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Abstract

This article explores the occurrence of hatching spines among bee taxa and how these structures enable a larva

on hatching to extricate itself from the egg chorion. These spines, arranged in a linear sequence along the sides

of the first instar just dorsal to the spiracles, have been observed and recorded in certain groups of solitary and

cleptoparasitic bee taxa. After eclosion, the first instar remains loosely covered by the egg chorion. The fact that

this form of eclosion has been detected in five families (Table 1 identifies four of the families. The fifth family is

the Andrenidae for which the presence of hatching spines in the Oxaeinae will soon be announced.) of bees

invites speculation as to whether it is a fundamental characteristic of bees, or at least of solitary and some clep-

toparasitic bees. The wide occurrence of these spines has prompted the authors to explore and discover their

presence in the highly eusocial Apis mellifera L. Hatching spines were indeed discovered on first instar A. melli-

fera. The honey bee hatching process appears to differ in that the spines are displayed somewhat differently

though still along the sides of the body, and the chorion, instead of splitting along the sides of the elongate egg,

seems to quickly disintegrate from the emerging first instar in association with the nearly simultaneous removal

of the serosa that covers and separates the first instar from the chorion. Unexpected observations of spherical

bodies of various sizes perhaps containing dissolving enzymes being discharged from spiracular openings dur-

ing hatching may shed future light on the process of how A. mellifera effects chorion removal during eclosion.

Whereas hatching spines occur among many groups of bees, they appear to be entirely absent in the

Nomadinae and parasitic Apinae, an indication of a different eclosion process.

Key words: hatching spine, eclosion, bee, Apis mellifera

The term “hatching spine” was used by Wigglesworth (1947) for a

variety of cuticular structures sometimes found on the embryonic

cuticle or other times on the cuticle of the first instars of insects,

which are used to cut through the embryonic cuticle or chorion at

the time of hatching from the egg. Sometimes termed “egg bursters,”

they have been observed in many groups of insects but, until re-

cently, have gone unnoticed by melittologists. The purpose of this

article is to point out that hatching spines in the form of very small

spicules are widely dispersed among bee taxa and, furthermore, ap-

pear to be a signature marker of the identity of a first larval instar

for many (but not all) taxa, often necessary for distinguishing first

instars from later stages.

This study is presented in three parts: (1) a survey of hatching

spines and hatching processes in solitary and cleptoparasitic bees,

(2) an investigation of hatching spines in first larval instars of the

highly eusocial bee, Apis mellifera, and (3) an investigation into the

egg hatching process of species of Apidae the first instar of which do

not exhibit hatching spines.

Methods

All SEM micrographs were captured using a Hitachi S5700 in the

Microscopy and Imaging Facility of the American Museum of

Natural History. All figures (except for Figs. 4–6) are SEM micro-

graphs of A. mellifera, oriented with anterior ends toward the left.

Larval specimens had been preserved and stored in Kahle’s Solution

[acetic acid (glacial) 10%; formalin 10%; water 25%, ethyl alcohol

(74%) 55%].

Hatching Spines of Solitary and Cleptoparasitic Bees

Table 1 is a taxonomically arranged survey of the literature dealing

with larval eclosion among solitary and cleptoparasitic bees. Among

first instars of solitary and some cleptoparasitic bees (i.e., nonsocial

bees), hatching spines appear as a row of sharp-pointed, minute spi-

cules that extend along both sides of the body just above the spi-

racles of the first instar. In most cases they are a narrow,

continuous, linear row of spicules on the surface of each segment

VC The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. 1
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above but close to the spiracular line. Because of their small size,

they are rarely identifiable when viewed by stereomicroscope, prob-

ably accounting for their being overlooked by numerous researchers

studying late embryogenesis and eclosion. Further, they may be ob-

scure because the widespread practice of immersing hatching eggs in

paraffin oil for microscopic observation tends to render the spines

transparent (DuPraw 1963).

The presence of hatching spines in bees was initially detected in

Tetrapedia diversipes Klug (Apidae: Tetrapediini) by Alves-dos-

Santos et al. (2002: p. 28) as “a linear row of granules” along the

two sides of the body of a hatching larva. The authors concluded

that the first larval instar was pharate within the chorion before the

chorion ruptured above the spiracular line. No function was

ascribed to the “granules”. Instead, it was hypothesized that the rup-

turing resulted solely from increase in body size caused by ingestion

of amniotic fluid. The chorion was shed with the first instar exuviae,

allowing the recognition of the second instar, which was actively

feeding.

Four years later, most of the same authors used SEM to examine

egg hatching of Monoeca haemorrhoidalis (Smith) and related taxa

(Apidae: Tapinotaspidini) (Rozen et al. 2006: Figs. 14 and 15). They

determined that the “granules” above the spiracular line were in fact

extremely small, sharp-pointed spicules. Furthermore, when food

provisions were colored with dye, the pharate first instar was seen to

ingest not only amniotic fluid but also liquid from the surface of the

provisions possibly through the micropylar opening on the chorion.

Because of the spicules’ stout bases, sharply pointed apices, and their

position just above the spiracular line, the authors at first thought

that the spicules may be a tearing mechanism causing the chorion to

split along this line not only in M. haemorrhoidalis but in many

groups of solitary and cleptoparasitic bees (see Table 1). This ex-

planation accords with a good many observations of lateral chorion

splitting among a range of taxa by various authors. Good illustra-

tions of the hatching process in a solitary bee can be found in Rozen

et al. (2011: Figs. 15–20) for Centris flavofasciata Friese. See Table

1 for references to solitary and cleptoparasitic bees exhibiting fea-

tures of this eclosion process. While we first thought that hatching

spines alone were responsible for a mechanical splitting along the

Fig. 1. Apis mellifera egg that had accidently been broken while being mounted on SEM stub, so that chorion above) had been torn off exposing, in lateral view,

anterior end to left, the embryo covered by a thin, transparent, cuticular-like serosa amnion (not visible) covered by a fibrous layer revealing the head shape and

segmentation of the first instar. Fig. 2. Close-up of anterior end of the chorion clearly revealing reticulated surface pattern. Fig. 3. Surface of fibrous layer in the

vicinity of spiracle (arrow) on third thoracic segment in association with apices of hatching spines. Fig. 4. Close-up of rectangle in Fig. 3, showing fibers clinging

to spines as well as to invisible serosa.

Fig. 5. First instar still covered by serosa showing position of spiracles and

small quantity of chorion on thorax and head, lateral view. Position of abdom-

inal spiracles 1, 2, and 3 circled on micrograph. Distribution of hatching

spines not visible because obscured by serosa.
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Table 1. Annotated systematic accounts of larval eclosion in solitary and cleptoparasitic bees (Hymenoptera: Apoidea) cleptoparasitic taxa

identified by gray shading; non-shaded taxa solitary

Taxon Reference and annotation

Stenotritidae

Colletidae

Colletinae

Colletes kincaidii Cockerell Torchio et al. (1988). Fluid ingestion; tracheal system fills with air; then embryo rotation; chorion splits

along both sides; second instar starts to feed

Hylaeinae Hylaeus leptoceph- Torchio (1984). “4th instar finishes feeding; 5th defecates.” alus (Morawitz)

Halictidae

Nomiinae

Nomia melanderi Cresson Hackwell and Stephen (1966). Embryo rotation; first instar chorion discovered; head widths of 1st and

2nd instars close in size

Melittidae

Megachilidae

Osmiini

Osmia lignaria Torchio (1989a). After rotation, chorion splits along spiracular line; then splits along dorsal mid line

and 2nd instar appearspropinqua Cresson

O. californica Torchio (1989a). Same as above.

Cresson

O. m. montana Torchio (1989a). Presumably same as above

Cresson

Anthidiini

Stelis montana Cresson Torchio (1989b). Rotation; tracheae gas fill; chorion splits laterally toward rear with appearance of

molting fluid on dorsum; chorion and first instar exuviae removed simultaneously before 2nd instar

feeds on provisions

Dioxiini

Dioxys cinctus (Jurine) Rozen and €Ozbek (2004). First instar pharate, exuviae found with cast chorion

Megachilini

Megachile rotundata (Fabricius) Trostle and Torchio (1994). Rotation, swelling, splitting, chorion covered [hatching¼ removal of

chorion]

M. apicalis Spinola Similar to above

M. pugnata Say Frolich and Parker (1983). Lateral split of chorion at level of spiracle; chorion seemed to dissolve, then

started to feed

Coelioxys chichi-mecca Cresson Rozen et al. (2010). 1st instar in chorion, only 2nd instar out, darkly pigmented

Apidae

Nomadinae

Epeolini:

E. compactus Torchio and Burdick (1988). Rotation 180�, emerges through front of egg

Cresson

T. dacotensis (Stevens) Torchio (1986). Rotation 180�; no splitting of chorion along sides; exit through front of egg

Biastini:

Biastes emarginatus (Schenck) Rozen et al. (2009). Ventral and lateral cleat-like spicules

Apinae

Eucerini

Svastra o. oblique (Say) Rozen (1964). Splitting of chorion along spiracular line identified for first time

Tapinotaspidini

M. haemorrhoidalis (Smith) Rozen et al. (2006). Complete understanding; “granules” identified as spicules which probably serve as

splitting mechanism

Tetrapediini

T. diversipes Klug Alves-dos-Santos, et al. (2002). Integument of first instar “with linear row of granules” on each side of

body

Anthophorini

Anthophora u. urbana Cresson Torchio and Trostle (1986). Rotation, fluid ingestion, dissolution of chorion around each spiracle; then

splits along dorsal midline; first instar then feeds; instars not counted

A. occidentalis Torchio (1986). Like A. u. urbana

Cresson

A. flexipes Cresson Torchio and Youssef (1968). 1st stage larva “fed upon its provision immediately after hatching.”

A. peritomae Torchio (1971). Splitting of chorion along pleural region above spicules

Cockerell

A. braunsiana Rozen (1969). Shiny strip along each side

Centridini

C. flavofasciata Friese Rozen et al. (2011). SEM micrographs (Figs. 15, 17, and 18). document hatching spicules splitting chor-

ion of hatching first instar, and photomicrograph (Fig. 20) showing removal of chorion attached to

first instar exuviae with the molt to second instar

(continued)
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two sides of the chorion of solitary and some cleptoparasitic bee

eggs, we now think that a hatching enzyme may also play a role in

this process, as has been suggested by others (e.g., DuPraw 1967,

Torchio 1984).

The information in Table 1 suggests that, among solitary and

some cleptoparasitic bees, the procedure of hatching when fully inves-

tigated will be as follows: First, ingestion of amniotic fluid and fluid

from provisions causes body swelling, which in turn results in the

splitting of the chorion above the spiracular line on both sides of the

first instar’s body presumably with the aid of a hatching enzyme. The

first instar’s existence is brief; it is almost, if not always, loosely cov-

ered to some extent by the egg chorion thereafter. It ingests little or

no pollen from the provisions. This then is our current understanding;

further studies will be required to confirm or modify this assessment.

Hatching Spines of A. mellifera

Because accounts of larval eclosion of A. mellifera L. (Apidae:

Apini) have not mentioned hatching spines (e.g., Nelson 1915,

DuPraw 1967), we undertook an SEM examination of several

hatching worker eggs of this species and quickly detected spicules

clustering mostly just above the spiracular line on both sides of the

body (Figs. 3, 4, 6–8, 12, 14, 15). When highly magnified, these

spines (Figs. 14 and 15) closely match the structure and appearance

of those observed among nonsocial taxa (e.g., Rozen 2017: Fig. 5)

but their arrangement on the body surface is distinctive in that they

appear to form a loose band mostly just above the spiracles (Figs. 6–

8) rather than a linear series (Rozen et al. 2006: Figs. 14 and 15)

spanning the body segments. Because of their position above and

close to the line of spiracles, their individual appearance, and their

function in ridding the body of chorion (discussed below), they are

likely homologous with the hatching spines of nonsocial bees identi-

fied above.

However, there is no evidence that the egg chorion of a honey

bee splits along the sides, as found among nonsocial bees; rather, it

appears (through a series of micrographs of various specimens: Figs.

5, 16, 19–21, 26, and 28) to disassemble from the body surface pre-

sumably with the assistance of the sharp spicules (i.e., hatching

spines), leaving behind a thin, transparent membrane (presumably

the serosa amnion), which also then disintegrates.

To understand the anatomy of a honey bee egg, we examined an

egg (Fig. 1) from which much of the chorion had been accidently

removed from the embryo when mounted on an SEM stub. This per-

mitted a view of a free chorion clearly identifiable because of its an-

terior reticulate patterning (Fig. 2). The chorion was separated from

the developing first instar by the membranous serosa with a mi-

nutely fibrous outer surface (Figs. 3, 4, and 28). The fibrous cover-

ing of the outer surface was absent around the two thoracic spiracles

on the one side as well as around a number of abdominal spiracles,

thereby exposing a smooth, presumably transparent surface and the

pit-like indentations to the spiracles (arrow, Fig. 3). Elsewhere, but

especially above the spiracular line, the sharp apices of the hatching

spines protruded through the fibers (Figs. 3 and 4). As demonstrated

in Figs. 14, 15, and 29, all spicules are covered by the serosa, which

envelopes and closely adheres to the entire developing first instar,

including the spiracular openings at the bottom of the spiracular pits

(Figs. 12 and 13). The small, presumably unclogged holes visible in

the SEM image of the integument at the bottom of the pits (Figs. 13

and 18) is presumably not be covered by this transparent serosa.

While examining the serosa covering the spiracular pits of speci-

mens that had been poised to hatch, we noted unexpected clusters of

variously sized spheroid objects on many specimens that may have a

bearing on the source of the so-called hatching enzyme that is said

to suddenly appear and mysteriously cause the “dissolution” of the

chorion in honey bees. The spheroids occurred in the inner tracheal

tubes of partly opened spiracles (Figs. 9–11 and 17), and on the sur-

face of spiracles that had not yet opened (Figs. 18, 23–25, and 27).

They could be beads of liquid coming through small openings (e.g.,

Fig. 13) evident in the covering of the atria in some spiracles that

have not yet started to produce the liquid. If true, we suspect the li-

quid could be either the hatching enzyme or the source of the en-

zyme. The appearance of these spheroids in the SEMs is consistent

with their being proteinaceous, as their appearance is comparable

with that of micelles of a known protein (casein) which are likewise

spherical and of comparable size (250 mm) (Spagnuolo et al. 2005).

As mentioned above, we are uncertain as to whether these spheroids

are covered by the serosa or are resting on the outer surface of the

serosa, although the large circular object in Fig. 22 could be inter-

preted as one of the large spheroids having just discharged it con-

tents exterior to the serosal surface, while Fig. 25 would serve well

as a prelude to what happened in Fig. 22. In any event, the covering

of the spiracular aperture in Figs. 13 and 18 consists of embryonic

tissue as well as an outer layer of serosa, as evidenced by its opaque

texture, similar to the partly ruptured closure in Fig. 17.

Table 1. continued

Taxon Reference and annotation

Centris bicornuta Mocs�ary Rozen (2017). Eclosion of this species as described for C. flavofasciata above; hatching spines well illus-

trated (Fig. 5)

Epicharis picta (Smith) & E. nig-

rita (Friese)

Gaglianone et al. (2015: 406). Same mode of development and behavior and with both the analysis of

the chorion and cuticle of “the first larval stage (evident due to the presence of spiracles and spicules)

was attached to the chorion of the egg, indicating that the hatched larva represented the second larval

stage.”

Epicharis albofasciata Smith Rozen (2016; 2017). Larval eclosion interpreted to be like that of M. haemorrhoidalis and that of

C. flavofasciata and C. bicornuta

Melectini

Xeromelecta californica

(Cresson)

Torchio and Trostle (1986). Rotation, ingestion of embryonic fluid; dorsal chorion around head splits

Zacosmia maculate (Cresson) Torchio and Youssef (1968). 1st stage larva tears open anterior tip of egg probably with aid of head

spines

Euglossini

Exaerete smaragdina (Guérin-

Ménvill)

Gar�ofalo and Rozen (2001). “Granules” present on first instar exuviae
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Our tentative conclusion that these spheres either may be the en-

zyme or may be encapsulating the enzyme that results in the dissol-

ution of the chorion came after reviewing DuPraw’s (1967: pp. 213,

214) description of Stage 10 of the embryology of the honey bee.

Although he did not know the source of the enzyme, DuPraw

(p. 214) proposed that “the fragmentation of the amnion-serosa

plays a role in activating the hatching enzyme,” a hypothesis sup-

ported by our observations. Hence, the small circular openings in

the covering of the atrial opening in Figs. 13 and 18 and the appar-

ent discharge of the spheres in Figs. 22–25 and 27 illustrate a plaus-

ible means by which an enzyme would be released.

Certain matters have yet to be resolved. Specimens that we

examined did not reveal the fate of the outer surface of the chorion

(Fig. 1). Does it undergo lysis or is it caste off earlier and our sam-

pling missed it? This problem should be easily resolved with further

observations. The appearance of the spheroids on specimens from

which most of the chorion has already disappeared is difficult to

understand. Why are they still there when most of the chorion is

gone? However, we cannot estimate how long the presumed enzym-

atic material might have been emitting through the small circular

holes of the covered spiracles. Furthermore, according to DuPraw

(p. 213), the entire duration of Stage 10 is only 3 h perhaps making

comparisons of durations of physiological events unreliable.

DuPraw (1967: p. 213) stated that the tracheal tubes of the em-

bryo fill with air at the time the serosa fragments in the hatching

process. We wonder if the gaseous filling of the tracheal tubes might

be the mechanism that forces the liquid-filled tracheal tubes to flush

the enzyme-laden liquid out through the atria, where it would

quickly spread through the porous fibrous surface of the serosa

throughout the egg. This then would account for further swelling of

the body against the chorion and the leakage of the liquid over the

surface of the egg as the chorion disintegrates, as pictured by Collins

(2004: Fig. 1D). Simultaneous body motion would probably also as-

sist distribution of the enzymatic fluid.

Figs. 6–8. Close-ups of spiracles (lower left corners) and hatching spines of abdominal segments 1, 2, and 3, demonstrating that a band of white-tipped spines

extends along the length of the larva’s thorax and abdomen. Figs. 9–11. Partly opened spiracles of abdominal segments 4, 6, and 8 showing small spheroids

developing in atria.
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One reviewer of the original manuscript of this paper was

“skeptical that a few structures 1–3 mm tall (i.e., the hatching spines)

are playing a mechanical role in breaking the chorion.” We agree,

but if the spines primarily serve to puncture the serosa (e.g., Figs. 14

and 15) thereby allowing broad distribution of the hatching enzyme

between the serosa and chorion, this might account for dissolution

of the chorion. This hypothesis has some support. Hatching spines

of honey bees are distributed as a broad band on each side of the

first instars, which might account for the quick dissolution of the

chorion. In known larvae of solitary and many cleptoparasitic bees,

the spines form a linear string on each side of the first instar, so that

enzymes penetrating them would dissolve a narrow line on both

sides of the egg, as has been reported for numerous taxa of these

bees (e.g., Rozen 1964: Fig. 5; Rozen 2016: Figs. 16 and 17).

Egg Hatching of Apidae, First Instars of Which Do Not Exhibit

Hatching Spines

While compiling Table 1, we noted with interest that according to

Torchio (1986) the first instars of Triepeolus dacotensis emerged

through an opening in the front of the egg as did Epeolus compactus

according to Torchio and Burdick (1988). These observations are in-

consistent with the lateral splitting of the chorion created by hatch-

ing spines. As a result, we undertook a survey of the literature to

determine in what other apid taxa did hatching first instars egress

through openings at the front of their chorions, as reported here in

Table 2. Importantly, because many of the specimens from the ori-

ginal studies were deposited in the American Museum of Natural

History and some were available for re-examination, we confirmed

that first instars listed in boldface in Table 2 do not exhibit hatching

spines. From these data we predict with some confidence that in the

Nomadinae (all of which are parasitic) and parasitic Apinae there

are no lateral rows of hatching spines on first instars.

Regarding other families of bees, we know of no taxa where the

first instar emerges from the front end of the egg. Although in Table 1

we have cited observations of lateral splitting of chorion in the

Colletidae, Halictidae, Megachilidae, as well as the non-parasitic

Apidae suggesting the existence of hatching spines in those families,

data are insufficient to determine if there are other methods by which

first instars emerge from their eggs among all groups of bees.

How does eclosion occur in the absence of lateral hatching

pines? Perhaps there are as few hints: Torchio and Youssef (1968)

suggested that “the first-stage larva escapes by mechanically tear-

ing open the broader anterior tip of the egg, probably with the aid

of its head spines,” i.e., the ring of cranial spines on the heads of

first instar Melectini (Rozen 1991) might be involved. On noting

the strongly sclerotized and spined ventral surface of the labial

maxillary region on Ericrocis lata (Rozen 1991: Figs. 65–67) we

wonder if this feature will eventually lead to an understanding of

eclosion in that species.

Conclusions

Clearly, further studies are needed to evaluate the hypotheses

advanced here regarding eclosion involving hatching spines. These

studies should explore the nature of the substance forming the sphe-

roids to determine if it is proteinaceous and the enzyme, and, if so,

Fig. 12. Spiracular area on another first instar still covered by serosa so that spiracular aperture covered. Fig. 13. Close-up of closed aperture showing small circu-

lar openings in serosa that perhaps allows discharge of hatching enzyme. Fig. 14. Close-up of single hatching spine showing shreds of serosa, strongly suggest-

ing that spines are responsible for shredding of serosa and involved with dissolution of chorion. Fig. 15. Close-up of cluster of hatching spines showing serosa

tearing from surface.
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Fig. 16. Dorsal surface of two abdominal segments of another serosa-covered first instar, lateral view, with scattered remnants of chorion. Note two spiracles

identified by arrows and distribution of hatching spines below dashed line. Fig. 17. Close-up of partly opened right spiracle, on above. Fig. 18. Close-up of another

serosa-cover spiracular aperture on same specimen (not visible in Fig. 16), but this spiracle not yet open though showing spheroids of possible enzyme seeming

to ooze from some of the small circular openings.

Fig. 19. Lateral view spiracle (arrow) and surrounding area on side of abdomen of hatching first instar in which much of chorion is still present, showing spicules

(hatching spines) poking through chorion. Fig. 20. Close-up of rectangle in Fig. 19.
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Fig. 21. Mid-body segments showing scattered chorion debris on serosa, with three spiracles identifies by labeled arrows. Fig. 22. Third thoracic spiracle. Fig. 23.

Second abdominal spiracle. Fig. 24. Third abdominal spiracle. Fig. 25. Seventh abdominal spiracle (not in Fig. 21). All close-ups exhibiting various forms of dis-

charging spheroids.

Fig. 26. Hatching first instar, lateral view, showing discharging fourth abdominal spiracles and partial covering of fragmented chorion. Fig. 27. Close-up of spir-

acle. Fig. 28. Another hatching first instar, lateral view, with most of chorion gone but serosa still enveloping larva. Fig. 29. Tips of two hatching spines on abdom-

inal segment 4 penetrating the serosa.
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how is it distributed so quickly to eliminate most of the chorion. We

note that the fibrous surface on the serosa quickly disappears, which

supports the hypothesis that its porosity functions to allow quick

distribution of the hatching enzyme over the serosa to dissolve the

chorion along with the fibers.

It seems likely that the spines involved in the dissolution of the

chorion and serosa of the honey bee are homologous with the hatch-

ing spines of nonsocial bees both in location and apparent function.

For both nonsocial bees and A. mellifera, the spines just above the

spiracular line appear to be arranged differently where they both ap-

parently serve to break up the chorion and destroy the serosa under-

neath the chorion. Studies of related social bees, such as Bombus and

stingless honey bees (Meliponini), may yield valuable intermediates

between those of known nonsocial bees and those of A. mellifera.
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Table 2. First instars of Apidae that on hatching egress through aperture at front of egg rather than through splitting of chorion along sides

of egg taxa in boldface are those that are known to lack hatching spines because specimens originally described were re-examined for this

paper

Nomadinae

Hexepeolini

Hexepeolus rhodogyne Linsley and Michener (Rozen 1991: Figs. 7–10)

Epeolini

Epeolus pusillus Cresson (Rozen and Favreau 1968)

Epeolus ilicis Mitchell (Rozen 1989)

E. compactus Cresson (Torchio and Burdick 1988)

T. dacotensis (Stevens) (Torchio 1986)

T. grandis (Friese) (Rozen 1991: Figs. 1–5)

Biastini

Neopasites cressoni Crawford (Torchio et al. 1967: Fig. 9)

Biastes emarginatus (Schenck) (Rozen et al. 2009).

Rhopalolemma rotundiceps Roig-Alsina (Rozen et al. 1997: Fig. 21)

Ammobatini:

Oreopasites (Rozen 1992).

Parammobatodes minutus (Mocs�ary) (Rozen 2009: Figs. 18–21)

Pseudodichroa capensis (Friese); P. fumipennis Bischoff (Rozen and Michener 1968: Figs: 9–120)

Caenoprosopidini:

Caenoprosopis crabronina Holmberg (Rozen and Roig-Alsina 1991)

APINAE:

Isepeolini:

Isepeolus viperinus (Holmberg) (Rozen 1991: Figs. 47–53)

Osirini:

Protosiris gigas Melo** (Rozen et al. 2006)

Protepeolini:

Leiopodus singularis (Linsley and MacSwain) (Rozen et al. 1978: Figs. 8–14 and 22–24)

Leiopodus lacertinus Smith (Roig-Alsina and Rozen 1994: Figs. 5–10).

Tetrapedini:

Coelioxoides

Ctenoplectrini:

Ctenoplectrina

Rhathymini:

Rhathymus bicolor Lepeletier (Rozen 1991: Figs. 42–46)

Ericrocidini:

Aglaomelissa duckei (Friese) (Rozen 1991: Figs. 54–59)

E. lata (Cresson) (Rozen 1991: Figs. 64–67)

Mesoplia rufipes (Perty) (Rozen 1991: Figs. 60–63)

M. sappharina Melo and Rocha-Filho (Rozen et al. 2011: Figs. 24–28, 40–43, and 47)

Melectini:

Melecta pacifica fulvida Cresson (Rozen 1991: Figs. 28–32)

Melecta separata callura (Cockerell) (Rozen 1991: Figs. 23–27)

Thyreus lieftincki Rozen (Rozen 1991: Figs. 33–37)

Xeromelecta californica (Cresson) (Torchio and Trostle 1986, Rozen 1991: Figs. 14–22)

Zacosmia maculata (Cresson) (Torchio and Youssef 1968, Rozen 1991: Figs. 38–41)

Only Protosiris gigas Melo, identified below by**, was recognized as lacking hatching spines in the original treatment.
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