RAPIDYE

AN EARTH OBSERVATION SMALLSAT CONSTELLATION FOR DAILY AGRICULTURAL MONITORING

Dr. George Tyc, Keith Ruthman, Daniel Schulten

MacDonald Dettwiler and Associates
13800 Commerce Parkway, Richmond B.C., V6V 2J3, Canada
Phone: +1 604 278 3411, Fax: +1 604 231 2127, gtyc@mda.ca

Paul Stephens, Alex Wicks, Tim Butlin, Sir Martin Sweeting

Surrey Satellite Technology Ltd.
Surrey Space Centre, University of Surrey
Guildford, Surrey GU2 7XH, UK
Tel: (44) 1483 689278 Fax: (44) 1483 689503
p.stephens@sstl.co.uk

Dr. Manfred Krischke, Michael Oxfors

RapidEye AG
Wolfratshauser Strasse 48, 81379, München, Germany
Phone: +49 89 72 495497, Fax: +49 89 72 495232, krischke@rapideye.de
Presentation Overview

- The RapidEye Market
- Key Mission Requirements
- RapidEye Mission Overview
- Spacecraft Design
 - Bus
 - Payload
- Ground Segment Description
- Conclusions
RapidEye Market Segments

• Agricultural Insurance:
 – Regularly updated field maps providing quick and reliable information about damaged areas
 – help insurers by supporting the loss adjustment process

• Agricultural Producers (farmers):
 – regularly provide information about the crop conditions
 – will support the precision farming system
RapidEye Market Segments

- **International Institutions:**
 - Knowledge of the levels of expected crop harvests
 - Monitor the usage of subsidies and provide emergency relief in disaster situations

- **Cartography:**
 - RapidEye will be the first company to provide regular updates at a scale of 1:25,000
Key Mission Requirements

• Multi-spectral Optical Imager:
 – High quality ortho-rectified imagery required in 5 spectral bands
 – Ground Sampling Distance (GSD) between 5-10 m

• Global Daily Revisit:
 – Rapid turn-around from a customer's request for information products to delivery is a key requirement for RapidEye's market
 – The satellites must have daily revisit capability anywhere on the Earth
Key Mission Requirements

• Rapid Area Coverage:
 – provide large area coverage in less than 6 days in primary regions of interest
 – allows monitoring large areas of interest to provide frequent information updates to customers

• Large Data Capacity:
 – A significant ortho-image data capacity is required to allow building up and maintaining an extensive database of information for large areas of interest
RapidEye Market Positioning

RapidEye targets the decisive gap

- Revisit Time
 - daily
 - 3 days
 - 1 week
 - 2 weeks
 - 4 weeks

- Spatial Resolution
 - 15 km
 - 3 km
 - 120 m
 - 30 m
 - 10 m
 - 5 m
 - 1 m

Competitors:
- Meteosats
- SPOT 2, 3, 4
- Resource 21
- IRS 1C, D
- Space Imaging etc.

Competitors (2005?)
- SPOT 5
- Landsat

August 2003
17th AIAA/USU Conference on Small Satellites
RapidEye Mission Characteristics

- 5 identical spacecraft each with a 5 band multi-spectral imager
- 6.5m GSD at nadir & 80km swath
- spacecraft able roll 25 deg off nadir to increase FOR
- 620km Sun-Synch Orbit with satellites in one orbit plane
- 1500 km of image data onboard storage per satellite
- >60 Mbps data downlink (X-band)
- daily global revisit
- average coverage repeat period in Europe & N.A. is <5 days
- 7 year design life
- High reliability - proven hardware & two levels of redundancy
 - extra spacecraft (business objectives met with 4 spacecraft)
 - each spacecraft is fully redundant
 - microsat platform based on existing proven design
Spacecraft Configuration

Spacecraft Mass
- Bus: 115 kg
- Payload: 35 kg
- Total: 150 kg

Payload Electronics
- Multi-Spectral Imager
- Star Camera
- GaAs Solar Arrays (3 sides)

Dimensions:
- 720 mm
- 750 mm
- 865 mm

Axes:
- X (velocity vector)
- Y
- Z (nadir)
Payload Design

- Optical payload comprised of two separate units
 - Multi-Spectral Imager (MSI)
 - Payload Electronics Unit (PEU)

- MSI
 - 5 band pushbroom style imager
 - Three Mirror Anastigmat (TMA) optical design (15 cm aperture)
 - Focal plane has 5 parallel 12 K linear CCD detectors

<table>
<thead>
<tr>
<th>Channel</th>
<th>Spectral Band Name</th>
<th>Spectral Range (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Blue</td>
<td>440 – 510</td>
</tr>
<tr>
<td>2</td>
<td>Green</td>
<td>520 – 590</td>
</tr>
<tr>
<td>3</td>
<td>Red</td>
<td>630 – 685</td>
</tr>
<tr>
<td>4</td>
<td>Red edge</td>
<td>690 – 730</td>
</tr>
<tr>
<td>5</td>
<td>Near IR</td>
<td>760 – 850</td>
</tr>
</tbody>
</table>
Payload Design

• PEU
 – 12 bit digital data transferred from MSI to PEU (765 Mbps)
 – separate processing chain for each CCD (plus one redundant chain)
 – real time data compression (2:1 lossless or up to 10:1 lossy)
 – onboard data storage (>35 Gbits)
 – Data formatting for X-band downlink (error correction & encryption)
 – payload controller & redundant power supplies
RapidEye Ground Segment

The Ground Segment provides the following key functions:

- customer order interface capability
- satellite acquisition planning function
- satellite command and control to task the constellation and maintain its health and safety
- image processing capability to convert raw imagery into ortho-products
- capability to extract DEMs from stereo imagery
- calibration capability to ensure the performance of the sensors and processing system
- product catalogue and multi-tiered data archive for raw data, ortho-products, DEMs and information products
Summary & Conclusions

• RapidEye is a unique commercial EO mission
 – focused on delivering the needed information to customers
 – system design driven by the business plan requirements
 – implementation approach uses highly cost effective constellation of 5 satellites with a proven ground infrastructure

• RapidEye offers a capability that presently does not exist
 – the system can monitor large areas within short time intervals and at the same time respond to specific requests within a single da