Modeling Ecological Functions for Ecosystem Service Management of Great Salt Lake Wetlands

Aubin Douglas, Maya Pendleton, Dr. Trisha Atwood, Dr. Edd Hammill, & Dr. Karin Kettenring
Department of Watershed Sciences & The Ecology Center - Utah State University

Great Salt Lake Wetlands

Background
Ecosystem services (ESS) are the benefits people receive from the environment. Many ESS are difficult to assess, and so proxies (such as ecological functions) are typically measured in the field. While most ecological functions and processes do not provide a direct service to people, they are the bedrock upon which ESS provisioning relies.

Significance
GSL and its wetlands have been nationally and internationally recognized for the critical habitat they provide migratory birds in both the Pacific and Central Flyways. GSL hosts 75% of Utah’s wetlands, which are an "at-risk" habitat in the arid Great Basin, and provide many unique ESS, such as water quality improvement. The vast majority of GSL wetlands are highly managed and researched for these reasons.

Research Objectives
- Map wetland types using object-based imagery analysis
- Model ecological functions performed by GSL wetlands
- Create optimized management plans to improve functions and services while minimizing costs to wetland managers
- Quantify the relationship between costs and functions

Study Area

Methods

1) Use object-based imagery analysis (OBIA) to classify 2016 NAIP imagery (RGB and NIR bands) and LiDAR data to isolate 7 wetland types (alkali bulrush, hardstem bulrush, threesquare bulrush, playa, pickleweed, cattail, & Phragmites).

2) Use 7 classified wetland types, 9 ecological functions (measured by Maya Pendleton), and other necessary data (e.g. elevation, slope, proximity to disturbance, etc.) to model ecological functions across the study areas.

3) The 9 modeled ecological functions, costs for land management, and created planning units are the main inputs to Marxan, a systematic landscape planning software. Marxan takes these inputs, and creates an optimized management area network while minimizing costs to managers and meeting set conservation targets. Marxan will be run multiple times at varying targets for each function, and then with all functions at the same time.

Expected Results

Scenario Assessment
There will be ten total scenarios: one for each function (9), and one with all functions together. Marxan will be run 18 times for each scenario at varied targets, starting at 10% and increasing in 5% increments to 95%. Marxan’s outputs from these scenarios will allow us to quantify the relationship between target size and cost to management for each scenario. We will then calculate the amount of function attained per each U.S. dollar spent on the landscape. Through target scenario comparisons, we can identify any spatial correlations and tradeoffs between functions, and understand financial implications of management practices.

Synergies and Tradeoffs
This research will likely uncover tradeoffs and synergies among ecological functions performed by wetland types in these complexes. Tradeoffs occur when one function or ESS happens at the cost of another. For example, Phragmites is known to improve water quality through sediment retention and nutrient cycling, but provides little to no habitat for most migratory bird species. Other wetland types are likely to exhibit different tradeoffs or synergies.

Implications for Management
GSL wetland managers will have:
- a cost-benefit analysis for managing functions (and thereby ESS)
- information about ESS synergies and tradeoffs occurring across the landscape
- an optimized management area network for each individual function and all functions together that minimizes cost and reaches management goals

References
1. Millennium Ecosystem Assessment, 2005. World Resources Institute