Relative Navigation, Microdischarge Plasma Thruster, and Distributed Communications Experiments on the FASTRAC Mission

The University of Texas at Austin

T. Ebinuma

Surrey Space Centre, University of Surrey, UK
Outline

• Mission Overview
• Objectives
• Research Effort
• Satellite Design
• Mission Support
• Budget
• Mission Timeline
• Facilities
• Participation
Mission Overview

- Formation
- Autonomy
- Spacecraft with Thrust, RelNav, Attitude, and Crosslink

GPS Constellation

FASTRAC Nanosatellites

With Thruster
Without Thruster

17th Annual AIAA/USU Conference on Small Satellites
August 11-14, 2003
Logan, UT
Objectives

Mission Statement
The purpose of the FASTRAC mission is to investigate enabling technologies for satellite formations; these will include thrust, relative navigation, attitude, and crosslink. This will be achieved by taking data on orbit with a network of ground stations and processing the data for evaluation.

Mission Objectives

• Demonstrate effectiveness of the Micro-discharge Plasma Thruster
 – Extend the Life of one Vehicle by imparting an altitude separation between the two satellites \(\geq 5\% \) of their initial altitude

• Demonstrate GPS Relative Navigation
 – Demonstrate realtime, on-orbit relnav solution to an accuracy of \(\pm 1\text{km} \) versus post-processed solution

• Demonstrate Two-way Intersatellite Crosslink with verified data exchange

• Demonstrate Distributed Ground Station Network
 – Receipt of satellite data from both satellites by at least 2 ground stations, at least one of which is remotely commanded
Research Effort

Microdischarge Plasma Thruster Experiment
• Demonstrate a measurable increase in orbit lifetime using an array of MPTs
• Achieve at least 5% altitude difference between the Nanosats
• Characteristics
 • Specific Impulse ~500 s
 • Exit exhaust Mach number in vacuum ~5
 • Temperature ~1000 K
 • Discharge chamber pressure ~1.013E+05 Pa (1 atm)
Research Effort

Microdischarge Plasma Thruster Experiment

- Microdischarge creates plasma
- Mass ~2 kg
- Propellant – Xenon
- Voltage Requirement ~300 to 1000 V
- Size without tank ~1x1x1 cm
- Tank Size 5 cm diameter and 13.3 cm height.
- Less than 2 watts of power
- Tank mass ~415 grams
- 2-D Converging-Diverging nozzle
- Tank pressure ~5 atm
Research Effort

On-Orbit Relative Navigation

- GPS Orion Receiver
- Transmit Raw Observables Directly
- Ground Post-Processing
 - Accuracy Assessment
- Constellation Simulator
 - Extensive Hardware-in-the-Loop Validation
- No Control Attempted
 - Demonstrates Capability
Research Effort

Distributed Communications System

• Multiple Stations Available for Tracking
 • Demonstrate Effectiveness for Formations
• Requires Coordinated Scheduling
• Based on Santa Clara University RACE System
 • Remote Accessible Communications Environment
 • TCP/IP Comm. Standards
Satellite Design

• Structure

• 2 Hexagonal Isogrid Structures
• Structural Components
 – 19x 22cm side panels with reinforcement bars
 – Attachment to separation system built in to base of structure
 – Lightband Separation system
• Material: Al 6061-T6
• Fasteners: Military spec 1.905cm length and 0.218cm diameter screws with corresponding washers and nuts
Satellite Design

• Separation System
 • Mechanical interface
 • Direct attachment to structure through mounting plate
 • Integration with 15” Lightband system
 • Motor driven Separation /Non-pyrotechnic
 • Electrical interface
 • 15 Pin Socket Connectors
 • 10.4 W motor operating power
 • Satellite initiate separation
Mission Support

• Dynamic Analysis
 • Analytical Graphics Satellite Tool Kit used for Dynamic Analysis tasks
 • Orbit Characteristics
 – Altitude: 350 km, 400 km
 – Inclination: 30 deg, 51.6 deg, 90 deg
 – Circular (e=0), Right Ascension=0, Argument of Perigee=0

• Orbit Lifetime Determination
 – Jacchia-Roberts Atmosphere model
 – 70x70 gravity model
 – Solar and Lunar effects
 – Schatten Solar flux and Geomagnetic index predictions for 2006
 – Lifetime determined to be approximately 3-4 months worst-case
Mission Support

• Ground Station

• Located at Univ. of Texas at Austin
• V-band (12.25dB) and U-band (16.6dB)
FASTRAC COST BUDGET: 07/31/03

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Subsystem Total</th>
<th>Specifics</th>
<th>Cost/Unit</th>
<th>Quantity</th>
<th>Net Cost</th>
<th>Figure of Merit (1-10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground Station</td>
<td>$4,000.00</td>
<td>$4,000.00</td>
<td>1</td>
<td>$4,000.00</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Structure</td>
<td>$3,700.00</td>
<td>3 Prototypes</td>
<td>$400.00</td>
<td>3</td>
<td>$1,200.00</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Final Structures</td>
<td>$500.00</td>
<td>2</td>
<td>$1,000.00</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Testing</td>
<td>$1,000.00</td>
<td>1</td>
<td>$1,000.00</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fasteners</td>
<td>$200.00</td>
<td>1</td>
<td>$200.00</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Margin</td>
<td>$300.00</td>
<td>1</td>
<td>$300.00</td>
<td>3</td>
</tr>
<tr>
<td>C&DH</td>
<td>$3,500.00</td>
<td>$3,500.00</td>
<td>1</td>
<td>$3,500.00</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Thermal</td>
<td>$2,000.00</td>
<td>Materials</td>
<td>$1,000.00</td>
<td>1</td>
<td>$1,000.00</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Testing</td>
<td>$1,000.00</td>
<td>1</td>
<td>$1,000.00</td>
<td>3</td>
</tr>
<tr>
<td>GPS</td>
<td>$500.00</td>
<td>$500.00</td>
<td>1</td>
<td>$500.00</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>$9,320.00</td>
<td>Testing</td>
<td>$500.00</td>
<td>1</td>
<td>$500.00</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solar Cells</td>
<td>$630.00</td>
<td>14</td>
<td>$8,820.00</td>
<td>4</td>
</tr>
<tr>
<td>Thruster</td>
<td>$15,000.00</td>
<td>Initial Testing</td>
<td>$6,000.00</td>
<td>1</td>
<td>$6,000.00</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Final Design</td>
<td>$9,000.00</td>
<td>1</td>
<td>$9,000.00</td>
<td>7</td>
</tr>
<tr>
<td>ADCS</td>
<td>$2,000.00</td>
<td>$2,000.00</td>
<td>1</td>
<td>$2,000.00</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Budget

<table>
<thead>
<tr>
<th>Category</th>
<th>Total</th>
<th>Quantity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comm.</td>
<td>$3,135.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hamtronics TA51</td>
<td>$169.00</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Hamtronics TA451</td>
<td>$169.00</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Hamtronics R451</td>
<td>$189.00</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Hamtronics R100</td>
<td>$189.00</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Kantronics KPC-9612+</td>
<td>$369.00</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Kantronics Crystals</td>
<td>$14.00</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Kantronics Ovens</td>
<td>$40.00</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Crystal Installation Labor</td>
<td>$75.00</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>M/A COM SW-425</td>
<td>$7.64</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>MaxStream 900 MHz Modem</td>
<td>$150.00</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>AVR+PIC Subsystem Board</td>
<td>$50.00</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Sep. System</td>
<td>$500.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outreach</td>
<td>$500.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testing</td>
<td>$500.00</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Outreach</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Santa Clara U.</td>
<td>$15,000.00</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Test Facilities</td>
<td>$4,000.00</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Project Margin</td>
<td>$20,000.00</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Travel</td>
<td>$15,710.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Santa Clara</td>
<td>$1,550.98</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>N.M. Fabrication</td>
<td>$1,640.00</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>SmallSat/PDR</td>
<td>$1,800.00</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>BalloonSat</td>
<td>$1,640.00</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Test Facility Travel</td>
<td>$2,000.00</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Grand Total</td>
<td>$98,866.54</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mission Timeline

- **Launch**
- **Shake-down Validation**
- **Stack Configuration**
- **Separation**
- **RelNav (real-time)**
 (once in this region, RelNav will take place when possible)
- **Plasma Thruster**
- **Secondary**
- **Re-entry (due to drag)**

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>03/01/06</td>
<td>Launch</td>
</tr>
<tr>
<td>04/01/06</td>
<td>Shake-down Validation</td>
</tr>
<tr>
<td>05/01/06</td>
<td>Stack Configuration</td>
</tr>
<tr>
<td>06/01/06</td>
<td>Separation</td>
</tr>
<tr>
<td>07/01/06</td>
<td>RelNav (real-time)</td>
</tr>
<tr>
<td>08/01/06</td>
<td>Plasma Thruster</td>
</tr>
<tr>
<td>09/01/06</td>
<td>Secondary</td>
</tr>
</tbody>
</table>

Legend
- Orange: Subsystem active
- Red: Objective accomplished
- Blue diamond: Major event

17th Annual AIAA/USU Conference on Small Satellites
August 11-14, 2003
Logan, UT
Facilities

• University of Texas at Austin: Satellite Design Lab

• University of Texas at Austin: GPS Lab

• University of Texas at Austin: Plasma Research Lab

• Santa Clara University: Robotic Systems Lab
Participation

• Student Participation
 • Texas Space Grant Consortium
 • Partnerships with Public High Schools
 • Amateur Radio Community
 • Web Site - Data and Outreach
 • Educational and Academic Impact
 • Senior design projects
 • GPS technology courses

• Outreach
 • Community Activities
 • K-12 talks & demonstrations
 • General audiences
 • Technical Conferences
 • Summer, 2003
 • Publications
 • College of Engineering
 • Department Newsletter
 • The Daily Texan