Conceptual Design of a Satellite Bus Using Internet Technologies

Rich Slywczak
NASA/Glenn Research Center (GRC)
Satellite Networks and Architectures Branch/5610

17th Annual AIAA/USU Conference on Small Satellites
August 14, 2003
Goals for Bus Design

- **Goal:** Provide end-to-end connectively between satellites and ground systems using IP-based protocols.

- Architecture Design Objectives:
 - IP Based
 - Plug-and-Play Design
 - Modular
 - Reconfigurable/Extensible
 - Security
 - Data Integrity
 - Distributed Architecture
 - Networked Environment

- Compare and Validate to an Existing Mission
 - TRMM
Space Communications and Protocols

Protocols:
- IP-based
- TCP/IP
- CCSDS

“Protocols”:
- IP-based
- SCPS
- MDP
- CCSDS

Internet

Government Agencies

Universities

Data Users

Commercial

Government Owned

Glenn Research Center

at Lewis Field
Benefits of an IP-Based Architecture

• Simple Access to Platforms
 – Users will be able to use standard applications
 – Data can be downloaded to either government or commercial installations

• Integration of heterogeneous space platforms
 – Important for constellations

• Focus on new missions
 – The infrastructure will be maintained independently

• Real-time Data Delivery
 – Users can retrieve the data directly from the spacecraft

• Instrument Failover Scenario
 – Eliminates the need for cross-strapping
 – When one instrument fails, another can be brought on-line dynamically
Generic IP-Based Satellite Bus Architecture

- ACS Subsystem
- HK Subsystem
- Additional Subsystem
- Instrument Subsystem 1
- Instrument Subsystem 2
- Instrument Subsystem N
- Additional Subsystem 1
- Additional Subsystem N

- Emergency_Commands
- Commands
- Data
- Ancillary_Data
- Recorder_Subnet
- Recorder
- Satellite Status & Maintenance Subnet
- Instrument Subnet
- Additional Subnet

Glenn Research Center at Lewis Field
Validating the Design

• Validate the design by comparing against an existing mission.
 – The goal is to determine whether the design can be reconfigured to support the current set of instruments.

• Validate against the Tropical Rainfall Measuring Mission (TRMM)
 – US-Japanese joint mission
 – Launched in 1997

• Reasons for selecting TRMM:
 – Familiarity with Mission and Data Processing
 – Complement of Five (5) Instruments
 • TMI, PR, VIRS
 • CERES, LIS
 – At launch, TRMM was the highest data rate mission for NASA
 • New design has to maintain the data rates.
 – Communications Infrastructure contains typical space components.
 • 1773 Busses
 • Communications using CCSDS
Did the design meet the goals?

- **IP-Based**
 - Bus contains IP instruments connected to an Ethernet backbone.
 - Protocol will be TCP/IP
- **Plug-and-Play Design**
 - Instruments will plug directly into the backbone.
 - Instruments will dynamically configure themselves.
- **Modular**
 - The bus is divided into separate subnets.
 - Reduction of Data Traffic by keeping the type of traffic on its own subnet.
 - Instruments can collect, store, and transmit the data.
- **Reconfigurable/Extensible**
 - The design can be flexible to meet the requirements of the project.
 - Number of subnets or number of instruments on a subnet.
 - Components of the architecture can also be eliminated.
Did the design meet the goals?

• Security
 – Typical Internet Security measures can be applied
 • Firewall Protection – provides a degree of security
 • VPNs provides authentication and encryption of data.
 – Traffic will only be transmitted on the appropriate subnet.

• Data Integrity
 – Data will be TCP/IP packets which provides data integrity checks
 • May consider additional application checksums for sensitive data.
 – Sensitive data can be encrypted.

• Distributed Architecture
 – Eliminated ACS and S/C Processor
 • Primary function is Bus Controller
 – Distributed memory through the Bus
 • IP-Based Components contain memory, processors and buffers.
Did the design meet the goals?

- **Network Environment**
 - **Failover Scenario.**
 - If a primary instrument fails, it can be replaced by the secondary instrument
 - Secondary instrument will retrieve IP addresses dynamically
 - **Typical Networking Services**
 - DHCP
 - Routers
 - Firewalls
Future Work

• Complete a detail design of the bus architecture
 – Look at different designs and implementations
 – Flush out details with the individual components
 – Requires multi-disciplines to complete the task
 – Validate the designs with spacecraft bus designers

• Extend to different and more complex missions
 – Constellations
 • Communication between mother and daughter ships
 – Space Networks

• Emulate the architectures
 – Determine if one configuration is better than another?
 – Validate both normal and anomalous scenarios.

• Componentize the architecture
 – Determine the building blocks
 – Allow projects to “simply” build the communications infrastructure

Glenn Research Center

at Lewis Field
Contact Information

Rich Slywczak
NASA Glenn Research Center
21000 Brookpark Road, MS 54-5
Cleveland, Oh 44135
Phone: (216) 433-3493
e-mail: Richard.A.Slywczak@nasa.gov

Publications:
“LEO Satellite IP Communications Concept and Design”
“Conceptual Design of a Satellite Bus Using Internet Technologies”