period from 1977 to 1986. However, their data from 1990 to 2005 shows an 

anticorrelaton. When combining their OH* data from Wuppertal, Germany with that of 

Batista they found no conclusive evidence for a correlation between the F10.7 cm solar 

flux and OH* temperatures. (For two other correlation studies see White et al. [1997] and 

Cùrrie [1991] and references therein.) 

 

5. Conclusions 

 The presence of autocorrelated noise in regressor x and a regressand y can cause x to 

appear to have explanatory value for y even when their underlying signals are unrelated. 

This risk increases as the number of data points increases. In practical terms one cannot 

say for sure if a statistically significant correlation between a solar proxy and a 

temperature time series is due to a common sine-like variation in the temperatures or a 

correlation between the temperature residuals and the proxy residuals.  

 We also know that the atmospheric solar response can be significantly out of phase to 

the solar input, but this might not apply to the solar-noise. If they are not separated then 

there exists a risk of a false positive: x could be considered a good regressor for y when it 

is not. 
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APPENDIX E 

 

A METHOD TO ESTIMATE THE AUTOCORRELATION COEFFICIENT  

 

IN DATA WITH LARGE DATA GAPS 

 

 

Abstract. This presents a way to estimate the autocorrelation coefficient for 

autocorrelated data containing large data gaps. 

 

1. Introduction 

Autocorrelation occurs when a given data point is correlated to one or more of the 

previous data points. There are ways to calculate the autocorrelation coefficient if there 

are no data gaps. But as is often the case with measurements that depend on the weather, 

significant data gaps exist in some data sets. The USU data set has 593 nightly profiles 

out of 3,623 days covering approximately 10 years. This makes fitting for the correlation 

coefficient more challenging. The USU data set has 16% of possible daily observations. 

While this seems low, it is not unusual. Over a similar time span (October 1978 through 

December 1989) the French lidar at Haute-Provence collected a total of 872 nights of 

observations out of 4,110 possible, amounting to 21.3% of possible observations 

[Hauchecorne et al., 1991]. In cases where the data gaps are small and infrequent 

interpolation is acceptable, otherwise modeling the correlation structure is more difficult. 

In the USU data set, out of 593 data points 420 (71%) are consecutive,  161 have two-

day spacing, 86 have three-day spacing, and 57 have four-day spacing—there is some 

overlap owing to the fact that some data points that are one day apart are also two days 

from another data point, etc. 
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2. Autocorrelation 

This paper focuses on first order autocorrelation AR(1). This can be described by the 

following equations. 

 

N1 = φN0 + ε1       

N2 = φN1 + ε2       

N3 = φN2 + ε3       

N4 = φN3 + ε4       

···        

 

Any given measurement N depends on the previous N multiplied by the autocorrelation 

coefficient φ, plus some noise ε. These equations can be expanded by substituting Ni into 

the Ni+1 etc., which yields 

 

   N1 = φN0 + ε1 

   N2 = φ
2
N0 + φε1 + ε2 

   N3 = φ
3
N0 + φ

2
ε1 + φε2 + ε3 

   N4 = φ
4
N0 + φ

3
ε1 + φ

2
ε2 + φε3 + ε4 

   N5 = φ
5
N0 + φ

4
ε1 + φ

3
ε2 + φ

2
ε3 + φε4 + ε5 

   N6 = φ
6
N0 + φ

5
ε1 + φ

4
ε2 + φ

3
ε3 + φ

2
ε4 + φε5 + ε6 

   ··· 

 

This can be written as  

 

   Nk = ε k + φ ε k-1 + φ
2
 ε k-2 + φ

3
 ε k-3 + … + φ

n-1
 ε k-n-1 + φ

n
 ε k-n      (E1) 
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where the εs are assumed to be random with identical variance and zero mean.  

 

3. A Simple Case with no Data Gaps 

 If the correlation coefficient φ is known it is possible to solve for the εs and unzip the 

time series. Because we do not have data prior to N0, N0 must be taken to be equal to ε0. 

Solving for the εs we get 

 

     ε0 = N0          (E2) 

     ε 1 = N1 − φN0       

     ε 2 = N2 − φN1  

     ···       

 

This can be expanded as  

 

   ε0 = N0 

   ε1 = N1 – (φε0) 

   ε2 = N2 – (φ
2
ε0 + φε1) 

   ε3 = N3 – (φ
3
ε0 + φ

2
ε1 + φε2) 

   ε4 = N4 – (φ
4
ε0 + φ

3
ε1 + φ

2
ε2 + φε3) 

   ε5 = N5 – (φ
5
ε0 + φ

4
ε1 + φ

3
ε2 + φ

2
ε3 + φε4) 

   ε6 = N6 – (φ
6
ε0 + φ

5
ε1 + φ

4
ε2 + φ

3
ε3 + φ

2
ε4 + φε5) 

   ···    

       

In the presence of data gaps, this sequence looks a little different. If there are missing 

data points, then we sum the terms in the parenthesis leaving out the missing εs. For 
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example if the first six days in the data set are located at days one, two, three, five, nine, 

and sixteen then we would have (counting from zero) 

 

   ε0 = N0 

   ε1 = N1 – φε0 

   ε2 = N2 – (φ
2
ε0 + φε1) 

   ε4 = N4 – (φ
4
ε0 + φ

3
ε1 + φ

2
ε2)  

   ε8 = N8 – (φ
8
ε0 + φ

7
ε1 + φ

6
ε2 + φ

4
ε4) 

   ε15 = N15 – (φ
15

ε0 + φ
14

ε1 + φ
13

ε2 + φ
11

ε4 + φ
7
ε8)         (E3) 

   ... 

 

The following procedure is used to estimate the autocorrelation coefficient. First a 

value for φ is guessed; the sequence (E3) is then used to unzip the εs, then their variance 

is taken. This process is repeated for a different value of φ. The φ that minimizes ζ
2
(ε) is 

selected as representative of the true correlation coefficient. This claim is a conjecture 

supported by Monte Carlo simulations. 

 A plot of ζ
2
(ε) versus φ is shown in Figure E1 for data without gaps. It clearly shows 

that the minimum ζ
2
 is located near the true value of the autocorrelation coefficient. In 

practice we employed the Newton-Raphson method to locate the minimum value: φi+1 = 

φi – ζ
2
(φ)'/ζ

2
(φ)'', where ζ

2
(φ)' and ζ

2
(φ)'' are first and second derivatives, calculated 

numerically. 

 

4. For Data Gaps 

 The following derivation demonstrates more precisely how a correct guess of the 
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autocorrelation coefficient can minimize the residuals of the εs. 

The following equation represents an first order autoregressive, AR(1), signal.  

 

 ,     (E4) 

 

where Nn is the measured signal, εn is the random component, and φ the correlation 

coefficient. This can be rewritten as  

 

 .     (E5) 

 

To represent a data set containing missing data points multiply the terms in the 

summation by an indicator function I.  

 

 

Figure E1. How the variance of the εs change with guessed correlation coefficient. The 

minimum can be seen to be near the true value of the correlation coefficient. The data 

has no gaps. 
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 .            (E6) 

 

The indicator Ii has a value of 1 if the ith data point is present and 0 if it is absent. I
*
 is the 

converse indicator. If Ii* has a value of 1 then the ith data point is missing, and 0 if it is 

present. Note that Ii + Ii
*
 = 1 for all i. What (E6) represents is something like  

 

   ε7 = N7 – (φ
7
N0 + φ

6
ε1 + φ

5
ε2 + φ

4
ε3 + φ

3
ε4 + φ

2
ε5 +φ ε7),  

 

where the grayed out terms represent examples of missing data points excluded from the 

summation by the indicator function. Equation (E6) can be taken to represent our attempt 

to unzip the εs when some of the data points are missing. However, a measured data point 

contains information about the past and hence, an actual measurement does not 

experience gaps. Equation (E4) can be taken to represent an actual data measurement. 

Replacing Nn in (E6) with (E4) gives  

 

 ,        (E7) 

 

where ξ is the true correlation coefficient and ai is the noise. Multiplying the terms in the 

first summation by I + I
*
 (this is just multiplying by 1) gives 

 

  .      (E8) 

 

Then collecting terms  

 

  .       (E9) 
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And finally taking the variance of (E9) 

 

 . (E10) 

 

If φ = ξ and ai ≈ εi, then the variance is minimized by minimizing the third term on the 

RHS. While this is not a proof, it helps to illustrate the validity of the concept. 

One issue that needs to be addressed is the distribution of the coefficient estimate. 

Every data set has a unique pattern of data gaps. So how does one estimate the 

distribution of the autocorrelation estimate? This must be done with a Monte Carlo 

simulation. When a correlation estimate is obtained, a set of autocorrelated noise is 

generated from that correlation value and data gaps matching the original data are 

applied. The autocorrelation coefficient is estimated from the simulated data set. When 

the above procedure is performed repeatedly and a distribution for that autocorrelation 

value is obtained. 

Simulations were conducted to test this procedure. A series of autocorrelated Ns with 

a known φ were generated and the above procedure was applied. A distribution for φ was 

generated. This was done for several values of φ. This was repeated for simulated data 

with no data gaps, for USU data gaps, and for USU data gaps but only including 

consecutive points. The distributions for the φs for all these cases are given at the end of 

this section of the Appendix in Figures E3, E4, and E5. A plot of the standard deviations 

for the φ-distributions for the three simulations is given in Figure E2. We see that the 

method that produced the smallest standard deviation for φ comes for the simulation with 

no data gaps. The next best estimate is for the simulation with USU data gaps. And the 

worst estimate is obtained from simulations with USU data gaps selecting only the 
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adjacent points. 
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Figure E2. The standard deviations for the no gaps case, the USU data gaps, and USU 

consecutive (USU con) data points only.  
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Figure E3. Distributions for various correlation coefficients from Monte Carlo simulations, no data gaps. The distributions for various 

correlation coefficients from Monte Carlo simulations are shown in the dashed lines. A Gaussian fit are shown in the solid lines. This 

figure is for data containing no data gaps. 
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Figure E4. Same as Figure E2 but for data replicating the data gaps in the USU data set. 
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Figure E5. Same as Figure E2 but for USU data gaps where only consecutive data points are selected. 
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APPENDIX F 

 

RESIDUALS PLOTS: 45-90 km 

 

 

 One easily accessible measure of heteroscedasticity is the Breusch–Pagan test. In this 

test the squares of the residuals are fit to a linear model ε
2
 ~ βo + β1t. If an F-test shows 

that the model variables are jointly significant, then there is evidence for the presence of 

heteroscedasticity. The test was performed on the residuals from the USU data using the 

bptest function in the lmtest library in the R programming language. 

 Given below are residual plots with a linear fit to the |ε| shown above the abscissa. 

This was added to make the heteroscedasticity more visually accessible. A box plot of the 

residuals is shown to the right along with the p-value from Breusch–Pagan (BP) test 

along with the number of data points. A lower p-value indicates a higher probability that 

the data is heteroscedastic. P-values less than 0.1 and 0.05 correspond to 90% and 95% 

confidence, respectively. From the BP tests it appears that at most altitudes the residuals 

show some heteroscedasticity. The numbers shown in the plots are rounded to three 

significant figures so at many altitudes it rounds to zero. At 6 altitude levels the BP p-

value was greater than 0.1, indicating that at most altitudes heteroscedasticity was a 

problem. Is not entirely surprising due to the fact that we found an 11-year variation in 

residual standard deviation. 
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APPENDIX G 

 

CALCULATION OF THE INNER PRODUCT TERMS 

 

FOR THE BIAS AND ATTENUATION 

 

Abstract. In this section of the appendices the inner product terms from Chapter 2 are 

derived.  

 

1. The Inner Products 

We have the following inner product terms to calculate from the following two equations.  

 

α' = α''{ (t
T
t)(SP

T
SR) – (SP

T
t)(SR

T
t)} / γ 

β1' = β1'' + α''{ (SP
T
SP)(SR

T
t) – (SP

T
t)(SP

T
SR)} / γ, 

 

where γ = (t
T
t)(SP

T
SP) – (SP

T
t)

2
. Let  

 

SP = sin(ωt + θ), SR = sin(ωt + φ). 

 

The summation may be approximated as an integration. Therefore, the inner products 

(t
T
t), (SP

T
SP) and (SP

T
t) may be approximated with integrals. That is ∑f(xi)

2
Δt ≈ ∫f(x)

2
dt, 

or ∑f(xi)
2
 ≈ ∫f(x)

2
dt/Δt. So, for example, t

T
t ≈  = 1/3t0

3
. Let s1 = sin ωt , c1 = cos 

ωt , s2 = sin 2ωt , c2 = cos 2ωt. The vector t, SP, and SR are mean centered so the 

average must be subtracted and we will need 

 

, 

. 
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The inner product terms are evaluated below.  

 

(SP
T
SP) = ∑SPiSPi =  ~   

(SP
T
SP) = { t0 – s2cos(2θ)/2ω – 2s1

2
sin

2
θ/t0ω

2
 } / Δt. 

 

(t
T
t) = ∑titi =   

(t
T
t) = 2t0

3
/(3·Δt). 

 

(SR
T
t) = ∑( sin(ωti + φ) – Sφ)ti =   

(SR
T
t) =  {2·cos(φ){ s1 – ωt0c1} / ω

2
}/Δt. 

 

(SP
T
t) =  ∑( sin(ωti + θ) – Sθ)ti =  

(SP
T
t) = (2·cos(θ){ s1 – ωt0c1} / ω

2
)/Δt. 

 

(SP
T
SR) =  

 ∑( sin(ωti + θ) – Sθ) (sin(ωti + φ)–Sφ) =  

(SP
T
SR) = ( t0cos(φ – θ) – s2cos(φ + θ)/2ω – 2s1

2
sin(φ)sin(θ)/t0ω

2
 ) /Δt. 

 

The expected values of the coefficients α' are β1' 

 

E(A') = α'' { [2t0
3
/3][ t0cos(φ – θ) – s2cos(φ + θ)/2ω – 2s1

2
sin(φ)sin(θ)/t0ω

2
] –  

 [2·cos(θ)( s1 – ωt0c1) / ω
2
][ 2·cos(φ)( s1 – ωt0c1) / ω

2
]} / γ. 

 

E(A') = β1'' + α''{ [t0 – s2cos(2θ)/2ω – 2s1
2
sin

2
θ/t0ω

2
][ 2·cos(φ)( s1 – ωt0c1) / ω

2
] –  

     [2·cos(θ)( s1 – ωt0c1) /ω
2
][ t0cos(φ – θ) – s2cos(φ + θ)/2ω – 2s1

2
sin(φ)sin(θ)/t0ω

2
] } / γ, 
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where γ = (t
T
t)(SP

T
SP) – (SP

T
t)

2
 = (2t0

3
/3)( t0 – s2cos(2θ)/2ω – 2s1

2
sin

2
θ/t0ω

2
) – 

(2·cos(θ){ s1 – ωt0c1} / ω
2
)
2
. 

 

2. Special Cases 

If the solar phase angle is θ = 0, then  

 

β' = β'' 

α' = α''·cos(φ) { 2/3·t0
3
 ( t0 – s2/2ω) – 4(s1 – ωt0c1)

2
 /ω

4
 ) } / γ . 

 

If the solar phase angle is θ = π/2, then  

 

β' = β'' + 2α''·cos(φ) {  (t0 + s2/2ω – 2s1
2
/t0ω

2
)(s1 – ωt0c1) } / γω

2
 

α' = 1.5·α''·sin(φ)·t0
3
(t0 + s2/2ω – 2s1

2
/t0ω

2
) / γ. 
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APPENDIX H 

 

INFLATION OF STANDARD ERRORS 
 

 

1. Inflation of Variance  

Autocorrelation inflates the variance of a time series of data. Shown in this appendix is a 

derivation of how this occurs.  

 A first order autocorrelation process may be written as  

 

 Nk = εk + φ εk-1 + φ
2
 εk-2 + φ

3
 εk-3 + … + φ

n-1
 εk-n-1 + φ

n
 εk-n ,   (H1) 

 

where φ is the autocorrelation coefficient and ε is random noise and k is the time index. 

Taking the variance of Nk yields  

 

VAR(Nk) = VAR(εk + φ εk-1 + φ
2
 εk-2 + φ

3
 εk-3 + … + φ

n-1
 εk-n-1 + φ

n
 εk-n). (H2) 

 

Because the εs are independent and identically distributed, and because φ is constant, this 

becomes.  

 

 

VAR(Nk) = VAR(εk) + φ
2
VAR(εk-1) + φ

4
VAR(εk-2) + φ

6
 VAR(εk-3) + …  

 + φ
2(n-1)

VAR(εk-n-1) + φ
2n

VAR(εk-n).       (H3) 

 

Because all the εs have the same variance, the variance of the εs can be factored out. We 

then get  

 

 σ
2

N = σ
2

ε(1 + φ
2
 + φ

4
 + ...  + φ

2(n-1)
 + φ

2n
).   (H4) 

 

Applying a geometric series to the φs we get 
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 σ
2

N = σ
2

ε/(1 − φ
2
).     (H5) 

 

 

The standard deviation of the Ns is increased by the factor (1 + φ
2
)
-1

. 
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APPENDIX I 

 

COMPTUER CODE 

 
####################################################################### 
######### THIS CODE GENERATES FIGURE 5 FROM CHAPTER 2 ########## 
####################################################################### 
 
m(list=ls(all=TRUE))   
source("dir.txt")   
library(sfsmisc)   
 
source("dir.txt") 
ppppp <- "C:\\Documents and Settings\\Troy Wynn\\My 
Documents\\dissertation\\Data\\fit solar\\F107_A.txt" 
 
 
T <- matrix(NA, 380, 2) 
 
T[1,] <-  c( 1968.95094,206.18091) 
T[2,] <-  c( 1969,217.96483) 
T[3,] <-  c( 1969.04906,214.97487) 
T[4,] <-  c( 1969.09811,199.84924) 
T[5,] <-  c( 1969.14717,238.36684) 
T[6,] <-  c( 1969.14717,226.23116) 
T[7,] <-  c( 1969.24529,234.84924) 
T[8,] <-  c( 1969.24529,223.59297) 
T[9,] <-  c( 1969.29434,234.14572) 
T[10,] <-  c( 1969.3434,222.71356) 
T[11,] <-  c( 1969.39246,210.92964) 
T[12,] <-  c( 1969.44151,214.27136) 
T[13,] <-  c( 1969.49056,224.82413) 
T[14,] <-  c( 1969.58868,225.87939) 
T[15,] <-  c( 1969.58868,214.09547) 
T[16,] <-  c( 1969.68679,232.56282) 
T[17,] <-  c( 1969.73585,223.94472) 
T[18,] <-  c( 1969.73585,223.94472) 
T[19,] <-  c( 1969.73585,221.13065) 
T[20,] <-  c( 1969.7849,227.63818) 
T[21,] <-  c( 1969.7849,235.72864) 
T[22,] <-  c( 1969.88302,225) 
T[23,] <-  c( 1969.88302,215.85428) 
T[24,] <-  c( 1969.98113,233.09045) 
T[25,] <-  c( 1969.98113,238.01508) 
T[26,] <-  c( 1970.03019,219.19598) 
T[27,] <-  c( 1970.07925,228.34171) 
T[28,] <-  c( 1970.07925,242.58794) 
T[29,] <-  c( 1970.17736,233.96985) 
T[30,] <-  c( 1970.17736,222.88945) 
T[31,] <-  c( 1970.27547,251.03015) 
T[32,] <-  c( 1970.27547,260.70352) 
T[33,] <-  c( 1970.32453,218.49246) 
T[34,] <-  c( 1970.32453,207.58794) 
T[35,] <-  c( 1970.47169,226.58292) 
T[36,] <-  c( 1970.52075,214.62312) 
T[37,] <-  c( 1970.61887,222.88945) 
T[38,] <-  c( 1970.61887,211.45729) 
T[39,] <-  c( 1970.66792,235.02513) 
T[40,] <-  c( 1970.71698,223.59297) 
T[41,] <-  c( 1970.76604,249.62312) 
T[42,] <-  c( 1970.76604,238.7186) 
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T[43,] <-  c( 1970.91321,241.18091) 
T[44,] <-  c( 1970.91321,232.91457) 
T[45,] <-  c( 1970.91321,215.50252) 
T[46,] <-  c( 1970.96227,254.37186) 
T[47,] <-  c( 1970.96227,243.64322) 
T[48,] <-  c( 1971.01132,237.48744) 
T[49,] <-  c( 1971.01132,232.91457) 
T[50,] <-  c( 1971.06038,220.60301) 
T[51,] <-  c( 1971.15849,213.39195) 
T[52,] <-  c( 1971.15849,211.98492) 
T[53,] <-  c( 1971.20755,227.98994) 
T[54,] <-  c( 1971.20755,208.64322) 
T[55,] <-  c( 1971.20755,218.49246) 
T[56,] <-  c( 1971.30566,207.58794) 
T[57,] <-  c( 1971.40377,205.65326) 
T[58,] <-  c( 1971.40377,216.38191) 
T[59,] <-  c( 1971.45283,207.9397) 
T[60,] <-  c( 1971.50188,211.98492) 
T[61,] <-  c( 1971.50188,219.0201) 
T[62,] <-  c( 1971.6,222.88945) 
T[63,] <-  c( 1971.64906,221.65829) 
T[64,] <-  c( 1971.64906,232.73869) 
T[65,] <-  c( 1971.74717,230.9799) 
T[66,] <-  c( 1971.79623,219.0201) 
T[67,] <-  c( 1971.84528,217.96483) 
T[68,] <-  c( 1971.84528,230.10051) 
T[69,] <-  c( 1971.9434,237.13568) 
T[70,] <-  c( 1971.9434,225.70352) 
T[71,] <-  c( 1971.99245,215.67839) 
T[72,] <-  c( 1971.99245,227.46231) 
T[73,] <-  c( 1972.09057,218.1407) 
T[74,] <-  c( 1972.09057,229.39699) 
T[75,] <-  c( 1972.13963,228.16583) 
T[76,] <-  c( 1972.23774,217.43718) 
T[77,] <-  c( 1972.23774,215.15076) 
T[78,] <-  c( 1972.23774,225.17587) 
T[79,] <-  c( 1972.33585,231.68341) 
T[80,] <-  c( 1972.33585,220.07538) 
T[81,] <-  c( 1972.43396,224.12061) 
T[82,] <-  c( 1972.43396,221.30653) 
T[83,] <-  c( 1972.48302,212.1608) 
T[84,] <-  c( 1972.58113,232.56282) 
T[85,] <-  c( 1972.58113,220.7789) 
T[86,] <-  c( 1972.67924,226.58292) 
T[87,] <-  c( 1972.7283,214.799) 
T[88,] <-  c( 1972.77736,210.5779) 
T[89,] <-  c( 1972.77736,222.01006) 
T[90,] <-  c( 1972.82642,223.41708) 
T[91,] <-  c( 1972.97359,210.75377) 
T[92,] <-  c( 1972.97359,223.94472) 
T[93,] <-  c( 1973.02264,211.80905) 
T[94,] <-  c( 1973.0717,223.06532) 
T[95,] <-  c( 1973.0717,213.9196) 
T[96,] <-  c( 1973.21886,225) 
T[97,] <-  c( 1973.26792,215.15076) 
T[98,] <-  c( 1973.31698,217.43718) 
T[99,] <-  c( 1973.31698,207.23618) 
T[100,] <-  c( 1973.36604,204.24623) 
T[101,] <-  c( 1973.46415,204.77386) 
T[102,] <-  c( 1973.51321,206.70854) 
T[103,] <-  c( 1973.51321,219.0201) 
T[104,] <-  c( 1973.56226,215.85428) 
T[105,] <-  c( 1973.61132,224.64824) 
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T[106,] <-  c( 1973.66038,212.51256) 
T[107,] <-  c( 1973.75849,235.72864) 
T[108,] <-  c( 1973.90566,211.98492) 
T[109,] <-  c( 1973.95472,209.87437) 
T[110,] <-  c( 1973.95472,223.41708) 
T[111,] <-  c( 1974.00378,222.01006) 
T[112,] <-  c( 1974.15094,216.55779) 
T[113,] <-  c( 1974.15094,227.46231) 
T[114,] <-  c( 1974.24905,212.1608) 
T[115,] <-  c( 1974.29811,210.40201) 
T[116,] <-  c( 1974.29811,221.65829) 
T[117,] <-  c( 1974.44528,226.75879) 
T[118,] <-  c( 1974.49434,223.06532) 
T[119,] <-  c( 1974.59245,214.97487) 
T[120,] <-  c( 1974.64151,226.75879) 
T[121,] <-  c( 1974.69057,206.70854) 
T[122,] <-  c( 1974.69057,218.66833) 
T[123,] <-  c( 1974.73962,206.00502) 
T[124,] <-  c( 1974.78868,229.2211) 
T[125,] <-  c( 1974.83774,217.43718) 
T[126,] <-  c( 1974.93585,204.4221) 
T[127,] <-  c( 1974.93585,216.55779) 
T[128,] <-  c( 1975.03397,212.51256) 
T[129,] <-  c( 1975.08302,225.52763) 
T[130,] <-  c( 1975.13207,228.16583) 
T[131,] <-  c( 1975.18113,210.40201) 
T[132,] <-  c( 1975.18113,220.7789) 
T[133,] <-  c( 1975.3283,206.00502) 
T[134,] <-  c( 1975.37736,222.36182) 
T[135,] <-  c( 1975.42641,211.10553) 
T[136,] <-  c( 1975.47547,217.08543) 
T[137,] <-  c( 1975.52453,230.45226) 
T[138,] <-  c( 1975.57359,218.66833) 
T[139,] <-  c( 1975.57359,228.34171) 
T[140,] <-  c( 1975.72076,204.24623) 
T[141,] <-  c( 1975.72076,216.73367) 
T[142,] <-  c( 1975.81887,213.74371) 
T[143,] <-  c( 1975.81887,228.69347) 
T[144,] <-  c( 1975.86793,235.55276) 
T[145,] <-  c( 1975.91698,223.06532) 
T[146,] <-  c( 1975.91698,225.87939) 
T[147,] <-  c( 1976.06415,218.31659) 
T[148,] <-  c( 1976.06415,230.27638) 
T[149,] <-  c( 1976.16226,212.86432) 
T[150,] <-  c( 1976.16226,235.02513) 
T[151,] <-  c( 1976.21132,220.7789) 
T[152,] <-  c( 1976.26038,207.9397) 
T[153,] <-  c( 1976.26038,224.12061) 
T[154,] <-  c( 1976.40755,219.19598) 
T[155,] <-  c( 1976.4566,208.81909) 
T[156,] <-  c( 1976.50566,205.30151) 
T[157,] <-  c( 1976.50566,225.52763) 
T[158,] <-  c( 1976.60378,213.39195) 
T[159,] <-  c( 1976.65283,216.03015) 
T[160,] <-  c( 1976.65283,229.04523) 
T[161,] <-  c( 1976.70189,218.31659) 
T[162,] <-  c( 1976.8,206.18091) 
T[163,] <-  c( 1976.8,223.59297) 
T[164,] <-  c( 1976.84906,210.40201) 
T[165,] <-  c( 1976.84906,226.58292) 
T[166,] <-  c( 1976.94717,214.27136) 
T[167,] <-  c( 1976.99622,217.43718) 
T[168,] <-  c( 1976.99622,228.51759) 
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T[169,] <-  c( 1977.04528,222.36182) 
T[170,] <-  c( 1977.09434,211.45729) 
T[171,] <-  c( 1977.14339,223.59297) 
T[172,] <-  c( 1977.14339,227.63818) 
T[173,] <-  c( 1977.19245,213.39195) 
T[174,] <-  c( 1977.19245,216.73367) 
T[175,] <-  c( 1977.38868,213.74371) 
T[176,] <-  c( 1977.38868,226.58292) 
T[177,] <-  c( 1977.43774,215.15076) 
T[178,] <-  c( 1977.43774,228.34171) 
T[179,] <-  c( 1977.53585,221.30653) 
T[180,] <-  c( 1977.53585,233.09045) 
T[181,] <-  c( 1977.63396,212.51256) 
T[182,] <-  c( 1977.63396,224.29648) 
T[183,] <-  c( 1977.73208,216.90955) 
T[184,] <-  c( 1977.73208,228.16583) 
T[185,] <-  c( 1977.83018,211.2814) 
T[186,] <-  c( 1977.83018,223.06532) 
T[187,] <-  c( 1977.83018,235.201) 
T[188,] <-  c( 1977.9283,225.35176) 
T[189,] <-  c( 1978.07547,224.64824) 
T[190,] <-  c( 1978.07547,231.50754) 
T[191,] <-  c( 1978.22264,218.49246) 
T[192,] <-  c( 1978.32076,222.88945) 
T[193,] <-  c( 1978.32076,230.45226) 
T[194,] <-  c( 1978.41887,238.19095) 
T[195,] <-  c( 1978.56604,234.67337) 
T[196,] <-  c( 1978.66415,219.37186) 
T[197,] <-  c( 1978.71321,221.30653) 
T[198,] <-  c( 1978.76226,230.10051) 
T[199,] <-  c( 1978.86037,231.33167) 
T[200,] <-  c( 1979.00755,225.35176) 
T[201,] <-  c( 1979.15472,223.24121) 
T[202,] <-  c( 1979.20377,219.54774) 
T[203,] <-  c( 1979.4,225.35176) 
T[204,] <-  c( 1979.44906,232.21106) 
T[205,] <-  c( 1979.44906,232.21106) 
T[206,] <-  c( 1979.54717,244.34674) 
T[207,] <-  c( 1979.64529,241.35678) 
T[208,] <-  c( 1979.69434,224.64824) 
T[209,] <-  c( 1979.74339,221.83417) 
T[210,] <-  c( 1979.84151,228.86935) 
T[211,] <-  c( 1979.93962,230.80402) 
T[212,] <-  c( 1979.98868,227.46231) 
T[213,] <-  c( 1980.13585,226.58292) 
T[214,] <-  c( 1980.23396,221.65829) 
T[215,] <-  c( 1980.38113,216.90955) 
T[216,] <-  c( 1980.47925,229.39699) 
T[217,] <-  c( 1980.47925,224.82413) 
T[218,] <-  c( 1980.62641,223.41708) 
T[219,] <-  c( 1980.72453,212.1608) 
T[220,] <-  c( 1980.77358,226.40703) 
T[221,] <-  c( 1980.96981,227.81407) 
T[222,] <-  c( 1981.11698,224.82413) 
T[223,] <-  c( 1981.26415,228.69347) 
T[224,] <-  c( 1981.31321,217.78894) 
T[225,] <-  c( 1981.41132,221.83417) 
T[226,] <-  c( 1981.50944,228.86935) 
T[227,] <-  c( 1981.55849,233.44221) 
T[228,] <-  c( 1981.6566,239.24623) 
T[229,] <-  c( 1981.70566,215.32663) 
T[230,] <-  c( 1981.80377,229.2211) 
T[231,] <-  c( 1981.85283,215.85428) 
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T[232,] <-  c( 1982,226.75879) 
T[233,] <-  c( 1982.04906,223.59297) 
T[234,] <-  c( 1982.14717,228.34171) 
T[235,] <-  c( 1982.24529,218.66833) 
T[236,] <-  c( 1982.39246,220.07538) 
T[237,] <-  c( 1982.39246,221.13065) 
T[238,] <-  c( 1982.49056,223.41708) 
T[239,] <-  c( 1982.63773,234.49748) 
T[240,] <-  c( 1982.68679,225.17587) 
T[241,] <-  c( 1982.7849,207.58794) 
T[242,] <-  c( 1982.83396,217.61307) 
T[243,] <-  c( 1982.93208,216.20602) 
T[244,] <-  c( 1983.03019,223.94472) 
T[245,] <-  c( 1983.1283,220.42714) 
T[246,] <-  c( 1983.17736,219.0201) 
T[247,] <-  c( 1983.22642,217.43718) 
T[248,] <-  c( 1983.37359,216.55779) 
T[249,] <-  c( 1983.47169,207.9397) 
T[250,] <-  c( 1983.61887,217.08543) 
T[251,] <-  c( 1983.71698,221.83417) 
T[252,] <-  c( 1983.86415,220.7789) 
T[253,] <-  c( 1983.96227,227.98994) 
T[254,] <-  c( 1984.06038,224.64824) 
T[255,] <-  c( 1984.15849,220.95477) 
T[256,] <-  c( 1984.30566,221.48241) 
T[257,] <-  c( 1984.35471,217.08543) 
T[258,] <-  c( 1984.35471,213.04021) 
T[259,] <-  c( 1984.6,223.94472) 
T[260,] <-  c( 1984.6,216.73367) 
T[261,] <-  c( 1984.79623,208.99498) 
T[262,] <-  c( 1984.84528,210.22614) 
T[263,] <-  c( 1984.89434,214.799) 
T[264,] <-  c( 1985.04151,219.19598) 
T[265,] <-  c( 1985.13963,224.47237) 
T[266,] <-  c( 1985.18868,216.03015) 
T[267,] <-  c( 1985.28679,211.63316) 
T[268,] <-  c( 1985.33585,215.15076) 
T[269,] <-  c( 1985.33585,209.87437) 
T[270,] <-  c( 1985.53207,210.92964) 
T[271,] <-  c( 1985.67924,222.53769) 
T[272,] <-  c( 1985.67924,221.13065) 
T[273,] <-  c( 1985.82642,212.51256) 
T[274,] <-  c( 1985.87547,210.22614) 
T[275,] <-  c( 1985.97359,218.66833) 
T[276,] <-  c( 1986.02264,220.07538) 
T[277,] <-  c( 1986.16982,221.48241) 
T[278,] <-  c( 1986.21886,219.54774) 
T[279,] <-  c( 1986.31698,214.62312) 
T[280,] <-  c( 1986.46415,213.39195) 
T[281,] <-  c( 1986.51321,209.52261) 
T[282,] <-  c( 1986.56226,215.50252) 
T[283,] <-  c( 1986.75849,212.86432) 
T[284,] <-  c( 1986.75849,206.88441) 
T[285,] <-  c( 1986.85661,207.58794) 
T[286,] <-  c( 1986.85661,219.0201) 
T[287,] <-  c( 1987.00378,212.1608) 
T[288,] <-  c( 1987.10189,215.85428) 
T[289,] <-  c( 1987.15094,219.54774) 
T[290,] <-  c( 1987.29811,216.20602) 
T[291,] <-  c( 1987.34717,212.1608) 
T[292,] <-  c( 1987.44528,206.88441) 
T[293,] <-  c( 1987.49434,209.87437) 
T[294,] <-  c( 1987.59245,217.08543) 
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T[295,] <-  c( 1987.73962,219.0201) 
T[296,] <-  c( 1987.78868,211.45729) 
T[297,] <-  c( 1987.78868,218.1407) 
T[298,] <-  c( 1987.93585,209.69849) 
T[299,] <-  c( 1988.03397,218.1407) 
T[300,] <-  c( 1988.23019,217.08543) 
T[301,] <-  c( 1988.23019,215.50252) 
T[302,] <-  c( 1988.27924,219.19598) 
T[303,] <-  c( 1988.37736,213.21608) 
T[304,] <-  c( 1988.47547,209.34674) 
T[305,] <-  c( 1988.57359,208.46733) 
T[306,] <-  c( 1988.62264,227.11055) 
T[307,] <-  c( 1988.72076,225.87939) 
T[308,] <-  c( 1988.81887,230.80402) 
T[309,] <-  c( 1988.86793,222.71356) 
T[310,] <-  c( 1988.96603,214.27136) 
T[311,] <-  c( 1989.06415,221.30653) 
T[312,] <-  c( 1989.21132,220.42714) 
T[313,] <-  c( 1989.30943,216.73367) 
T[314,] <-  c( 1989.40755,219.0201) 
T[315,] <-  c( 1989.50566,210.40201) 
T[316,] <-  c( 1989.55472,212.33669) 
T[317,] <-  c( 1989.75095,216.90955) 
T[318,] <-  c( 1989.84906,213.21608) 
T[319,] <-  c( 1989.94717,214.97487) 
T[320,] <-  c( 1990.04528,222.18593) 
T[321,] <-  c( 1990.09434,218.31659) 
T[322,] <-  c( 1990.29057,219.72362) 
T[323,] <-  c( 1990.29057,222.01006) 
T[324,] <-  c( 1990.48679,214.44724) 
T[325,] <-  c( 1990.48679,210.40201) 
T[326,] <-  c( 1990.63396,213.74371) 
T[327,] <-  c( 1990.73208,210.22614) 
T[328,] <-  c( 1990.83018,218.84422) 
T[329,] <-  c( 1990.87924,213.04021) 
T[330,] <-  c( 1991.02641,210.22614) 
T[331,] <-  c( 1991.07547,205.30151) 
T[332,] <-  c( 1991.12453,209.17085) 
T[333,] <-  c( 1991.22264,216.03015) 
T[334,] <-  c( 1991.2717,226.40703) 
T[335,] <-  c( 1991.41887,215.50252) 
T[336,] <-  c( 1991.41887,214.27136) 
T[337,] <-  c( 1991.56604,211.2814) 
T[338,] <-  c( 1991.6151,206.70854) 
T[339,] <-  c( 1991.71321,207.23618) 
T[340,] <-  c( 1991.81132,214.799) 
T[341,] <-  c( 1991.90943,197.21106) 
T[342,] <-  c( 1992.00755,204.07036) 
T[343,] <-  c( 1992.10566,218.66833) 
T[344,] <-  c( 1992.15472,214.799) 
T[345,] <-  c( 1992.15472,225.87939) 
T[346,] <-  c( 1992.30189,221.48241) 
T[347,] <-  c( 1992.4,226.23116) 
T[348,] <-  c( 1992.44906,221.83417) 
T[349,] <-  c( 1992.54717,212.86432) 
T[350,] <-  c( 1992.64529,205.47739) 
T[351,] <-  c( 1992.69434,200.37688) 
T[352,] <-  c( 1992.79245,211.98492) 
T[353,] <-  c( 1992.79245,217.78894) 
T[354,] <-  c( 1992.98868,218.84422) 
T[355,] <-  c( 1992.98868,213.9196) 
T[356,] <-  c( 1993.03773,209.34674) 
T[357,] <-  c( 1993.18491,212.86432) 
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T[358,] <-  c( 1993.28302,224.64824) 
T[359,] <-  c( 1993.38113,220.95477) 
T[360,] <-  c( 1993.43019,211.63316) 
T[361,] <-  c( 1993.52831,206.53267) 
T[362,] <-  c( 1993.72453,212.51256) 
T[363,] <-  c( 1993.82264,217.61307) 
T[364,] <-  c( 1993.8717,210.40201) 
T[365,] <-  c( 1993.92075,216.20602) 
T[366,] <-  c( 1994.01887,204.59799) 
T[367,] <-  c( 1994.11698,212.51256) 
T[368,] <-  c( 1994.2151,220.42714) 
T[369,] <-  c( 1994.31321,215.32663) 
T[370,] <-  c( 1994.36227,213.39195) 
T[371,] <-  c( 1994.50944,217.61307) 
T[372,] <-  c( 1994.6566,211.45729) 
T[373,] <-  c( 1994.6566,202.31155) 
T[374,] <-  c( 1994.75471,217.26131) 
T[375,] <-  c( 1994.85283,209.17085) 
T[376,] <-  c( 1995.04906,199.49748) 
T[377,] <-  c( 1995.09811,213.39195) 
T[378,] <-  c( 1995.19623,206.70854) 
T[379,] <-  c( 1995.29434,208.64322) 
T[380,] <-  c( 1995.39246,197.03517) 
 
t <- T[,1] 
y <- T[,2] 
 
i.step <- 188   #  1977.9525 
step <- matrix(0,length(t)) 
step[i.step:length(step)] <- 1 
step <- step - mean(step) 
sol <- solar.abs(t, unit=TRUE)  
fit <- lm( y ~ t + sol + step) 
r <- resid(fit) 
sd.r <- sd(r) 
 
yy <- predict(fit) 
get <- matrix(NA, 2000, 3) 
 
 
for (i in 1:nrow(get)) {  
   noise <- sample(r, length(r), replace=TRUE) 
   noise <- rnorm(length(t),0, sd(r)) 
   y.new <- yy + noise 
   fit <- lm( y.new ~ t + sol + step) 
   get[i,] <- coef(fit)[2:4] 
} 
 
op <- par(no.readonly = TRUE) 
par(mfrow = c(2, 2)) 
par(mar = c(2.5, 2.5, 1, 0.8)) 
par(mgp = c(1.5, 0.5, 0)) 
par(oma = c(0.5, 0.5, 0.5, 0)) 
par(bg="white") 
 
plot(t, y, pch=19, ylab="Average Temperature 55-75 km (K)", 
xlab="Year") 
abline(v=1977.9525, lwd=2) 
points(t, predict(fit), col="red", pch=19) 
 
plot(get[,2], get[,1], pch=19, xlab="Solar Coefficient (K/sfu)", 
ylab="Time Coefficient (K/year)") 
abline(v=mean(get[,2]), h=mean(get[,1]), col="red") 
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plot(get[,2], get[,3], pch=19, xlab="Solar Coefficient (K/sfu)", 
ylab="Step Coefficient (K)") 
abline(v=mean(get[,2]), h=mean(get[,3]), col="red") 
plot(get[,3], get[,1], pch=19, xlab="Step Coefficient (K)", ylab="Time 
Coefficient (K/year)") 
m.step <- mean(get[,3])    ;    m.time <- mean(get[,1]) 
abline(v=m.step, h=m.time, col="red") 
 
 
#######################################################################
# 
######### THIS CODE GENERATES FIGURE 6 FROM CHAPTER 2 ########## 
####################################################################### 
 
## This will do a strait regression on the alo temperatures.  
rm(list=ls(all=TRUE)) 
source("dir.txt") 
library(sfsmisc) 
library(simpleboot) 
 
 
#alo <- alo.data  # purify.alo()  ## this will remove data points 
greater than 3 standard deviation from the mean; up to and including 90 
km 
alo <- purify.alo() 
t <- alo$time  ;  t <- t - (max(t) - min(t))/2 
w <-  0.5752152710  # T ~ 10.9 yrs  
s1 <- sin(w*t) ; s2 <- cos(w*t) 
df <- data.frame(alo, s1, s2, y=s2*0) 
lm.mg <- lm(MgII ~ s1 + s2, data=df) ; mc <- coef(lm.mg) ; A.mg <- 
sqrt(mc[2]^2 + mc[3]^2) 
df$MgII <- df$MgII/A.mg 
alt <- seq(45, 90, by=1) 
n <- length(alt) 
df$time <- t - mean(t) 
 
get.lt1 <- matrix(NA, n, 3)  
 
 
###    45 km 
i <- 1 ; # i <- length(alt) 
h.col <- 26 + i 
df$y <- df[, h.col] 
lm45 <- lm(y ~ time + sin2pit + cos2pit + sin4pit + cos4pit + MgII + 
sol.n, data=df) ; lm1 <- lm45 
lm1.b <- lm.boot(lm1, 2000, FALSE) 
lm1.c <- samples(lm1.b, name="coef") 
 
par(mar=c(5,5,1,1)) 
plot(lm1.c[7,], lm1.c[2,], type="p", pch=20, axes=FALSE, xlab=NA, 
ylab=NA) 
sr. <- quantile(lm1.c[7,], probs=c(0.05, 0.5, 0.95)) 
lt. <- quantile(lm1.c[2,], probs=c(0.05, 0.5, 0.95)) 
abline(v=sr.[2], h=lt.[2], col="gray") 
abline(v=sr.[-2], h=lt.[-2], lty=2, col="gray") 
points(lm1.c[7,], lm1.c[2,], pch=20) 
axis(side=1, tick=TRUE) 
axis(side=2) 
mtext("MgII coefficient (K/solar cycle)", 1, line=2.5) 
mtext("Linear trend (K/year)", 2, line=2.5) 
text(0.39,0.7, "(b) 45 km") 
box() 
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t <- lm1$model$time 
m <- lm1$model$MgII 
plot(t, m, axes=FALSE, xlab=NA, ylab=NA, type="n") 
abline(v=0, h=0) 
points(t, m, pch=20) 
axis(side=1, tick=TRUE) 
axis(side=2) 
mtext("Normalized MgII data", 2, line=2.5) 
mtext("Time (years)", 1, line=2.5)  
text(-4,1.3, "(a)") 
box() 
 
### 90 km  
 
i <- length(alt) 
h.col <- 26 + i 
df$y <- df[, h.col] 
lm90 <- lm(y ~ time + sin2pit + cos2pit + sin4pit + cos4pit + MgII + 
sol.n, data=df) 
lm90.b <- lm.boot(lm90, 2000, FALSE) 
lm90.c <- samples(lm90.b, name="coef") 
 
par(mar=c(5,5,1,1)) 
plot(lm90.c[7,], lm90.c[2,], type="p", pch=20, axes=FALSE, xlab=NA, 
ylab=NA) 
sr. <- quantile(lm90.c[7,], probs=c(0.05, 0.5, 0.95)) 
lt. <- quantile(lm90.c[2,], probs=c(0.05, 0.5, 0.95)) 
abline(v=sr.[2], h=lt.[2], col="gray") 
abline(v=sr.[-2], h=lt.[-2], lty=2, col="gray") 
points(lm90.c[7,], lm90.c[2,], pch=20) 
axis(side=1, tick=TRUE) 
axis(side=2) 
mtext("MgII coefficient (K/solar cycle)", 1, line=2.5) 
mtext("Linear trend (K/year)", 2, line=2.5) 
text(6,0.6, "(c) 90 km") 
box() 
 
####################################################################### 
######### THIS CODE GENERATES FIGURE 1 FROM CHAPTER 3 ########## 
####################################################################### 
 
source("dir.txt") 
 
 
calc.solar.phase <- function(time, mg2) {  
 
 w <-  0.5752152710  
 t <- time - (max(time) + min(time))/2 
 sol.s <- sin(w*t) 
 sol.c <- cos(w*t) 
 df <- data.frame(sol.s, sol.c, mg2=mg2) 
    lm.s <- lm( 'mg2 ~ sol.s + sol.c', df) 
 ph <- atan2(coef(lm.s)[3], coef(lm.s)[2])  ;  names(ph) <- NULL 
 A <- sqrt(coef(lm.s)[3]^2 +  coef(lm.s)[2]^2) 
    I <- matrix(1, length(t)) 
 nl <- nls(mg2 ~ a*I + b*sin(ww*t + p), start=list(a=0, b=A, p=ph, 
ww=w)) 
 #print(A) 
 #plot(t, mg2)  ;  points(t, A*solar2(ph, t, noise=FALSE, A = 1), 
pch=19, col="red")  
 #points(t, predict(lm.s), col="blue") 
 cc <- coef(nl) 
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 w <- cc[4]  ;  names(w)  <- NULL 
 ph <- cc[3] ;  names(ph) <- NULL 
 int <- cc[1] ; names(int) <- NULL 
 A <- cc[2]  ; names(A) <- NULL 
 return(list(ph=ph, A=A, w=w, int=int, lm=nl)) 
} 
 
 
alo <- purify.alo2() 
 
dn <- alo$doy   ;   get <- (dn > 91) & (dn < 273) 
alo.sum <- alo[get,]  ;  alo.wint <- alo[!get,] 
 
alo <- alo 
 
t <- alo$time  ;  t <- t - mean(t) 
w <-  0.5752152710 
MgII <- alo$MgII  ;  MgII <- MgII/sd(MgII) ; MgII <- MgII - mean(MgII) 
sol.out <- calc.solar.phase(time=t, mg2=MgII)  ;  w <- sol.out$w 
mg.a <- sol.out$A  ;  MgII <- MgII/mg.a  ;  MgII <- MgII - mean(MgII);  
sol.out <- calc.solar.phase(time=t, mg2=MgII)   
th <- sol.out$ph ;  w <- sol.out$w  ;  alo$MgII <- MgII 
sol.sine <- sin(w*t + th)  ;  alo$sol.n <- resid(sol.out$lm)  ;  
alo$sol.n <- alo$sol.n/sd(alo$sol.n) 
 
op <- par(no.readonly = TRUE) 
par(mfrow = c(2, 1))  
par(mar = c(2.5, 2.5, 1, 1)) 
par(mgp = c(1.5, 0.5, 0)) 
par(oma = c(0.5, 0.5, 0.5, 0.5)) 
par(bg="white") 
par(cex.axis=1) 
 
off <- 0.25 
plot(alo$time.y, MgII, type="p", pch=19, ylab="", xlab="Time (years)", 
cex=0.8) 
mtext(text="Scaled Mg II", side=2, line=1.6) 
abline(h=0) 
lines(alo$time.y, sol.sine, lwd=2) 
arrows(1996.3, 0+off, 1997.9, -0.4, code=2, length=0.14, col="gray", 
lwd=2) 
text(1995.5, 0.25+off, "solar like" ) 
text(1995.5, 0+off, expression("sin "*omega*"t")) 
text(1994, 1, "(a)") 
 
par(mar = c(2.5, 2.5, 0.8, 1)) 
plot(t, alo$sol.n, type="p", ylab="", xlab="", pch=19,  cex=0.8) 
mtext(text="Mean Centered Time (years)", side=1, at=0, line=1.5) 
mtext(text="Solar-noise (sd=1)", side=2, at=1, line=1.6) 
text(-4.65, 3.5, "(b)") 
abline(h=0) 
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####################################################################### 
######### THIS CODE GENERATES FIGURE 2 FROM CHAPTER 3 ########## 
####################################################################### 
rm(list=ls(all=TRUE)) 
 
getBA <- function(t0, ph, th, A=1) {  
 s1 <- sin(w*t0)  ;  c1 <- cos(w*t0) 
 s2 <- sin(2*w*t0)  ;  c2 <- cos(2*w*t0) 
 
 sisr <- t0*cos(ph - th) - s2*cos(ph + th)/(2*w) - 
2*sin(ph)*sin(th)*s1^2/(t0*w*w) 
 srti <- 2*cos(ph)/(w^2)*(s1 - w*t0*c1) 
 siti <- 2*cos(th)/(w^2)*(s1 - w*t0*c1) 
 si2 <- t0 - s2*cos(2*th)/(2*w) - 2*s1^2*sin(th)^2/(t0*w^2) 
 ti2 <- 2/3*t0^3 
 gamma <- ti2*si2 - (siti)^2 
 lt.b <- A/gamma*(si2*srti - siti*sisr) 
 A.b <- A/gamma*(ti2*sisr - siti*srti) 
 return(list(b=lt.b, a=A.b)) 
} 
 
t0. <- 20 
t <- seq(1, t0., by=0.1) 
w <-  0.57521 
phs <- seq(0, 2*pi, by=0.01) 
ths <- seq(0, 2*pi, by=0.01) 
get.bias <- matrix(NA, length(t)) 
get.ph <- matrix(NA, length(t)) 
A <- 1 
for (i in 1:length(t)) {  
   get.lt <- matrix(NA, length(phs), length(ths))  
   t0 <- t[i]   
   for (ii in 1:length(phs)) { 
         
        ph <- phs[ii]  ;  th <- ths  
  BA <- getBA(t0, ph, th) 
  lt.b <- BA$b 
  A.b <- BA$a 
  get.lt[,ii] <- lt.b  
 } 
 
 print(round(i/length(t)*100,1)) 
 get.bias[i] <- max(abs(get.lt)) 
} 
  
op <- par(no.readonly = TRUE) 
par(mar = c(4, 4, 1, 1))   ## Outside Margins  (bottom, left, top, 
right) 
par(mgp = c(0.5, 0, 0))  ## The margin line (in mex units) for the axis 
title, axis labels and axis line. The default is c(3, 1, 0).  
par(bg="white") 
par(cex.axis=1) 
op1 <- par() 
 
 
plot(2*t, get.bias, pch=19, xlim=c(0,30), axes=FALSE, ylim=c(0,2), 
ylab="", xlab="", type="l", lwd=2) 
mtext( "Length of Data Set (years)", side=1, at=15, cex=1, line=1.8) 
mtext("Cooling Rate Bias (K/year)", side=2, at=0.9, cex=1, line=2) 
box() 
axis(side=1, at=(0:15)*2, labels=TRUE, cex=0.5, padj=0.8) 
axis(side=2, at=(0:20)/10, padj=-1) 
abline(v=(0:15)*2, h=(0:20)/10, lt=2, col="gray") 
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lines(2*t, get.bias, pch=19, lwd=2) 
 
close.screen(all=TRUE) 
split.screen(c(2,2),erase=FALSE) 
screen(2) 
par(mar = c(2, 2, 2, 2), cex.axis=0.9)  ## Outside Margins  (bottom, 
left, top, right) 
plot(2*t, get.bias, pch=19, ylim=c(0,0.07), xlim=c(15,30), axes=FALSE, 
ylab="", xlab="", type="l", lwd=2)  
box() 
axis(side=2, at=(0:11)/100, labels=TRUE, padj=-1.2) 
axis(side=1, at=(0:15)*2, padj=0.9) 
abline(v=(0:15)*2, h=(0:11)/100, lt=2, col="gray") 
lines(2*t, get.bias, lwd=2)  
 
close.screen(all=TRUE) 
op <- op1 
box() 
text( -2.5, -0.13, "(a)") 
text( 27, 1.63, "(b)") 
 
 
####################################################################### 
######### THIS CODE GENERATES FIGURE 3 FROM CHAPTER 3 ########## 
####################################################################### 
 
alt  <- 
c(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,
68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90) 
pr.mg2  <- 
c(0.2458,0.4141,0.7233,0.8134,0.9244,0.9566,0.9522,0.9592,0.9611,0.8603
,0.8459,0.6774,0.4956,0.3902,0.1238,0.2261,0.6681,0.7375,0.6728,0.8084,
0.8906,0.9014,0.8278,0.865,0.9932,0.9914,0.9879,0.9595,0.9102,0.558,0.6
222,0.749,0.681,0.3252,0.3584,0.5389,0.1717,0.8338,0.684,0.5795,0.4591,
0.6169,0.8581,0.8147,0.0409,0.616) 
pr.sin  <- 
c(0.9853,0.8481,0.4775,0.1632,0.2931,0.6238,0.7433,0.8365,0.8852,0.8116
,0.8941,0.7142,0.6137,0.6258,0.4623,0.0251,0.653,0.7508,0.7658,0.8286,0
.906,0.866,0.6421,0.6789,0.9714,0.978,0.982,0.9184,0.8545,0.3957,0.6674
,0.8218,0.8162,0.4118,0.2703,0.2711,0.1326,0.6225,0.6503,0.4688,0.4418,
0.389,0.8235,0.8347,0.245,0.4272) 
pr.sin_p  <- 
c(0.9998,0.9996,0.9965,0.9904,0.9822,0.9415,0.8779,0.8915,0.9305,0.9032
,0.9157,0.7169,0.667,0.7806,0.5255,0.4461,0.665,0.7541,0.7725,0.8291,0.
9117,0.871,0.7603,0.9069,0.9972,0.9967,0.9979,0.9924,0.9896,0.9843,0.99
23,0.9992,0.999,0.9995,0.9996,0.9626,0.9546,0.8095,0.9796,0.9767,0.9949
,0.7909,0.93,0.8951,0.6545,0.6854) 
pr.soln  <- 
c(1,0.9999,0.9996,0.9983,0.9975,0.9927,0.972,0.9304,0.8137,0.1988,0.378
3,0.0322,0.4501,0.8132,0.8304,0.7056,0.31,0.0799,0.34,0.0858,0.2546,0.4
897,0.7395,0.6814,0.6578,0.4117,3.38000000000001E-
02,0.2109,0.0252,0.2705,0.8072,0.9338,0.9728,0.9548,0.9799,0.9799,0.964
2,0.9692,0.8654,0.9354,0.8788,0.9013,0.7785,0.4565,0.411,0.5155) 
 
 
  
par(mar = c(4, 4, 1, 1), mfrow=c(1,2)) 
plot(pr.mg2, alt, xlim=c(0.85, 1), lty=3, type="l", lwd=3, 
ylim=c(46,89), ylab="", xlab="", axes=FALSE) 
text(0.98, 88, "(a)") 
lines(pr.sin, alt, lty=2, lwd=3) 
lines(pr.sin_p, alt, lty=1, lwd=3) 
grid(col="dark gray") 
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mtext("Confidence Level of  
Solar-like Variations", side=1, cex=1, line=2.6) 
mtext("Altitude (km)", side=2, cex=1, line=2) 
box() 
axis(side=2, at=seq(45, 90, by=5), labels=TRUE, cex=0.5, padj=0.5) 
axis(side=1, padj= -0.6) 
legend(0.915, 64, c(expression(alpha[1]*": Mg II"), 
expression(alpha[2]*": sin "*omega * t), expression(alpha[3]*": 
sin("*omega*t*"+"*phi*") ")), lty = c(3,2,1), bg = 'white' , cex=.9, 
lwd=2) 
 
par(mar = c(4, 0, 1, 6)) 
plot(pr.soln, alt, xlim=c(0.85, 1), type="l", lwd=3, ylim=c(46,89), 
ylab="", xlab="", axes=FALSE) 
text(0.98, 87, "(b)") 
grid(col="dark gray") 
mtext("Confidence Level of 
Solar-noise Term", side=1, cex=1, line=2.6) 
box() 
axis(side=1, padj= -0.6) 
 
####################################################################### 
######### THIS CODE GENERATES FIGURE 4 FROM CHAPTER 3 ########## 
####################################################################### 
 
rm(list=ls(all=TRUE)) 
source("dir.txt") 
library(sfsmisc)   
library(simpleboot) 
 
fix.phase.one <- function(phase, control=2) {  
    n <- length(phase) 
  
 for (i in 2:n) {  
  diff <- phase[i] -  phase[i-1]  
  if (abs(diff)> control) {  
   if (sign(diff)>0) {  
    phase[i] <- phase[i] - 2*pi   
    i <- i - 1 
   } else if (sign(diff)<0) {  
    phase[i] <- phase[i] + 2*pi   
    i <- i - 1 
   }  
  } 
 } 
 
 diff <- phase[n] - phase[n-1]  
 if (abs(diff)> control) {  
  if (sign(diff)>0) {  
   phase[n] <- phase[n] - 2*pi    
  } else if (sign(diff)<0) {  
   phase[n] <- phase[n] + 2*pi    
  }  
 } 
 
 if (min(phase)<0 ) { phase <- phase + 2*pi }  
 if (max(phase)>2*pi) { phase <- phase - 2*pi }  
 return(phase) 
}   
 
calc.solar.phase <- function(time, mg2) {  
 
 w <-  0.5752152710  
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 t <- time - (max(time) + min(time))/2 
 sol.s <- sin(w*t) 
 sol.c <- cos(w*t) 
 df <- data.frame(sol.s, sol.c, mg2=mg2) 
    lm.s <- lm( 'mg2 ~ sol.s + sol.c', df) 
 ph <- atan2(coef(lm.s)[3], coef(lm.s)[2])  ;  names(ph) <- NULL 
 A <- sqrt(coef(lm.s)[3]^2 +  coef(lm.s)[2]^2) 
    I <- matrix(1, length(t)) 
 nl <- nls(mg2 ~ a*I + b*sin(ww*t + p), start=list(a=0, b=A, p=ph, 
ww=w)) 
 #print(A) 
 #plot(t, mg2)  ;  points(t, A*solar2(ph, t, noise=FALSE, A = 1), 
pch=19, col="red")  
 #points(t, predict(lm.s), col="blue") 
 cc <- coef(nl) 
 w <- cc[4]  ;  names(w)  <- NULL 
 ph <- cc[3] ;  names(ph) <- NULL 
 int <- cc[1] ; names(int) <- NULL 
 A <- cc[2]  ; names(A) <- NULL 
 return(list(ph=ph, A=A, w=w, int=int, lm=nl)) 
} 
 
SEs <- function(lm.object, ph, A, col.names= c("Int.", "LT", "A", "ph", 
"sol.n") ) {  
  w <-  0.5752152710 
  sig <- resid(lm.object) 
  t <- lm.object$model[,2] 
  m <- lm.object$model  ;  m[,1] <- 1  ;  m[,3] <- sin(w*t + ph) 
  m[,4] <- A*cos(w*t + ph)  ;  m <- as.matrix(m) 
  AA <- t(m)%*%m 
  AA. <- solve(AA)*var(sig) 
  AA.d <- sqrt(diag(AA.))  
  names(AA.d) <- NULL  
  names(AA.d) <- col.names  
  return(AA.d) 
} 
 
get.sol.max <- function(lm, tt) {  
   c <- coef(lm) 
   ang <- atan2(c[3],c[4]) 
   if (ang<0) { ang <- ang + 2*pi} 
   w <-  0.5752152710 
   # print(ang/w) 
   t <- seq(min(tt), max(tt), by=0.025) 
   s2 <- c[3]*sin(w*t) ; c2 <- c[4]*cos(w*t)  
   # plot(t, s2 + c2) # ; points(tt, c[3]*sin(w*tt) + c[4]*cos(w*tt)) 
   get <- max(s2 + c2)==(s2 + c2)  
   # print(get) ; print(sum(get)) 
   s.max <- t[get] 
   if (s.max<0) { s.max <- s.max + 2*pi/w }  
   return(s.max) 
}  
#  get.sol.max(fit3, tt) 
 
##################################### 
##################################### 
 
A. <- matrix(NA, 46, 3) 
ph. <- matrix(NA, 46, 3) 
mg. <- matrix(NA, 46, 3) 
mga. <- matrix(NA, 46, 3) 
soln. <- matrix(NA, 46) 
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alo <- purify.alo2() 
 
dn <- alo$doy   ;   get <- (dn > 91) & (dn < 273) 
alo.sum <- alo[get,]  ;  alo.wint <- alo[!get,] 
 
alo <- alo 
t <- alo$time  ;  t <- t - mean(t) 
w <-  0.5752152710 
MgII <- alo$MgII  ;  MgII <- MgII/sd(MgII) ; MgII <- MgII - mean(MgII) 
sol.out <- calc.solar.phase(time=t, mg2=MgII)  ;  w <- sol.out$w 
mg.a <- sol.out$A  ;  MgII <- MgII/mg.a  ;  MgII <- MgII - mean(MgII) 
th <- sol.out$ph ;  w <- sol.out$w  ;  alo$MgII <- MgII 
sol.sine <- sin(w*t + th)  ;  alo$sol.n <- resid(sol.out$lm)  ;  
alo$sol.n <- alo$sol.n/sd(alo$sol.n) 
 
th <- 0 
solar.max <- "2/12/2002" #"7/31/2001"  
get.sm <- solar.max==alo$date 
adj <- date.string(1,1,2002,2,12,2002) 
time.offset <- -t[get.sm] + adj  ; tt <- t + time.offset 
sol.s <- sin(w*tt) 
sol.c <- cos(w*tt)  
rnd <- rnorm(length(t), 0, 20) 
SE.s <- matrix(NA, 46, 4) 
I <- matrix(1, length(t)) 
data <- data.frame( alo, I = I, t, sol.s=sol.s, sol.c=sol.c, 
sol.sine=sol.sine) 
#  keep <- alo$time > 0 ; data <- data[keep,]  
 
sol.noise <- sol.sine <- MgII <- matrix(NA, 46) 
SP <- matrix(NA, 46) 
lt1 <- lt2 <- lt3 <- matrix(NA, 46) 
t0 <- matrix(NA, 46) 
phase <- phase2 <- amp <- matrix(NA, 46) 
alt <- 45:90 
pr.mg2 <- pr.s <- pr.sp <- pr.soln <- matrix(NA, 46) 
 
for (j in 45:90) {  
 
 ii <- j - 44 
 fmla1 <- ccat( "X", j, "km ~ t + sol.sine") 
 #fmla1 <- "rnd ~ t + mg2" 
 fit1 <- fit.alo(fmla=fmla1, kill=FALSE, data=data)$lm 
 sol.sine[ii] <- coef(fit1)[3] 
 lt1[ii] <- coef(fit1)[2] 
 soln.[ii] <- coef(fit1)[4] 
 pr.s[ii] <- 1-summary(fit1)$coefficients[3,4] 
  
 fmla2 <- ccat( "X", j, "km ~ t + MgII") 
 #fmla2 <- "rnd ~ t + MgII" 
 fit2 <- fit.alo(fmla=fmla2, kill=FALSE, data=data)$lm 
 MgII[ii] <- coef(fit2)[3]  ;  b.mg <- MgII[ii] 
 lt2[ii] <- coef(fit2)[2] 
 SP[ii] <- summary(fit2)$coefficients[3,2] 
 pr.mg2[ii] <- 1-summary(fit2)$coefficients[3,4] 
  
 fmla3 <-  ccat( "X", j, "km ~ t + sol.s + sol.c") 
 #fmla3 <-  "rnd ~ t + sol.s + sol.c" 
 fit3 <- fit.alo(fmla=fmla3, kill=FALSE, data=data)$lm  ;  cc <- 
coef(fit3) 
 b <- coef(fit3)[2]  ;  c <- coef(fit3)[1] ; tt2 <- fit3$model[,2] 
+ time.offset  
 mod <- fit3$model 
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 ph2 <- atan2(coef(fit3)[3], coef(fit3)[4]) ; if (ph2<0){ph2 <- 
ph2+2*pi} 
 ph <- get.sol.max(fit3, tt) 
 A <- sqrt( coef(fit3)[4]^2 + coef(fit3)[3]^2) 
 names(ph) <- names(b) <- names(c) <- names(A) <- NULL  
 lt3[ii] <- cc[2]  ;  amp[ii] <- A  ;  phase[ii] <- ph ; 
phase2[ii] <- ph2 
 AAA <- SEs(fit3, ph2, A, col.names= c("Int.", "LT", "A", "ph")) 
 SE.s[ii, ] <- AAA 
 sol.noise[ii, 1] <- cc[5] 
  
  
 ss2 <- (coef(fit3)[3]*mod$sol.s +  coef(fit3)[4]*mod$sol.c)/A ; 
mod$sol.s <- ss2  
 fmla4 <- ccat( "X", j, "km ~ t + sol.s") 
 fit4 <- lm(fmla4, data=mod) 
 pr.sp[ii] <- 1-summary(fit4)$coefficients[3,4] 
 ## pr.soln[ii] <- 1-summary(fit4)$coefficients[4,4] 
 print(j) 
  
} 
 
mg. <- 2*MgII 
mga. <- 2*sol.sine 
ph. <- phase # fix.phase.one(phase - th) 
A. <- amp*2 
alt <- 45:90 
mtext.cex <- 0.8 
 
op <- par(no.readonly = TRUE) 
par(mfrow = c(1, 3))  
par(mgp = c(1.5, 0.5, 0)) 
par(oma = c(0.5, 0.5, 0.5, 0.5)) 
par(bg="white") 
par(cex.axis=1.5) 
 
rems.Amp  <- c(0.6,1.2,1.6,2.2,2,1.8,1.2,2,3.2,3.2,2.6,2.2) ## Rems 
2007   40 N 
rems.alt <- 
c(48.32491,51.10865,53.68817,57.49702,60.42884,62.46151,65.25389,73.161
14,75.70142,77.47369,79.93315,82.06233)  ## Rems 2007 
rems.pha  <- c(10.8,10.4,10.1,9.6,9.2,9,8.4,1.3,0.9,0.8,0.6,0.3)  ## 
Rems 2007  40 N 
 
rems09.p <- c(1.5,3,4.5,4.5,3,1.5,0,1.5,1.5)  ## Rems 09 Figure 5 
rems09.alt2 <- c(72.1,69.2,68.6,67,66.7,66.3,65.9,65.6,58.5) 
rems09.alt1 <- c(77.47369, 75.10888, 73.59735, 72.16893, 71.30992, 
69.86640, 65.96773, 65.25389, 52.96298) 
rems09.amp <- c(3,3,2.5,2,1.5,1,1,1.5,1.5) 
 
ph2 <- c(9.9,9.9,9.7,9.3,10.7,10.9,10.9,11,10.9) ## Rems 2007 50 N 
alt2  <- 
c(57.49702,60.42884,62.46151,65.25389,73.16114,75.70142,77.47369,79.933
15,82.06233) 
amp2  <- c(1.8,2,2,1.2,2.6,3.2,3.2,3,2.8)  ## Rems 2007 50 N 
cex <- 1.4 
 
########## AMPLITUDE ####################  
par(mar = c(5, 5, 2, 1)) 
plot(A.[,1], alt, pch=19, xlim=c(-1, 10), type="l", lwd=2, xlab="", 
ylab="", main="", axes=FALSE) 
abline(v=0, col="dark gray") 
text(8, 46, "(a)", cex=1.5) 
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mtext( "Amplitude of the Atmospheric Solar Response 
Kelvin (solar max - solar min)", side=1, at=4.8, cex=mtext.cex, 
line=3.7) 
mtext("Altitude (km)", side=2, at=68, cex=1, line=2.8) 
box() 
axis(side=2, at=seq(45, 90, by=5), labels=TRUE, cex=0.5, padj=-0.4) 
axis(side=1, padj=0.4) 
arrows(6.5, 65, 5.4, 70, code=2, length=0.15, lwd=2, col="gray") 
text(7, 64, "95% CI", cex=1.3, font=10) 
grid() 
lines(A.[,1] + SE.s[,3]*1.97, alt, lty=2) 
lines(A.[,1] - SE.s[,3]*1.97, alt, lty=2) 
points(rems.Amp, rems.alt, pch=19, cex=cex) 
points(amp2, alt2, pch=17, cex=cex) 
points(rems09.amp, rems09.alt1, pch=2, cex=cex) 
 
lines(A.[,1], alt, lwd=2) 
################################################# 
########  PHASE #################################### 
par(mar = c(5, 1, 2, 2)) 
plot(phase2/w, alt, pch=19, xlim=c(-1, 15), type="l", xlab="", ylab="", 
lwd=2, axes=FALSE)  
# points(ph., alt, pch=19, col="green") 
abline(v=c(0, pi, 2*pi, -pi, -2*pi, 3*pi)/w , col="gray") 
abline(v=c(pi/2, 3*pi/2, -pi/2, -3*pi/2, 5*pi/2)/w , col="gray", lty=2) 
text(12, 46, "(b)", cex=1.5) 
mtext( c(expression(0), expression(pi*"/"*2), expression(pi), 
expression(3*pi*"/"*2), expression(2*pi)), side=3, at=c(0, pi/2, pi, 
3*pi/2, 2*pi)/w, cex=0.8, line=-1) 
mtext( "Phase of atmospheric solar response  
Years from solar maximum", side=1, at=7.5, cex=mtext.cex, line=3.7) 
axis(side=2, at=seq(45, 90, by=5), labels=FALSE, cex=0.6, padj=-0.4) 
axis(side=1, padj=0.4) 
 
points( rems.pha, rems.alt, pch=19, cex=cex) ; points( rems.pha + 11, 
rems.alt, pch=19, cex=cex) ; points( rems.pha - 11, rems.alt, pch=19, 
cex=cex) 
points(ph2 , alt2, pch=17, cex=cex)  ; points(ph2 - 11, alt2, pch=17, 
cex=cex) 
points(rems09.p, rems09.alt2, pch=2, cex=cex) 
points(rems09.p+11, rems09.alt2, pch=2, cex=cex) 
 
off.x <- -8  ;  off.y <- -15 
arrows(11+off.x, 68 + off.y, 12.5+off.x, 74+off.y, code=2, length=0.15, 
lwd=2, col="gray") 
text(11+off.x, 67+off.y, "95% CI", cex=1.3, font=10) 
box() 
 
lines( phase2/w + SE.s[,3]*1.97/w, alt, lty=2) 
lines( phase2/w - SE.s[,3]*1.97/w, alt, lty=2) 
 
lines( phase2/w + 2*pi/w, alt, lty=1, lwd=2) 
lines( phase2/w + 2*pi/w + SE.s[,3]*1.97/w, alt, lty=2) 
lines( phase2/w + 2*pi/w - SE.s[,3]*1.97/w, alt, lty=2) 
 
lines( phase2/w - 2*pi/w, alt, lty=1, lwd=2) 
lines( phase2/w - 2*pi/w + SE.s[,3]*1.97/w, alt, lty=2) 
lines( phase2/w - 2*pi/w - SE.s[,3]*1.97/w, alt, lty=2) 
lines(phase2/w, alt, lwd=2) 
 
################################################# 
########## FIX PROXY ################################## 
par(mar = c(5, 0, 2, 3)) 
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plot(mg.[,1], alt, pch=19, xlim=c(-5,6), xlab="", type="l", ylab="", 
lwd=2, axes=FALSE) 
lines(mga., alt, lty=4, lwd=2) 
abline(v=0,col="dark gray") 
lines(SP*1.96, alt, lty=2) 
lines(-SP*1.96, alt, lty=2) 
 
legend(-0.5, 73, c("Mg II", expression("sin "*omega * t), "Remsberg 
(09)", expression("Remsberg (07) "*40^o*" N"), expression("Remsberg 
(07) "*50^o*" N")),  
              pch=c(NA,NA,2,19, 17), lty = c(1, 4, NA, NA, NA), bg = 
'white' , cex=1, lwd=1.2) 
 
text(4, 46, "(c)", cex=1.5) 
mtext( "Solar Proxy Coefficients  
Kelvin (solar max - solar min)", side=1, at=0, cex=mtext.cex, line=3.5) 
axis(side=2, at=seq(45, 90, by=5), labels=FALSE, cex=0.5, padj=-0.4) 
axis(side=1, padj=0.4) 
box() 
arrows(-3.2, 50, -0.8, 55, code=2, length=0.15, lwd=2, col="gray") 
text(-4, 49, "95% CI", cex=1.2, font=10) 
lines(mg.[,1], alt, lwd=2) 
################################################# 
 
#######################################################################
# 
######### THIS CODE GENERATES FIGURE 3 FROM CHAPTER 4 ########## 
####################################################################### 
## This will do a strait regression on the alo temperatures.  
rm(list=ls(all=TRUE)) 
source("dir.txt") 
library(sfsmisc) 
 
coef.corr <- function(A, se2) {  
   A <- as.matrix(A) 
   v <- solve(t(A)%*%A)*se2 
   v.d <- diag(v) 
   n <- nrow(v) ; c <- ncol(v) 
   cor <- matrix(NA, n, c) 
   for (j in 1:n) {  
      for (k in 1:c) { 
         sjj <- v[j,j] ; skk <- v[k,k]    
      cor[j,k] <- v[j,k]/( sqrt(sjj)*sqrt(skk) ) 
   }  
 }  
 return(cor) 
}  
 
 
 
#alo <- alo.data  # purify.alo()  ## this will remove data points 
greater than 3 standard deviation from the mean; up to and including 90 
km 
alo <- purify.alo() 
t <- alo$time  ;  t <- t - (max(t) - min(t))/2 
w <-  0.5752152710  # T ~ 10.9 yrs  
s1 <- sin(w*t) ; s2 <- cos(w*t) 
df <- data.frame(alo, s1, s2, y=s2*0) 
alt <- seq(45, 90, by=1) 
n <- length(alt) 
df$time <- t - mean(t) 
 
get.lt1 <- matrix(NA, n, 3) 
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get.lt2 <- matrix(NA, n, 3) 
get.lt3 <- matrix(NA, n, 3) 
get.lt4 <- matrix(NA, n, 3) 
get.lt5 <- matrix(NA, n, 3) 
 
for (i in 1:n) { 
   h.col <- 26 + i 
   df$y <- df[, h.col] 
   lm1 <- lm(y ~ time + sin2pit + cos2pit + sin4pit + cos4pit + s1 + s2 
+ sol.n, data=df) 
   c <- summary(lm1)$coefficients 
   get.lt1[i,1] <- c[2,1]  ;  get.lt1[i,2] <- c[2,1] - c[2,2]*1.96 ; 
get.lt1[i,3] <- c[2,1] + c[2,2]*1.96   
   xx <- lm1$model[,2] ; yy <- resid(lm1) ; xx2 <- xx*xx ; xx3 <- 
xx2*xx ; l <- predict(lm(yy ~ xx + xx2 + xx3)) 
   #plot(xx, resid(lm1)) 
   #points(xx, l, col="red") 
   #abline(h=0) 
   # readline("enter...") 
 
   lm2 <- lm(y ~ time + sin2pit + cos2pit + sin4pit + cos4pit + MgII, 
data=df) 
   c <- summary(lm2)$coefficients 
   get.lt2[i,1] <- c[2,1]  ;  get.lt2[i,2] <- c[2,1] - c[2,2]*1.96 ; 
get.lt2[i,3] <- c[2,1] + c[2,2]*1.96 
    
   lm3 <- lm(y ~ time + sin2pit + cos2pit + sin4pit + cos4pit + sol.n, 
data=df) 
   c <- summary(lm3)$coefficients 
   get.lt3[i,1] <- c[2,1]  ;  get.lt3[i,2] <- c[2,1] - c[2,2]*1.96 ; 
get.lt3[i,3] <- c[2,1] + c[2,2]*1.96 
    
   lm4 <- lm(y ~ time + sin2pit + cos2pit + sin4pit + cos4pit + s1 + 
sol.n, data=df) 
   c <- summary(lm4)$coefficients 
   get.lt4[i,1] <- c[2,1]  ;  get.lt4[i,2] <- c[2,1] - c[2,2]*1.96 ; 
get.lt4[i,3] <- c[2,1] + c[2,2]*1.96 
 
} 
 
v <- lm1$model ; v[,1] <- v[,1]*0+ 1  ;  se2 <- var(resid(lm1)) 
coef.corr(v, se2) 
coef.corr(v[,-1], se2) 
 
par(mfrow=c(1,2)) 
par(mar = c(4, 4, 1, 0)) 
 
plot(get.lt1[,1], alt, type="l", lwd=2, xlim=c(-3,0.5), ylab="", 
xlab="", axes=FALSE) 
abline(v=0, col="gray") 
lines(get.lt1[,1], alt, lwd=2) 
lines(get.lt1[,3], alt, type="l", lt=2, lwd=2) 
lines(get.lt1[,2], alt, type="l", lt=2, lwd=2) 
box() 
mtext("Altitude (km)", side=2, at=65, padj=-4, cex=1) 
axis(side=2, at=seq(45, 90, by=5), labels=TRUE, cex=0.5, padj=0.5, 
hadj=1.5, las=1) 
axis(side=1, labels=TRUE, cex=0.2, padj=0, las=1)  #x-axis 
text(-2, 70, "95% CI", cex=0.9) 
arrows(-1.5, 70, -1, 72.5, lwd=2, length=0.1) 
text(-2.5, 60, "(a)") 
 
par(mar=c(4,0,1,1)) 
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plot(get.lt1[,1], alt, type="n", lwd=2, ylab="", xlab="", axes=FALSE) 
abline(v=0, col="grey") 
lines(get.lt1[,1], alt, type="l", lwd=2, ylab="", xlab="") 
lines(get.lt2[,1], alt, lt=2, lwd=2) 
lines(get.lt3[,1], alt, lt=3, lwd=2) 
lines(get.lt4[,1], alt, lt=4, lwd=2)  
lines(get.lt1[,3], alt, type="l", lt=2, lwd=3, col="gray") 
lines(get.lt1[,2], alt, type="l", lt=2, lwd=3, col="gray") 
mtext("Linear Cooling Trend (K/year)", side=1, at=-2, padj=3, cex=0.9)  
axis(side=1, at=c(0, -0.5, -1, -1.5), cex=0.2, padj=0, las=1) #x-axis 
axis(side=1, at=c(-0.25, -0.75, -1.25, -1.75), labels=FALSE, cex=0.2, 
padj=0, las=1) #x-axis 
box() 
text(-1.7, 60, "(b)") 
legend(-2, 55, c("sine + cosine","Mg II", "sine and cosine omitted", 
"sine only"), lty=1:7, cex = 0.9, lwd=2, bty="n") 
 
#######################################################################
# 
######### THIS CODE GENERATES FIGURE 4 FROM CHAPTER 4 ########## 
####################################################################### 
rm(list=ls(all=TRUE)) 
library(Hmisc) 
 
# FROM BEIG ET AL. 2003 
# Ramaswamy et al. 2001 
t.mp <- c(-6.8,0,0.2,0.6,5,-10.5,0.3,0.3,-9,1.2,-1.2,0,-0.24,-0.3,0,-
1,-1.5,0,-1.4,-2.1,-6,-1.93,-2.5) 
t.ms <- c(-2.5,-2.5,-4.5,-3.3,-2.2,-1.5,-3,-5.6,-3.5,-8.8,-5.2,-2,-
3.5,-10,-2.5,-0.24,-1.5,-2,-3,-2,-1,-1.6) 
t.sp <- c(-0.5,-0.4,-0.3,-0.3,-0.2,-0.5,0,-1,2,-4,0,-0.5,0,-0.5,-0.2,-
0.8,0,-0.9,0,-1,-0.2,-0.4,0,-4.5,-0.38,-0.43,-0.4,-0.4,-1.9,1.67,-
1.85,4.07,-0.27,-0.44,-0.63,-0.73,-1.2,0.8,-0.2,-1.6,1.5,-0.16) 
 
mp <- hist(t.mp, breaks=12, plot=FALSE) 
ms <- hist(t.ms, breaks=12, plot=FALSE) 
 
par(mar = c(4, 6, 2, 2)) 
plot(1:16, -11:4, xlim=c(-6, 7), ylim=c(0, 17), type="n", axes=FALSE, 
xlab="", ylab="") 
v <- barplot(-mp$counts, col="light gray", add=TRUE, horiz=TRUE, 
space=0, axes=FALSE) 
barplot(ms$counts, col="light gray", horiz=TRUE, space=0, add=TRUE, 
axes=FALSE) 
 
ri <- max(v) - min(v) ; ru <- max(mp$mids) - min(mp$mids) ; x <- 
mp$mids 
y.new <- ri/ru*(x + 10.5) + 0.5 
ylab=mp$mids 
axis(side=2, at=y.new, labels=ylab, cex=0.2, padj= 0.25, las=1) 
axis(side=1, at=(-6:6), labels=abs(-6:6), cex=0.2, padj=-0.75, las=1) 
mtext( "Count", side=1, at=0, cex=0.9, line=1.5) 
mtext( "Temperature Trend (K/decade)", side=2, at=8.5, cex=0.9, 
line=3.2) 
text(3, 16, "(B) Mesosphere", cex=0.9) 
text(-3, 16, "(A) Mesopause", cex=0.9) 
text(-5, 2, ccat("N=", length(t.mp)), cex=0.8) 
text(5, 2, ccat("N=", length(t.ms)), cex=0.8) 
box() 
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####################################################################### 
######### THIS CODE GENERATES FIGURE 5 FROM CHAPTER 4 ########## 
####################################################################### 
 
op <- par(no.readonly = TRUE) 
par(mfrow = c(1, 2)) 
par(mar = c(3.5, 4, 0.5, 1)) 
 
##    FOR S1 AND S2, WHEN THE DATA IS ABOUT EVENLY DIVIDED 
plot(get.ltl4[,1], alt, type="n", xlim=c(-5, 0.6), col="black", 
xlab=NA, ylab=NA, axes=FALSE) 
abline(v=0, col="gray") 
lines(get.ltl4[,1], alt, lwd=2, lt=2) 
lines(get.ltg4[,1], alt, lwd=3, lt=3) 
lines(get.lt[,1], alt, lwd=2, lt=1) 
 
mtext("Linear Cooling Trend (K/year)", side=1, at=-2.2, padj=3, 
cex=0.9)  
mtext("Altitude (km)", side=2, at=70, padj=-4, cex=1)  
axis(side=1, cex=0.2, padj=-0.5) #x-axis 
axis(side=2, cex=0.2, padj=0.4, las=1) #x-axis 
box() 
e1 <- expression(S[1]*" (t<4 y)") 
e2 <- expression(S[2]*" (t>4 y)") 
e3 <- "all" 
legend(-4, 65, c(e1,e2, e3), lty=c(2,3,1), cex = 0.9, lwd=2, bty="n") 
text(0.4, 89, "(a)")  
 
##    FOR  FULL AND  FIRST  YEAR REMOVED 
par(mar = c(3.5, 2, 0.5, 1)) 
plot(get.lt[,1], alt, xlim=c(-2, 0.3), type="n", col="black", xlab=NA, 
ylab=NA, axes=FALSE) 
abline(v=0, col="gray")  
lines(get.lt2[,1], alt, lwd=3, lt=3) 
lines(get.lt[,1], alt, lwd=2, lt=1)  ## full data set 
 
mtext("Linear Cooling Trend (K/year)", side=1, at=-0.6, padj=3, 
cex=0.9)   
axis(side=1, cex=0.2, padj=-0.5) #x-axis 
axis(side=2, cex=0.2, padj=0.4, las=1) #x-axis 
box() 
e2 <- expression(S[3]*" (t>1 y)") 
e3 <- "all" 
legend(-1.5, 65, c(e2, e3), lty=c(3,1), cex = 0.9, lwd=2, bty="n") 
text(0.2, 89, "(b)") 
cbind(get.lt2[,1], get.lt[,1]) 
 
####################################################################### 
######## THIS CODE GENERATES FIGUREs 6 and 7 FROM CHAPTER 4 ####### 
####################################################################### 
 
rm(list=ls(all=TRUE)) 
source("dir.txt") 
library(sfsmisc) 
 
alo <- purify.alo() 
t <- alo$time  ;  t <- t - (max(t) - min(t))/2 
w <-  0.5752152710  # T ~ 10.9 yrs  
s1 <- sin(w*t) ; s2 <- cos(w*t) 
df <- data.frame(alo, s1, s2, y=s2*0) 
df$time <- t - mean(t) 
 
df$y <- df$X89km 
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lm1 <- lm(y ~ time + sin2pit + cos2pit + sin4pit + cos4pit + s1 + 
sol.n, data=df) 
t <- lm1$model[,2] ; t2 <- t^2 ; t3 <- t^3 ; t4 <- t^4 
lm1 <- lm(y ~ sin2pit + cos2pit + sin4pit + cos4pit + sol.n, data=df) 
r <- resid(lm1) 
lm2 <- lm(r ~ t + t2 + t3 + t4) 
 
par(mar = c(4, 4, 1, 1)) 
plot(t,r, pch=20, xlab="", ylab="", axes=FALSE) 
abline(h=0) 
points(t,r, pch=20) 
lines(t, predict(lm2), lwd=2, col="dark gray") 
 
mtext("Time (years)", side=1, line=2) 
mtext("Residuals from 85 km", side=2, line=2.5) 
axis(side=1, cex=0.2, padj=-0.8, las=1) 
axis(2) 
box() 
 
####################################################################### 
######### THIS CODE GENERATES FIGURE 8 FROM CHAPTER 4 ########## 
####################################################################### 
 
## This will do a strait regression on the alo temperatures.  
rm(list=ls(all=TRUE)) 
source("dir.txt") 
library(sfsmisc) 
 
coef.corr <- function(A, se2) {  
   A <- as.matrix(A) 
   v <- solve(t(A)%*%A)*se2 
   v.d <- diag(v) 
   n <- nrow(v) ; c <- ncol(v) 
   cor <- matrix(NA, n, c) 
   for (j in 1:n) {  
      for (k in 1:c) { 
         sjj <- v[j,j] ; skk <- v[k,k]    
      cor[j,k] <- v[j,k]/( sqrt(sjj)*sqrt(skk) ) 
   }  
 }  
 return(cor) 
}  
 
#alo <- alo.data  # purify.alo()  ## this will remove data points 
greater than 3 standard deviation from the mean; up to and including 90 
km 
alo <- purify.alo() 
t <- alo$time  ;  t <- t - (max(t) - min(t))/2 
w <-  0.5752152710  # T ~ 10.9 yrs  
s1 <- sin(w*t) ; s2 <- cos(w*t) 
df <- data.frame(alo, s1, s2, y=s2*0) 
alt <- seq(45, 90, by=1) 
n <- length(alt) 
df$time <- t - mean(t) 
 
get.lt1 <- matrix(NA, n, 3)  
get.lt12 <- matrix(NA, n, 3) 
nn <- matrix(NA, n) 
 
for (i in 1:n) { 
 
   h.col <- 26 + i 
   df$y <- df[, h.col] 
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   lm1 <- lm(y ~ time + sin2pit + cos2pit + sin4pit + cos4pit + s1 + s2 
+ sol.n, data=df) 
   c <- summary(lm1)$coefficients 
   get.lt1[i,1] <- c[2,1]  ;  get.lt1[i,2] <-  -c[2,2]*1.96 ; 
get.lt1[i,3] <- c[2,2]*1.96  
   nn[i] <- length(resid(lm1)) 
  
   lm12 <- lm(y ~ time + sin2pit + cos2pit + sin4pit + cos4pit + sol.n, 
data=df) 
   c <- summary(lm12)$coefficients 
   get.lt12[i,1] <- c[2,1]  ;  get.lt12[i,2] <- c[2,2]*1.96 ; 
get.lt12[i,3] <- -c[2,2]*1.96 
 
} 
 
par(mar = c(4, 4, 1, 1)) 
plot(get.lt1[,1], alt, type="l", lwd=2, xlim=c(-2.5,1.5), ylab="", 
xlab="", axes=FALSE) 
abline(v=0, col="gray") 
lines(get.lt1[,1], alt, lwd=2, lt=1) 
lines(get.lt1[,3], alt, type="l", lt=2, lwd=2) 
lines(get.lt1[,2], alt, type="l", lt=2, lwd=2) 
lines(get.lt12[,1], alt, type="l", lt=1, lwd=2, col="dark gray") 
lines(get.lt12[,2], alt, type="l", lt=2, lwd=2, col="dark gray") 
lines(get.lt12[,3], alt, type="l", lt=2, lwd=2, col="dark gray") 
box() 
mtext("Altitude (km)", side=2, at=67, padj=-3.4, cex=1) 
mtext("Linear trend (K/year)", side=1, at=-0.5, padj=2.5, cex=1) 
axis(side=2, at=seq(45, 90, by=5), labels=TRUE, cex=0.5, padj=0.3, 
hadj=0.8, las=1) 
axis(side=1, labels=TRUE, cex=0.2, padj=-0.5, las=1)  #  x-axis 
text(-1, 50, "95% CI", cex=0.9) 
arrows(-0.7, 50, -0.25, 52.5, lwd=2, length=0.1) 
arrows(-0.7, 50, -0.12, 49, lwd=2, length=0.1) 
legend(-2.5, 70, c("Full Model","Solar-like terms 
 omitted"), col=c("black","gray"),lty=1, cex = 0.9, lwd=2, bty="n") 
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####################################################################### 
######### THIS CODE GENERATES FIGURE 11 FROM CHAPTER 4 ########## 
####################################################################### 
 
rm(list=ls(all=TRUE)) 
source("dir.txt") 
library(sfsmisc)   
library(simpleboot) 
 
calc.solar.phase <- function(time, mg2) {  
 
 w <-  0.5752152710 
 t <- time - (max(time) + min(time))/2 
 sol.s <- sin(w*t) 
 sol.c <- cos(w*t) 
 df <- data.frame(sol.s, sol.c, mg2=mg2) 
    lm.s <- lm( 'mg2 ~ sol.s + sol.c', df) 
 ph <- atan2(coef(lm.s)[3], coef(lm.s)[2])  ;  names(ph) <- NULL 
 A <- sqrt(coef(lm.s)[3]^2 +  coef(lm.s)[2]^2) 
    I <- matrix(1, length(t)) 
 nl <- nls(mg2 ~ a*I + b*sin(ww*t + p), start=list(a=0, b=A, p=ph, 
ww=w)) 
 #print(A) 
 #plot(t, mg2)  ;  points(t, A*solar2(ph, t, noise=FALSE, A = 1), 
pch=19, col="red")  
 #points(t, predict(lm.s), col="blue") 
 cc <- coef(nl) 
 w <- cc[4]  ;  names(w)  <- NULL 
 ph <- cc[3] ;  names(ph) <- NULL 
 int <- cc[1] ; names(int) <- NULL 
 A <- cc[2]  ; names(A) <- NULL 
 return(list(ph=ph, A=A, w=w, int=int, lm=nl)) 
} 
 
##################################### 
##################################### 
 
A. <- matrix(NA, 46, 3) 
ph. <- matrix(NA, 46, 3) 
mg. <- matrix(NA, 46, 3) 
mga. <- matrix(NA, 46, 3) 
soln. <- matrix(NA, 46) 
 
alo <- purify.alo2() 
 
dn <- alo$doy   ;   get <- (dn > 91) & (dn < 273) 
alo.sum <- alo[get,]  ;  alo.wint <- alo[!get,] 
 
alo <- alo 
 
t <- alo$time  ;  t <- t - mean(t) 
w <-  0.5752152710 
MgII <- alo$MgII  ;  MgII <- MgII/sd(MgII) ; MgII <- MgII - mean(MgII) 
sol.out <- calc.solar.phase(time=t, mg2=MgII)  ;  w <- sol.out$w 
mg.a <- sol.out$A  ;  MgII <- MgII/mg.a  ;  MgII <- MgII - mean(MgII);  
sol.out <- calc.solar.phase(time=t, mg2=MgII)   
th <- sol.out$ph ;  w <- sol.out$w  ;  alo$MgII <- MgII 
sol.sine <- sin(w*t + th)  ;  alo$sol.n <- resid(sol.out$lm)  ;  
alo$sol.n <- alo$sol.n/sd(alo$sol.n) 
 
sol.s <- sin(w*t) 
sol.c <- cos(w*t) 
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sol.s2 <- sin(2*w*t) 
sol.c2 <- cos(2*w*t) 
rnd <- rnorm(length(t), 0, 20) 
SE.s <- matrix(NA, 46, 5) 
I <- matrix(1, length(t)) 
data <- data.frame( alo, I = I, t, sol.s=sol.s, sol.c=sol.c, 
sol.sine=sol.sine, y=t*0) 
doy <- data$doy 
keep <- (doy>79) & (doy<232) ##  THIS IS FOR SUMMER 
 
#  keep <- alo$time > 0 ; data <- data[keep,] 
 
ss.s <- ss.w <- mg.w <- mg.s <- matrix(NA, 46)  
A.s <- A.w <- matrix(NA, 46) 
alt <- 45:90 
lt.s <- lt.w <- matrix(NA, 46) 
 
for (j in 45:90) {  
 
    h.col <- j-45+27 
 ii <- j - 44 
 data$y <- data[,h.col] 
 data.s <- data[keep,] 
    data.w <- data[!keep,] 
 fmla1 <- "y ~ t + sol.sine + sol.n"  
 fit1.s <- fit.alo(fmla=fmla1, kill=FALSE, data=data.s)$lm 
 fit1.w <- fit.alo(fmla=fmla1, kill=FALSE, data=data.w)$lm 
 ss.w[ii] <- coef(fit1.w)[3]*2 
 ss.s[ii] <- coef(fit1.s)[3]*2 
  
 fmla2 <- "y ~ t + MgII"  
 fit2.s <- fit.alo(fmla=fmla2, kill=FALSE, data=data.s)$lm 
 fit2.w <- fit.alo(fmla=fmla2, kill=FALSE, data=data.w)$lm 
 mg.s[ii] <- coef(fit2.s)[3]*2 
 mg.w[ii] <- coef(fit2.w)[3]*2 
  
 fmla3 <- "y ~ t + sol.s + sol.c + sol.n"  
 fit3.w <- fit.alo(fmla=fmla3, kill=FALSE, data=data.w)$lm  ;  
cc.w <- coef(fit3.w) 
 fit3.s <- fit.alo(fmla=fmla3, kill=FALSE, data=data.s)$lm  ;  
cc.s <- coef(fit3.s) 
 A.s[ii] <- sqrt( coef(fit3.s)[4]^2 + coef(fit3.s)[3]^2)*2 
 A.w[ii] <- sqrt( coef(fit3.w)[4]^2 + coef(fit3.w)[3]^2)*2 
 lt.s[ii] <- coef(fit3.s)[2] ; lt.w[ii] <- coef(fit3.w)[2] 
  
 print(j) 
 
} 
 
alt <- 45:90 
op <- par(no.readonly = TRUE) 
par(mfrow = c(1, 3))  
par(mar = c(5, 5, 2, 1)) 
par(mgp = c(1.5, 0.5, 0)) 
par(oma = c(0.5, 0.5, 0.5, 0.5)) 
par(bg="white") 
par(cex.axis=1.5) 
 
##################################### 
########## AMPLITUDE ################### 
##################################### 
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plot(A.w, alt, pch=19, xlim=c(-1, 12), type="l", lwd=2, xlab="", 
ylab="", main="", axes=FALSE) 
lines(A.s, alt, lty=2, lwd=2) 
abline(v=0, col="dark gray") 
text(10, 46, "(a)", cex=1.5) 
mtext( "Atmospheric Solar Response Amplitude 
Kelvin (solar max - solar min)", side=1, at=4.8, cex=0.9, line=3.7) 
mtext("Altitude (km)", side=2, at=68, cex=1, line=2.8) 
box() 
axis(side=2, at=seq(45, 90, by=5), labels=TRUE, cex=0.5, padj=-0.4) 
axis(side=1, padj=0.4)   
legend(5, 55, c("Summer", "Winter"), lty = c(2, 1), bg = 'white' , 
cex=1, lwd=2) 
grid() 
 
################################################# 
########  sin wt #################################### 
################################################# 
par(mar = c(5, 2, 2, 2)) 
plot(mg.w, alt, pch=19, xlim=c(-10,10), xlab="", type="l", ylab="", 
lwd=2, axes=FALSE)  
abline(v=0,col="dark gray") 
lines(mg.s, alt, lty=2, lwd=2)  
text(7, 46, "(b)", cex=1.5) 
mtext( "MgII Coefficient 
Kelvin (solar max - solar min)", side=1, at=0, cex=0.9, line=3.5) 
axis(side=2, at=seq(45, 90, by=5), labels=FALSE, cex=0.5, padj=-0.4) 
axis(side=1, padj=0.4) 
grid() 
box() 
 
################################################# 
########## FIX PROXY ################################# 
################################################# 
 
par(mar = c(5, 2, 2, 2)) 
plot(ss.w, alt, pch=19, xlim=c(-10,10), xlab="", type="l", ylab="", 
lwd=2, axes=FALSE) 
lines(ss.s, alt, lty=2, lwd=2) 
abline(v=0,col="dark gray") 
text(7, 46, "(c)", cex=1.5) 
mtext( "Solar-sine Coefficient  
Kelvin (solar max - solar min)", side=1, at=0, cex=0.9, line=3.5) 
axis(side=2, at=seq(45, 90, by=5), labels=FALSE, cex=0.5, padj=-0.4) 
axis(side=1, padj=0.4) 
grid() 
box() 
####################################################################### 
######### THIS CODE GENERATES FIGURE 12 FROM CHAPTER 4 ########## 
####################################################################### 
 
## AO SAO amp and phase  
rm(list=ls(all=TRUE))  
source("dir.txt") 
library(sfsmisc) 
library(fUtilities) 
library(fields) 
 
dir.F <- "C:\\Documents and Settings\\Troy Wynn\\My 
Documents\\dissertation\\Dissertation\\Summary And Comp\\French\\" 
dir.H <- "C:/Documents and Settings/Troy Wynn/My 
Documents/dissertation/Dissertation/Summary And Comp/HALOE/process/" 
source(ccat(dir.F,"process.txt")) 
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source(ccat(dir.H,"process 2.txt")) 
 
SEs <- function(t, ao.p, ao.a, sao.p, sao.a, s.p, s.a, sn, w, noise) {  
   n <- length(t) 
   se <- sd(noise) 
   v.1 <- matrix(1,n) 
   s2 <- sin(2*pi*t + ao.p) ; c2 <- cos(2*pi*t + ao.p) 
   s4 <- sin(4*pi*t + sao.p) ; c4 <- cos(4*pi*t + sao.p) 
   sw <- sin(w*t + s.p) ; cw <- cos(w*t + s.p) 
   Y <- cbind(v.1, t, s2, ao.a*c2, s4, sao.a*c4, sw, s.a*cw, sn) 
   YY <- sqrt(diag(solve(t(Y)%*%Y)))*se 
   return(YY) 
} 
 
SE2 <- function(t, ao.p, ao.a, noise) {  
   n <- length(t) 
   se <- sd(noise) 
   v.1 <- matrix(1,n) 
   s2 <- sin(2*pi*t + ao.p) ; c2 <- cos(2*pi*t + ao.p)   
   Y <- cbind(v.1, t, s2, ao.a*c2) 
   YY <- sqrt(diag(solve(t(Y)%*%Y)))*se 
   return(YY) 
} 
 
get.mean <- function(doy, r, dw=5) { 
   doys <- seq(1, 365, by=1) 
   doys <- c(320:365, doys, 1:45)  ## day 1 is at 47 
   w <- (dw-1)/2 
   sds <- matrix(NA, 365) ; j <- 1 
   for (i in 1:365) { 
     dds <- doys[(46+i-w+2):(46+i+w)] 
  get <- matrix(FALSE, length(doy)) 
  for (p in 1:length(dds)) { get <- doy==dds[p] | get }  
  if (sum(get)==0) { sds[j] <- NA } else { sds[j] <- mean(r[get]) 
}  
     j <- j + 1  # ; print(sum(get)) 
   } 
   return(sds) 
} 
 
 
#alo <- alo.data  # purify.alo()  ## this will remove data points 
greater than 3 standard deviation from the mean; up to and including 90 
km 
alo <- purify.alo() 
t <- alo$time  ;  t <- t - (max(t) - min(t))/2 
w <-  0.5752152710  # T ~ 10.9 yrs  
s1 <- sin(w*t) ; s2 <- cos(w*t)  
s5 <- sin(5*pi*t) ; c5 <- cos(5*pi*t) 
s6 <- sin(6*pi*t) ; c6 <- cos(6*pi*t) 
df <- data.frame(alo, s1, s2, y=s2*0, s5, c5, s6, c6) 
alt <- 45:90 
n <- length(alt) 
#df$sin2pit <- sin(2*pi*df$time) ; df$cos2pit <- cos(2*pi*df$time) 
#df$sin4pit <- sin(4*pi*df$time) ; df$cos4pit <- cos(4*pi*df$time) 
AO.a <- AO.p <- SAO.a <- SAO.p <- matrix(NA, n, 2) 
sds <- matrix(NA, n) 
sao <- matrix(NA, 46, 365) 
 
for (i in 1:n) {  
   h.col <- 26 + i 
   df$y <- df[, h.col] ; time <- df$time 
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   lm0 <- lm(y ~ time + sin2pit + cos2pit + sin4pit + cos4pit + s1 + s2 
+ sol.n + doy, data=df) 
   doy <- lm0$model$doy 
   lm1 <- lm(y ~ time + sin2pit + cos2pit + sin4pit + cos4pit + s1 + s2 
+ sol.n, data=df) 
   cc <- coef(lm1) ; mod <- lm1$model 
   deseason <- mod[,1] - (cc[1] + cc[2]*mod[,2] + cc[3]*mod[,3] + 
cc[4]*mod[,4] + cc[7]*mod[,7] + cc[8]*mod[,8] + cc[9]*mod[,9] ) 
   sao[i,] <- get.mean(deseason, doy, dw=30) 
   c <- coef(lm1) ; sds[i] <- sd(resid(lm1)) 
   noise <- resid(lm1) ; tt <- lm1$model$time ; sn <- lm1$model$sol.n 
   ao.a <- sqrt(c[3]^2 + c[4]^2) ; ao.p <- atan2(c[3],c[4]) ; B <- c[1] 
   sao.a <- sqrt(c[5]^2 + c[6]^2); sao.p <- atan2(c[5],c[6]) ; b <- 
c[2] 
   s.a <- sqrt(c[7]^2 + c[8]^2) ; s.p <- atan2(c[7],c[8]) 
   ses <- SEs(tt, ao.p, ao.a, sao.p, sao.a, s.p, s.a, sn, w, noise) 
 
   #alo.data$time <- alo.data$time - mean(alo.data$time) 
   #lm2 <- lm(X45km ~ time + sin2pit + cos2pit , data=alo.data) ; c <- 
coef(lm2) 
   #noise <- resid(lm2) ; tt <- lm2$model$time 
   #ao.a <- sqrt(c[3]^2 + c[4]^2) ; ao.p <- atan2(c[3],c[4]) ; B <- 
c[1] 
   #n2 <- nls(X45km ~ B + b*time + ao.a*sin(2*pi*time + ao.p), 
data=alo.data, start=list(B=c[1], b=c[2], ao.a=ao.a, ao.p=ao.p)) 
   #se2 <- SE2(tt, ao.p, ao.a, noise) 
  
   AO.a[i,1] <- ao.a ; AO.a[i,2] <- ses[3] 
   AO.p[i,1] <- ao.p ; AO.p[i,2] <- ses[4] 
   SAO.a[i,1] <- sao.a ; SAO.a[i,2] <- ses[5] 
   SAO.p[i,1] <- sao.p ; SAO.p[i,2] <- ses[6] 
} 
 
op <- par(no.readonly = TRUE) 
par(mfrow = c(2, 2)) 
par(mar = c(2.5, 2.5, 0.5, 0)) 
ymax <- 90 
 
plot(AO.a[,1], alt, type="l", xlim=c(1,20),lwd=2, ylim=c(45,ymax), 
col="red", axes=FALSE) ; box() 
lines(AO.a[,1] + AO.a[,2]*1.96, alt, col="red", lt=2) 
lines(AO.a[,1] - AO.a[,2]*1.96, alt, col="red", lt=2) 
lines(H.aa, lt=1, col="blue",lwd=2)  
lines(C.aa, lt=1, col="green",lwd=2) 
# lines(S.a[,1], S.alt, pch=19, col="gray") ; points(S.a[,1],S.alt, 
pch=19) 
lines(H.a[,1], H.alt, col="blue", lt=2,lwd=2) 
mtext( "AO Amplitude (K)", side=1, at=15.5, cex=0.8, line=-1.5) 
mtext("Altitude (km)", side=2, at=68, cex=1, line=2.8) 
axis(side=2, at=seq(45, 90, by=5), labels=TRUE, cex=0.5, hadj=0.7, 
padj=0.4, las=1) 
axis(side=1, padj=-0.8) 
text(2,85, "(a)") 
abline(v=0) 
 
par(mar = c(2.5, 0, 0.5, 0.5)) 
plot(SAO.a[,1], alt, type="l", axes=FALSE, xlim=c(-0.5,7), 
ylim=c(45,ymax), col="red",lwd=2) ; box() 
abline(v=0, col="gray") 
lines(SAO.a[,1], alt, lwd=2, col="red") 
lines(SAO.a[,1] + SAO.a[,2]*1.96, alt, col="red", lt=2) 
lines(SAO.a[,1] - SAO.a[,2]*1.96, alt, col="red", lt=2) 
lines(H.sa, col="blue", lt=1,lwd=2) 
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lines(C.sa, col="green", lt=1,lwd=2) 
# lines(S.s[,1], S.alt, pch=19, col="gray") ; points(S.s[,1],S.alt, 
pch=19) 
lines(H.s[,1], H.alt, col="blue", lt=2,lwd=2) 
mtext("SAO Amplitude (K)", side=1, at=5, cex=0.8, line=-1.5) 
axis(side=1, padj=-0.8) 
text(6, 85, "(b)") 
a <- 
c(42.06052,51.13833,53.87608,56.18156,58.19885,61.22478,69.14986,73.472
63,75.34582,77.07493,81.2536,85,86.44093,87.73775,88.7464,89.46686,90.6
196) 
A <- c(1.5,1.5,2,2.5,3,3.5,3,3,4,4.5,5,4.5,4,3.5,3,2.5,2) 
lines(A,a, lwd=2) 
 
par(mar = c(2.5, 2.5, 0, 0)) 
AO.p[,1] <- fixphase(AO.p[,1]) ; AO.p <- AO.p*365/(2*pi) 
A.p <- AO.p[,1] 
plot(A.p, alt, type="l", xlim=c(-20,190), col="red", ylim=c(45,ymax), 
axes=FALSE,lwd=2) ; box() 
abline(v=0, col="gray") 
lines(A.p + AO.p[,2]*1.96, alt, col="red", lt=2) 
lines(A.p - AO.p[,2]*1.96, alt, col="red", lt=2) 
lines(H.ap, col="blue", lt=1,lwd=2) 
lines(C.ap, col="green", lt=1,lwd=2) 
# lines(S.a[,2], S.alt, col="gray") ; points(S.a[,2],S.alt, pch=19)  
lines(H.a[,2], H.alt, col="blue", lt=2,lwd=2) 
axis(side=2, at=seq(45, 90, by=5), labels=TRUE, cex=0.5, hadj=0.7, 
padj=0.4, las=1) 
at <- 1:14 ; at[2:13] <- months(FALSE); at[14] <- 365; at[1] <- -31 
axis(side=1, at=at, tick=TRUE, labels=NA) 
at2 <- 1:13 ; at2[2:13] <- months() ; at2[1] <- -15.5 
axis(side=1, tick=FALSE, at=at2, padj=-1, 
labels=c("D","J","F","M","A","M","J","J","A","S","O","N","D")) 
mtext("AO phase (months)", side=1, at=70, cex=0.8, line=-1.5) 
legend(70, 87, legend=c("ALO", "OHP", "CEL", "HALOE", "SABER"), 
lty=c(1,1,1,2,1), col=c("red", "blue", "green", "blue", "black"), bg = 
"white" , cex=0.8, lwd=1) 
text(180, 85, "(c)") 
 
par(mar = c(2.5, 0, 0, 0.5)) 
SAO.p[,1] <- fixphase(SAO.p[,1]) ; SAO.p <- SAO.p*182.5/(2*pi) 
S.p <- SAO.p[,1] 
plot(S.p, alt, type="l", axes=FALSE, xlim=c(0,190), ylim=c(45,ymax), 
col="red",lwd=2) ; box() 
lines(S.p + SAO.p[,2]*1.96, alt, col="red", lt=2) 
lines(S.p - SAO.p[,2]*1.96, alt, col="red", lt=2) 
lines(H.sp, col="blue", lt=1,lwd=2) 
lines(C.sp, col="green", lt=1,lwd=2) 
# lines(S.s[,2], S.alt, col="gray") ; points(S.s[,2],S.alt, pch=19) 
lines(H.s[,2], H.alt, col="blue", lt=2,lwd=2) 
mtext("SAO phase (months)", side=1, at=60, cex=0.8, line=-1.5) 
axis(side=1, at=at, tick=TRUE, labels=NA) 
axis(side=1, tick=FALSE, at=at2, padj=-1, 
labels=c("D","J","F","M","A","M","J","J","A","S","O","N","D")) 
text(180, 85, "(d)") 
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####################################################################### 
##### THIS CODE GENERATES FIGURES 13 and 14  FROM CHAPTER 4 ###### 
####################################################################### 
 
### HALOE SAO CLIMATOLOGY 
library(sfsmisc) 
library(fUtilities) 
library(fields) 
 
get.mean <- function(doy, r, dw=5) { 
   doys <- seq(1, 365, by=1) 
   doys <- c(320:365, doys, 1:45)  ## day 1 is at 47 
   w <- (dw-1)/2 
   sds <- matrix(NA, 365) ; j <- 1 
   for (i in 1:365) { 
     dds <- doys[(46+i-w+2):(46+i+w)] 
  get <- matrix(FALSE, length(doy)) 
  for (p in 1:length(dds)) { get <- doy==dds[p] | get }  
  if (sum(get)==0) { sds[j] <- NA } else { sds[j] <- mean(r[get]) 
}  
     j <- j + 1  # ; print(sum(get)) 
   } 
   return(sds) 
} 
 
 
pt2 <- "C:/Documents and Settings/Troy Wynn/My 
Documents/dissertation/Dissertation/Summary And Comp/HALOE/process/" 
data <- read.table(ccat(pt2,"haloe.txt"), sep="\t", header=TRUE) 
date <- 1:1  
for (i in 1:nrow(data)) { date[i] <- ccat(data$m[i], "/", data$d[i], 
"/", data$y[i])} 
t <- data$time 
s2 <- sin(2*pi*t) ; c2 <- cos(2*pi*t) 
s3 <- sin(3*pi*t) ; c3 <- cos(3*pi*t) 
s4 <- sin(4*pi*t) ; c4 <- cos(4*pi*t) 
s5 <- sin(5*pi*t) ; c5 <- cos(5*pi*t) 
s6 <- sin(6*pi*t) ; c6 <- cos(6*pi*t) 
s7 <- sin(7*pi*t) ; c7 <- cos(7*pi*t) 
s8 <- sin(8*pi*t) ; c8 <- cos(8*pi*t) 
s9 <- sin(9*pi*t) ; c9 <- cos(9*pi*t) 
 
dat <- data.frame(data, s2, s4, c2, c4, date, s5, c5, s6, c6, s7, c7, 
s3, c3, s9, c9) 
dat <- dat[,-89] ## the 89th data point seems to be bad 
 
get.sol.max <- function(lm, tt) {  
   c <- coef(lm) 
   ang <- atan2(c[7],c[8]) 
   if (ang<0) { ang <- ang + 2*pi} 
   w <-  0.5752152710 
   # print(ang/w) 
   t <- seq(min(tt), max(tt), by=0.025) 
   s2 <- c[7]*sin(w*t) ; c2 <- c[8]*cos(w*t)  
   # plot(t, s2 + c2) # ; points(tt, c[3]*sin(w*tt) + c[4]*cos(w*tt)) 
   get <- max(s2 + c2)==(s2 + c2)  
   # print(get) ; print(sum(get)) 
   s.max <- t[get] 
   if (s.max<0) { s.max <- s.max + 2*pi/w } 
   return(s.max) 
}  
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solar.max <- "7/31/2001" ; halo.near <- "9/5/2001" ; halo.near2 <- 
"2001-9-5" 
H.years <- ExcelDate.to(7,31,2001):ExcelDate.to(7,31,2002) 
H.years2 <- ExcelDate.from(H.years) ; get2 <- H.years2==halo.near2 
H.years <- (H.years - min(H.years))/365 
H.yr <- H.years[get2] ; get <- dat$date==halo.near 
tt <- data$time ; tt <- tt - tt[get] + H.yr 
w <- 2*pi/11 
sw <- sin(w*tt) ; cw <- cos(w*tt) 
 
 
H.sd <- H.a <- H.s <- H.t <- H.sol <- matrix(NA, 150,2) 
H.sol2 <- H.sol 
 
H.alt <- colnames(dat)[1:150]  
for (i in 1:150) { H.alt[i] <- substr(H.alt[i],2,100) };H.alt<- 
as.double(H.alt) 
sao <- matrix(NA, 150, 365) 
 
for (i in 1:150) {  
   dat$y <- dat[,i] 
   lm0 <- lm <- lm(y ~ time + s2 + c2 + s4 + c4 + sw + cw + doy, 
data=dat) 
   doy <- lm0$model$doy 
   lm <- lm(y ~ time + s2 + c2 + s4 + c4 + sw + cw + s5+c5+c6+s6, 
data=dat) 
   c <- coef(lm)  
   fit <- c[1] + c[2]*lm$model[,2] + c[3]*lm$model[,3] + 
c[4]*lm$model[,4] +  
 c[7]*lm$model[,7] + c[8]*lm$model[,8] + c[9]*lm$model[,9] + 
c[10]*lm$model[,10]+  
        c[11]*lm$model[,11] + c[12]*lm$model[,12] #+ 
c[13]*lm$model[,13]# + c[14]*lm$model[,14] 
   deseason <- lm$model[,1] - fit 
   sao[150-i+1,] <- get.mean(doy, deseason, dw=30) 
   H.sd[i,1] <- sd(resid(lm)) 
   H.t[i,1] <- c[2] ; H.t[i,2] <- summary(lm)$coefficients[2,2] 
   H.a[i,1] <- sqrt(c[3]^2+c[4]^2) 
   H.a[i,2] <- atan2(c[3],c[4])  
   H.s[i,1] <- sqrt(c[5]^2 + c[6]^2) 
   H.s[i,2] <- atan2(c[5],c[6]) 
 
   H.sol[i,1] <- sqrt(c[7]^2+c[8]^2) 
   H.sol[i,2] <- atan2(c[7],c[8])/w 
   #H.sol2[i,2] <- get.sol.max(lm, lm$model$time) 
   print(i) #; print(summary(lm)) 
} 
 
doy.x <- c(16,45,75,105,136,166,197,228,258,289,319,349) 
doy.l <- c("J", "F", "M", "A", "M", "J", "J", "A", "S", "O", "N", "D") 
x <- 1:365 
x.lab=seq(min(x), max(x), by=15) 
mons <- c(1, 32,60,91,121,152,182,213,244,274,305,335,365) 
alt <- sort(H.alt) 
x <- 1:365 
par(mar = c(4, 3.5, 1, 1))  
image.plot( 1:365, alt, t(sao), axes=FALSE, xlab="", ylab="", 
legend.args=list(text="Amplitude", col="black", cex=1, side=4, 
line=2.3)) 
contour( 1:365, alt, t(sao), levels=seq(-25,15,by=2), col="black", 
add=TRUE, lt=0, labcex=1.2, axes=FALSE) 
mtext("Altitude (km)", side=2, at=70, padj=-3.2, cex=1.1)  
mtext("Month", side=1, at=182, padj=2.5, cex=1.1)  
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axis(side=1, at=mons, cex=0.2, padj=-0.8, las=1, labels=FALSE) 
axis(side=1, at=doy.x, labels=doy.l, cex=0.2, padj=-0.8, las=1, 
tick=FALSE) 
axis(2, las=1, hadj=0.8) 
box() 
 
 
 
## USU SAO climatology 
########################################################## 
#######################################################################
## 
## AO SAO amp and phase  
rm(list=ls(all=TRUE))  
source("dir.txt") 
library(sfsmisc) 
library(fUtilities) 
library(fields) 
  
 
get.mean <- function(doy, r, dw=5) { 
   doys <- seq(1, 365, by=1) 
   doys <- c(320:365, doys, 1:45)  ## day 1 is at 47 
   w <- (dw-1)/2 
   sds <- matrix(NA, 365) ; j <- 1 
   for (i in 1:365) { 
     dds <- doys[(46+i-w+2):(46+i+w)] 
  get <- matrix(FALSE, length(doy)) 
  for (p in 1:length(dds)) { get <- doy==dds[p] | get }  
  if (sum(get)==0) { sds[j] <- NA } else { sds[j] <- mean(r[get]) 
}  
     j <- j + 1  # ; print(sum(get)) 
   } 
   return(sds) 
} 
 
 
#alo <- alo.data  # purify.alo()  ## this will remove data points 
greater than 3 standard deviation from the mean; up to and including 90 
km 
alo <- purify.alo() 
t <- alo$time  ;  t <- t - (max(t) - min(t))/2 
w <-  0.5752152710  # T ~ 10.9 yrs  
s1 <- sin(w*t) ; s2 <- cos(w*t)  
s5 <- sin(5*pi*t) ; c5 <- cos(5*pi*t) 
s6 <- sin(6*pi*t) ; c6 <- cos(6*pi*t) 
df <- data.frame(alo, s1, s2, y=s2*0, s5, c5, s6, c6) 
alt <- 45:90 
n <- length(alt) 
AO.a <- AO.p <- SAO.a <- SAO.p <- matrix(NA, n, 2) 
sds <- matrix(NA, n) 
sao <- matrix(NA, 46, 365) 
 
for (i in 1:n) {  
   h.col <- 26 + i 
   df$y <- df[, h.col] ; time <- df$time 
   lm0 <- lm(y ~ time + sin2pit + cos2pit + sin4pit + cos4pit + s1 + s2 
+ sol.n + doy, data=df) 
   doy <- lm0$model$doy 
   lm1 <- lm(y ~ time + sin2pit + cos2pit + sin4pit + cos4pit + s1 + s2 
+ sol.n + s5 + c5 + s6 + c6, data=df) 
   cc <- coef(lm1) ; mod <- lm1$model 
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   deseason <- mod[,1] - (cc[1] + cc[2]*mod[,2] + cc[3]*mod[,3] + 
cc[4]*mod[,4] + cc[7]*mod[,7] + cc[8]*mod[,8] + cc[9]*mod[,9]  +  
                             cc[10]*mod[,10] + cc[11]*mod[,11] + 
cc[12]*mod[,12] + cc[13]*mod[,13]) 
   sao[i,] <- get.mean(doy, deseason, dw=30) 
   c <- coef(lm1) ; sds[i] <- sd(resid(lm1)) 
   noise <- resid(lm1) ; tt <- lm1$model$time ; sn <- lm1$model$sol.n 
   ao.a <- sqrt(c[3]^2 + c[4]^2) ; ao.p <- atan2(c[3],c[4]) ; B <- c[1] 
   sao.a <- sqrt(c[5]^2 + c[6]^2); sao.p <- atan2(c[5],c[6]) ; b <- 
c[2] 
   s.a <- sqrt(c[7]^2 + c[8]^2) ; s.p <- atan2(c[7],c[8]) 
  
} 
 
## plot the semi-annual climatology  
doy.x <- c(16,45,75,105,136,166,197,228,258,289,319,349) 
doy.l <- c("J", "F", "M", "A", "M", "J", "J", "A", "S", "O", "N", "D") 
x <- 1:365 
x.lab=seq(min(x), max(x), by=15) 
mons <- c(1, 32,60,91,121,152,182,213,244,274,305,335,365) 
 
alt <- 45:90 
x <- 1:365 
par(mar = c(4, 3.5, 1, 1))  
image.plot( 1:365, alt, t(sao), axes=FALSE, xlab="", ylab="", 
legend.args=list(text="Amplitude", col="black", cex=1, side=4, 
line=2.3)) 
contour( 1:365, alt, t(sao), levels=seq(-25,15,by=2), col="black", 
add=TRUE, lt=0, labcex=1.2, axes=FALSE) 
mtext("Altitude (km)", side=2, at=70, padj=-3.2, cex=1.1)  
mtext("Month", side=1, at=182, padj=2.5, cex=1.1)  
axis(side=1, at=mons, cex=0.2, padj=-0.8, las=1, labels=FALSE) 
axis(side=1, at=doy.x, labels=doy.l, cex=0.2, padj=-0.8, las=1, 
tick=FALSE) 
axis(2, las=1, hadj=0.8) 
box() 
 
####################################################################### 
######### THIS CODE GENERATES FIGURE 1 FROM CHAPTER 5 ########## 
####################################################################### 
 
## This will do a strait regression on the alo temperatures.  
rm(list=ls(all=TRUE)) 
source("dir.txt") 
library(sfsmisc) 
 
get.doys <- function(doy) {  
#Summer - June 21 ; 172 
#Autumn - September 21 ; 265 
#Winter - December 21 ; 356 
#Spring - March 21 ; 81  
 
SU <- doy>=172 & doy<265 
AU <- doy>=265 & doy<356 
SP <- doy>=81 & doy<172 
WI <- doy>=356 | doy<81 
 
  return(c(sum(SP), sum(SU), sum(WI), sum(AU), length(doy))) 
 
} 
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#alo <- alo.data  # purify.alo()  ## this will remove data points 
greater than 3 standard deviation from the mean; up to and including 90 
km 
alo <- purify.alo() 
t <- alo$time  ;  t <- t - (max(t) - min(t))/2 
w <-  0.5752152710  # T ~ 10.9 yrs  
s1 <- sin(w*t) ; s2 <- cos(w*t) 
df <- data.frame(alo, s1, s2, y=s2*0) 
alt <- seq(45, 90, by=1) 
n <- length(alt) 
df$time <- t - mean(t) 
pth <- "C:\\Documents and Settings\\Troy Wynn\\My 
Documents\\dissertation\\Dissertation\\Residuals\\" 
 
get.lt <- matrix(NA, n, 3)   
get.res <- 
list("45","46","47","48","49","50","51","52","53","54","55","56","57","
58","59","60","61","62","63","64","65","66","67","68","69","70","71","7
2","73","74","75","76","77","78","79","80","81","82","83","84","85","86
","87","88","89","90") 
par(mar = c(4, 6, 2, 2)) 
m <- t(matrix(c(1,1,1,1,1, 1, 2), 7, 1)) 
np <- matrix(NA, 46) 
bp <- matrix(NA, 46) 
doys <- matrix(NA, 46, 5) 
for (i in 1:n) { 
 
   h.col <- 26 + i 
   df$y <- df[, h.col] 
   lm2 <- lm(y ~ time + sin2pit + cos2pit + sin4pit + cos4pit + s1 + s2 
+ sol.n + doy, data=df)   
   doy. <- lm2$model$doy ; doys[i,] <- get.doys(doy.) 
   lm1 <- lm(y ~ time + sin2pit + cos2pit + sin4pit + cos4pit + s1 + s2 
+ sol.n, data=df)   
   get.res[[i]] <- resid(lm1) 
   t <- lm1$model$time ; np[i] <- length(t) 
   r <- resid(lm1) ; r2 <- abs(r) 
   lmr <- lm(r2 ~ t) 
   print(summary(lmr)) ; s <- round(bptest(lm1)$p.value,3)[[1]] ; bp[i] 
<- bptest(lm1)$p.value 
    
   layout(m) ; pch=1 
   par(mar = c(6, 5, 1, 0), cex.axis=1.5)  
   plot(t, r, ylab="", xlab="", axes=FALSE, type="n") ; p <- 
predict(lmr) 
   lines(t, p , col="black", lwd=2) 
   abline(h=0, col="gray") 
   points(t, r, pch=pch) 
   box() 
   mtext("Temperature (K)", side=2, at=0, padj=-3.5, cex=1) 
   mtext("Time (years)", side=1, at=0, padj=2.5, cex=1) 
   mtext(ccat(44+i, " km"), side=3, at=0, padj=2.5, cex=1) 
   axis(side=2, labels=TRUE, cex=1.5, padj=0.3, hadj=0.8, las=1) 
   axis(side=1, labels=TRUE, cex=1.5, padj=0, hadj=0.3, las=1)  #  x-
axis  
   par(mar=c(6,0,1,1)) 
   boxplot(r, axes=FALSE, pch=pch, cex=1.2, notch=TRUE)  
   mtext(ccat("n: ", length(r)), side=1, at=1, padj=1, cex=0.8) 
   mtext(ccat("p-value: ", s), side=1, at=1, padj=3, cex=0.8) 
    
   #dev.copy(pdf, ccat(pth,ccat("X",44+i, "km.pdf"))) 
   dev.copy2pdf(file=ccat(pth,ccat("X",44+i, "km.pdf"))) 
   #dev.off() 
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   print(i) 
   #readline("Enter...") 
    
}  
# dev.off() 
 
par(mar = c(3, 3.3, 1, 1))  
plot(doys[,5], alt, pch=20, axes=FALSE, xlab="", ylab="", 
xlim=c(40,600)) 
box() 
points(doys[,1], alt, pch=20, col="green") 
points(doys[,2], alt, pch=20, col="orange") 
points(doys[,3], alt, pch=20, col="light blue") 
points(doys[,4], alt, pch=20, col="red") 
mtext("Altitude (km)", side=2, at=70, padj=-3.5, cex=1) 
mtext("Number of Data Points", side=1, at=350, padj=2.5, cex=1) 
axis(side=2, labels=TRUE, cex=1.5, padj=0.3, hadj=0.8, las=1) 
axis(side=1, labels=TRUE, cex=1.5, padj=-0.8, hadj=0.4, las=1)  #  x-
axis  
legend(300, 70, c("SP", "SU", "WI", "AU", "ALL"), pch=20, 
col=c("green","orange","light blue", "red", "black"), bg = 'white' , 
cex=1) 
 
####################################################################### 
######### THIS CODE GENERATES FIGURE 2 FROM CHAPTER 4 ########## 
####################################################################### 
 
rm(list=ls(all=TRUE)) 
source("dir.txt") 
library(sfsmisc) 
library(fUtilities) 
library(fields) 
OHP <- function() {  
 
  sd <- matrix(NA, 13, 12) 
  sd[1,] <- c(9,6.9,5.4,3.6,2.5,2.2,2.6,2.1,2.2,2.8,6.5,9.4) 
  sd[2,] <- c(7.2,6.6,4.4,3.3,2.5,2.3,2.4,2.2,2.3,2.6,6.4,8.2) 
  sd[3,] <- c(6.8,6.7,4.1,2.6,2.4,2,2.2,2.5,2,2.5,6.6,7.4) 
  sd[4,] <- c(7.3,6.9,4,2.8,2.4,2.1,2.3,2.7,2.4,2.9,6,7.2) 
  sd[5,] <- c(7.9,7.5,4.3,2.7,2.7,2.4,2.7,2.9,2.7,3.1,5.9,7.8) 
  sd[6,] <- c(8.3,7.6,4.8,2.4,2.7,2.4,3,3.6,2.7,3.9,6.5,8.9) 
  sd[7,] <- c(9.1,8,5.1,3.4,3,3,3.3,3.9,3.6,4.4,7.2,9.6) 
  sd[8,] <- c(9.1,7.9,5.6,3.9,3.8,4.1,3.8,4.8,4.3,5.6,7.5,10.6) 
  sd[9,] <- c(10.7,8.9,6.3,5.4,4.5,4.7,4.7,5.7,5.2,7.3,8.2,11.5) 
  sd[10,] <- c(10.3,10.7,7.5,5.8,4.6,5,6.5,6.5,6.2,8.5,9.3,10.4) 
  sd[11,] <- c(10.1,11.4,7.7,6.2,6.3,7.2,7.3,7.8,7.1,9.7,10.3,10.9) 
  sd[12,] <- c(12.1,11.4,8.9,7.7,9.1,8.2,8.2,8.4,8.8,8.9,11.3,11.4) 
  sd[13,] <- c(11.5,9.9,7.5,8.2,9.2,8.7,9.1,7.4,7.9,7.5,11.6,11.2) 
  return(sd) 
} 
 
 
ohp <- OHP()  
 
cols <- colorRamp(c("purple", "blue", "green", "yellow", "red"), 
space="rgb") 
l <- seq(0,22, by=1) ; ng <- length(l) 
min <- min(l) ;  max <- max(l-min)    
colors.r <- rgb(cols( (l-min)/max ), max=255) 
temps <- sort(ohp) ;  temps <- temps[!duplicated(temps)] ; temps <- 
(temps - min)/max 
colors.r <- rgb(cols(temps), max=255) 
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alt <- c(45,48,51,54,57,60,63,66,69,72,75,78,81) 
doy.x <- seq(0.5, 11.5, by=1) 
doy.l <- c("J", "F", "M", "A", "M", "J", "J", "A", "S", "O", "N", "D") 
x <- 1:12 
par(mar = c(4, 3.5, 1, 1)) 
image.plot( x, alt, t(ohp), col=colors.r,axes=FALSE, xlab="", ylab="", 
            legend.mar=5, legend.args=list(text="sd (K)", col="black", 
cex=1, side=4, line=2))   
contour( x, alt, t(ohp), levels=seq(0,12,by=1), col="black", add=TRUE, 
lt=0, labcex=1.2) 
mtext("Altitude (km)", side=2, at=63, padj=-3.5, cex=0.9)  
mtext("Month", side=1, at=182, padj=2.5, cex=0.9)  
axis(side=1,at=doy.x + 0.5, labels=doy.l, cex=0.2, padj=-0.8, las=1, 
tick=FALSE) 
axis(side=1,at=0:13 - 0.5, labels=NA) 
mtext("Month", side=1, at=6.5, padj=2.5) 
axis(2) 
box() 
 
####################################################################### 
######### THIS CODE GENERATES FIGURE 2a FROM CHAPTER 4 ########## 
####################################################################### 
 
rm(list=ls(all=TRUE)) 
source("dir.txt") 
library(sfsmisc) 
library(fUtilities) 
library(fields) 
 
get.sds <- function(doy, r, dw=15) { 
   doys <- seq(1, 365, by=1) 
   doys <- c(doys, doys, doys) 
   w <- (dw-1)/2 
   sds <- matrix(NA, 365) ; j <- 1 
   for (i in 1:365) { 
     dds <- doys[(i-w+366):(i+w+366)] 
  get <- matrix(FALSE, length(doy)) 
  for (p in 1:length(dds)) { get <- doy==dds[p] | get }  
  if (sum(get)==0) { sds[j] <- NA } else { sds[j] <- sd(r[get]) }  
     j <- j + 1  # ; print(sum(get)) 
   } 
   return(sds) 
} 
 
mids <- function(l) { 
   l <- sort(l) 
   ll <- 1:(length(l)-1) 
   for (i in 1:(length(l)-1)) {  
      ll[i] <- (l[i] + l[i+1])/2 
   } 
   return(ll) 
}     
       
levelize <- function(z, l) {   
   ll <- sort(l) ; n <- length(ll) 
   m <- mids(ll) 
   for (i in 1:(n-1)) {  
      get <- z>=ll[i] & z<ll[i+1]  
      z[get] <- m[i] 
   } 
   i <- i + 1 
   get <- z>=ll[i] 
   z[get] <- ll[i] 
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   return(z) 
} 
 
#z <- matrix(rnorm(100)*20, 10,10) 
#l <- seq(-53,32, by=4) 
#zz <- levelize(z,l) 
 
 
sds.n <- function(dw) {  
   w <- (dw-1)/2 
   n <- length((w):(364-w)) 
   return(n) 
} 
 
interp3d <- function(x, y, z, byx, byy) {  
 
   nx <- length(x) 
   ny <- length(y) 
      
   # assuming nx > ny ;  also assuming row is x and that col is y 
   nny <- seq(min(y), max(y), length=nx) 
   nz <- matrix(NA, nx, nx) 
   for (i in 1:nx) {  
      nz[i,] <- approx(y, z[i,], nny)$y 
   }  
 
   sd.new <- linearInterp( x, nny, nz, xo=seq(min(x), max(x), 
length=2*nx),yo=seq(min(alt), max(alt), length=2*nx)) 
image( x, nny, nz, col=terrain.colors(100),axes=FALSE) 
 
}  
 
 
#  doy <- 0:364 
#  r <- rnorm(length(doy), 0, 12) 
#  sds <- get.sds(doy,r) 
 
#alo <- alo.data  # purify.alo()  ## this will remove data points 
greater than 3 standard deviation from the mean; up to and including 90 
km 
alo <- purify.alo() 
t <- alo$time  ;  t <- t - (max(t) - min(t))/2 
w <-  0.5752152710  # T ~ 10.9 yrs  
s1 <- sin(w*t) ; s2 <- cos(w*t) 
df <- data.frame(alo, s1, s2, y=s2*0) 
alt <- seq(45, 90, by=1) ; n <- length(alt) 
dw <- 31 
df$time <- t - mean(t) 
pth <- "C:\\Documents and Settings\\Troy Wynn\\My 
Documents\\dissertation\\Dissertation\\Residuals\\" 
sds <- matrix(NA, 365, length(alt)) 
err <- sds 
 
for (i in 1:n) { 
 
   h.col <- 26 + i 
   df$y <- df[, h.col] 
   lm1 <- lm(y ~ time + sin2pit + cos2pit + sin4pit + cos4pit + s1 + s2 
+ doy, data=df)   
   mod <- lm1$model ; doy <- mod$doy 
   lm2 <- lm(y ~ time + sin2pit + cos2pit + sin4pit + cos4pit + s1 + 
s2, data=mod) 
   r <- resid(lm2) ; t <- mod$time 
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   sdi <- get.sds(doy, r, dw=31) 
   sds[,i] = sdi 
   print(i) 
} 
 
 
doy.x <- c(16,45,75,105,136,166,197,228,258,289,319,349) 
doy.l <- c("J", "F", "M", "A", "M", "J", "J", "A", "S", "O", "N", "D") 
x <- 1:365 
x.lab=seq(min(x), max(x), by=15) 
mons <- c(1, 32,60,91,121,152,182,213,244,274,305,335,365) 
par(mar = c(4, 3.5, 1, 1)) 
 
cols <- colorRamp(c("purple", "blue", "green", "yellow", "red"), 
space="rgb") 
l <- seq(0,22, by=1) ; ng <- length(l) 
min <- min(l) ;  max <- max(l-min)   
z <- levelize(sds,l) 
colors.r <- rgb(cols( (l-min)/max ), max=255) 
image.plot( x, 45:90, z, col=colors.r, axes=FALSE, xlab="", ylab="",  
            legend.mar=5, legend.args=list(text="sd (K)", col="black", 
cex=1, side=4, line=2))   
contour( x, 45:90, z, levels=l, col="black", add=TRUE, lt=0, 
labcex=1.2) 
mtext("Altitude (km)", side=2, at=69, padj=-3.5, cex=0.9)  
mtext("Month", side=1, at=182, padj=2.5, cex=0.9)  
axis(side=1,at=doy.x, labels=doy.l, cex=0.2, padj=-0.8, las=1, 
tick=FALSE) 
axis(side=1,at=mons, labels=NA) 
axis(2) 
box() 
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####################################################################### 
######### THIS CODE GENERATES FIGURE 1 FROM CHAPTER 4 ########## 
######### AND THE PLOTS IN APPENDIX F  ############################## 
####################################################################### 
 
## This will do a strait regression on the alo temperatures.  
rm(list=ls(all=TRUE)) 
source("dir.txt") 
library(sfsmisc) 
library(lmtest) 
 
get.doys <- function(doy) {  
#Summer - June 21 ; 172 
#Autumn - September 21 ; 265 
#Winter - December 21 ; 356 
#Spring - March 21 ; 81  
 
SU <- doy>=172 & doy<265 
AU <- doy>=265 & doy<356 
SP <- doy>=81 & doy<172 
WI <- doy>=356 | doy<81 
 
  return(c(sum(SP), sum(SU), sum(WI), sum(AU), length(doy))) 
 
} 
 
 
#alo <- alo.data  # purify.alo()  ## this will remove data points 
greater than 3 standard deviation from the mean; up to and including 90 
km 
alo <- purify.alo() 
t <- alo$time  ;  t <- t - (max(t) - min(t))/2 
w <-  0.5752152710  # T ~ 10.9 yrs  
s1 <- sin(w*t) ; s2 <- cos(w*t) 
df <- data.frame(alo, s1, s2, y=s2*0) 
alt <- seq(45, 90, by=1) 
n <- length(alt) 
df$time <- t - mean(t) 
pth <- "C:\\Documents and Settings\\Troy Wynn\\My 
Documents\\dissertation\\Dissertation\\Residuals\\" 
 
get.lt <- matrix(NA, n, 3)   
get.res <- 
list("45","46","47","48","49","50","51","52","53","54","55","56","57","
58","59","60","61","62","63","64","65","66","67","68","69","70","71","7
2","73","74","75","76","77","78","79","80","81","82","83","84","85","86
","87","88","89","90") 
par(mar = c(4, 6, 2, 2)) 
m <- t(matrix(c(1,1,1,1,1, 1, 2), 7, 1)) 
np <- matrix(NA, 46) 
bp <- matrix(NA, 46) 
doys <- matrix(NA, 46, 5) 
for (i in 1:n) { 
 
   h.col <- 26 + i 
   df$y <- df[, h.col] 
   lm2 <- lm(y ~ time + sin2pit + cos2pit + sin4pit + cos4pit + s1 + s2 
+ sol.n + doy, data=df)   
   doy. <- lm2$model$doy ; doys[i,] <- get.doys(doy.) 
   lm1 <- lm(y ~ time + sin2pit + cos2pit + sin4pit + cos4pit + s1 + s2 
+ sol.n, data=df)   
   get.res[[i]] <- resid(lm1) 
   t <- lm1$model$time ; np[i] <- length(t) 
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   r <- resid(lm1) ; r2 <- abs(r) 
   lmr <- lm(r2 ~ t) 
   print(summary(lmr)) ; s <- round(bptest(lm1)$p.value,3)[[1]] ; bp[i] 
<- bptest(lm1)$p.value 
    
   layout(m) ; pch=1 
   par(mar = c(6, 5, 1, 0), cex.axis=1.5)  
   plot(t, r, ylab="", xlab="", axes=FALSE, type="n") ; p <- 
predict(lmr) 
   lines(t, p , col="black", lwd=2) 
   abline(h=0, col="gray") 
   points(t, r, pch=pch) 
   box() 
   mtext("Temperature (K)", side=2, at=0, padj=-3.5, cex=1) 
   mtext("Time (years)", side=1, at=0, padj=2.5, cex=1) 
   mtext(ccat(44+i, " km"), side=3, at=0, padj=2.5, cex=1) 
   axis(side=2, labels=TRUE, cex=1.5, padj=0.3, hadj=0.8, las=1) 
   axis(side=1, labels=TRUE, cex=1.5, padj=0, hadj=0.3, las=1)  #  x-
axis  
   par(mar=c(6,0,1,1)) 
   boxplot(r, axes=FALSE, pch=pch, cex=1.2, notch=TRUE)  
   mtext(ccat("n: ", length(r)), side=1, at=1, padj=1, cex=0.8) 
   mtext(ccat("p-value: ", s), side=1, at=1, padj=3, cex=0.8) 
    
   #dev.copy(pdf, ccat(pth,ccat("X",44+i, "km.pdf"))) 
   dev.copy2pdf(file=ccat(pth,ccat("X",44+i, "km.pdf"))) 
   #dev.off() 
   print(i) 
   #readline("Enter...") 
    
}  
# dev.off() 
 
par(mar = c(3, 3.3, 1, 1))  
plot(doys[,5], alt, pch=20, axes=FALSE, xlab="", ylab="", 
xlim=c(40,600)) 
box() 
points(doys[,1], alt, pch=20, col="green") 
points(doys[,2], alt, pch=20, col="orange") 
points(doys[,3], alt, pch=20, col="light blue") 
points(doys[,4], alt, pch=20, col="red") 
mtext("Altitude (km)", side=2, at=70, padj=-3.5, cex=1) 
mtext("Number of Data Points", side=1, at=350, padj=2.5, cex=1) 
axis(side=2, labels=TRUE, cex=1.5, padj=0.3, hadj=0.8, las=1) 
axis(side=1, labels=TRUE, cex=1.5, padj=-0.8, hadj=0.4, las=1)  #  x-
axis  
legend(300, 70, c("SP", "SU", "WI", "AU", "ALL"), pch=20, 
col=c("green","orange","light blue", "red", "black"), bg = 'white' , 
cex=1) 
 
####################################################################### 
####### THIS CODE GENERATES FIGURES 5a and b FROM CHAPTER 4 ######## 
####################################################################### 
 
##  Solar variation of the solar SEs 
rm(list=ls(all=TRUE)) 
source("dir.txt") 
library(sfsmisc) 
library(fUtilities) 
library(fields) 
 
get.doy <- function(i, doy, dw=121) { 
   doys <- c(1:365, 1:365, 1:365) 
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   w <- (dw-1)/2  # w is typically going to be 91 days 
   sds <- matrix(NA, 365) ; j <- 1 
   dds <- doys[(i-w+365):(i+w+365)] 
   dL <- dds[1] ; dH <- dds[length(dds)] 
   if (dL<dH) { get <- doy>dL & doy<dH  
   } else { get <- doy>dL | doy<dH }  
   return(get) 
} 
 
alo <- purify.alo() 
t <- alo$time  ;  t <- t - (max(t) - min(t))/2 
w <-  0.5752152710  # T ~ 10.9 yrs  
s1 <- sin(w*t) ; s2 <- cos(w*t) 
df <- data.frame(alo, s1, s2, y=s2*0) 
alt <- 45:90 
n <- length(alt) 
df$time <- t - mean(t) 
 
get <- matrix(NA, 46, 4) 
SEs <- TEs <- matrix(NA, 46, 365) 
 
t0 <- max(t - min(t))/4 
dn.min <- 0 ; dn.max <- t0 
j <- 1 
 
for (i in 1:n) { 
   h.col <- 26 + i 
   df$y <- df[, h.col] 
   lm2 <- lm(y ~ time + sin2pit + cos2pit + sin4pit + cos4pit + sol.n + 
doy, data=df)  
   data <- lm2$model ; doy. <- data$doy 
    
    
   for (k in 1:365) {  
      gg <- get.doy(k, doy.) 
   dat <- lm2$model[gg,] 
   lm.g <- lm(y ~ time + sin2pit + cos2pit + sin4pit + cos4pit + 
sol.n , data=dat) 
   SEs[i,k] <- 1 - summary(lm.g)$coefficients[7,4] 
   TEs[i,k] <- summary(lm.g)$coefficients[7,1] 
 } 
     
   print(i) 
 
} 
 
pth <- "C:\\Documents and Settings\\Troy Wynn\\My 
Documents\\dissertation\\Dissertation\\autocorr\\phs\\" 
write.table(SEs, ccat(pth, "solar_noise_SEs.txt"), quote=FALSE, 
sep="\t", col.names=FALSE, row.names=FALSE)  
write.table(TEs, ccat(pth, "solar_sig_TEs"), quote=FALSE, sep="\t", 
col.names=FALSE, row.names=FALSE) 
 
pth <- "C:\\Documents and Settings\\Troy Wynn\\My 
Documents\\dissertation\\Dissertation\\autocorr\\phs\\" 
SEs <- as.matrix(read.table(ccat(pth, "solar_noise_SEs.txt"),  
header=FALSE, sep="\t"))   
TEs <- as.matrix(read.table(ccat(pth, "solar_sig_TEs"), header=FALSE, 
sep="\t"))  
 
par(mar = c(4, 3.5, 1, 1)) 
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image.plot( 1:365, 45:90, t(SEs), ylab="", xlab="", axes=FALSE, 
legend.mar=5, legend.args=list(text="(1 - pvalue)", col="black", cex=1, 
side=4, line=2))  
contour(1:365, 45:90, t(SEs), col="black", add=TRUE, lt=0, labcex=1.2) 
doy.x <- c(16,45,75,105,136,166,197,228,258,289,319,349) 
doy.l <- c("J", "F", "M", "A", "M", "J", "J", "A", "S", "O", "N", "D") 
x <- 1:365 
x.lab=seq(min(x), max(x), by=15) 
mons <- c(1, 32,60,91,121,152,182,213,244,274,305,335,365) 
mtext("Altitude (km)", side=2, at=69, padj=-3.5, cex=1)  
mtext("Month", side=1, at=182, padj=2.5, cex=1)  
axis(side=1,at=doy.x, labels=doy.l, cex=0.2, padj=-0.8, las=1, 
tick=FALSE) 
axis(side=1,at=mons, labels=NA) 
mtext("(b)", side=1, at=390, padj=-27.5, cex=1.5) 
axis(2) 
box()  
 
 
 
pth <- "C:\\Documents and Settings\\Troy Wynn\\My 
Documents\\dissertation\\Dissertation\\autocorr\\phs\\" 
SEs <- as.matrix(read.table(ccat(pth, "solar_noise_SEs.txt"),  
header=FALSE, sep="\t"))   
TEs <- as.matrix(read.table(ccat(pth, "solar_sig_TEs"), header=FALSE, 
sep="\t"))  
 
par(mar = c(4, 3.5, 1, 1)) 
image.plot( 1:365, 45:90, t(TEs), ylab="", xlab="", axes=FALSE, 
legend.mar=5, legend.args=list(text="Kelvin", col="black", cex=1, 
side=4, line=2))  
contour(1:365, 45:90, t(TEs), col="black", add=TRUE, lt=0, labcex=1.2) 
doy.x <- c(16,45,75,105,136,166,197,228,258,289,319,349) 
doy.l <- c("J", "F", "M", "A", "M", "J", "J", "A", "S", "O", "N", "D") 
x <- 1:365 
x.lab=seq(min(x), max(x), by=15) 
mons <- c(1, 32,60,91,121,152,182,213,244,274,305,335,365) 
mtext("Altitude (km)", side=2, at=69, padj=-3.5, cex=1)  
mtext("Month", side=1, at=182, padj=2.5, cex=1)  
axis(side=1,at=doy.x, labels=doy.l, cex=0.2, padj=-0.8, las=1, 
tick=FALSE) 
axis(side=1,at=mons, labels=NA) 
axis(2) 
mtext("(a)", side=1, at=390, padj=-27.5, cex=1.5) 
box()  
 
####################################################################### 
######### THIS CODE GENERATES FIGURE 7 FROM CHAPTER 4 ########## 
####################################################################### 
 
rm(list=ls(all=TRUE)) 
source("dir.txt") 
library(sfsmisc) 
library(fUtilities) 
library(fields) 
 
pth <- "C:\\Documents and Settings\\Troy Wynn\\My 
Documents\\dissertation\\Dissertation\\autocorr\\" 
 
advance <- function(j, doy) {  
   i <- j+366 -1 
   d <- matrix(1:365, 3*365) 
   l <- i-60 ; h <- i + 60 
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   dl <- d[l] ; dh <- d[h] 
   if (dl>dh) { get <- doy>=dl | doy<dh  
   } else { get <- doy>=dl & doy<dh }  
   return(get) 
} 
 
smooth <- function(z) {  
   r <- nrow(z) 
   c <- ncol(z) 
   copy <- as.matrix(z) 
   for (i in 2:(r-1)) {  
      for (k in 2:(c-1)) {  
      rr <- (i-1):(i+1) 
   kk <- (k-1):(k+1) 
      vals <- copy[rr, kk] 
      z[i,k] <- mean(vals) 
    } 
 } 
 return(z) 
} 
 
#alo <- alo.data  # purify.alo()  ## this will remove data points 
greater than 3 standard deviation from the mean; up to and including 90 
km 
alo <- purify.alo() 
t <- alo$time  ;  t <- t - (max(t) - min(t))/2 
w <-  0.5752152710  # T ~ 10.9 yrs  
s1 <- sin(w*t) ; s2 <- cos(w*t) 
df <- data.frame(alo, s1, s2, y=s2*0) 
alt <- seq(45, 90, by=1) 
n <- length(alt) 
cors <- matrix(NA, 46, 5) 
cors2 <- matrix(NA, 46, 365) 
n2 <- matrix(NA, 46, 365) 
 
for (i in 1:n) { 
 
   h.col <- 26 + i 
   df$y <- df[, h.col] 
   lm2 <- lm(y ~ time + sin2pit + cos2pit + sin4pit + cos4pit + s1 + s2 
+ sol.n + doy + days, data=df)   
   doy. <- lm2$model$doy ; days <- lm2$model$days 
   
   SU <- doy.>=172 & doy.<265 
   AU <- doy.>=265 & doy.<356 
   SP <- doy.>=81 & doy.<172 
   WI <- doy.>=356 | doy.<81 
    
   lm1 <- lm(y ~ time + sin2pit + cos2pit + sin4pit + cos4pit + s1 + s2 
+ sol.n, data=df)   
   r <- resid(lm1) ; t <- lm1$model$time 
   for (j in 1:365) {  
   WND <- advance(j, doy.) 
   rr <- r[WND] ; ddays <- days[WND] 
   cors2[i,j] <- peel.it(rr, ddays)$ph ; print(j) ; n2[i,j] <- 
length(rr) 
   } 
   ph <- peel.it(r, days) 
   ph.su <- peel.it(r[SU], days[SU])$ph 
   ph.au <- peel.it(r[AU], days[AU])$ph 
   ph.sp <- peel.it(r[SP], days[SP])$ph 
   ph.wi <- peel.it(r[WI], days[WI])$ph 
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   cors[i,1] <- ph$ph ; cors[i,2] <- ph.su ; cors[i,3] <- ph.au ; 
cors[i,4] <- ph.sp ; cors[i,5] <- ph.wi 
   print(i) 
} 
 
write.table(cors2, ccat(pth, "cors2.txt"), quote=FALSE, sep="\t", 
col.names=FALSE, row.names=FALSE) 
write.table(cors, ccat(pth, "cors.txt"), quote=FALSE, sep="\t", 
col.names=FALSE, row.names=FALSE) 
write.table(n2, ccat(pth, "n2.txt"), quote=FALSE, sep="\t", 
col.names=FALSE, row.names=FALSE) 
 
alt <- 45:90 
pth <- "C:\\Documents and Settings\\Troy Wynn\\My 
Documents\\dissertation\\Dissertation\\autocorr\\" 
cors <- read.table(ccat(pth,"cors.txt"), sep="\t", header=FALSE)  
par(mar = c(4, 4, 1, 1)) 
 
plot(cors[,1], alt, pch=20, xlim=c(0,0.8), ylab="", xlab="", 
axes=FALSE) 
abline(v=0, col="gray") 
abline(v=c(0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8, 0.9), h=seq(45,90,by=5), 
col="dark gray", lt=2) 
points(cors[,1], alt, pch=20) 
box() 
mtext("Altitude (km)", side=2, at=65, padj=-4, cex=1) 
axis(side=2, at=seq(45, 90, by=5), labels=TRUE, cex=0.5, padj=0.5, 
las=1) 
axis(side=1, labels=TRUE, cex=0.2, padj=-0.3, las=1) 
mtext("Correlation Coefficient", side=1, at=0.4, padj=3, cex=1) 
 
 
rm(list=ls(all=TRUE)) 
source("dir.txt") 
library(sfsmisc) 
library(fUtilities) 
library(fields)  
 
 
smooth <- function(z) {  
   r <- nrow(z) 
   c <- ncol(z) 
   copy <- as.matrix(z) 
   for (i in 2:(r-1)) {  
      for (k in 2:(c-1)) {  
      rr <- (i-1):(i+1) 
   kk <- (k-1):(k+1) 
      vals <- copy[rr, kk] 
      z[i,k] <- mean(vals) 
    } 
 } 
 return(z) 
} 
 
pth <- "C:\\Documents and Settings\\Troy Wynn\\My 
Documents\\dissertation\\Dissertation\\autocorr\\" 
cols <- colorRamp(c("purple", "blue", "green", "yellow", "red"), 
space="rgb") 
colors.r <- rgb(cols(1:9.5/10), max=255) 
 
 
doy.x <- c(16,45,75,105,136,166,197,228,258,289,319,349) 
doy.l <- c("J", "F", "M", "A", "M", "J", "J", "A", "S", "O", "N", "D") 
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x <- 1:365 
x.lab=seq(min(x), max(x), by=15) 
mons <- c(1, 32,60,91,121,152,182,213,244,274,305,335,365) 
 
alt <- 45:90 
x <- 1:365 
par(mar = c(4, 3.5, 1, 1))  
cors2 <- t(read.table(ccat(pth,"cors2.txt"), sep="\t", header=FALSE)) 
image.plot( 1:365, alt, cors2, axes=FALSE, xlab="", ylab="", 
legend.args=list(text="Correlation", col="black", cex=1, side=4, 
line=2.3)) 
contour( 1:365, alt,cors2, levels=seq(0,0.95,by=0.05), col="black", 
add=TRUE, lt=0, labcex=1.2, axes=FALSE) 
mtext("Altitude (km)", side=2, at=70, padj=-3.2, cex=1.1)  
mtext("Day of year", side=1, at=182, padj=2.5, cex=1.1)  
axis(side=1, at=mons, cex=0.2, padj=-0.8, las=1, labels=FALSE) 
axis(side=1, at=doy.x, labels=doy.l, cex=0.2, padj=-0.8, las=1, 
tick=FALSE) 
axis(2, las=1, hadj=0.8) 
box() 
 
pth <- "C:\\Documents and Settings\\Troy Wynn\\My 
Documents\\dissertation\\Dissertation\\autocorr\\" 
cors2 <- t(read.table(ccat(pth,"cors2.txt"), sep="\t", header=FALSE)) 
 
####################################################################### 
######### THIS CODE GENERATES FIGURE 8 FROM CHAPTER 4 ########## 
####################################################################### 
 
## This will do a strait regression on the alo temperatures.  
rm(list=ls(all=TRUE)) 
source("dir.txt") 
library(sfsmisc) 
 
#alo <- alo.data  # purify.alo()  ## this will remove data points 
greater than 3 standard deviation from the mean; up to and including 90 
km 
alo <- purify.alo() 
t <- alo$time  ;  t <- t - (max(t) - min(t))/2 
w <-  0.5752152710  # T ~ 10.9 yrs  
s1 <- sin(w*t) ; s2 <- cos(w*t) 
df <- data.frame(alo, s1, s2, y=s2*0) 
alt <- 45:90 
n <- length(alt) 
df$time <- t - mean(t) 
 
sd1 <- sd2 <- sd3 <- sd4 <- matrix(NA, 46) 
t0 <- max(t - min(t))/4 
dn.min <- 0 ; dn.max <- t0 
 
j <- 1 
for (i in 1:n) { 
   h.col <- 26 + i 
   df$y <- df[, h.col] 
   lm2 <- lm(y ~ time + sin2pit + cos2pit + sin4pit + cos4pit + t2 + t3 
+t4 +t5, data=df)  
   tt <- lm2$model$time ; tt <- tt - min(tt) 
    
   get1 <- tt<t0 ; get2 <- tt>=t0 & tt<(2*t0) ; get3 <- tt>=(2*t0) & 
tt<(3*t0) ; get4 <- tt>=3*t0 
   r <- resid(lm2) 
   sd1[j] <- sd(r[get1]) ; sd2[j] <- sd(r[get2]) ; sd3[j] <- 
sd(r[get3]) ; sd4[j] <- sd(r[get4]) ; j <- j + 1 



259 

  

2
5
9
 

   print(i) 
} 
 
par(mar=c(5,4,1,1)) 
plot(sd1, alt, type="l", xlab="",ylab="", lwd=2, xlim=c(3,18), 
axes=FALSE) 
lines(sd2, alt, lwd=2, lty=2) ; points(sd2, alt, pch=19, cex=0.8) 
lines(sd3,alt, lwd=2, lty=2) 
lines(sd4, alt, lwd=2) ; points(sd4, alt, pch=22, bg="black", cex=0.8) 
box() 
 
mtext("Altitude (km)", side=2, at=67, padj=-3.4, cex=1) 
mtext("Standard deviation", side=1, at=10, padj=2.5, cex=1) 
axis(side=2, at=seq(45, 90, by=5), labels=TRUE, cex=0.5, padj=0.3, 
hadj=0.8, las=1) 
axis(side=1, at=seq(4,18, by=2), labels=TRUE, cex=0.2, padj=-0.5, 
las=1)  #  x-axis 
legend(10, 55, c("0 to 2.5 years", "2.5 to 5 years", "5 to 7.5 years", 
"7.5 to 10 years"), pch=c(NA,19,NA,22), pt.bg="black", lty=c(1,2,2, 1), 
cex = 0.9, lwd=2, bty="n") 
 
####################################################################### 
######### THIS CODE GENERATES FIGURE 9 FROM CHAPTER 4 ########## 
####################################################################### 
 
rm(list=ls(all=TRUE)) 
source("dir.txt") 
library(sfsmisc)   
source("C:\\Documents and Settings\\Troy Wynn\\My 
Documents\\dissertation\\Local Poly\\fn_localP1.txt") 
 
pth <- "C:\\Documents and Settings\\Troy Wynn\\My 
Documents\\dissertation\\Data\\Solar data\\ALL\\" 
dat <- read.table(ccat(pth, "MgII_all.txt"), header=TRUE) 
t <- dat$time 
gt <- t>-6 & t<13 
dat <- dat[gt,] 
 
t <- dat$time 
y <- dat$time2 
mg <- dat$MgII.s 
t0 <- 0 
t1 <- 2.480148 
t2 <- 2*t1 
t3 <- 3*t1 
t4 <- 4*t1 
 
par(mar = c(3, 4, 1.5, 4)) 
plot(t, mg, type="l", lwd=2, xlab="", ylab="", axes=FALSE, 
ylim=c(0.255, 0.285)) 
abline(v=c(t0,t1,t2,t3,t4)) 
mtext("Mg II values", side=2, at=0.27, cex=0.9, line=2.5) 
axis(side=2, labels=TRUE, cex=0.5, padj=0) 
mtext("year", side=1, at=4, line=1.7) 
 
g <- ((1:length(y))%%365)==0 
yy <- round(y[g],0) 
at <- t[g] 
axis(side=1, at=at, labels=yy, padj=-0.5) 
box() 
text(1.24, 0.257, "I") 
text(3.7,  0.257, "II") 
text(6.2,  0.257, "III") 
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text(8.68, 0.257, "IV") 
 
mx <- max(mg) 
mn <- min(mg) 
md <- (mx+mn)/2 ; d <- mx-mn 
x80 <- l80 <- c(10.784889, 14.485293, 16.215352, 10.496835) 
t80 <- c(1.24, 3.7, 6.2, 8.68) 
mx80 <- max(x80); mn80 <- min(x80) 
x80 <- x80 - min(x80) ; x80 <- x80/max(x80) 
x80 <- 0.8*x80*(mx-mn) ; x80 <- x80 + mn 
lt <- lm(x80 ~ l80) ; cc <- coef(lt) 
x <- (4:10)*2 ; y <- cc[2]*x + cc[1] 
lines(t80, x80, pch=22, type="b", bg="black", lt=2, lwd=2) 
axis(side=4, labels=x, at=y, cex=0.5, padj=-1) 
mtext("Standard Deviation 
   80 km", side=4, at=0.27, cex=0.8, line=2.5) 
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####################################################################### 
######### THIS CODE GENERATES FIGURE 2 IN APPENDIX E ########## 
####################################################################### 
 
rm(list=ls(all=TRUE)) 
source("dir.txt") 
library(sfsmisc)  
 
pth <- "C:\\Documents and Settings\\Troy Wynn\\My 
Documents\\dissertation\\Dissertation\\autocorr\\phs\\" 
largest <- function(x,y) { if (max(x)>max(y)) { return(max(x)) } else 
{return(max(y))} } 
 
############################ 
#  READ THE DATA 
############################ 
 
phs <- seq(0, 0.95, length=20) ; phs <- phs[-c(1,2)] 
sds2 <- sds <- sds3 <- matrix(NA, length(phs)) 
for (j in 1:length(phs)) {  
 ph <- phs[j] 
 file.name <- ccat(pth,"ng_",ph,"_.txt") 
 file.name2 <- ccat(pth,"alo_",ph,"_.txt") 
 file.name3 <- ccat(pth,"1dg_",ph,"_.txt") 
 data <- read.table(file.name, sep="\t", header=FALSE)[,1] 
 data2 <- read.table(file.name2, sep="\t", header=FALSE)[,1] 
 data3 <- read.table(file.name3, sep="\t", header=FALSE)[,1] 
 sds[j] <- sd(data) ; sds2[j] <- sd(data2) ; sds3[j] <- sd(data3) 
} 
p2 <- phs^2 ; p3 <- phs^3 
lm1 <- lm(sds ~ phs + p2 + p3) 
lm2 <- lm(sds2 ~ phs + p2 + p3) 
lm3 <- lm(sds3 ~ phs + p2 + p3) 
 
par(mar = c(4, 4.3, 1, 1)) 
plot(phs, sds, ylim=c(0,0.065), type="n", axes=FALSE, xlab="", ylab="") 
points(phs, sds, pch=19) 
points(phs, sds3, pch=25) 
points(phs, sds2, lt=2, lwd=2, pch=22, col="gray") 
lines(phs, predict(lm1)) 
lines(phs, predict(lm2), col="gray") 
lines(phs, predict(lm3), lt=2) 
legend(0.2, 0.02, c("No gaps", "USU con", "USU gaps"), pch=c(19,25,22), 
col=c("black","black","gray"), bg = 'white' , cex=1) 
mtext("Correlation Coefficient", side=1, padj=3, cex=1)  
mtext("Standard Deviation", side=2, padj=-4.5, cex=1)  
axis(side=2, labels=TRUE, cex=1.5, padj=0.3, hadj=0.8, las=1) 
axis(side=1, at=seq(0.1,0.95,by=0.05), labels=TRUE, cex=1.5, padj=-0.8, 
hadj=0.4, las=1)  #  x-axis  
box()   
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####################################################################### 
######### THIS CODE GENERATES FIGURES AT THE END OF ########## 
############################## APPENDIX E ############################ 
####################################################################### 
rm(list=ls(all=TRUE)) 
source("dir.txt") 
library(sfsmisc) 
randomize() 
 
 
 
pth <- "C:\\Documents and Settings\\Troy Wynn\\My 
Documents\\dissertation\\Dissertation\\autocorr\\phs\\" 
 
norm <- function(x, m. , sd.) {  
   g <- 1/sqrt(2*pi*sd.^2)*exp(-(x-m.)^2/(2*sd.^2)) 
   return(g) 
} 
 
largest <- function(x,y) { if (max(x)>max(y)) { return(max(x)) } else 
{return(max(y))} } 
 
mid <- function(x, y=NA) {  
   if (is.na(y[1])) {  
      d <- density(x) 
   x <- d$x ; y <- d$y 
   }  
   max <- max(y)/1.5 
   get <- y>=max 
   xx <- x[get] ; yy <- y[get] 
   l1 <- xx[1] ; l2 <- xx[length(xx)] 
   return( (l1+l2)/2) 
} 
 
 
############################ 
# WITH  USU DATA GAPS 
############################ 
while (TRUE) {  
  phs <- seq(0, 0.95, length=20) ; phs <- phs[-1] 
  for (j in 1:length(phs)) {  
   get <- matrix(NA, 20) ; ng <- length(get) 
   ph <- phs[j] 
   for (i in 1:ng) { 
    days <- alo.data$days ; nn <- length(days) 
    n <- 10000 ; sds <- 1 
    r <- rnorm(n, 0, sds) 
    ar <- filter(r, ph, method="recursive")[(n-nn-
4000):n] ## this generates autocorrelated noise. earlier data points 
removed to enhance memory in those that remain.  
    ar <- ar[days] 
    get[i] <- peel.it(ar, days)$ph 
   } 
 
   par(mar = c(4, 3, 1, 1)) 
   file.name <- ccat(pth,"alo_",ph,"_.txt") 
   write.table(get, file.name, append=TRUE, quote=FALSE, 
sep="\t", col.names=FALSE, row.names=FALSE) 
   if (TRUE) {  
    data <- read.table(file.name, sep="\t", 
header=FALSE)[,1] 
    den <- density(data) ; m. <- mean(data) ; sd. 
<- sd(data) ; x.m <- den$x[max(den$y)==den$y] 
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    x <- den$x ; y <- den$y ;  nnorm <-norm(x, x.m, 
sd.) 
    print(length(data)) 
    plot(x, y, type="n", ylab="", axes=FALSE, 
xlab="", ylim=c(0,largest(nnorm, den$y))) 
    abline(v=ph, col="dark gray") 
    lines(x, y, lt=2, lwd=2) 
    lines(x, nnorm , lt=1, lwd=2) 
    mtext("Correlation Coefficient", side=1, 
padj=3, cex=1)  
    axis(side=2, labels=TRUE, cex=1.5, padj=0.3, 
hadj=0.8, las=1) 
    axis(side=1, labels=TRUE, cex=1.5, padj=-0.8, 
hadj=0.4, las=1)  #  x-axis  
    box()  
    xx <- (max(x) - min(x))/10 + min(x)  
    yy <- max(nnorm) - (max(nnorm) - min(nnorm))/10  
    text(xx,yy, substitute(phi*" = "*ph, 
list(ph=ph)), cex=1.5)  
    fn <- ccat(pth,"alo_",ph,"_.pdf") 
    dev.copy2pdf(file=fn) 
   } 
   print(j) 
  } 
} 
 
 
###################################################### 
###################################################### 
rm(list=ls(all=TRUE)) 
source("dir.txt") 
library(sfsmisc) 
randomize() 
 
 
 
pth <- "C:\\Documents and Settings\\Troy Wynn\\My 
Documents\\dissertation\\Dissertation\\autocorr\\phs\\" 
 
norm <- function(x, m. , sd.) {  
   g <- 1/sqrt(2*pi*sd.^2)*exp(-(x-m.)^2/(2*sd.^2)) 
   return(g) 
} 
 
largest <- function(x,y) { if (max(x)>max(y)) { return(max(x)) } else 
{return(max(y))} } 
 
mid <- function(x, y=NA) {  
   if (is.na(y[1])) {  
      d <- density(x) 
   x <- d$x ; y <- d$y 
   }  
   max <- max(y)/1.5 
   get <- y>=max 
   xx <- x[get] ; yy <- y[get] 
   l1 <- xx[1] ; l2 <- xx[length(xx)] 
   return( (l1+l2)/2) 
} 
 
while (TRUE) { 
 
  pth <- "C:\\Documents and Settings\\Troy Wynn\\My 
Documents\\dissertation\\Dissertation\\autocorr\\phs\\" 
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  norm <- function(x, m. , sd.) {  
     g <- 1/sqrt(2*pi*sd.^2)*exp(-(x-m.)^2/(2*sd.^2)) 
     return(g) 
  } 
 
  largest <- function(x,y) { if (max(x)>max(y)) { 
return(max(x)) } else {return(max(y))} } 
 
  ############################ 
  # WITHOUT DATA GAPS 
  ############################ 
  phs <- seq(0, 0.95, length=20) ; phs <- phs[-1] 
  for (j in 1:length(phs)) {  
   get <- matrix(NA, 20) ; ng <- length(get) 
   ph <- phs[j] 
   for (i in 1:ng) { 
    days <- alo.data$days ; nn <- length(days) 
    n <- 10000 ; sds <- 1 
    r <- rnorm(n, 0, sds) 
    ar <- filter(r, ph, method="recursive")[(n-
nn+1):n] ## this generates autocorrelated noise. earlier data points 
removed to enhance memory in those that remain.  
    get[i] <- peel.it(ar, 1:length(ar))$ph 
   } 
 
   par(mar = c(4, 3, 1, 1)) 
   file.name <- ccat(pth,"ng_",ph,"_.txt") 
   write.table(get, file.name, append=TRUE, quote=FALSE, 
sep="\t", col.names=FALSE, row.names=FALSE) 
   if (TRUE) {  
    data <- read.table(file.name, sep="\t", 
header=FALSE)[,1] 
    den <- density(data) ; x <- den$x ; y <- den$y 
;  m. <- mean(data) ; sd. <- sd(data) ; x.m <- mid(x,y) 
    nnorm <-norm(x, x.m, sd.) 
    print(length(data)) 
    plot(x, y, type="n", ylab="", axes=FALSE, 
xlab="", ylim=c(0,largest(nnorm, den$y))) 
    abline(v=ph, col="dark gray") 
    lines(x, y, lt=2, lwd=2) 
    lines(x, nnorm , lt=1, lwd=2) 
    mtext("Correlation Coefficient", side=1, 
padj=3, cex=1)  
    axis(side=2, labels=TRUE, cex=1.5, padj=0.3, 
hadj=0.8, las=1) 
    axis(side=1, labels=TRUE, cex=1.5, padj=-0.8, 
hadj=0.4, las=1)  #  x-axis  
    box()  
    xx <- (max(x) - min(x))/10 + min(x)  
    yy <- max(nnorm) - (max(nnorm) - min(nnorm))/10  
    text(xx,yy, substitute(phi*" = "*ph, 
list(ph=ph)), cex=1.5)  
    fn <- ccat(pth,"ng_",ph,"_.pdf") 
    dev.copy2pdf(file=fn) 
   } 
   print(j) 
  } 
} 
 
 
###################################################### 
###################################################### 
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rm(list=ls(all=TRUE)) 
source("dir.txt") 
library(sfsmisc) 
randomize() 
 
# one day gaps 
get.days <- function(dif=1){ 
   dd <- alo.data$days ; n <- length(dd) 
   d1 <- diff(dd)==dif 
   g1 <- g2 <- matrix(FALSE, length(dd)) 
   g2[2:n] <- d1 ;  g1[1:(n-1)] <- d1 
   get <- g2|g1 
   return(dd[get]) 
} 
 
 
pth <- "C:\\Documents and Settings\\Troy Wynn\\My 
Documents\\dissertation\\Dissertation\\autocorr\\phs\\" 
 
norm <- function(x, m. , sd.) {  
   g <- 1/sqrt(2*pi*sd.^2)*exp(-(x-m.)^2/(2*sd.^2)) 
   return(g) 
} 
 
largest <- function(x,y) { if (max(x)>max(y)) { return(max(x)) } else 
{return(max(y))} } 
 
mid <- function(x, y=NA) {  
   if (is.na(y[1])) {  
      d <- density(x) 
   x <- d$x ; y <- d$y 
   }  
   max <- max(y)/1.5 
   get <- y>=max 
   xx <- x[get] ; yy <- y[get] 
   l1 <- xx[1] ; l2 <- xx[length(xx)] 
   return( (l1+l2)/2) 
} 
 
 
days <- get.days(1) ; days <- days-days[1] + 1  ## max value is 3616 
while (TRUE) { 
 
  pth <- "C:\\Documents and Settings\\Troy Wynn\\My 
Documents\\dissertation\\Dissertation\\autocorr\\phs\\" 
 
  norm <- function(x, m. , sd.) {  
     g <- 1/sqrt(2*pi*sd.^2)*exp(-(x-m.)^2/(2*sd.^2)) 
     return(g) 
  } 
 
  largest <- function(x,y) { if (max(x)>max(y)) { 
return(max(x)) } else {return(max(y))} } 
 
  ############################ 
  #  ONE DAY GAPS USU 
  ############################ 
  phs <- seq(0, 0.95, length=20) ; phs <- phs[-1] 
  for (j in 1:length(phs)) {  
   get <- matrix(NA, 20) ; ng <- length(get) 
   ph <- phs[j] 
   for (i in 1:ng) { 
    nn <- length(days) 
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    n <- 10000 ; sds <- 1 
    r <- rnorm(n, 0, sds) 
    ar <- filter(r, ph, method="recursive")[(n-
5000):n] ## this generates autocorrelated noise. earlier data points 
removed to enhance memory in those that remain.  
    ar <- ar[days] 
    get[i] <- peel.it(ar, days)$ph 
   } 
 
   par(mar = c(4, 3, 1, 1)) 
   file.name <- ccat(pth,"1dg_",ph,"_.txt") 
   write.table(get, file.name, append=TRUE, quote=FALSE, 
sep="\t", col.names=FALSE, row.names=FALSE) 
   if (TRUE) {  
    data <- read.table(file.name, sep="\t", 
header=FALSE)[,1] 
    den <- density(data) ; x <- den$x ; y <- den$y 
;  m. <- mean(data) ; sd. <- sd(data) ; x.m <- mid(x,y) 
    nnorm <-norm(x, x.m, sd.) 
    print(length(data)) 
    plot(x, y, type="n", ylab="", axes=FALSE, 
xlab="", ylim=c(0,largest(nnorm, den$y))) 
    abline(v=ph, col="dark gray") 
    lines(x, y, lt=2, lwd=2) 
    lines(x, nnorm , lt=1, lwd=2) 
    mtext("Correlation Coefficient", side=1, 
padj=3, cex=1)  
    axis(side=2, labels=TRUE, cex=1.5, padj=0.3, 
hadj=0.8, las=1) 
    axis(side=1, labels=TRUE, cex=1.5, padj=-0.8, 
hadj=0.4, las=1)  #  x-axis  
    box()  
    xx <- (max(x) - min(x))/10 + min(x)  
    yy <- max(nnorm) - (max(nnorm) - min(nnorm))/10  
    text(xx,yy, substitute(phi*" = "*ph, 
list(ph=ph)), cex=1.5)  
    fn <- ccat(pth,"1dg_",ph,"_.pdf") 
    dev.copy2pdf(file=fn) 
   } 
   print(j) 
  } 
} 
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