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Debugging by Design:  A Constructionist Approach to High School Students’ Crafting and 

Coding of Electronic Textiles as Failure Artifacts 

 

Deborah A. Fields, Yasmin B. Kafai, Luis Morales-Navarro, and Justice T. Walker 

Abstract  

Much attention in constructionism has focused on designing tools and activities that support 

learners in designing fully finished and functional applications and artifacts to be shared with 

others. But helping students learn to debug their applications often takes on a surprisingly more 

instructionist stance by giving them checklists, teaching them strategies or providing them with 

test programs. The idea of designing bugs for learning—or debugging by design—makes learners 

agents of their own learning and, more importantly, of making and solving mistakes. In this paper, 

we report on our implementation of “Debugging by Design” activities in a high school classroom 

over a period of eight hours as part of an electronic textiles unit. Students were tasked to craft 

electronic textile artifacts with problems or bugs for their peers to solve. Drawing on observations 

and interviews, we answer the following research questions: (1) How did students participate in 

making bugs for others? (2) What did students gain from designing and solving bugs for others? 

In the discussion, we address opportunities and challenges that designing personally and socially 

meaningful failure artifacts provides for becoming objects-to-think-with and objects-to-share-with 

in student learning and promoting new directions in constructionism.   
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Structured practitioner notes 

What is already known about this topic: 

● There is substantial evidence for the benefits of learning programming and debugging in 

the context of constructing personally relevant and complex artifacts, including electronic 

textiles. 

● Related, work on productive failure has demonstrated that providing learners with 

strategically difficult problems (in which they “fail”) equips them to better handle 

subsequent challenges.  

 

What this paper adds: 

● In this paper, we argue that designing bugs, or “failure artifacts” is as much a 

constructionist approach to learning as is designing fully functional artifacts. 

● We consider how “failure artifacts” can be both objects-to-learn-with and objects-to-

share-with.  

● We introduce the concept of “Debugging by Design” (DbD) as a means to expand 

application of constructionism to the context of developing “failure artifacts.” 

 

Implications for practice and/or policy: 

● We conceptualize a new way to enable and empower students in debugging—by 

designing creative, multimodal buggy projects for others to solve. 



 

 

● The DbD approach may support students in near-transfer of debugging and the beginning 

of a more systematic approach to debugging in later projects and should be explored in 

other domains beyond e-textiles. 

● New studies should explore learning, design, and teaching that empower students to 

design bugs in projects in mischievous and creative ways.  

 

1. Introduction  

Much attention in constructionism has focused on designing tools and activities that support 

learners as creators of fully finished and functional artifacts or applications—games, stories, robots 

or sandcastles—to be shared with others (Papert, 1991). Prior studies provide substantial evidence 

for the benefits of learning programming in this context: constructing personally relevant and 

complex applications rather than in writing short pieces of code or solving classic code puzzles 

(Harel & Papert, 1990; Kafai & Burke, 2014). However, less attention in constructionism has been 

paid to the potential of learners as creators of personalized failure artifacts when the constructed 

applications have deliberate bugs or mistakes in them that need fixing. Further, failure artifacts 

can also incorporate the constructionist priority of an authentic audience, if they are shared with 

others that engage in fixing the bugs to make the artifacts fully functional. While this approach 

provides a different perspective on constructionist learning, it makes equally transparent functions 

and structures of computational designs.  

We argue that designing failure by intentionally including mistakes or bugs can be as much 

a constructionist approach to learning as is designing fully functional artifacts. Drawing on 

constructionist philosophy (e.g., Papert, 1980) we build on a longstanding tradition of putting 

learners in control of their own learning by designing applications for others (Harel & Papert, 

1990, Kafai, 1995). We propose having learners intentionally design buggy (rather than functional) 

computational artifacts for their peers to fix. The idea of designing buggy artifacts for learning—

or “Debugging by Design” (DbD)—builds on two core principles of constructionism that artifacts 

of learning are (1) objects-to-think-with (Papert, 1980) and (2) objects-to-share-with others (Kafai 

& Burke, 2014). DbD also provides students with control over bugs, a contrast to school cultures 

where failure can be a very negative experience rather than a productive one (e.g., Dahn & 

DeLiema, 2020). In the context of designing projects with mistakes, DbD brings both 

consideration of audience and student control over design of mistakes. 

In this paper, we explore the feasibility of DbD for learning and teaching about debugging 

in classrooms in which students created and then exchanged and solved buggy electronic textiles 

projects. A physical computing activity, electronic textiles (e-textiles) involve stitching circuits 

with conductive thread to connect sensors and actuators to microcontrollers (Buechley, Peppler, 

Eisenberg & Kafai, 2013) and provide multiple opportunities for bugs across modalities of 

hardware and software (Resnick, Berg & Eisenberg, 2000). We implemented DbD over a period 

of eight hours within an introductory high school computing class with 25 consenting 9th grade 

students (ages 14-15) in the United States. Since this was our very first exploration of the DbD 

unit, we sought to understand: (1) How did students participate in making bugs for others? (What 

did they create; what unexpected directions did they take; what challenges did they face in the 

process?) To answer this first question we conducted close video analysis of four case studies of 

student teams participating in DbD, documenting their step-by-step design, creation, and solving 

of buggy projects. (2) What did students perceive as gains from designing and solving bugs for 

others? (How did students feel about the experience afterward; what benefits did they see?) To 



 

 

answer the second question, we analyzed individual reflections written immediately after the DbD 

unit and focus group interviews conducted a few weeks after the unit was complete. In the 

discussion, we address how debugging by design provides a new perspective on artifact 

construction and constructionist learning.  

 

2. Background   

Debugging skills are difficult to develop. When students create complex applications, they often 

make errors—or bugs—of various types which hinder their program completion. These bugs can 

range from simple syntactic problems such as forgetting commas or making typos to more complex 

challenges that involve dealing with thorny run-time errors or logic design (e.g., McCauley et al., 

2008). Designing activities and tools that support students in these challenges is important because 

debugging requires not just considerable technical skills and program understanding but also 

emotional intelligence and perseverance (e.g., Patil & Codner, 2007). However, helping students 

learn to debug often takes on a surprisingly instructionist stance by giving them checklists, 

teaching them strategies, or providing them with test programs or buggy programs to fix (e.g., 

Prather et al, 2019). Further, debugging is often done with small, isolated bugs (ibid.), which while 

effective in demonstrating specific techniques, miss the challenges that occur in open-ended 

projects, the latter a hallmark of constructionist activities. 

In the design of our DbD approach, we addressed these challenges in multiple ways. First, 

we adopted a more positive stance towards debugging: bugs became an intentional feature of the 

learning product rather than an accidental stumbling block. This stance is inspired by the 

“productive failure” instructional approach (Kapur, 2008), whereat learners performed better on 

subsequent tasks after first engaging with more difficult ill-structured tasks, in part, because they 

had developed problem solving strategies that could be leveraged, or transferred, to solve future 

problems. While much of the extensive research on productive failure focuses on identifying which 

dimensions are most productive for which students and under what conditions (Kapur & Bielaczyc, 

2012), it is often limited to failure in the context of well-structured canonical problems. Our DbD 

approach differs from classic productive failure by encouraging more open-ended, creative bug 

design. Further it focuses on bugs within whole, aesthetically-motivated projects rather than on 

individual, isolated bugs. This draws on the constructionist ethos of personally-driven projects and 

provides students with extra motivation to persist in problem solving and troubleshooting (Dahn 

& DeLiema, 2020; Hughes, Morrison, Mamolo, Laffier, & de Castell, 2019).  

Second, we situated DbD in a nontraditional area for computing education: physical 

computing, namely e-textiles. In e-textiles, multiple bugs often co-occur in students’ designs, 

presenting across on-screen and off-screen modalities (e.g., within and across circuitry, crafting, 

coding). This creates challenging situations for students seeking to isolate, identify, and fix 

problems (Searle, Litts, & Kafai, 2018). Debugging e-textile projects thus presents a particular 

opportunity to consider buggy projects as objects-to-think-with in their own rite, with multiple 

debugging challenges in a single design (e.g., Maltese, Simpson, & Anderson, 2018). These 

intersecting failures provide within-task feedback that supports the generation of a wide array of 

successful and unsuccessful solutions. The task of making a buggy project functional provides a 

practical means of constructing knowledge about debugging strategies.    

Third, we put learners (rather than teachers or researchers) in charge of creating 

productive—and personally-meaningful—failure projects. Earlier studies have demonstrated the 

rich learning opportunities researcher-designed problem artifacts in physical computing contexts 

offer. For instance, Sullivan (2008) presented students with a carefully designed set of robotics 



 

 

dilemmas and examined students’ intricate inquiry skills. Others have developed e-textile problem 

sets for students to solve collaboratively as a means to assess student knowledge and skills (e.g., 

Fields, Searle & Kafai, 2016; Jayathirtha, et al., 2020). While these studies have revealed the utility 

of solving bugs as assessments and explorations of student thinking, the control of bug design was 

always in the hands of researchers. Building on previous constructionist approaches where students 

became instructional software designers (Harel & Papert, 1991), we turned students into 

instructional bug designers and encouraged creativity and personal expression in their designs.  

As such the DebugIts—our name for the failure artifacts—became objects-to-think-with as 

students contemplated what kind of bugs and where to include them, as well as objects-to-share-

with as students considered those who would find and solve the bugs. With students free to design 

their e-textiles, we expected variety in the kind of DebugIt artifacts as well as in the type, location, 

combination and intentions of bugs, challenging both the bug designers and debuggers. 

Furthermore, we were interested in exploring the emotional side of failure artifacts. What students 

designed, how they went about those designs, and what they felt they learned from the whole 

process is the focus of this exploratory study.  

 

3. Methods  

3.1 Participants 

The participating class was located in a high school in a large metropolitan area in the southwestern 

United States. This 9th grade (primarily ages 14-15) introductory computing class included 25 

consenting students (out of 26 students total): 11 girls and 14 boys aged 14-18 years old: 72% 

speaking languages other than English at home, 80% with no prior computer science experience, 

and 20% with no family members with college experience. The class was racially diverse, with 

48% Latino, 36% Asian American/Pacific Islander, 8% White, 4% Other, and 4% race not 

reported. The teacher (Ben) had three years of experience teaching the e-textile unit and helped 

co-develop DbD. Students were assigned to 12 groups (2 groups of three and 10 groups of two 

students). From the class, four collaborative groups were selected by the teacher for further study 

in order to represent a range of student interaction and performance: two groups of two and two 

groups of three.  

3.2 Debugging by Design Context 

The DbD unit was situated about three-fourths of the way through the e-textiles unit of Exploring 

Computer Science (ECS), a year-long, equity-focused and inquiry-based course providing an 

introduction to computing (Goode, Chapman, & Margolis, 2012; http://exploringcs.org/e-textiles). 

The e-textiles unit lasted 12 weeks and consisted of a series of four projects that allow increasing 

flexibility in design and personalization while learning challenging new technical skills: 1) a paper-

card using a simple circuit, 2) a wristband with a parallel circuit, 3) a classroom-wide collaborative 

mural project that incorporated switches to computationally create light patterns, and 4) a project 

that used handmade sensors to create lighting effects.  

The DbD unit took place over eight, 50-minute long class periods between projects 3 and  

4 (see Table 1 for the DbD timeline). The student-designed DebugIts had to contain at least six 

bugs, including two coding bugs, with one undetectable by the Arduino compiler. This latter 

constraint helped students move beyond simple syntax problems in their designs. DebugIts also 

had to involve either a switch or a sensor to ensure a level of coding challenge with conditionals 

and functions. Finally, students had to include a description of how the project should function 

when fixed. This allowed for the inclusion of design errors (or “intention errors” as the class named 



 

 

them) where a project might function but not as desired. The final DebugIt design included: a list 

of problems and solutions, a circuit design showing any circuitry errors, code, and a statement of 

how the DebugIt should work.  

 

Table 1. Debugging by Design Unit. 

 

The design of the DbD unit has several characteristics: First, it was situated in the latter half of the 

larger e-textile unit, allowing students to build on earlier bug experiences in designing their 

DebugIts and to apply their DbD experiences on their final projects. Second, the unit began with 

group discussions where students named problems that had come up in their own previous designs 

and categorized these problems. This promoted class-wide transparency of problems across 

students’ prior projects. Third, students received teacher approval on their DebugIt designs before 

they could construct them. The approval process enabled the teacher to challenge students to either 

make problems more interesting and creative or consider whether the problems they created were 

potentially solvable within a single class period. In other words, students received feedback on 

both the difficulty level and number of problems they introduced. Fourth, after students exchanged 

and solved each other’s problems, they presented their solutions to the class, letting the designers 

see to what degree and how their peers had solved the designed problems. Finally, the class 

participated  in reflective journaling and discussion about how they felt designing and solving 

DebugIts and the kinds of strategies they employed in solving problems.  

 

3.3 Data Collection and Analysis 

Data for our analyses was drawn from daily observations (fieldnotes and videos, including cameras 

on each of four case study groups), recorded teacher reflections during the DbD unit, pictures of 

student projects, code files, student reflections (n=24 students) written after the unit, and post-

interviews with students in focus groups (n=21 students). Case study groups included a total of 10 

students (two groups of three and two groups of two students each).  

Analysis was completed in two parts. First, to obtain a closer look at student participation 

during the DbD unit, we analysed the moment-by-moment designing and debugging processes of 

the case study groups (Yin, 2017). We assembled all available data about each group from daily 

videos and  fieldnotes, end-of-unit participant interviews, daily teacher reflections, and daily 

documentation of students’ designs (pictures of physical products at different stages of creation 



 

 

and students’ code). This provided rich, detailed data for creating design narratives that included 

multiple perspectives on each group’s DebugIt design, including contextual details that influenced 

design decisions, such as peer interactions (within and between groups), teacher support, and 

whole class instruction. We further analyzed design narratives to uncover: (1) how students 

developed a bug from idea to implementation, (2) what kinds of conversation/engagement 

occurred surrounding bug design, and (3) how students responded to others’ bug design (i.e., 

debugging exchanges). We followed the creation of each designed bug from start to finish 

(including bugs that were dropped for a variety of reasons and bugs that students accidentally 

designed). Importantly, this analysis allowed us to trace the intention behind different bugs and 

student groups’ holistic approaches in considering the audience (or end-user) of their designs. 

Second, to better understand the breadth of student experiences in the class, we analyzed 

student reflections: more immediate written reflections and retrospective interview reflections. 

This part of analysis involved two-step, open coding of  reflections and transcribed interviews 

(Charmaz, 2014). We began by identifying overarching themes from reflections and interviews, 

then followed by creating sub-categories within codes and comparing across codes to develop a 

richer coding scheme. This was done iteratively across several meetings amongst the research team 

(four people) until we reached interpretive agreement. Finally we applied the revised coding 

scheme across all the data and looked for frequency across students (i.e., how many students spoke 

to a particular theme) to identify how prevalent or rare trends were.  

 

4. Findings 

The 12 student teams successfully designed personalized DebugIts with varying dysfunctionality 

intended to befuddle their peers. Projects ranged from flat pieces to plushies (see Figure 1) with 

nearly 200 bugs that varied in number and complexity. These bugs ranged from simpler problems 

in short circuits (long threads stretching between active circuit lines) and missing semicolons in 

code to more complex problems in conditional logic and mismatches between code and crafted 

circuits. Several groups used the projects to advance into new domains of e-textiles, not previously 

covered in the class, pursuing interests such as fading lights, playing music, or using sensors. 

Figure 1 presents a sampling of students’ DebugIts to convey the range of personally meaningful 



 

 

projects with aesthetics that represented students’ interests and were carefully designed for their 

peer audience. 

 
Figure 1. Examples of student teams’ DebugIts (clockwise from upper left): Smiley face, peace sign, Pokemon ball, 

two suns, Mario star, and “Starry Night”, which illustrate different aesthetic choices and configurations of circuit 

designs, LEDs and functionalities in code. 

To illustrate the complex and nuanced ways that student teams participated in the Debugging by 

Design unit, we present two case studies (limited because of space), chosen because they provide 

clear illustrations of a commonality across the e-textile DebugIts in the class, namely using the 

aesthetics and distributed modalities of e-textiles to challenge their peers. Throughout the 

descriptions we highlight the complex histories and intent behind specific bugs and the 

combination of bugs as whole, including the role that consideration of audience played in design    

4.1. Case 1: Evelyn and Nicolás 

For their DebugIt, Evelyn and Nicolás created a “sick cloud throwing up a colorful rainbow” (see 

Figure 2, upper left). In the description they gave to their peers, they explained that the project was 

supposed to “blink all together at half a second when button 1 (pin19) is pressed with the colors 

of the rainbow,” otherwise the lights should all be on.  Overall, within this seemingly simple 

project, the pair included several bugs in the code and a few in the physical craft and circuitry. 

Some bugs were simple coding bugs, e.g., missing semicolons and misspellings of variable names. 

Other bugs included circuit bugs such as one light with reversed polarity (negative and positive 

mixed up) and crafting bugs such as loose thread creating a short circuit and one gap in a circuit 

connection. These are typical bugs many novices make in crafting, designing circuits and writing 

code for their e-textiles (Fields et al., 2016). 

A critical feature of many DebugIts was a type of design bug which the class emergently 

named “intention errors”: where the project is functional but does not work according to the 

intention of the designers. For instance, in Evelyn and Nicolás’ DebugIt, a comparison of the sick 

cloud intention with its original buggy code and project design reveals three intention errors. First, 



 

 

pin19 is the button the group intends to trigger their project, but the actual button that was coded 

was different (pin4). Second, the description clearly explained that all the lights should blink at 

once, even though the code had five variables for lights: rainbow, yellow, green, blue, pink. Third, 

the primary conditional statement in the code utilizes two button values (butt1Val and butt2Val) 

when, according to the project description, only one is needed.  

 The decision-making behind selecting and creating bugs was thoughtful and complex. 

Early on in design, Evelyn and Nicolás brainstormed ways to create a bug that would involve 

nuisance crafting, with the idea that stitches are “easy to fix” (Video Day 2). However, during the 

ensuing design time, the pair began to discuss how long it would take for others to solve their 

project. For this pair, a major challenge in each crafting bug was making sure that it would not 

require too much restitching so that the receiving team could fix it in the time available (Video 

Day 2). In the end, the “sharing” part of objects-to-share-with played a key part in the pair’s 

decision-making to keep crafting bugs very limited: one light sewed on backwards (reverse 

polarity), one short circuit, and one area of unknotted thread (i.e., an open circuit).  

This consideration of audience came up many times, even when the pair problem-solved 

their own accidental bugs. For instance, while sewing the negative side of the lights on the rainbow, 

Evelyn neglected to pull thread all the way through in one of the stitches, creating a giant knot 

with several inches of extra thread at the back of the project. In admitting to her partner that, “I 

messed up,” Evelyn suggested that they turn her accidental mistake into a bug for their audience 

(Video Day 4). However, after examining the issue and how others might resolve it, Nicolás 

disagreed. The pair debated together how difficult it would be to solve this bug—how much time 

it might take—and then decided to fix it by pulling the extra thread through and weaving it behind 

the negative thread going through the other lights (Video Day 4). This fix actually turned out to be 

a confusing element for the team that solved their project (see below), but it was also a clever, 

time-saving choice in a situation where design time was highly limited,  

 



 

 

 
Figure 2. Evelyn and Nicolás’ DebugIt (clockwise from upper left): (1) Front of e-textile: “sick cloud throwing up a 

colorful rainbow”; (2) Back of e-textile: the two loose threads are causing a short circuit; (3) Circuit diagram: In the 

diagram all LEDs are connected to pin 6 of the microcontroller; and (4) Code (near top): declaring nuisance variables 

in their code solely to confuse their audience as these variables did not prevent the program from running as expected. 

 

Evelyn and Nicolás’ consideration of their peers played out both in generous and 

mischievous ways. The more considerate attention described above aligned with the teacher’s 

coaching to think through whether their peers would be able to reasonably solve all the designed 

bugs within one class period, though we should note that not all students were as mindful as Evelyn 

and Nicolás in limiting errors. The more roguish attitude of the pair came out in their attempts to 

confuse the peers who received their “sick cloud” project. In fact, the design of one parallel circuit 

for the rainbow lights with five individual variables for said lights in the code was purposefully to 

“throw people off” as was the decision to leave in the two-condition logic with two buttons, when 



 

 

only one was needed (FN Days 5 & 7). Here we see the situated and social dimensions of 

personally significant objects-to-share-with: both students expressly voiced their desire to 

confound their peers through these extraneous pieces of code—and succeeded in ways  intended 

and unintended. 

 As intended, the receiving team—Emma, Lucas, and Lily—spent nearly 10 valuable 

minutes debating whether the five LEDs in the rainbow needed to be resewn because they were in 

parallel. After cutting the loose threads (i.e., short circuits) and puzzling over this issue they 

decided to ask their teacher for advice. The teacher pointed out that bugs depend on the intention 

of the project, that is, what Evelyn and Nicolás intended when they designed them (FN Day 6). 

After reading the intention statement of the project, Lucas expressed “that’s what they want”, and 

the issue was resolved with little effort. In contrast, the accidental knot with the extra thread woven 

into the back of the project, unintentionally befuddled the receiving team. They debated whether 

to cut the threads and resew the connections “because it looks wrong” (FN Day 6) before Emma 

summarily cut the connection to ground and spent considerable time resewing the entire long 

connection. Ironically, the bugs intended to confuse the audience successfully kept Lucas, Emma, 

and Lily occupied for many minutes, but it was the deliberate attempt to make their peers’ problem 

solving easier that took most of their time. Through both designing and solving, the “sick cloud” 

became an object-to-think-with that required examining and revising connections between old and 

new knowledge, it introduced each group to new problems across modes of crafts, circuit and code 

and challenged each to new solutions. 

4.2 Case 2: Lucas, Emma, and Lily 

For their DebugIt, Lucas, Emma, and Lily created a heart with two sheets of felt, one over the 

other. On one side of the heart, they attached the microcontroller and, on the other, four LEDs  (see 

Figure 3). Similar to Evelyn and Nicolás, their project contained a number of simple code bugs: 

missing semicolons, mismatched variable names, mismatched pin number assignments (i.e., 

circuit pin numbers did not match the programmed pins). They also designed a number of common 

circuitry and crafting bugs: a light with reversed polarity, loose knots, a short circuit, and an open 

circuit (with a ripped thread). One coding bug was a little unusual: the trio wrote a comment in the 

code that did not match the conditional statement: “button 1 on and button 2 on” when it should 

have been “button 1 on and button 2 off”. However, the group was particularly devious in the 

spatial placement of their crafting/circuitry bugs: the bugs were inside the heart (i.e., between the 

two layers of felt) and one LED was placed upside down, with the light shining in toward the 

fabric.  

 



 

 

 
Figure 3. Lucas, Emma and Lily’s DebugIt (clockwise from upper left): (1) Front of e-textile: a white heart with four 

LEDs, one LED is flipped with the light directed towards the felt; (2) Back of e-textile: the microcontroller is sewn 

over a second layer of felt, threads are loose and LEDs are attached to pins 9, 12, 6 and 10; (3) Circuit diagram: student 

annotations show the crafting bugs, some of these bugs were created between the two sheets of felt; and (4) Code: 

including a mismatch between the first conditional statement and the comment next to it.  

 



 

 

In contrast to Evelyn and Nicolás, much of the trio’s Debugit design was set from their 

earliest discussions. Lily and Emma (Lucas was absent) identified bugs, wrote them in a list, and 

started planning where they would go. Although creating a diagram of the project was not required, 

Lily convinced Emma that the best way to plan the project was by drawing out an aesthetic and 

circuit diagram (see Figure 3), and created new ways to annotate items such as torn threads, crossed 

circuit lines, and reversed polarity. As an object-to-think with, this diagram helped guide their 

discussions and kept them on track in their design. One major concern of the group was time—

how much time would different parts take to complete? For this reason they kept the main canvas 

of the DebugIt simple: the form of a heart. They reused code from a prior project (e.g., the 

superhero variable names like (e.g., Thor) came from Lucas’ prior project) and added mistakes. 

Besides concern about their own time management, the team also considered the other team’s time 

to solve the bugs (Video Day 4), worrying that the number of crafting bugs would be “too much” 

(Emma, Video Day 7). 

 This concern about audience also stretched to playfully imagining how to confuse their 

peers and how they would react, further emphasizing how the DebugIt was also an object-to-share-

with. This is one reason behind the decision to flip an LED so that the light was directed inwards 

(Video Day 2). Indeed, Lucas only half-jokingly suggested flipping all the LEDs and even the 

microcontroller upside down (Video Day 4)! The group considered several other sly bugs that 

mercifully did not make it into the final DebugIt, including adding more pin errors to confuse their 

audience (Video Day 3) and glueing the project edges together. Notably, in their design trajectory 

the group shifted from hesitation about designing bugs (on the first day Lucas wrote in his journal 

that “creating bugs feels very wrong”) to gleeful delight in their mischievous design.  

 When Evelyn and Nicolás, the receiving team, worked on debugging the heart they found 

the spatial bugs the most problematic. They easily breezed through the coding errors—they were 

already adept at designing similar bugs themselves. The misleading comment in the code did not 

even draw their notice since nothing was actually dysfunctional in the conditional logic. They also 

quickly resolved the backwards LED by simply flipping the light (twisting it in place)—thereby 

avoiding having to resew it and saving a “good twenty minutes” (Video Day 7). However, the 

circuitry errors inside the two pieces of felt were entirely original to Nicolás and Evelyn; they had 

never encountered “double felt” before and it genuinely confused them (FN Day 8). Getting the 

code running helped the pair isolate the probable circuitry errors inside the project, since the 

outside looked fine. Another clue was that the heart was discernibly hot from a short circuit—

Nicolás reported feeling “burned” (no injuries occurred in making or solving this project). 

Applying prior expertise to develop new abilities in problem solving, Evelyn and Nicolás 

eventually solved the DebugIt and presented a working project to the class. 

 

4.3. Student Reflections 

While the case studies illustrated the processes in which two teams participated in making and 

fixing Debugits, there was a marked difference in students’ feelings about the DbD process 

immediately and several weeks after their final projects were complete. In written reflections after 

solving their peers’ DebugIts, most students in the class explicitly expressed frustration. They 

noted that the errors were difficult to detect, often involved a lot of cutting and re-sewing to fix, 

and left them without enough time to solve everything. As Avery expressed, “It felt weird 

debugging someone else's project because they INTENTIONALLY (sic) put more bugs than a 

normal project ...I felt uncomfortable and MAD”. Some students also found it interesting or even 

fun to debug, but the most-repeated word (by 18 students) was “frustrating”. 



 

 

However these feelings were drastically different several weeks later after students 

completed their final e-textile project in the unit. Indeed, all students interviewed expressed 

feelings of increased comfort and competence with solving and designing problems. They said that 

the DbD unit should be done again next year because it was such a good learning experience, and 

several even asked for it earlier and more often! As for what they appreciated about the unit, many 

students remembered creating problems “challenging enough to stress someone out” as “funny 

and good” (Nicolás), claiming that this gave them a “new perspective on coding” (Liam) that was 

the “opposite” of what they normally experienced, making debugging both challenging and 

interesting. As Evelyn said, “it helped me realize I knew if I saw the errors in the next one, I knew 

how to fix it.” Being more comfortable with problems also helped students feel better able to ask 

for help from others since they became more aware that “a lot of people make mistakes” (Camila). 

Students located this sense of power over problems as a direct consequence of DbD.  

Not only did students feel more comfortable with problems, they also reported learning 

several important aspects about problems and problem-solving from DbD that emphasize the 

potential of DebugIts as objects-to-learn-with. All students interviewed claimed to have applied 

their DbD experience to their final projects. They explained this in several ways. Many students 

described becoming more familiar with a range of problems: “the type of errors there are, like how 

errors can be prevented and caused and everything” (Nicolás). Knowing more problems also 

enabled students to avoid problems in creating their final project. Gabriel explained that designing 

your own bugs  “makes you more aware that the next time you're creating a project… [you] make 

sure you don't make that mistake in the project.” Of course, avoiding some problems in their final 

projects did not mean that no errors occurred. All students described problems in their final 

projects. However, students claimed they were able to identify problems more easily: interpreting 

compiler feedback on syntax errors, applying a process for detecting errors across physical and 

digital systems, or isolating and testing problems. A few students even described the beginnings 

of a systematic approach to debugging that is rare amongst novice coders (McCauley, et al., 2008), 

naming a series of steps in an order that facilitated isolating problems and comparing code and 

craft. 

 

5. Discussion 

In this paper we conceptualize a provocative means to enable and empower students in debugging 

in  a constructionist fashion—by designing personally meaningful, buggy projects for others to 

solve. Case studies of student teams’ design actions, intentions, and reflections demonstrated high 

levels of interest, thoughtfulness, and creativity in design, and illustrated how students were 

“becoming more articulate about one’s debugging strategies and more deliberate about improving 

them” (Papert, 1980, p. 23). 

Reflections from across participating students further showed distinct perceived benefits 

from DbD, suggesting that constructing buggy projects can be as much objects-to-think-with as 

creating other personally meaningful computational objects. As with functional constructionist 

artifacts, failure artifacts serve as concrete representations of learners’ knowledge and 

understanding. Easy bugs are easy to design (e.g., deleting a semicolon) while difficult bugs are 

also difficult to design (e.g., logic problems or cross-modal contradictions). The combination of 

bugs must be thoughtful so as to confound but not overly discourage recipients. It is in this spirit 

that we see the idea of designing buggy projects as a rich way to expand productive constructionist 

learning in computer science education. 



 

 

In addition, we observed that buggy projects also acted as objects-to-share-with. This is 

evident in the important roles of peer collaboration and consideration of audience in design. 

Audience was particularly important as students considered the number, difficulty, and 

combination of bugs that must be solved within a short period of time. Considering audience 

helped students think of the buggy projects more holistically, as a collection of bugs that interacted 

with each other. Further, the entire DbD experience resulted in reports of enhanced collaborative 

problem solving, including acute awareness that everyone in the class made mistakes, was familiar 

with mistakes, and could either offer or might need support with mistakes. This opens up new 

possibilities for considering the role of  audience in learning debugging, a contemplation found 

little in reviews on debugging in computer science education (e.g., McCauley et al, 2008; Prather 

et al, 2019). When debugging is framed as the object of design, audience becomes important and 

may support students in evaluating the relative difficulty and combinations of bugs. 

One unexpected theme running across our findings was the expression of emotion in 

designing and solving failure artifacts. Mischievousness and fun as well as empathy and sensitivity 

(for peers receiving DebugIts) were productive emotions exhibited during bug design, and shifts 

away from frustration to increased comfort, security, and a sense of control with bugs were 

expressed retrospectively weeks afterward. Given the problematic connotation of failure in school 

cultures that rarely value it, this suggests a productive angle of future research on the role of 

emotion in Debugging by Design or in dealing with bugs more generally in constructionist settings 

(see Dahn & DeLiema, 2020). What is the role of emotion in tackling and/or designing bugs in 

learner-driven designs? What scaffolds, classroom support, and curricular designs support 

perseverance, a sense of capability, or resoluteness in debugging? More attention is needed on the 

roles and ranges of emotion and motivation in designing for and experiencing failure while making 

personally meaningful, socially shared objects.  

In future research, we will examine other aspects that contribute to empowering students 

to design bugs in projects. For one, we plan to expand implementation of DbD in the e-textiles 

unit to multiple teachers. This will enable us to examine variances in and best teacher practices of 

implementing DbD. The case study analyses already hint at the importance of the teacher in 

providing constructive criticism at key points of design and creating a space where students can 

freely share their mistakes and problems. Comparative analyses may make these and other 

practices more clear. Further, it is difficult in the analysis of just one classroom to identify what 

role DbD had in students’ increased comfort with and sensemaking of debugging. A quasi 

experimental design with some classrooms doing just the e-textiles unit and others doing the e-

textiles unit with DbD is planned to help illuminate the particular role that DbD may play in 

students’ growth.  

 

6. Conclusions 

This paper presents a provocative angle on foregrounding debugging in constructionist activities. 

It draws attention to bugs not as accidents to be solved but as objects-to-think-with and objects-to-

share-with. This approach of making students designers of bugs, or mistakes, is not limited to CS 

education and could also be applied to other constructionist contexts in which students design 

artifacts. We look forward to insights from creative applications of Debugging by Design or similar 

interventions to other domains in physical computing, general software design, and many other 

areas of design more broadly.  
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