
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

Undergraduate Honors Capstone Projects Honors Program

5-2004

A Fleet Tracking System using G.P.S. and Radios A Fleet Tracking System using G.P.S. and Radios

John Mulholland
Utah State University

Matthew Warner
Utah State University

Matthew Waldron
Utah State University

Eric Widdison
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/honors

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Mulholland, John; Warner, Matthew; Waldron, Matthew; and Widdison, Eric, "A Fleet Tracking System using
G.P.S. and Radios" (2004). Undergraduate Honors Capstone Projects. 797.
https://digitalcommons.usu.edu/honors/797

This Thesis is brought to you for free and open access by
the Honors Program at DigitalCommons@USU. It has
been accepted for inclusion in Undergraduate Honors
Capstone Projects by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/honors
https://digitalcommons.usu.edu/honorsp
https://digitalcommons.usu.edu/honors?utm_source=digitalcommons.usu.edu%2Fhonors%2F797&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.usu.edu%2Fhonors%2F797&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/honors/797?utm_source=digitalcommons.usu.edu%2Fhonors%2F797&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

A Fleet Tracking System using G.P.S. and radios

By

Approved:

Matthew Warner
Matthew Waldron
John Mulholland

Eric Widdison

Thesis submitted in partial fulfillment
of the requirements for the degree

of

UNIVERSITY HONORS
WITH DEPARTMENT HONORS

in

Computer Engineering

Thesis/Project Advisor Department Honors Advisor

Director of Honors Program

UTAH STA TE UNIVERSITY
Logan, UT

Year of Graduation 2004

Honors Senior Project Final Report:

A Fleet Tracking System using G.P.S. and radios

Presented by:
Matthew W amer

Matthew Waldron
John Mulholland

Eric Widdison

November 27, 2002

Senior Project
What I did
John Mulholland

My job in the senior project team was to provide all of the high level software. This
consisted of providing a Graphical User Interface (GUI), providing the interfaces for the
user to input commands, the execution of commands, and communicate with the PK-96
through the serial port. I was also the final tester.

In order to provide the GUI, I used Microsoft Foundation Classes (MFC). I acquired
some knowledge from working at the Space Dynamics Lab (SDL). The rest I had to
learn. The GUI displayed information about where the boats were, where the fish had
been caught, and a map of the area. I created most of this code myself but was able to
find some free code on the internet which I slightly modified to provide the zooming in
and out of the map.

There were many options that the user had. He could change what area his screen
covered. He could also load a map and set which area that map covered. He could
display waypoints at desired locations on the map. When the data was received it needed
to be recorded. It was saved to a file at a rate the user specified.

The data was requested and then transmitted using RS232 protocol. I did this by
modifying some code that I had used in another project. This data was maintained in a
buffer until the proper data was found. The data was then passed to the rest of the
program.

Due to the fact that I was doing the software, I became the final tester. I had previously
tested my software using simulated data but since accepting the software is the last thing
done, I was the final tester. This is always difficult because other team members often
get their part done right before a deadline and that leaves me to do last minute integration
testing.

I also created a terminal emulator for the people designing the hardware. This program
proved very useful in providing knowledge of if the hardware was working. It was much
more difficult to use the main software due to the fact that it might be my problem or
theirs if it doesn't work.

As an experienced software developer I was able to advise my team leader in decisions
regarding how long it takes to do things. It make really only take two hours but you
should schedule more time because other problems will probably arise.

Abstract:

Doc Warner's Alaska Fishing LLc is a growing business operating out of

Excursion Inlet, Alaska. Based in Bountiful, Utah, this company has experienced large amounts

of growth in the past few years, and as a result has needed to make quick adaptations to

accommodate larger groups of people fishing with them. Doc Warner's offers a unique

experience in that they do not charter boats, but rather allow their guests to captain the boats.

The number of vessels that might be fishing at any time has increased from four to more than

twenty in the last three years. This large increase has made it difficult for the staff to watch over

each individual boat, and the business feels that its customer service is declining from the high

standard it desires to give. For example, if a boat has engine troubles, it is often over an hour

before the staff is able to discover this and assist the guests. Doc Warner's would also like a way

to alert their guests to current fishing "hot-spots". Other problems include guests wandering too

far from the camp and potentially heading into dangerous waters, or guests staying out too late

after curfew. Doc Warner's would like a system that will give them the location of each of their

boats at any given time.

Table of Contents

Abstract ... ii
List of Figures .. v
Acknowledgments .. vi
Introduction .. l

1.0 Preliminary Design
1.1 Problem Analysis ... 6
1.2 Summary of Specifications .. 7
1.3 Discussion of Main Features of the Design Problem 8
1.4 Summary of Technical Approach .. 10

1.4.1 Terminal Node Controller .. 11
1.4.2 Radio .. 16
1.4.3 G.P.S. Receiver .. 17
1.4.4 Protocols .. 17
1.4.5 Software ... 20

1.5 Summary of Preliminary Design Solution 21

2.0 System Design
2.1 Implementing the PIC-E Through Code 23

2.1.1 Packet Receiving .. 25
2.1.2 Serial Receiving ... 30
2.1.3 Packet Sending ... 33
2.1.4 Design Process ... 35

2.2 G.P.S. Selection ... 42
2.3 Protocols .. 43

2.3.1 WIDI G.P.S. Compression Protocol43
2.3.2 AX.25 Link Layer Protocol .. .46

2.4 Software Development.. ... 50
2.4.1 Program Creation ... 51
2.4.2 Processing Boat Data ... 53
2.4.3 Map Overlay .. 56
2.4.4 Communication Software .. 57

2.5 System Testing ... 59
2.5.1 Stationary ... 59
2.5.2 Mobile .. 59

3.0 Project Scope
3 .1 Summary of Project Tasks ... 61
3.2 Future Developments ... 62
3.3 Lessons Leamed ... 63
3.4 Special Details ... 64
3.5 Product Life-cycle .. 65

Ill

4.0 Miscellaneous
4.1 G.P.S. Pricing ... 66
4.2 TNC Options .. 66
4.2 Environmental Issues ... 67
4.3 Legal Issues .. 68
4.4 Customer Support .. 68

5.0 Project Management and Cost Analysis
5.1 Project Management Summary .. 70
5.2 Cost Summary .. 71
5.3 Facilities and Personnel ... 72

6.0 Conclusion
6.1 Purpose of Report .. 73
6.2 Objectives of Project.. .. 73

Appendix A: Materials List ... 76
Appendix B: Project Budget .. 78
Appendix C: Connections and Schematics .. 80

iv

List of Figures

Figure 1: Initial System-level Design Schematic ... 11

Figure 2: Final System-level Design Schematic .. 18

Figure 3: Software System Flowchart .. 20

Figure 4: Computer Software Data Flowchart ... 20

Figure 5: Main Program Functions of the PIC-E Programs .. 25

Figure 6: AX.25 Packet Receiving Algorithm Flowchart ... 28

Figure 7: Serial Receive Algorithm ... 31

Figure 8: AX.25 Packet Sending Algorithm .. 34

Figure 9: Basic Window with Boat 'a' at 0°N 0° E ... 52

Figure 10: Boat Property Editor Box ... 53

Figure 11: Data Collection Property Editor Window .. 55

Figure 12: A map of Logan, Utah, zoomed in on The Island .. 56

Figure 13: Waypoint Dialog Box ... 57

Figure 14: Schematic of PIC-E .. 81

Figure 15: Closeup of Schematic to Ml225 Mobile Radio, including I/0 pinouts 82

V

Acknowledgments:

Special thanks to Scott Poulsen for helping us enter the world of radio communications and

getting us started in the right direction. We also want to thank Kent Porter of Advanced

Communications Inc., Ogden UT for his help in setting up the radios and allowing the use of his

frequencies for testing of this project. Development of our assembly code was facilitated by the

many hours of labor that Byon Garrabrandt put into designing interfaces to the PIC-E. His

programs helped us to create our own custom interfaces. And finally, we want to thank Doc

Warner's for funding this project, and our wives for putting up with the late nights we put into it.

VI

Introduction

"I must down to the seas again, to the lonely sea and the sky,
And all I ask is a tall ship and a star to steer her by."

-John Masefield
Sea Fever

Doc Warner's Alaska Fishing LLC is a company that provides boats and accommodations

to people interested in fishing the waters of Excursion Inlet, Alaska. Due to recent growth, the

company has had to make many changes recently to be able to provide for an increasing

clientele. This includes increasing the size of their fleet from four to twenty boats. With the

increase in boats, it has become much more difficult to monitor the guests and provide for their

safety. If something goes wrong, it could take a very long time for the staff to become aware of

the problem, much less find the troubled boat and render aid. To solve this problem, Doc

Warner's would like a way to monitor the location of each boat, and communicate with them in

case of trouble.

The concept for a fleet monitoring system at Doc Warner's began in the summer of 1999

after a boat told those who were fishing with them that they would be staying out until curfew to

catch the last few fish on their limit. They wandered from their original fishing area and decided

to go a different direction than they had said they would be. There is a boat curfew imposed a

short time before the sun sets, because as twilight approaches it is extremely difficult to see

obstacles in the water and distinguish the shoreline from the water. Doc Warner's wants to allow

their guests the most enjoyable fishing experience possible, while still maintaining their

complete safety. Unfortunately it is difficult to convince the sometimes foolhardy guests of the

dangers that are in the waters of Alaska. As the curfew came and went this boat had still not

returned and the staff became extremely worried. Boats were sent out to look for them, however

as twilight approached clouds filled the sky and it darkened quickly. Fortunately the group

guests in the boat returned to the pier with hungry stomachs and a large number of fish. As they

returned, they passed between the search pattern being followed by the staff boats, and were

undetected. The search boats continued searching for them for nearly two hours, risking their

own safety by being on the water after dark. Later that night when all the boats had finally

returned a discussion ensued on the dangers of the situation. The staff boats were without radios,

and therefore were unable to be notified of the return of the missing vessel. Had the staff boats

waited another ten minutes they would have seen the vessel and wouldn't have put themselves in

danger's way. However, if the guest's boat had of suffered an engine malfunction, they could

have been swept into dangerous waters and as their expected location was far from their actual

one, it would have been nearly impossible to find them before nightfall.

In this situation no one was harmed, but a need for a method to track the locations of the

boats was made apparent to all who were involved. Different methods were discussed for

solving the issue, however the greatest ideas came from the guests themselves. In surveys of the

guests conducted after their week-long stay it was discovered that most guests did not feel that

they were ever placed in dangerous situations, however a number mentioned that they would

have liked to have had radios for communicating with their fishing buddies or camp. Marine

Band VHF radios were proposed to solve this situation, however the amount of training required

for the guests to use them properly made them impractical. An opportunity was seen by one of

the long-time staff members, Matthew Warner to solve all of these problems with a single

solution. By implementing a fleet tracking system which would allow voice communications as

2

well as report the locations of the boats, Doc Warner's would be able to better serve their guests

and improve the safety of their fishing experience. The system has many features that are

beneficial over a simple voice radio. By constantly reporting the boat's current location, even in

the event of total power failure on the boat the staff will still know where to look for them.

Due to the remoteness of the area, cell phones and radio are the only means of reliable

communication. A standard commercial fleet monitoring system using the satellite telephone

"Satcomm" system is prohibitively expensive. Doc Warner's would also like a system that

allows limited two way communication between the boats and the home base, in the form of an

alert to the boats if they've wandered too far away. A "panic" button on the boats could also alert

the base of any problems that the guests are having. The ultimate purpose of this system is to

transmit data between G.P.S. receivers mounted on each of the boats and a central monitoring

station. The central receiver will then decode the signal and display it using a customized

program written for that purpose. As all G.P.S. receivers have industry standard outputs, it is

only a matter of converting the digital coordinates into an analog signals that can be transmitted,

received, and converted back into a format that is readable by the hardware that will interface

with the computer.

The data stream leaving the G.P.S. must be edited to contain a programmer defined

command word and only the data pertinent to this project. The command word has unused status

bits can be encoded at a future date to provide customized information from each boat as the

company sees necessary. The edited data is then transmitted when a request is received from a

base computer. The base computer will receive the data, plot it on the screen over a map of the

3

area, and save the data for future analysis. Voice communication will also be allowed to provide

contact in emergencies.

One problem faced by the designers is that the lodge is situated within a narrow inlet that

has tall mountains on either side. The main fishing areas are located on the far side of these

mountains. As a result, line of sight transmissions are impossible. In order to solve this, one

proposal has been to place a repeating station on a small island located at the mouth of the inlet.

This island has line of sight coverage to both the fishing areas and the lodge. Preliminary testing

carried out in the summer of 2001 showed that using commercially available amateur radios and

repeaters operating on a business band frequency could be used. This testing also showed that

the repeater is an effective solution. Further testing with higher wattage radios in the summer of

2002 found that by using higher wattage radios adequate coverage can be obtained without a

repeater.

To distinguish between the signals from each individual boat each boat will be encoded

with a specific digital signature. The "receiving" antenna on the computer will transmit this

code with a hand shake signal to each boat as it becomes necessary to locate each of them. Each

boat will then recognize when its signature has been transmitted, and respond by transmitting the

appropriate data.

Doc Warner's would also like their system to have the ability to track where different

types of fish are caught by their guests. This data would be combined in a database in the central

computer. When compared with weather reports and tide charts, the data would allow a more

accurate prediction of where fishing will be best at a given time and place. The database could

be accessed to show the demographics of the fish caught over a given period of time, thus

4

identifying immediate hot spots and allowing Doc Warner's to more accurately track fish

migration through the fishing grounds. A system that monitors current boat status, such as fuel

level, and motor on/off could eventually be added to allow for more complete monitoring of the

boats.

Due to the size of this project a number students were involved to accomplish it. One

student worked on the development of the software for the base computer and interfacing it

through a serial port. Another student handled the many communications problems presented in

this project. The third team member did the micro-controller programming. The fourth team

member handled and interfaced of the many different hardware components, as well as assisted

the other three when addition assistance was required.

The budget goal for this project is to implement the system at a cost of less than $1000.00

per boat. There will be additional costs involved with the repeater and the base computer, we

hope to keep these additional costs below $4000.00.

The reusability of this system in other applications is also being explored by the team to

potentially market this product. There has already been interest in it expressed by other

compames.

This paper discusses the development and implementation of this system. It describes in

detail the steps that were taken in the design of this project. It also includes flow charts

describing the advances in the design as hardware was chosen and other decisions made.

Specifications for some of the devices are included. Due to the size of the software it is not

found in this text, however a simple flowchart of the computer software is.

5

Preliminary Design

Problem Analysis

There are two main goals that Doc Warner's needed accomplished. First of all, Doc

Warner's desired to increase the safety of their customers. This was to be done by having each

boat transmit its position while maintaining the ability to communicate by voice to people within

the Lodge. There are over twenty boats in the fleet at Doc Warner's and each boat will need both

data and voice communications. Secondly Doc Warner's desired to improve the fishing

experience for each guest. Doc Warner's will accomplish this by monitoring the location and

type of fish caught by the guests and enabling the boats to communicate this information to each

other. A log will be kept detailing the species and location for each fish caught by the individual

boats. This data needs to be displayed in a real time manner so that Doc Warner's will be able to

alert the guests of the current fishing "hot spots". Access to the fish log history will also make it

possible to discover trends in the fishing locations.

In order to accomplish these tasks software needed to be created which allows the user to

track the boats and other information in real time on a map of the area. This software will also

allow the user to access the historical fishing data. All communications between this software

and outside hardware will be through the serial port.

In order to know the location of the boats and where they catch fish, a G.P.S. receiver

must be placed on each boat. This G.P.S. signal must be received by a device, decoded by it, and

then transmitted to the computer. This transmission will be accomplished using business band

UHF radios. We needed to determine what type and wattage of radio to use and whether or not a

6

repeater is necessary to provide adequate coverage of the fishing area. A method was also

needed to interface the radio to the computer. Protocols to handle all the communication

between different subsystems had to be developed or learned.

Other decisions made by the design team included what data to transmit and how often

each boat will communicate with the base computer.

Summary of Specifications

The cost is to be minimized. There are many similar systems currently in use in the

world, but they are prohibitively expensive to a small business like Doc Warner's.

Marine quality materials must be used. Any devices used must have integrity against

weather conditions and the corrosive properties of salty sea water. There should be a

minimum of student manufactured parts in order to promote robustness.

The product must be user friendly. It should operate autonomously with no need for

outside interference. However, it should be able to compensate for any interference

caused by the users.

The project conform to FCC regulations and laws. Frequencies will be licensed for the

area in which the radios will be used.

The system must cover the entire fishing area that is accessible by the guests. As this

area contains many small islands and narrow bays it must be determined which radios are

sufficient in strength, and if a repeater must be installed to cover any dead spots where

the base computer can't reach.

The product must not compromise the safety of the guests. It must not use excessive

amounts of battery power thereby stranding the guests with dead batteries.

7

The base computer must have a variable frequency between communications with the

boat. This is to allow the system to be calibrated to operate at maximum efficiency in the

field. It also allows the system to be used in different settings in the future.

Interface to the radios as well as home base computer need to be upgradeable as to what

data is transmitted. This is to allow the system to be applied in different settings in the

future.

The system needs to have a method for recording the location where fish are caught,

plotting it real time on the base computer, and store these locations for future data

analysis. It should distinguish between halibut and salmon.

The system needs to have "Panic" button of some sort. This is a method whereby a user

in distress can communicate to the home base. Rather than put an actual button on the

boats this criteria has been changed to allowing voice communication without

permanently disrupting the data stream from the boats.

Discussion of Main Features of the Design Problem

This design problem was initially broken down into three subsystems. These consisted of

the G.P.S., Radio, and Base Computer subsystems. While each of the subsystem of this project

contains a number of different and unique features of the design problem, they are all intricately

interwoven by the common methods they use to communicate between them.

The G.P.S. Subsystem presented particular challenges because it required the learning of

two distinct protocols. In order for the boats to "know" their location, they must each have a

G.P.S. receiver on board .. This G.P.S. receiver must communicate with a base computer located

at Doc Warner's fishing lodge through two-way UHF radios. Most G.P.S. systems output a

8

standardized NMEA data string using a RS-232 protocol. Both the NMEA data string and the

RS-232 protocol needed to be learned. Only certain portions of the NMEA string are relevant to

this project. As a result decisions must be made regarding whether or not to keep extraneous

portions of the data string, or transmit the entire thing. The boats require two buttons to be

mounted on them. These buttons will correspond to the specific species of fish most frequently

caught at Doc Warner's and, when pressed, will cause the current location to be transmitted to

and recorded on the base computer as a location where that specific species of fish was caught.

This creates a potential for multiple boats to transmit simultaneously, or cross talk. A method to

prevent this must be designed. The frequency with which each boat communicates with the base

computer must also be determined, so that adequate memory storage can be installed on each

boat for anything stored there. The G.P.S. must both be programmable and have separate I/0

connections for these buttons, or a device is required that is capable of communicating with the

G.P.S. receiver, interpreting its output, and forwarding the compressed data to the radio. When

many of the challenges presented by this subsystem are overcome they will define how other

challenges in the other subsystems will be handled.

The Radio Subsystem compromises the radios and the protocols they used for

communication. This subsystem required the determination of what type and wattage of radio to

use to provide adequate coverage of the fishing area. In the event that the radios could not reach

every location the placement of repeaters was considered. Most important is the need for a

reliable communication protocol between the radios. As this protocol will be transmitted from

one radio to the other it will be difficult to debug. As a result this protocol must be both well

9

designed and well understood. This radio system should also function as an emergency contact

for the Lodge in the event any boat suffers a catastrophic failure.

The Base Computer Subsystem consists of a method or device to send and receive signals

between the radio and the base computer. This subsystem must organize the receiving pattern to

prevent crosstalk while still providing adequate coverage of the fleet of boats. It must also allow

for voice communication to be carried on the same radio channel without interfering with the

transmission of data. In the event the data transmission is interrupted, the computer should be

able to automatically continue its normal functions when the radio channel is clear. Software

will interpret the received signals as G.P.S. coordinates from each boat and plot them over a map

of the area. It should distinguish between the coordinates of fish caught and the coordinates of

the boat's current location on the map. The map will only display current locations of boats and

fish caught within the last few minutes or hours as defined by the end user. This software will

have to be custom designed and written in order to have the ability to carry out the desired

functions and interface with the radios using the serial port of the computer. The computer's

serial port communicates using the RS-232 protocol. A method or device will need to translate

the inputs to and outputs from the radio to this format. The computer will also store the locations

where Doc Warner's guests have traveled and have caught fish. This will enable the data to be

analyzed at a later date to discover fishing trends. Many parameters, such as the sampling rate

and delay time between retransmission attempts, will be adjustable by the end user, to better

customize the project in the field for maximum efficiency.

Summary of Technical Approach

10

Radio
Boat1

Radio
Boat2

GPS Computer Radio Reciever GPS Tracking Software

Radio
Boat3

Radio
Boat4

I Figure 1: Initial System-level Design Schematic.

We began the project by drawing a simple flowchart of the necessary subsystems for this

project (Figure 1), and then we looked at what would be required to design each subsystem. We

refined the flowchart as we found components that would work to solve our problems. We

researched industry to find parts that could meet our objectives, and then decided (based on cost

and availability) which parts we wanted to use and which ones we wanted to build.

Initially we recognized the extreme difficulty in designing our own G.P.S. receivers and

radios. As a result we chose to implement those portions of this project with existing

technologies. A method was needed to control when the G.P.S. data would go to the radio, and

edit out all but the desired portions of the G.P.S. data string. To reduce the number of parts in

the system we first investigated programmable G.P.S. receivers but we found them to be

prohibitively expensive. This created a need to insert an interfacing system capable ofreading

G.P.S. strings, interpreting G.P.S. strings, storing them for a specified amount of time, and then

transmitting them to the radio.

Terminal Node Controller

11

Building our own interface between the radio and G.P.S. instead of using an existing one

was the lowest cost alternative available. We began researching the feasibility of using a

microcontroller to accomplish the task. As we considered many different makes and models of

microcontrollers, the one we found that would best have suited our plans was the PIC18C442.

We then undertook to learn the PIC assembly language, and studied this chip in particular to

understand how we could handle the two different type ofl/O we would be needing from our

interface device. The G.P.S. outputs in a standard RS-232 format, while the radio is completely

analog. We researched radios with a digital I/O port; however they proved to be prohibitively

expensive. At this point we had to determine the protocol we would use for communication over

the radio. As we were planning to build the system in it its entirety we realized that we could

define our own method for the analog communication. We considered a method using a single

frequency that would tum on and off, much like a digital signal. After further consideration

however We realized the best method was using a frequency switching pattern. Using a pattern

where it would switch between two frequencies would reduce the erroneous transmissions due to

static or interference. We even designed and simulated high order filters to interpret these

frequencies.

As we continued researching the capabilities of the PIC l 8C442 microcontroller we

encountered a number of obstacles. First of all, we would need to build a reliable circuit board to

contain it and the elements needed for it to operate. Secondly, it has only a single I/O port,

which would be used for the G.P.S. Interfacing with the radio would require a series of special

circuits to transform the analog wave forms to digital signals and vice versa.

12

We researched the methods available to us for manufacturing circuit boards on campus.

We discovered that while there is the machinery to do so, there are few faculty who actually

know how to use it. Also, our lack of experience with the PIC18C442 made it difficult to know

how and where to insert resistors and capacitors to match impedance and prevent damage to the

circuit. As a result, using it would significantly increase the amount of time required for the

project. Although the use of the microcontroller was initially the least expensive method for

implementing this project, we soon realized that the amount of testing required of our circuits in

order to achieve the robustness desired was monumental. The time requirements became more

than the scope of this project allowed.

Realizing that the radio channel would also be desired for voice communication as well

as data communication we worked on designing filters to split the signals that would be sharing

the channel. We investigated the normal frequency range of human speech. Finding that it

normally falls between 300 to 3000 Hertz, we considered using the lower band of the radio

channel, using low-pass and high pass filters to separate the signals. This didn't provide

sufficient bandwidth for the data payload that we needed. We also considered using a narrow­

band range (or two) somewhere in the upper frequencies of the radio channel. The filters in this

case were not responsive enough for frequency shift keying (where two frequencies, fD and fl,

are used to represent bit values of 0 or 1), and the filters couldn't remove enough noise for pulse

code modulation to be successful. Furthermore, as we researched further the radios available we

discovered that the radios filter out all frequencies outside of the normal range of human speech

as a form of noise rejection. The best solution we could find was to develop a protocol for

polling the boats from the base computer so that we can prevent any boat from having to wait too

13

long for the channel to be free before it uploads its data. The computer would need to track who

had gone the longest since the last upload, as well as detect when the channel was free to use.

To handle the 1/0 with the radio we began searching for existing methods in use. We

found some inspiration in a device called the TinyTrak.II, built and distributed by Byon

Garrabrant (www.byonics.com). The TinyTrak.II is a small device that interfaces with G.P.S.

and transmits at set intervals to the radio using a Ham radio standard protocol called AX.25. It

outputs to the radio using a specialized bridging circuit which allows four pins changing at

certain intervals to approximate a sine wave. Unfortunately the TinyTrakll is unable to handle

input from the radio, and so it not suitable for our design concept.

The AX.25 protocol is similar to the idea we had developed independently, in that it

switches between two frequencies. However the similarities end there. As a packet

communication protocol it has built-in complex checksums, as well as identifiers of who sent the

packet and who is supposed to receive it. It even includes a list ofrepeaters that are asked to

pass it on, and which ones have already passed it. A large amount of study was devoted to

understanding this protocol. After studying AX.25 we decided to use it in our device for a

number ofreasons. The Ax-25 is an industry standard, allowing us to use existing technologies

in our project. Our protocols lacked the robustness of the AX.25, particularly in dealing with

interference and lost packets.

With the discovery of the TinyTrakll and the AX.25 protocol, we began looking at other

existing solutions to our interface problem. The TinyTrak.II was designed to have Terminal

Node Controller or TNC on the receiving end that would interface with the computer. TNC's are

used by the Ham radio world as a simple interface for computers and radios. They handle

14

encoding, checksum, and even are capable of digipeting (repeating a signal sent from one radio

so it will be heard by another) and storing mail. Most TNC's also have the ability to detect when

the radio channel busy and wait until it is unused before transmitting their data. While most

TNC's are both too expensive and too specialized to be adapted to our use, we began searching

for one that we could program to do what we needed. After number phone calls and e-mails to

various manufacturer's we were eventually recommended to the Tucson Amateur Packet Radio

web site (www.TAPR.com) where we found a small programmable TNC called the PIC-E for

eighty dollars. After serious consideration we decided that the PIC-E would not only be the

most cost effective way to go, but also the quickest. We then redirected our focus to learning the

assembly language used in the PIC16F84 which is the heart of the PIC-E. TAPR has available

on their website assembly programs for the PIC-E to both interface with a G.P.S. and a radio

through the AX.25 protocol, however they use the available RAM very inefficiently. It became

necessary for us to write our own versions of these programs to accomplish our design

objectives. We were able to put our research with the PIC18C442 to use in writing the code for

the PIC l 6F84 as there are few differences between their languages.

Due to the exposed nature of the PIC-E we were also able to determine two unnecessary

devices on the circuit board (a switch and an LED) that we can connect to external buttons to be

pressed when the fishermen catch a salmon or halibut.

Our next step was to determine how to interface the Radio and the base computer. At this

point we knew we would need something that could interpret and send the AX.25 protocol as

well as communicate with the computer via a serial port using the RS-232 protocol. It became

obvious that we needed another TNC; however we were faced with a serious design decision

15

determining whether to use a commercial model or the programmable PIC-E. One commercial

TNC we considered was Timewave Inc.'s PK-96. The PK-96 has a buffered input and output to

the computer. It also has a built in channel busy detection circuit. This meant that in the event

the radio was busy, the TNC would hold data until it was free to transmit. By listening for

channel activity through the PK-96 the computer gained the ability to wait until the channel was

free before polling a boat. The TNC also has the convenient function of holding data received

from the radio until the computer is able to receive it. This allows for lag in the computer

response time, thereby preventing possible errors. The PK-96 also gives us an easy method for

testing the PIC-E programs we've written by providing a method for interpreting the signal that

we know functions as it should.

Radio

We spoke with the owner of the local Motorola service shop in Ogden, Utah and

discussed our project and radio needs. He recommended using a Radius series mobile radio.

The Radius mobile radio series include a number of different radios, each programmable with a

different number of channels. The radio with the largest capacity is the M-1225. It can have up

to twenty channels programmed into it. The cost between the M-1225 and the other models was

negligible and after speaking with the customer we decided that for future expansion possibilities

we would use the M-1225. The M-1225 Radius mobile radios are tunable between ten to forty

watts. One serious concern was whether or not these radios could reach all of the fishing

locations without the need for an expensive repeater installed on a central island in the fishing

areas. To test this we installed three radios on boats at Doc Warner's in Excursion Inlet Alaska,

and another radio where the base computer will be located. We then tested the range to different

16

locations using different antennas of voice communication. We discovered that a forty Watt

radio with a O dB ground plane generating antenna has adequate coverage. We decided for

added signal strength that all of the boats that can will use 5 dB antennas that must be mounted

on a separate ground plane. It was also determined that the deep cycle marine batteries and the

generators in the motors used on the boats at Doc Warner's are sufficient that the drain of the

radio does not threaten the safety of the guests. The Motorola service shop owner also

recommended the UHF frequencies that would work best in the environment the system is

intended to be placed in. We had to purchase specific frequencies for the area they are intended

to be used in, and we obtained permission from the Motorola service shop owner to use one of

his local frequencies to test our system.

G.P.S. Receiver

In researching G.P.S. systems we found first of all that a programmable G.P.S. receiver

with antenna is quite costly. However, a standard G.P.S. receiver (with built in antenna) can be

purchased for under $200.00. These systems are completely self- contained, weatherproof, and

output a standard NMEA G.P.S. string every second without the need for configuration. Due to

the ease of use, these units seemed ideal for our project. However later interviews with

professionals in the field yielded information regarding OEM G.P.S. units with waterproof patch

antennas that could be installed at half the cost and even allow for dual antennas to create a

differential G.P.S. system with greater accuracy. As this D.G.P.S. system is beyond the scope of

our project we did not choose to install that system, however it could be considered for future

development in the project.

17

OEM
GPS

Boat1
PIC-E

Boat2
PIC-E

Boat3
PIC-E

Boat4
PIC-E

Radius
M-1225 1--"""""""'l~
Radio

Radius
M-1225 1--"""""""'l~
Radio

Radius
M-1225 1--"""c,,,r.,,y~
Radio

Radius
M-1225 .,_...."""""IM

Radio

Computer Radio Reciever

Timewave PK-96

GPS Tracking Software

convey commands for functions (such as polling, data transmission, and retransmission),

compress and block out data for transmission, identify and resolve errors, and handle frame

control. In designing this protocol, we also tried to identify some bandwidth for transmission

and design filters to implement this physical link layer. Unfortunately, our early protocols could

barely deal with several of these issues, and the realizable bandwidth for a shared data/voice

channel was not sufficient for our needs. As we identified TNC's as a viable interface between

the radios and the data devices (G.P.S. receivers or the base computer), we recognized the AX.25

protocol as a much more robust solution for transmitting our desired data. As a result, our

original protocol was streamlined to include only a command word with identifier flags for the

data, and the compressed G.P.S. data stream.

18

The available program memory and RAM on the PIC-E chips was very limited. As a

result, we needed an algorithm that gave good compression without requiring significant

software or memory to implement it. The resulting protocol consists of blocks made up of one

byte of command word (for polling boats or requesting a re-transmission) or 9 bytes of data.

Data blocks can then be transmitted consecutively in an AX.25 packet. The command byte is

2Figure 2: Final System-level Design Schematic

actually found in each block, either as the entire block or to identify the data contents. A

command block can take on a hex value of C2 (to request retransmission of last packet) or C3 (to

poll a boat). If the command byte is in a data block, then it can take on three hex values: 80

(current location), 82 (location of salmon catch), and 83 (location of halibut catch). The

remaining eight bytes of the data block consists of the latitude and longitude NMEA ASCII data

compressed into binary format. That amounts to one byte for degrees, one byte for minutes, and

two bytes for fractions of minutes (NMEA output takes the form DDD:MM.mmmm). The

hemisphere is stored as the least significant bit of the minutes byte (so that byte reads

0MMMMMMH in binary).

The remaining controls are handled in the AX.25 protocol, which includes station

identifiers for the sender and recipient (as well as for any digipeater stations), block framing, and

error detection and correction. In introducing the AX.25, we found an interesting effect. One

key design concern was frequency of polls. If the polls are a few minutes apart, then we can

keep reasonably close tabs on the boats. If the delay between polls exceeds ten minutes, then the

19

User

+
Project Start _ -

Program CFIRSTDoc
....

Settings File Program

a

boats could travel too far between transmissions and get lost. The general formula for ideal

polling time is

(# ofboats)*((propagation delay)+(data payload)/(bandwidth)).

With our original protocol, this amounted to (20 boats)*(l0 sec/boat+(50 bytes/boat)/(300

bits/second)). This gave us polling times in the neighborhood of 4 minutes, which is good. The

AX.25 protocol has a much greater payload (about 100 bytes/boat), but it also uses a faster

transmission rate (about 1200 baud, which is partly due to not sharing the bandwidth with voice

communication), so the actual polling time is reduced.

Software

The design of the computer software began with a flow chart showing the basic

functionality of the program (Figure 3)

20

. Next, it was decided what data structures and graphical tools would be necessary to carry out

these functions. Then the necessary changes to the data structures to make the program work

correctly were made as the program was written. As the code was developed, it was tested for

functionality. The final code needed to receive data from the TNC, process it and then output it

to the screen and to a file so that a user could track the boats in real time and have a history of

fishing activity. This flow of data is shown in Figure 4. Finally, features were added and tested

to assure that they functioned correctly.

3Figure 3: Software System Flowchart

Summary of Preliminary Design Solution

By using an OEM G.P.S. system we were able to reduce the costs of the hardware needed

for the project as well as size of the exposed components. This is important for future

developments that may include Differential G.P.S. systems, and wearable vests with a built in

tracking system.

Through the PIC-E TNC we were able to communicate with the RS-232 protocol to the

G.P.S., parse the desired portions of the G.P.S. string, convert the data from ASCII to a binary

representation, encode according to the AX.25 protocol, and transmit it to the radio. We are also

Pk-96 _., DC'""'""n -- -CCommFuncti --+ - - - Computer
~

CCommOperations CFIRSTDoc TNC ons

File Screen

-·

able to receive commands through the radio in the AX.25 format and react to them. By

streamlining existing code, and addition of our own we were able to allow the PIC-E to store up

to five locations before transmission.

The AX.25 protocol is a reliable method for transmitting data from radio to radio. By

using AX.25 in our system we were able to take advantage of existing technologies for testing.

It also made available many sources for help on our code.

The M-1225 Radius radios allow for future expansion to a wide number of frequencies.

They are also powerful enough to transmit a forty Watt signal which can reach the base computer

from any of the fishing grounds. Due to the standardization of the Motorola radios, the use of

the M-1225 Radius also allows for other radios to be substituted in its place, even portable hand­

held radios. This allows for many future developments and branches in this system.

Timewave Inc.'s PK-96 TNC provides a simple method to send and receive signals from

the radio to the computer. It buffers both the incoming and outgoing signals from the computer

and prevents transmission of the data when the channel is busy. At $200 it is relatively

inexpensive to install on the base computer, however it's too bulky and the cost is too high to

install it on each of the boats. It also provided an easy method for testing the signals being sent

by the PIC-E TNC during development.

The cost for parts on each boat is around $850. For the base computer costs approached

$1200. This was well below the goals set at the beginning of this project.

22

System Design

Implementing the PIC-E Through Code

The PIC-E was chosen as the means for interfacing the G.P.S. and the radio in a

sufficiently economic manner. The PIC-E was designed for Ham radio enthusiasts as a means to

communicate digitally over ham frequencies. The PIC-E uses the MX614 modem to interface

the PIC l 6F84 with the radio. In our situation the business band radio is easily used in place of

the Ham radio. The PIC-E also has a serial port to connect to a G.P.S. output. It was designed

for use with the Tripmate, but was easily converted to be able to handle the Garmin 35LP that we

are using. The Tripmate and the Garmin and both G.P.S. systems that operate under NEMA

standards but are sold by different manufacturers. The difference between the two will be

explained later in the paper.

The PIC-E uses a PIC 16F84 to connect to the various components, and make sense of

the incoming signals. It has the following ports as described in the Microchip Datasheet.

PORTA is a bi-directional I/O port:
Pin RAO is port 17 and is used for I/O with TTL voltage levels.
Pin RAl is port 18 and is used for I/O with TTL voltage levels.
Pin RA2 is port 1 and is used for I/O with TTL voltage levels.
Pin RA3 is port 2 and is used for I/O with TTL voltage levels.
Pin RA4/T0CKI is port 3 and is used for I/O with ST voltage levels. It can also be

selected to be the clock input to the TMR0 timer/counter. Output is open drain type.
PORTB is a bi-directional I/O port. It can be programmed for internal weak pull-up on all inputs.
All pins can be used for input and output and TTL voltage levels. RB0, RB6, RB7 can also
accept ST voltage levels.

Pin RB0/INT is port 6. It can also be selected as an external interrupt pin.
Pin RB 1 is port 7
Pin RB2 is port 8
Pin RB3 is port 9
Pin RB4 is port 10. Interrupt on change.
Pin RBS is port 11. Interrupt on change.
Pin RB6 is port 12. Interrupt on change. Serial programming clock.

23

Pin RB7 is port 13. Interrupt on change. Serial programming data.

The modem converts the received radio signal to a digital signal. The rxd line from the

modem carries a TTL logic signal, which toggles when receiving a 0, and remains at the same

level when receiving a 1. The modem is configured to receive and transmit at 1200 bps, though

it has the ability to work at higher speeds. The rxd line from the modem was connected to RB4.

Port B was chosen for the ability to use a function provided by the microprocessor that

recognizes a change in any port B pin. The RBIF flag is set to indicate a change. This function

is used to check for a toggle on the rxd line from the MX614. RB5 is connected to txd line on

the modem. This bit is used to serially output the infonnation to the MX614, where it is

converted for sending over the business band frequency. RB2 is connected to MO and RB 1 is

connected to Ml of the modem. These bits are used to configure the modem for transmitting, or

receiving.

The G.P.S. is connected to the microprocessor on port A. RAO is used for the serial input

and is connected to the transmit line of the G.P.S .. RAl is designed for transmitting

configuration bits to the G.P.S., though we have not used it, and have left it unconnected. This is

the only interface needed between the G.P.S. and the PIC.

The PIC is connected to the radio as well. RA2 is connected to PTT OUT of the radio.

This is the Push To Talk pin. It is akin to pushing the Microphone button to talk, and needs to be

asserted when transmitting.

An LED was attached to RB0, and an unimplemented function was the toggle switch

attached to RA4.

24

The PIC-E also has an RJ-45 connector for the Microphone. This allows the radio to be

used for voice communications as well as digital.

The PIC-E was exactly what we needed to accomplish this project in the amount of time

allotted. All of the pieces fit together and the only thing needed was the code to implement the

required tasks. These tasks, as stated earlier, are:

1. Track Doc Warner's 20+ fishing boats within Excursion Inlet Alaska.

2. Allow limited 2-Way voice communication between guests and home base.

3. Track the location of fish caught, and distinguish between Halibut and Salmon. Transmit

the information over a business band radio.

The code that is needed will be implemented with the PIC 16F84 microprocessor. This PIC has

available lK of program memory, 64 bytes of RAM, and 8 bytes for a program stack. This is not

much RAM. The G.P.S. compression algorithm compressed one location to 9 bytes. Assuming

we wanted to store the location of 4 fish caught, and the current boat location, 45 bytes would be

used. This left only 19 bytes for variables needed in the code.

The code needed to perform three main functions. These functions are packet receiving,

serial receiving, and packet sending (Figure 5). The three main functions can be described as

follows:

PACKET RECEIVING

The Packet Receiving

function needs to listen for

the unique call sign for the

individual boat. Home Base

MAIN PROGRAM FUNCTIONS

GPRMC SENTENCE)

will be using a PK 96 Node Packet Controller to send and receive information over the radio.

The Node Packet Controller will be sending information using the AX.25 protocol. The protocol

was explained by Csaba Gajdos as follows:

The name AX.25 originates from the recommendation X.25 of CCITT, adding letter A
that stands for Amateur; AX.25 is therefore Amateur packet radio link layer protocol.
These are the main differences between the two protocols:

* the address field has been expanded to include radio Ham calls (every Ham has an
international callsign, and Hams must always identify themselves in their conversations
by means of their callsign).
* it has been added the possibility to use UI frames (Unnumbered Information), that is
unnumbered packets; usually packets are numbered to restore the sending sequence.

The purpose of this protocol is to define the frame structure and to set the requirements of
the station that sends or receives that frame or packet. Every packet, besides the data,
contains other auxiliary and control informations, so that every packet includes all needed
informations to reach its destination. This addressing technique allows packet radio
stations to share the same frequency without interferring with each other; every station
can monitor all the traffic in the frequency channel, or filter only activity related to one or
more stations, ignoring the rest.

Without entering in the details, we here mention the main features of the protocol.

Each packet is composed of the following fields:

* FLAG: is an identifier that marks the start and the end of each packet.
* ADDRESS: contains informations needed to route the packet, and it can contain 2 to 10
Ham calls. A secondary identification, or SSID, can be added to each call.
* CONTROL: here are contained some control informations, as the kind of packet, the
number of the packet, and much more.
* PROTOCOL ID (PID): this field is included only in type I (information) or UI
(unnumbered information) packets. It represents the kind of net protocol used.
* INFORMATION (I): this field contains data to be sent (up to 256 bytes). OSI system
superior levels can use part of this bytes as service information of their own.
* FRAME CONTROL SEQUENCE (FCS): is a number calculated by the receiver to
control the integrity of the packet; it uses algorythm HDLC. Protocols used in packet
radio are normally mastered by TNC. It is also possible to implement these protocols
using the right PC software; in any case all procedures are authomatic and do not require
the operator's intervention. What can be seen on the screen of a PC (which, connected to
a TNC, becomes a normal terminal) is a good approximation of what is passing through

26

the connection level. The screen becomes in this case the presentation level.
[http://www.qsl.net/yo5ofh/doc/AX.25%20protocol%20.htm]

The packet receiving function must therefore have the ability to receive packets in the AX.25

protocol as mentioned above. Tuscon Amateur Packet Radio (T APR) provides code at their

website (http://www.tapr.org) that implements the AX.25 protocol on the PIC-E. This code was

used as a basis for the packet receiving code implemented in our project. There were many

major changes required to change the functionality to meet the goals of our project, however the

available code provided invaluable programming lessons, as well as a foundation to build on.

-+-
1200

Packet receiving required a timing sequence for receiving the serial bits from

the modem. As explained earlier, the rxd line from the MX614 toggled to indicate a 0,

6
1 ox 1 o and remained in its current state to indicate a received 1. The speed of the transmission

is 1200 bps. This meant that the packet receive bit, RB4, would have to be monitored for

toggles. As previously mentioned the PIC has a function that flags a change in the state of any

Port B bit. While receiving a packet the only Port B bit that should change is RB4. This allowed

the use of the RBIF flag. The number of clock cycles between bits needed to be calculated to

allow for correct timing in the receiving process. The PIC operates on a 10 MHz. clock cycle.

The transmission rate is 1200 bps. There will be =8333.33 clock cycles between bits. The

program must take this into account. This also allows for quite a bit of time to perform logic on

the incoming data between bits.

The packet receiving algorithm consists of initialization, searching for a start flag,

receiving serial bytes, and looking for the correct call sign. It is outlined in Figure 6.

27

PACKET RECEIVING

6Figure 6: AX.25 Packet Receiving Algorithm Flowchart.

Initialize:

The initialization for packet receiving would have to initialize the port bits involved. The

modem is configured using the Mode O and Mode 1 pins for receiving at 1200 bps. The TMRO

function is initialized to set a flag after the time between bits has passed. The RBIF function is

initialized to set the RBIF flag when a Port B pin changes states. The interrupts are disabled

during packet receive. When these items have been initialized the PIC is ready to begin reading

in packets.

The packets will be coming in the AX.25 protocol. Therefore the start of a packet will be

the flag. The flag is H'7E'. This is a O followed by six 1 's followed by a zero.

28

Find Start Flag:

The code starts out looking for the start flag. When six l's are received the next

character expected is a 0. If a zero is received it is a flag and it is known that data could follow.

There may be many flags that follow, as it is common practice to send 40 start flags at the

beginning of a packet, but when the flags end the data is read.

Get Next Byte:

Upon reading the 5th 1 following the first flag the next byte is monitored for bit stuffing.

If there is a 6th then we will know we are still receiving flags. Upon receiving the first non-flag

the following bytes will have to un-stuffed. There should no longer be six 1 'sin a row while

data is being received. This is due to bit stuffing. Bit stuffing ensures that there are no flags

during the data. If five 1 's are encountered sending an AX.25 packet the byte is stuffed. A O is

inserted after the fifth 1 to avoid this byte accidentally being misinterpreted as a flag. This

requires that the inserted O's be taken out when receiving a packet. Upon reading five 1 'sin a

row the following O will be removed. If six 1 's are received it is known to be the end flag. This

flag signifies the end of the transmission. If a flag is not seen a byte has been received. The

byte is stored and sent to Packet In New Byte.

Packet In New Byte:

Because there is enough time between bits, the received byte is compared to the expected

byte in the boats call sign. The AX.25 protocol requires the transmission to be in the form:

Flags, Destination, Source, and Data, followed by Flags. This is generalized, as there is more

required but this will be sufficient to explain the function of the code. Following the start flags

the boat will be looking for it's call sign. This is the destination field in the AX.25 protocol. If

29

it's call sign is not recognized, it resets and begins looking for start flags. Each byte received is

compared to the boats call sign. The call signs are defined as BTOOXX, where XX will be the

boats number. This is currently in the range of 1-20. When the last character of the call sign has

been received the Serial Receiving function is called to get the current G.P.S. location.

SERIAL RECEIVING

The serial receiving function will reads in the G.P.S. location from the Garmin 35LP,

filters out the unwanted information and sends the desired data through the Widi_compression

algorithm.

The Garmin 35LP operates under the NMEA standards. These standards require that the

G.P.S. output the required NMEA sentences every second. The time elapsed between the start of

the first transmission to the start of the following transmission for each NMEA sentence is 1

second. These sentences are output serially at 4800 bps. The string that we are interested in is

the $GPRMC string. This is the recommended minimum specific string. This string contains the

latitude and longitude in the form we desire, along with other unneeded information such as

altitude. RAO of the PIC is connected to the transmit pin of the Garmin. The PIC-E's layout

allows the Garmin to receive its power through the DB9 connector that connects the G.P.S. to the

PIC-E. This allows for a relatively simple connection. The received pin of the Garmin is not

connected because it is not needed. The default output of the Garmin is what we want.

Upon connecting the Garmin to the PIC-E we experienced difficulty receiving the

transmitted sentences. We tested the circuit by burning the PIC with working code available

from TAPR that would simply read in the G.P.S. location and transmit it. This did not work

either. At this point it was discovered that the V + pin of the Garmin had only 1.1 volts. This

30

was much lower than the required operating voltage of the 4.0 V needed. The PIC-E had a lOK

Ohm resistor in line with the V+ pin. This resistor had a drop across it of 3.8 volts. This meant

that the impedance of the Garmin was much lower than that of the Tripmate that the PIC-E was

designed for. The specs for the Garmin showed that it had a maximum current draw of 140mA.

With a minimum of 4.0 V at the input, we calculated that the resistor needed to be less than 6.5

Ohms. The resistor was removed, and the G.P.S. began to transmit the NMEA sentences every

second as expected.

The serial receiving flow chart is shown in Figure 7.

Main:

Main initializes for receiving the

serial transmission of the G.P.S .. The

NMEA receiving counts, and modes are

initialized. RAO, and RAl are initialized as

input and output. The command word is

initialized for the time being as a boat

location. When the functionality is added to

record the location of fish caught, the

distinction will be made between locations as

to which are fish caught and which are

current locations. The Buffer is initialized to

point to the start of the buffer. Serial Receive

is called once the initializations are complete.

Serial Receiving

Serial Receive:

Serial Receive checks RAO for the start bit. The Garmin transmits using RS232

standards. Each character will be 9 bits. The first bit is the start bit, which is asserted high. The

following 8 bits are the data followed by two stop bits, which are low. The Serial Receive

therefore looks for the start bit. Then the Serial Receive Loop is called.

Recei veLoop:

The timing is done using a loop which decrements a count each time through the loop.

Receiving at 4800 bps there are 2083.33 clock cycles between bits.

When the start bit is received the code waits for 1/3 of the time between bit transmissions

to ensure that we are far enough away from the edge of the bit change. Nine bits are

subsequently read into an eight-bit register. This rotates the start bit off the end of the register

leaving the 8 data bits we desire. The received byte is then sent to the NMEA decoder.

NMEA Decoder:

The NMEA decoding function relies on the NMEA standards used by the Garmin. The

$GPRMC sentence is output once every second. Knowing this, it is possible to look for the

$GPRMC title that precedes this string. An example of this sentence is:

$GPRMC, 191103,V,4137.8942,N,11150.7949,W ...

The title is followed by the 6-digit time, followed by the validity, followed by the Latitude and

the Longitude. Commas separate all modes. The NMEA decoder looks for the title. When the

title is received it looks for the comma, followed by the 6-digit time, followed by a comma. If

the comma is expected and it does not get the comma the NMEA decoder resets the count and

starts again. After the second time a comma has been read, the decoder implements a lookup

32

table to keep track of how many bytes to read in for the mode it is in. Upon seeing a comma the

mode is incremented. The NMEA mode keeps track of the commas to know where, in the

NMEA sentence, it is. There is also a count to keep track of how many bytes it has received in

the current mode. This keeps the decoder aligned with the incoming string. As the byte is

received it is immediately sent to the Widi_compress algorithm.

Store Compressed Position:

We have sufficient time between bytes to decode and compress. The byte is decoded and the

compressed data is stored in the buffer. Once the byte is decoded and stored when appropriate,

we return to Serial Receive and wait for the staii bit indicating the start of the next byte.

Once we have reached the end of the Longitude and we have the compressed position

stored in the buffer, Packet Send is called. When the fish caught buttons have been implemented

the distinction will have to be made here whether to send the buffer or go to Packet Receive.

PACKET SENDING

The MX614 is used to send the data. The data is sent at 1200 bps. The timing is

accomplished using the TMR0 interrupt. The TMR0 function sets a flag after a designated

number of clock cycles have passed, and when the interrupt is enabled it calls an interrupt. This

provides the functionality needed to send 1200 bps to the modem.

The PK 96 will be expecting AX.25 protocol messages. This will require the outgoing

transmission to conform to the protocol. The algorithm can be found in Figure 8.

Out Main:

33

RA4 is initialized to allow PTT to be

pressed during sending. The buffer end

address is stored, and the modem is

initialized to transmit at 1200 bps. The

interrupts are disabled at this point. Once

the initialization is complete, Packet Send is

called.

Packet Send:

PTT is asserted high to begin the

transmission. The TMR0 interrupt is

initialized and the interrupt enabled. 40

start flags are sent. These are followed by

Packet Sending

h D · · Th d · · · DWBAS0 8Figure 8: AX.25 Packet Sending Algorithm. t e estmatlon. e estmat10n 1s ,

which will remain the same for all boats. This is followed by SSID, which is a control byte for

the address. The call sign for the boat sending the packet is then sent in the form BT00XX,

followed by the SSID. What is actually sent will be slightly different. The next byte sent will be

the Protocol ID, or PID. Once these things have been sent to conform to the AX.25 protocol we

can go to Send Info.

Send Info:

The buffer can now be sent. The buffer is sent from the bottom to the top. The first item in the

buffer will be the first out. The buffer will contain up to 4 fish caught locations and will always

end with the current location. Each location is nine bytes long. Each time a byte is transmitted

34

from the buffer the pointer is incremented and the address is checked with the last address of the

buffer. When the addresses are the same it jumps to Finish.

Finish:

Sends the checksum, the end flag, and sets the buffer length to zero. The PTT is now released,

and the TMRO interrupt is disabled. The task ofretrieving the G.P.S. coordinates, compressing

them, and sending the compressed location is completed. The code now goes back to Packet

Receiving and looks for its call sign to start the process again.

DESIGN PROCESS

The code was not built in one fell swoop. The code was broken down into individual

functions, and each function was coded and tested. When each function was debugged

separately, the functions were pieced together one function at a time.

Writing and Compiling the Code:

Due to the RAM and memory constraints it was decided that, to know the exact memory

use, assembly language programming would be necessary. The Compiler used was Microchips

MPLAB. The code was written and compiled in MPLAB, which produced the Hex file. The

Hex file was what was needed to bum the PIC. MPLAB was available from Microchip's

website at no cost.

Programming the PIC:

The PIC-E was designed to connect to the serial port of a computer to allow the PIC 16F84 to be

programmed using a Ludi Pipo style programmer. The voltage levels produced by the serial port

are sufficient to program the PIC. We discovered that a -Windows 95, or 98 operating system

was required to bum the program. The program that we used was called Pie Prog. This program

35

provides a simple GUI for easy operation, and proved to be the simplest to understand. This

program uses a single buffer to read and store the hex file. The program can then be burned.

The Pie Prog will inform the user following the bum whether it was successful or not.

There are many programs that are available that perform the same function. The Pie Prog

was explained in the PIC-E manual, and proved the easiest to use. The ability to easily program

the PIC from almost any computer proved extremely useful as the code was developed and

tested.

The first function to be built was named Blue. This clever name came about because the

PIC-E used to test this code had a blue capacitor.

Blue:

The function that blue was to accomplish was to transmit an AX.25 sentence that would

be recognized by the PK 96. This seemed simple enough, though there were many intricacies

that were missed as the code was written. The main problems came about because of a

misinterpretation of the AX.25 protocol. Once the discrepancies were resolved the problems

filtered out fairly quickly.

As Blue began to be pieced together and tested, an LED connected to RBO was

recognized as a valuable testing tool. This LED was known as VALID_ OUT. Blue started by

initializing for packet sending. After initialization, VALID_ OUT was set. This let us know that

we were reaching this point in the code. The code was added upon piece by piece until we were

able to transmit a packet.

The code was tested by burning the code in the PIC, connecting the PIC to one radio,

connecting the PK 96 to another radio and connecting the PK 96 to a computer running

36

Hyperterm. By setting up Hyperterm to connect to the PK 96 we could see the incoming data

being sent by Blue. The sent packets were in the form:

Destination-SSID-Source-SSID-PID-Data-Checksum

In our case this was: DWBAS0 0 BT000l 1 <UI> Data Checksum. Where the Data was

whatever we placed in the buffer. The above packet was preceded by 40 start flags and followed

by a stop flag.

Now we could work on packet receiving, or Brown.

Brown:

Once again this clever name was chosen for the color of the capacitor on the PIC-E it was

tested on. Brown's function was to receive a packet transmitted from Hyperterm and recognize

its unique call sign.

The code began by looking for a start flag. Upon receipt of the start flag the

VALID OUT LED was cleared. This showed that the code was able to read in a character and

recognize it as a flag. The code continued to be built using the same approach. VALID_ OUT

was used to test the code and locate errors. Code was added to recognize when the start flags

end and the destination starts. The PIC-E used for testing was given the call sign BT000l.

Brown would check each incoming byte with the corresponding byte in the call sign. When the

last byte was reached and the call sign was recognized the code was considered finished. Any

information that followed including the checksum was ignored and the program immediately

exits the packet receiving function. This greatly reduced the size of the code.

At this point two of the three main functions required were working separate from the

other. It was decided to combine the two functions and create a polling system. The new code

37

would start in Brown listening for its call sign. Upon seeing its call sign the code would call blue

and transmit the contents of the buffer. This would be similar to the functionality required by the

final system. The new code was affectionately titled BrownAndBlue.

BrownAndBlue:

Combining the two functions proved to be somewhat difficult. This time the code was

put together with only a few command changes and tested as a whole. Upon the first test run

nothing seemed to be happening. Through researching the PIC and reviewing the code it was

discovered that the memory organization needed to be altered. Though the problem was solved

by accident at this instance, it was later realized what the problem was.

The PIC 16F84 memory is organized in pages. There are 4 pages of program memory,

each page containing 255 bytes. The program count is therefore 12 bits. The PCL (8 bits)

addresses the 255 bytes on the current page and the PCLATH (4 bits) addresses the page. The

data lookup tables use a command that adds an offset to the PCL to point to the desired byte in

the table. It was not known at the time, but when the offset was added to the PCL, the PCLA TH

register had to be loaded with the current page. If it is not loaded it automatically loads page 0.

When the two functions were combined the data lookup tables were now on page 1. Because we

did not initialize the PCLATH before adding the offset to the PCL, we were jumping to the

wrong address. We encountered this problem later on in the development, and it was then that

the situation was fully understood.

The problem was accidentally corrected in BrownAndBlue. When this problem was

gone there were only minor issues to resolve before the polling function worked. The packet

was sent from Hyperterm, through the PK 96, received by the PIC-E and was responded to with

38

a transmission of the contents of the buffer. Now that the polling was functioning it was

apparent that we were making some significant headway. There was one function remaining to

be added. This was serial receiving. Now the name for serial receiving was up in the air. We

had used up all of the capacitor colors, and we could choose any name we desired. We chose

Red.

Red:

Serial receiving needed to read in the G.P.S. position transmitted by the Garmin. The

$GPRMC sentence contained much more data than was desired. The unneeded information

would have to be filtered out. This still left a fairly large sentence. The position would have to

be read into the buffer. The buffer size is 45 bytes. By compressing the position down to 9

bytes, which included the command word designating whether it is the boats location or the type

of fish caught at that location, 5 locations could be stored in the buffer. It was decided that 5

locations would be sufficient for the frequency of polling. The serial receive would also have to

compress the position.

A function was written to implement the compression. This function can be viewed

separately from the serial receive. The serial receive was initially implemented along with the

compression algorithm. The code was initially written in its entirety and tested as a whole.

When the initial tests failed the code was simplified to read the G.P.S. straight into the buffer

until the buffer was full. When this version was tested there was again failure.

At this point the circuit was tested and it was discovered that the voltage at V+ on the

G.P.S. was only 1. 1 V. When the voltage supply problem was fixed the code was again tested

and found to work. The Widi_compress algorithm remained unimplemented and the program

39

read in the G.P.S. information until the buffer was full. It was decided to add red to

BrownAndBlue as is. We would then be able to poll the PIC-E and have it respond with the

uncompressed G.P.S. sentence. This new code was to be named BrownAndBlueAndRed. This

made perfect sense, but the name proved to be too long for MPLAB and it was changed to

BrownAndRed.

BrownAndRed:

Adding Red to BrownAndBlue went without incident. The serial receiving function was

added to the program and soon the uncompressed NMEA sentences were being sent to the PK 96

and output onto the Hyperterm screen. This would occur after a poll from home base. The three

main functions were now working correctly. Now the compression algorithm needed to be

added to the serial receive function.

NMEA Decoding, and Compressing:

The first object was to locate the desired NMEA sentence. This was the $GPRMC

sentence. Once the code was able to recognize the title it was possible to grab only the data we

needed. The NMEA sentence could be divided into modes, with each mode separated by a

comma. The modes each have a specific length in bytes. The length of each mode is found by

reading the table for the current mode. The data lookup table is a function that is called with an

offset in the W register. The function adds the offset to the current program count to jump to the

desired location in the table. The function returns with the data from that location in the W

register. When a byte is received the count is compared with the mode length by retrieving it

from the table and comparing it with the current count.

40

The compression was added to BrownAndRed one piece at a time. The title recognition

was added without a hitch. However, when it came time to implement the data lookup table,

there were problems. The VALID_ OUT LED was put to work debugging the code to find out

where the problem lay. The problem was tracked to the data lookup table, and even further to

the command for the lookup table that adds the offset to the PCL. It was at this point that we

learned to initialize the PCLATH prior to adding the offset. This was explained in the

BrownAndBlue section of this report. With this problem was resolved it seemed that there could

be no more set backs finishing the compression.

The only remaining challenge was implementing a couple of compression functions that

edited a byte in the buffer, which had been received several bytes previous, depending on the

current byte received. This required moving the buffer pointer to the desired buffer location,

changing that byte if needed and then returning the pointer to the end of the buffer. Several

methods were tried and tested until the method that worked was found. The decimal number of

address locations to move the buffer was subtracted and added to the buffer pointer. Once this

worked the compression algorithm finished itself. The code was tested and found to work. Red

was programmed onto the PIC-E to transmit the un-compressed position, and then

BrownAndRed was burned onto the PIC. The uncompressed data was compressed by hand to

compare to the data received from BrownAndRed. There was a perfect match. There was great

rejoicing, and much dancing that ensued. Following the dancing the PIC-E was polled to ensure

the results were the same. This time two bytes of compressed data were missing.

It was strange that the compression algorithm would work for a while and then stop

working correctly. Red was programmed into the PIC-E and the G.P.S. position was sent again

41

un-compressed. The position was checked with the previous and it was discovered that the bytes

that were missing were ASCII control characters. It was assumed that the compression

algorithm was working fine and Hyperterm could not print these characters. This would later be

tested using John's terminal program.

The only function left to implement is the Fish caught push buttons. The method for

implementing the fish caught buttons has been researched, and the buttons will be added prior to

implementing the system.

The current working code worked well enough using Hyperterm. The program was now

ready for more extensive testing with the base station computer program. Details of these tests

can be found in the section on system testing.

G.P .S. Selection

There were several steps in selecting a G.P.S. unit to use in this system. First,

consideration was given to designing a G.P.S. receiver. It quickly became apparent that this

requiring designing antennas, circuitry, and software capable of decoding the position from the

satellite data. That would be quite a project in its own right, and therefore was well beyond the

scope of this project. It was also realized that a manufactured unit would be much more robust

in terms of performance than a student-designed unit would be.

Once the determination was made to use a commercial unit, the selection of a G.P.S.

receiver was greatly simplified by the relatively small number of manufacturers of OEM devices.

Particularly, the only company we could find that sold receivers suitable for this project was

Garmin. They offer several products, including the Garmin25 and the Garmin35L VC. Both

devices are capable of providing differential G.P.S. (DGPS) data, and both are capable of

42

interfacing directly with the PIC-E without any additional circuitry to interface the serial

connection or provide power. The 25 is a circuit board model containing the circuitry necessary

for decoding the G.P.S. satellite signals, but which doesn't include any cabling or antenna. The

35LVC is a self-contained unit, including a connection cable and antenna.

Since both devices are so similar, the main factor in deciding which model to use is cost.

The 15L is available for $120, however, it requires an external antenna, and a data cable, which

cost $20 each, so the total cost for the unit comes to $160. The 35L VC costs $170, but it comes

with all of the necessary cabling. With prices so similar, we decided to go with the 35LVC,

which also is enclosed and waterproof.

The Garmin Trakpak 35 actually consists of a variety of models, each with a different

application. The Garmin 35PC is designed for connections directly to the serial port of a

computer and accepts either True RS-232 voltage levels or TTL voltage levels. The Garmin 35

HVx is designed for systems with an input voltage between 6 and 40 volts. It comes in either the

HVC or HVS models which accept TTL or true RS-232 logic levels respectively. The low

power version, the Garmin 35 LVx, also comes in HVC and HVS models each with the same

characteristics as their higher power counterparts. The Garmin 35 LVx accepts voltages between

3 to 6 volts, with a maximum efficiency occurring for an input of 4 volts.

Protocols

WIDI G.P.S. Compression Protocol

The NEMA $GPMRC string is normally outputted by the G.P.S. once per second and

contains the Universal Time Code(UTC), the current or last known latitude and longitude, and

the current bearing and speed. Each of these parts of the G.P.S. string are separated by commas

43

to delimit them. For this project not all of the G.P.S. information was necessary to accomplish

our task. This presented the design team with some choices. Should the entire G.P.S. string be

transmitted? When the data is stored, will it be compressed or left in the form that it originated

in?

As the RAM on the microcontroller was limited to only 68 bytes, which is less than the

length of the G.P.S. string, it was decided that most or part of the string would need to be

removed. Later as the assembly code was being written it was discovered that 22 bytes would be

needed of the RAM to operate properly. This left only 46 bytes for storage. As each G.P.S.

location required 19 bytes and another byte was allocated for a command word to be stored along

with it, we discovered that we could only store 2 locations before we would run out of memory.

This was not acceptable for our design parameters, which required that the boat be able to store

multiple locations with the catch data. Each character in the G.P.S. string is in the ASCII format,

which could require up to eight bytes just for the longitude. By converting the numbers into

binary we were able to compress the data to 9 bytes. As only one of the numbers stored could

exceed 128 we decided to adopt a 7 bits per byte policy. While this caused extemporaneous data

to be transmitted, thus lowering the data density marginally, it matched up with the default

reception characteristics of the PK-96 and simplified the decoding process greatly. For future

implementations of this project a PIC-E would be substituted for the PK-96 and that feature

could be removed if desired.

In order to fit the relevant data to nine bytes, a special encoding algorithm had to be

developed. This algorithm was based on the concept that each section delimited by commas in

the $GPMRC string can be treated as a separate mode. A counter is kept to track which mode

44

the program is currently in. Based on the mode the program uses a data lookup table to

determine how many of the bytes after the first comma contain desired data. After reading in the

determined number of bytes, the program then looks for the next comma before advancing to the

next mode. Through the use of these modes we are able to call the read and decode functions for

only the bytes relevant to this project. A counter called "count" is used to track which of the 19

bytes of data are currently being read in and determines the proper encoding function to call.

These functions are called Widi_one through Widi_twenty inclusively. Widi_one stores the

command word before the first byte of latitude is received. In Widi_two the byte is received and

has the decimal number 48 subtracted from it to convert it from ASCII to its decimal equivalent.

This number is then used with a lookup table to create the effect of multiplication by a factor of

ten. This value is then stored in Widi_temp. Widi_three repeats the process of subtracting 48

from the byte, and adds the resulting value to what has been stored in Widi_temp. At this point

the entire latitude has been read in and converted from two ASCII numbers to a single binary

number that ranges from zero to ninety. This resulting binary number is subsequently stored in

memory and the offset, Widi_inf_ count, is incremented to point to the next available location in

memory. This process is repeated with all the bytes read in with the exception of the Longitude

and the Hemisphere.

As the Longitude can go up to 180 degrees, the highest order bit is removed and placed in

the lowest order bit of the command word, to ensure that only seven bits are used in each byte.

The minutes can only go up to a value of sixty, which means that only six bits are needed

to represent them. The extra bit of memory in these locations is allocated to the hemisphere.

45

The hemisphere is located in the lowest order bit and the minute data is shifted to the left one bit.

The location of the hemisphere bit was chosen due to the ease of encoding and decoding it.

The floating point decimal values of the minutes are accurate to the fourth digit. These

digits are broken up into two groups of two digits, each with a maximum value of ninety-nine.

They are stored with an assumed decimal point before the first group. This decimal point is later

added by the decoding software.

The format for the algorithm is given in the table below.

Memory Map for Data Pointers to Memory Locations
Stored by Bit
0
0
0
0
0
0
0
0
0

C C C C
T T T T
M M M M
D D D D
D D D D
G G G G
M M M M
D D D D
D D D D

LEGEND:
C=Command Bit
T=Latitude Bit
G=Longitude Bit
M=Minute Bit

C C G "Widi inf base - -
T T T
M M H
D D D
D D D
G G G
M M H
D D D
D D D

"Widi inf base+Widi inf count

H=Hemisphere Bit(E= 1, W=O,N= l ,S=O)
D=Minute Floating Point Value Bit

AX.25 Link Layer Protocol

The AX.25 Link-Layer Protocol provides a method for nearly error-free communication

between the boats and the base computer. AX.25 Link-Layer Protocol is capable of transmitting

three different types of data blocks, called frames. Each frame is made up of several smaller

groups called fields. For this project the simplest frame, called an Unnumbered Information (UI)

46

11

frame, was all that was needed to both poll the boats and transmit G.P.S. locations. The UI

frame consists of 6 fields, each containing a specific number of bytes. The first and last fields

are flag fields and consist of a single byte with a hex value of 7E (01111110). The flags denote

the beginning and ending of each frame. In order to distinguish flags (which have six

consecutive ones), the AX.25 protocol does not allow any other fields to contain more than five

ones in sequence. In fact, whenever five ones that aren't in a flag are to be transmitted, a zero 1s

automatically inserted after them. On the receiving end, any zero that occurs after five ones is

removed. This bit stuffing causes the flags to be a unique occurrence of more than five ones, and

therefore easily detectable.

Flag Address Control PIO Info. FCS Flag

01111110 112/560 Bits 8 Bits 8 Bits N*S Bits 16 Bits 01111110

The front flag field is followed by the Address Field. The Address Field is encoded with

both the destination and source call signs for the frame. These call signs consist of upper-case

alpha and numeric ASCII characters only. Ifrepeaters are used to propagate the signal then their

call sign is also included in the Address Field. Every character in the call signs are shifted to the

left. The low order bit then becomes an indicator of whether or not there is more data to follow

within the Address Field. If the low order bit equals one then the Address Field has ended.

Each call sign is followed by a special byte which contains information that describes

how the frame should be handled. This special byte is referred to as the Secondary Station

Identifier or SSID. The SSID allows up to sixteen different stations to utilize the same call sign

and still be distinguished one from another. It also allows a transmission to track the path it has

taken through repeater stations. As repeaters were not used for this project and multiple call

47

signs were used, the functionality of the SSID was not needed, and was set to a hex value of 30

in all cases except the final one where it was set to 31.

The base computer has been assigned a call sign ofDWBAS0, and each boat a call sign

of BT00XX. (XX denotes the boat number.) While the PIC-E is fully capable of completely

decoding AX.25 packets it receives, we decided that for this application all the PIC-E had to do

was listen for its own call sign. Once this call sign is received, it can ignore the rest of the packet

and prepare to transmit the response. This response is a fully encoded UI frame that contains the

address of the base computer and the sending boat followed by the data stored on the PIC-E.

Following the last SSID is a control word which specifies both the type of frame being

transmitted as well as the intended function of the information contained within it. For the case

of the UI frames that are being transmitted in this project the command word is set to a hex value

of 03 which denotes an Unnumbered Information frame.

Immediately following the Control Field is the Protocol Identifier (PID) field. This field

identifies the type of layer 3 protocol being used if any. In the case of this project the PID was

set to a hex value of F0 which designates no layer 3 protocol implemented.

The Information field is the next field transmitted from the PIC-E. It contains the

compressed data that has been collected on the boat. Due to the receiving characteristics of the

PK-96 only seven bits of data are stored in each byte of the information field.

With the exception of the FCS all bytes transmitted are transmitted low order bit first.

The last field before the Flag field marking the end of the frame is the Frame-Check

Sequence (FCS) which is a sixteen bit checksum calculated by both the sender and receiver of a

frame. It is used to insure that the frame was not corrupted by the medium used to get the frame

48

from the sender to the receiver. The AX.25 protocol is described in detail at the web site

http://www.tapr.org/tapr/html/Fax25.html. From examples given there the following method

was developed.

First, the crc_hi and crc_lo bytes are set to a hex value of FF. Their values are calculated

using inverted logic and they are also stored backwards. This facilitates their transmission as a

separate algorithm for transmission didn't need to be developed. The rest of this discussion on

them will describe the way that the algorithm sees them, not as they will be interpreted by the

receiving system.

The bit that is to be transmitted is separated from the rest of the byte. If this bit is one

then the low order bit of the FCS is toggled. Due to the method of storing the byte reversed this

low order bit will be seen as the high order bit by the receiving system. Whether or not this bit is

toggled, the entire FCS is then shifted to the right, effectively dividing it by two. If there is a

remainder when this divide is executed then the crc_hi and crc_lo bytes are exclusively or'ed

with a hex value of 84 and 08 respectively. This creates the effect ofraising the value of the ere

to a polynomial. This entire process is repeated for every bit that is to be transmitted. When the

time comes for the FSR to be transmitted then the crc_hi and crc_lo bytes are exclusively or'ed

with a hex value of FF to invert their values back to positive logic.

The following section of assembly code accomplishes the generation of the FSR as

described above:

movlw H'FF'
movwf packetin_crc_lo
movwf packetin_crc_hi

AX25 Send Data
movwf packetin_data
movlw 8

49

movwf packetin flag_count
AX25 Send_Data_Loop

rrf packetin_data, W ;get a bit for CRC
movl l
xorwf packetin_crc_lo, F
clrc
rrf packetin_crc_high,F
rrf packetin_crc lo, F
skpc

goto AX25 CRC Done
movlw H'08'
xorwf packetin_crc_lo, F
movlw H'84'
xorwf packetin ere hi, F

AX25 CRC Done
rrf packetin_data, F
call AX25 Send Bit
decfsz packetin_flag_count, F

goto AX25 Send Data Loop

movlw H' FF'
xorwf packetin ere lo, F

transmission.
xorwf packetin ere hi, F

transmission

invert values of ere low for

invert values of ere high for

The receiving system calculates the FSR for an incoming packet in the same way,

replacing packetin_data with the incoming byte. In the case of this design using the PIC-E there

was no need to implement a receiving FSR check as the boats look only for their call sign.

Software Development

The development of the software for the base station posed some unique design

challenges. The software was to be fairly complex, offering many features and yet allowing

users to easily navigate its options, but the greatest challenge came in developing the software in

parallel with the hardware development. The software had to be written from the anticipated

hardware specs and features. As a result, the software engineering approach was planned around

system specs as they were anticipated to become available.

50

The communications, data requests, and data receiving were by far the functions most

prone to change depending on the hardware. It was decided that both the hardware and clearly

defined data structures would be needed for these sections. Therefore, they were held back as

long in the development process as possible. It ended up being a good decision.

There were many tasks to be completed in designing the software. The first step was to

create a shell program that would serve as a framework for the rest of the project. Next came

developing data structures for storing boat and fish positions, and creating algorithms for

calculating boat speed. A utility to merge and export data files was created. Also, user controls

regarding data collection and plotting options were added. Next came the ability to load and

display stored data. The next feature was polling and response. Finally, the ability to overlay

maps was added.

Program Creation

At the time it wasn't sure what hardware interface would exist for the software. Because

of this difficulty the software had to be developed in a very generic manner and only needed an

adapter piece of software to complete the connection. This adapter piece would function as a

translator between the data as it was input and the data as it was to be utilized by the program.

\Vith this approach the rest of the software could be designed and tested with minimal

modifications needed when the hardware was added.

Due to the versatility of the language and the writer's familiarity with it, C++ was

selected for this project. One particularly useful feature of the language are the Microsoft

Foundation Classes (MFC), which includes tools for creating GUis. Another advantage was that

51

~- GPSTracker - gps.prj -, ;ifY@:tlB!, "
E,ile !;_dit ~ew Iools !:ielp ;:

,: CI~ I.II\
a

0

0

Ready

framework for the program. Figure 9

52

f;]~

shows boat 'a' at 0°

N,0° E.

All of the

settings are stored in

files so the user

wouldn't need to

reenter them every

File Name·

Cancel

Item Name

A G B

time the program was run. First among these settings is a list of all the boats to track, which is

stored in its own file. To distinguish the boats, each one needed a number, name, and color. The

user was therefore given the option of editing these attributes, as well as changing the total

number of boats. Figure 10 demonstrates how this data is input.

9Figure 9: Basic Window with Boat 'a' at 0° N 0° E.

Processing Boat Data

The next step was to read in data from generated files, sort it, and then write it to files.

The information is stored in files in a tab-delimited format. This was chosen because then if the

files are opened in some other program (like a word processor or spreadsheet), the information

could easily be displayed without much additional formatting. Particularly, this meant that the

data could easily be imported by Excel., which has many useful data analysis tools and graphing

options. That meant that an analysis package for the fish tracker software would not be needed

at this time. It would be possible to add one later, if it were desired.

53

The formatting of the data in the files is actually very similar to the formatting of the

NMEA string (an interesting case of the format going full circle). If boat 0 was at 50.03960° W

and 49.99440° N, and the data was created December 31, 2001 at 16:01:45 with no fish caught,

the data file line would read

0 50.03960 49.99440 2001 12 31 16 01 45 0

If a fish were caught, the format would be similar. The following shows that a salmon was

caught at 98.7276° W,

49_2475oN on January l0Figure 10: Boat Property Editor Box.

15
\ 2002 at 17:51 :45. The leading zero is the indicator of the type of fish.

0 98.7276 49.2475 2002 01 01 17 51 45

Once data had been gathered from boats (or from the data generator), it would be possible

to compute the velocity. Initially it was thought that this would be a simple matter of subtracting

the coordinate values of successive positions and dividing by the time between samples. It

turned out that the computed value was useless. Not only was it not in any useful units (such as

miles or kilometers per hour), but unless the coordinates are at the equator, the number of

kilometers per degree is very different for latitude and longitude. At this point, no effort has

been made to correct the error, but it is anticipated that an improved algorithm will be included

in a future release.

The collection of data is the main purpose of this software. There are several parameters

that a user can set to determine how the data is collected. These include polling frequency, the

number of polls between data being archived, and the number of data points to be stored per file.

A window that allows these properties to be edited is shown in Figure 11. The window also

54

Set Collection Options ; I!
,,

Interval Between Reads (Seconds) -

110

Reads per each write to a file

1, 0

Writes before a new file

Initial Wait for Data after Poll (miliseconds)

1,000

Wait for Data during data check

1, 00 ,

Maximum Latitude

Minimum Latitude

Maximum Longitude

Minimum Longitude

1 lFigure 11: Data Collection Property Editor Window.

15~
148
152
148

1
1" oK···········11· .,
r·····•• ... ··············· ... ·.··~ -

] Cancel I
;

, J

allows for a range of coordinates to be displayed. That will come into play when maps are added

later.

As data is collected, it is important that the position of the boats be displayed in real time.

The color properties stored for each boat comes into play here. Each boat is displayed on the

window using the color assigned in the boat properties. As the information is updated with

successive polls, the motion of the boats can be seen and tracked visually. Data is then read in

and the boats can be seen moving around the screen. If the boats leave the active window, it can

be resized so that it contains the current boat positions.

The next task was to merge data files. Depending on the user settings, a large number of

data files can be created. Manually merging these files would be very time consuming, but

necessary in order to look at the data in a third party program. A simple function was created to

55

merge these files. Merging can be done on boat data or fish data. The option is also given to

delete the original files after they are merged. The program reads in each selected file into a huge

buffer and writes it to the new file.

The next step was to plot where fish have been caught. This allows users to determine

which areas are fishing hot spots. The user is allowed to select which files he wishes to display.

Right now the program only displays one pixel per fish so it is hard to see for a small amount of

fish. This can easily be changed if a new graphic is provided. The next addition was to add a

plot of the history. This would basically do a replay of the files. When a fisherman comes back

after a day of fishing he can see where he has been. This history will act as a journal.

Map Overlay

At this point, it was necessary to delay working on the communication protocols and

address displaying a map. One option was to have the programmer personally create a file that

contained borders of the water. It was then decided it would be much easier to load a bitmap

containing the map. The difficulty with the doing it this way was gaining the ability to move and

resize the map according to the current window size. To resolve this, an algorithm was used that

allows portions of the image to

be scaled and then displayed.

The program had to figure out

where to put the top left corner

of the bitmap and what size to

make it. This depends on where

the user wants to view and what

area the map covers. Figure 12 shows how a map appears in the right hand window.

In the early stages of the project, consideration was given to giving customers the option

of setting and following waypoints. While in the process of working on the hardware it was

determined that this was not feasible at the present time, they can still be used as reference

markers on a map. The program already had the functionality to find a point. For a waypoint,

the program displays the name of the waypoint where the graphic would go if it was a boat.

~ liliialog box for creating waypoints.

Communication Software

At this point, the hardware was specified enough that the issues of communications could

be addressed. For early development and debugging, a separate terminal program was made to

read and write to the COM port. With this program, a great deal of exploration was done on the

function of serial ports and modem communications. This terminal program is able to send and

receive data and display it on the screen. It isn't a very complex program but it did what was

needed to streamline the process of debuging communications. It could also be used in future as

an all-purpose terminal program (similar to Windows Hyperterm).

At this stage, the easy stuff was out of the way and it was time to form the

communication interface in the program. A circular buffer was created to hold the data so it

always had room for the nearly constant flow of data. After data was requested, it would be

received in the circular COM buffer. The program would then parse the information to extract

the coordinate data. The boats are configured to transmit any fish data before the current

location. This was done so that upon receiving a block with a current location, the program

would know that it had read all the data in the packet. The program then looks ahead in the

buffer to make sure that it has finished reading the necessary data.

Once the data is received, then the software developed earlier kicks in. It stores the

values, displays the numerical coordinates in the left pane of the window, and plots the position

of the boat in the right pane. The data is buffered to be stored to data files, which can then be

read back to analyze the behavior of both boaters and the fish they pursue.

The biggest difficulty arose from the fact that there was no hardware at all during most of

the project. It was necessary to plan ahead and work on parts that were not hardware specific

until the hardware was available. By the time the hardware was available, the code had been

developed and tested with simulated data. We used previous experience to avoid many of the

possible pitfalls and even gained some experience to avoid pitfalls in the future.

58

Looking back on the project, the software portion was planned and executed well. Of

course there were things that should have been done better. More effort to validate the function

of the software with the entire group would have helped to avoid some small problems. Other

problems might have been caught if the entire team had reviewed the algorithms earlier, but

instead had to wait until the system tests at the end of the project. In those cases, however, it is

unlikely that extensive debugging efforts early in the project would have yielded any overall

benefits, since it would have pulled the rest of the team from their design responsibilities.

Overall, the software design was the smoothest part of the project.

System Testing

Stationary:

The PK 96 was connected to a laptop using John's terminal program and the polling

command was tested. The two bytes were once again found to be missing. The compression

algorithm was checked for errors and certified to be correct. This led us back to the fact that the

characters were ASCII control characters.

Researching the receiving protocol of the PK 96 it was discovered that we could view the

incoming data as hex characters as well. When the PK 96 was set up for this mode the missing

characters could be seen. The problem was solved by changing the mode of the PK 96 which

allowed the control characters to pass through.

When John was able to read in the compressed position and was ready for changing

G.P.S. coordinates it was time to change the setup.

Mobile:

59

The radio was set up in a car. Using a power adapter for the 12V power connector in the

car to power the radio, the PIC-E was set up and powered to test on a mobile object. The PIC-E

has an RJ-45 jack for connecting the microphone to allow for voice communications. The

microphone was connected and the group at home base was contacted over the radio to send a

poll. The poll was received, recognized, and responded to by the PIC-E. The transmission from

the PIC-E could be heard at home base, but the packet was not recognized by the PK 96. The

problem was eventually traced to the microphone. When the microphone was unplugged the

transmission was again recognized by the PK 96. Unplugging the microphone has initially been

our solution to the problem, though a better means will need to be developed.

Once the polling command was in working order the car was driven to provide changing

coordinates. We communicated by voice to verify the direction of travel with the coordinates

being received. The polling was not 100% effective but the poll would receive a response

approximately 75% of the time. This still allows data to be collected frequently enough that a

boat is not likely to get lost.

A map of Cache Valley was taken from the phone book and scanned into a computer.

Comers were chosen for the final display map and then the vehicle with the system installed was

driven to those locations in order to get their longitudinal and latitudinal coordinates. These

coordinates were then use to place the map and calculate the vehicle's position on the map.

Small adjustments were then made to compensate for imperfections in the map in order to better

display the motion of the vehicle on streets. The final system shows the position of a car on the

map accurately enough that a person can determine where the car is and where it is going. We

60

were quite pleased with the test results and feel confident that this will meet the needs of Doc

Warner's.

61

Project Scope

Summary of Project Tasks

The road that this project has followed was a long and winding one. Work progressed

from efforts to design each component of the system from scratch to intense efforts to integrate

the different components and debug the software responsible for the connections. Over that

course, the design emphasis changed from determination of design parameters and feasibility to

selection of components based on the design parameters, to extensive work making

modifications to the devices selected in order to achieve the desired functionality.

In the early stages of the project, the intention was to design each component of the

system (except the radios, which would be a separate and larger project in their own right).

Several methods were considered for communicating between the radios and the computers or

microcontrollers on each end. These methods all included filtering techniques to separate the

radio channel into voice and data channels. All either required too much bandwidth (cutting into

the voice channel) or forced the data rate to unacceptably slow rates. In addition, it was realized

that the homemade protocol was not robust enough to handle significant data loss on the channel.

Upon realizing the inability of our designs to adequately meet the needs of the project, we

turned to the protocols and devices developed for packet radio. Packet radio is a system for

transmitting data over radio, and is popular among amateur radio operators. It uses devices

called Terminal Node Controllers (TNCs) to interface computers and radios, and a protocol

(AX.25) to format the data for transmission. It was clear that this technology could be used in

implementing the system. Additionally, much work had already been done in configuring TNCs

to interface with G.P.S. units and transmit location. At this stage, the radios, TNCs (the PK-96

62

and PIC-E), and G.P.S. unit were obtained. The task that remained was to reconfigure these

devices to allow for polling and response, as our system required, and also to compress the data

so that the polling process could run in a more timely manner.

From that point, the work has been one of intense software development, accompanied by

some modification of internal protocols and hardware. There are two major programming

aspects to this project. The first is programming the microprocessor on the PIC-E to handle

compression and storage of the G.P.S. data, and to respond to polling from the base station. This

was a daunting task, as all of the software for the PIC-E is in assembly language. Ultimately,

this is where most of the work during the last stages of the project was focused. The other major

programming aspect was developing the software for the base station. This software needed to

be able to track the boats, as well as log their positions and handle the polling. This would have

been a big bottleneck for the project if the programming had begun after the rest of the system

was working. Fortunately, it was possible to develop much of the code for this program even

before packet radio was considered in the design.

The final stage of the project up to this point has been testing the system. This began

over the summer of 2002, when the radios were taken to Doc Warner's in Alaska and tested for

range and sound quality. Other aspects of the system that have been successfully tested include

the polling function, the G.P.S. compression and transmission, and the tracking abilities of the

base station software.

Future Developments

At this stage, the project has produced a functional prototype. From here, there are

several tasks remaining to meet the original design criteria and prepare the system for

63

implementation in Alaska. These include building a housing for the system, adding other

tracking functions, and configuring the software for the site in Alaska.

The physical installation of the system will present some challenges. The combination of

wind, cold, salt water, and human interaction will quickly take its toll on any components that

aren't completely waterproofed. The problem is complicated by the heat generated by the radios

and TNC. While the ambient temperature of the operating environment will probably be cool

enough to keep the system from overheating, there will need to be an additional heat sink

attached to the PIC-E.

The original design called for buttons which users could push to indicate that they had

caught fish. For a while, it seemed that, while the PIC-E was programmable, it lacked any

available ports to connect these buttons to. In the late stages of this project, a set of ports that are

used for programming the PIC-E, and so were believed unusable, were determined to be perfect

for this application. Code has already been developed to implement the interrupts required for

these buttons, but time delays and testing concerns have made it unfeasible to have them ready

on the current prototype. Another item that was discussed early in the project was tracking the

engine status. The engines on the boats have outputs for this type of feature, but at this point, no

effort has been made to incorporate this into the design. Due to limitations on memory and

inputs with the current PIC-E chips, adding this feature would have to wait for a second

generation system. Monitoring the engine status was also deemed unnecessary by the customer

as any motor malfunctions could be immediately reported via the radios installed for this project.

Lessons Learned

64

It is impossible to work on a project for over a year without learning a few things. Some

of these lessons could have saved us some pain earlier on this project, while others just would

have helped us to know where to direct our focus. The biggest lessons were that a project is

easier completed in very small steps. Early in this project, effort was made to complete entire

sections of the project (such as modifying the code for the PIC-E to parse the G.P.S. data, store

it, and transmit it in response to polls). These were just too much to chew on at once, and the

project became bogged down trying to identify where bugs were. Since so much was being

changed between testing, it was nearly impossible to determine where things were going wrong.

To our credit, while it took a lot of effort, the work that had been done while we were in this

mind set was eventually included in the project, usually with only slight modifications.

Another important thing learned on this project had to do with build/buy decisions. In the

early stages of the project, we were determined to design all of the components for the system.

As problems were encountered and anticipated, it was realized that we couldn't design

components as well as companies and organizations that had already put substantial effort into

their designs. While it may have cost less for us to build these components, much was gained in

terms of robustness. One significant aspect of design where this type of decision is easier is that

of implementing existing algorithms. After attempts to develop a transmission protocol, it was

realized that an existing protocol (AX.25) would provide the necessary functionality. In cases

where some technology already exists, much is gained in terms of functionality and compatibility

by using it.

Special Details

65

One detail of importance was a modification needed to power the Garmin 35 G.P.S. from

the PIC-E. Upon connecting the G.P.S. to the PIC-E we were unable to get a signal from it.

Testing quickly showed that the input impedance of the Garmin 35 L VC was much lower than

what the PIC-E was designed to interface with and the input voltage had dropped from 5.0 V to

0.9 V. After pouring over the schematic it was discovered that a 10 K Ohm resistor was in series

with the Voltage Regulator and the power connection to the G.P.S. Technical specifications

where quickly looked up for the Voltage Regulator and we discovered that it was capable of

outputting more than enough current for the system we've designed, however the additional draw

of the G.P.S. would require a heat sink to be placed on the Voltage Regulator to control the heat

build-up. It was determined that for the input impedance of the G.P.S. that would need to

matched is on the order of 6 Ohms. As it was so small it was decided that a wire would simply

be put in the place of the 10 K Ohm resistor. Once this was done the system began to work

flawlessly.

Product Life-cycle

The units installed in the boats in Alaska will definitely need regular servicing. The

elements of wind, rain, cold, and salt water could potentially corrode exposed parts in a season.

While the enclosures for the radios and hardware will need to protect the equipment as much as

possible, they will also need to be accessible so that parts can be repaired and replaced. The life

cycle of this equipment will probably only be a few years, although replacing components as

they fail could probably extend that life to five or more years. Fortunately the only parts that are

exposed to the elements are the microphone and antenna which have a relatively inexpensive

replacement cost compared to the rest of the system.

66

Miscellaneous

G.P.5. Pricing

After comparing the different G.P.S. systems available for our use and determining that

the Garmin TrakPak G.P.S. 35 was the desired unit for our project we began to search online for

the best price available. As it was discovered that the prices tend to fluctuate no fixed supplier

could be determined who can give the best price at any future time. For this reason there will be

a need to look into sale prices and bulk rates when ordering the remaining G.P.S. antennas.

The Tucson Amateur Packet Radio web site and personnel were of invaluable service to our

project. Not only did they provide the equipment for our TNCs, but they also provided vast

stores of information which aided us in the design and implementation of this system. As the

original implementers of the AX.25 Link-Layer protocol the web site was extremely helpful in

learning how to communicate with little loss of data. We are also extremely grateful for the help

of Byon Garrabrandt for answering programming questions we had and helping us to understand

the intricacies of the PIC 16f84.

TNC Options

The choice to use the PK-96 to connect to the computer was made to simplify design and

testing of the system. The PK-96 provided fully function method to test the capacity of the PIC­

E to both recieve and transmit AX.25 packets. As a fully functional TNC the PK-96 aided the

study of packet radio systems. However, the PK-96 contains a large number of features that are

completely unneccesary and even complicate this project.

67

During the developmental process it was determined that certain settings needed to be

changed to allow for smooth operations. First of all, the PK-96 defaults to only recieve standard

ASCII characters 7 bits in length. This meant that it ignored all data that used all 8 bits in a byte.

Fortunately there was only one byte in the WIDI compression that even needed the eighth bit,

and it could be broken up and stored in the spare bits of the control byte.. Special commands

also had to be used in order to send the desired types of packets to their desired locations. In

order to transmit a UI frame the intended reciever had to be stored in the UNPROTO variable

inside the PK-96. This was accomplished by sending the command "UNPROTO

BT00xx"(where x is the boat number).

To actually transmit the frame a single letter K was then sent, followed by two line feeds

then a break character. Immediately after this the boat responds with the data it has stored on

board. This same sequence is repeated for every poll of each boat. As testing progressed it was

discovered that certain standard ASCII characters that were transmitted by the PIC-E were being

filtered out by the PK-96. These bytes had ASCII values less than 32, which are used for

formatting and control commands (such as carraige return or backspace). Fixing this bug was

the last small hurdle crossed before the system was able to function properly in tests.

Originally, the PK-96 was chosen to make testing the prototype easier. Since then, we've

been able to get the same functionality out of simpler and less costly TN C's (such as the PIC-E).

Therefore, in further applications of this project, the PK-96 will be replaced by a custom built

TNC similar to the PIC-E.

Environmental Issues

68

Any one who has spent time near a sea water environment will tell you that stainless steel

is just a myth. It just rusts slower. As the very air is permeated with salt water, and this project

will spend the majority of its life in a boat on the water, it is extremely important that measures

be taken to increase the longevity of the project. During testing in Alaska in the summer of 2002

it was determined that an electricians common antioxidant such as NoAlox worked to prevent the

contacts within the antenna from rusting. By sealing base of the antenna with silicon caulking

the contacts are doubly protected. The microphones were also directly exposed to the elements

and it was determined that they function well however their RJ-45 connector is prone to extreme

corrosion if exposed directly to water. To prevent ruining this connection the connector must be

placed in a dry location, and periodically cleaned with a chemical aerosol electrode cleaner. The

radios proved themselves to be both resistant to the weather and the mistreatment that they were

subjected to. Further protection will be supplied to the radios by special enclosures that will

keep them dry but still accessible.

Legal Issues

As only certain frequencies are allowed to be used for digital communication, it was

necessary to apply for FCC licensing for frequencies that would serve this purpose. Through the

efforts of this group two frequencies were purchased by Doc Warner's in 2002 for their area in

Alaska for voice and data communications. Permission was obtained to use the license of

another business' frequency that is licensed for northern Utah to allow legal testing of the

prototype of the system in Logan.

Customer Support

69

The system is designed to be as user friendly as possible. The average user will see

nothing more than two inconspicuous buttons and an antenna on the console of their boat. They

will probably forget about the system completely until they return to camp and are presented

with a map of where they were fishing that day and the locations of every fish that was reported

caught plotted on that map. The guests will then have the ability to plan their days around the

spots that are currently the "hottest". They will also be able to see the times that fish were

caught, and be able to predict the best times to be fishing. The system requires only the push of

the button every time that they catch a fish to accomplish all this.

This system will allow the staff to track current fishing trends, and communicate with boats that

are less successful than others to help them have a more successful fishing experience. Having

voice communication over the radios in 2002 allowed for much of this to occur. Doc Warner's is

extremely concerned for the safety of their guests, and are especially worried about guests who

choose to stay out past the boat curfew at night when it becomes difficult to spot obstructions in

the water. This system will allow the staff to immediately locate the errant boat and assist them

in returning to camp safely. The radio will also allow emergency communication if there are

ever any problems with the boat.

70

Project Management and Cost Analysis

Project Management Summary

Completed Tasks
1. A working prototype has been built.

a. Two fully functional PIC-E's without an enclosure that operates to design
parameters has been constructed

b. Waterproof momentary contact buttons to be used as Fish-Caught buttons have
been selected.

2. Software for PIC-E has been written
a. All necessary software has been written for PIC-E
b. Special attention was paid to the potential of future upgrades in the development

of this software.
3. Computer software has been written for base computer

a. Software has been revised numerous times after inspections by the customer in
order to better meet their needs.

4. Licensing
a. Doc Warner's purchased the rights to two frequencies for the use of voice

communication and this project.
5. Preliminary testing done in Alaska to determine Repeater need

a. Range of forty watt radio determined to be sufficient without the need for an
additional repeater.

b. Connectivity problems in corrosive salt water environment solved
c. Testing at this early stage also demonstrated to the customer the value of the

system and it improved the funding situation.
6. Future markets of the product have been explored

a. Conversations with various professionals have demonstrated an interest in the
installation of similar systems for home and business use.

b. Market niche defined as the producers of a fully customizable fleet
tracking/monitoring system.

c. Funding committed by Doc Warner's to assist in development of business
opportunities.

Remaining tasks

1. Build production model and subject it to environmental testing in Alaska
a. Select Enclosure for Radios that are mounted on boats that don't have dry storage
b. Select best enclosure for PIC-E.

2. Implement fully Fish-Caught buttons
a. Determine mounting specifications

71

b. Complete testing of system to insure robustness and longevity without needing a
user reset.

3. Constructing PIC-E's for additional boats
a. Purchase PIC-E's.
b. Modify PIC-E's circuit layout as needed, including adding a heat sink
c. Program PIC-E's
d. Install a PIC-E on each boat

4. G.P.S.
a. Purchase necessary connectors and mounting hardware

5. Develop User Interface instructions for both base computer and boats
a. Simple instructions for fishermen
b. Simple instruction set for base computer
c. Advanced user instruction set for base computer for data analysis

6. Radios
a. Purchase remaining radios and antennas
b. Install radios on boats

7. Estimated Man-Hours needed to complete remaining tasks: 100 hours

Cost Summary

As the concept for this project was developed, the customers of Doc Warner's were

consulted for their opinions as to what they would like to see this system be capable of. One of

the men consulted is a managing engineer for Questar Corporation in Salt Lake City. After he

had heard about the system that we were attempting to design, he asked one of his engineers to

put together a bid and basic proposal for the system. Their proposal implemented a

communication system with a phone patch attached to the base radio. This would allow the

guests of Doc Warner's to make phone calls on the radios as well as communicate freely

amongst themselves. The system would be mounted on wearable vests that would require

recharging each night. This proposal carried with it a $76,000 bid. Concerns about this design

were the potential for damage inherent with the vest, and the need to charge the batteries when a

minimal power system is all that operates at night at Doc Warner's. Due to the remoteness of the

72

site, electricity is supplied by large diesel generators. These generators do not run between 10:30

p.m. and 5:00 a.m. to conserve fuel.

The preliminary concepts for our project allowed us to create a bid for $52,410. As the

project developed we discovered that some items that were included in the bid were not

necessary and were removed. The adjusted bid became $46,100. Our proposal was accepted due

to the lower price tag and the ability to configure the system to capture more than just current

location. With the completion of the project we discovered that our final production cost is

$26,120. This is far below our bid, and even further below Questar's. An itemized budget can

be found in Appendix B.

Facilities and Personnel

The staff at Doc Warner's will benefit greatly from this system, and only a few key

people will need to be trained to maintain this system. This primarily includes the Maintenance

Manager and on-site Boat Mechanic. They will need to understand basic electrical precautions

that must be taken in a sea-water environment in order to preserve the components of this

system. They will also need to be capable ofreplacing components of the system that may have

failed for any reason.

Another person that will need to be trained is the Store Manager, who will manage the

data stored on the base computer. They will need to be familiar with the methods for displaying

and printing different data. While the program does allow for high level changes to be made

through the menus, these configurations should only need to be made once, and then never

changed again. This eliminates the need for specialized knowledge on the programming and

configuration of the system. A base radio station has already been installed with a 12' antenna

73

elevated nearly 60' in the air and designed to have an extended range. The computer network

that will host the fleet monitoring system has also already been installed.

74

Conclusion

Purpose of report

This report provides a thorough documentation of the engineering design processes that

were used to solve the problem. It discusses at length the design solutions that were found in

order to successfully implement this system. This documentation also briefly mentions some of

the design alternatives that were considered and were not chosen. Nor can the amount of

knowledge and experience gained be adequately expressed in so few pages. A simple solution

that can be written in a single sentence often required hours of meditation and weeks of research

to discover. Most importantly, through all of our study and research we gained the knowledge

that we can confront a seemingly impossible task, and overcome the obstacles along the way.

Through personal initiative, each member of this design team has had the opportunity to become

thoroughly exposed to subjects within the realm of engineering that our traditional schooling did

not provide. While the value of this system to Doc Warner's is great, the greater value for those

who designed it lies in the creative learning process that was executed to accomplish our goal.

This project has left an indelible imprint upon all who were involved in its journey to

completion.

Objectives of project

The initial objective of this project was to provide a means whereby Doc Warner's could

locate their fishing vessels. As solutions were discussed, it became apparent that a project of this

type could accomplish much more than had initially been desired. Not only could a vessel be

located, but a record of its movements could be kept. Data describing the location and type of

75

fish caught could also be stored. The data could also be displayed in a real time format, thus

enabling the staff at Doc Warner's to identify the best fishing grounds for a given day quickly.

This solution also allowed the use of voice communication in the event of an emergency, thus

allowing quick responses to any emergencies on the water.The system designed also met it's

objective of being extremely inexpensive when compared to similar systems available

commercially. Another bid by a professional communications firm for the same system carried

with it a $76,000 price tag. Our bid was much lower at $52,166. The actual cost for this

finalized system is just over half of what we bid. As cost was one of the main design constraints,

this project has far surpassed the goals that were set for it.

Robustness was a large concern for this project, especially considering the harsh

environment that it will operate in. The only way to gain experience with the robustness of an

element of the system would be to build it and test it. Therefore an existing piece of hardware

that had already been through the rigorous testing processes would be preferable to the many

learning models that we would have developed. The decision was then made to try to use

existing hardware modified as necessary for this project. This was a way to assure the quality of

the components and also reduce our costs. As there was less time needed to be devoted to testing

the robustness, and there was not a need to make new models, time and money were saved.

The software also had to have a large amount of robustness, be able to handle interrupted

and partial data, and provide a user interface that would not allow for the system to be corrupted

by user errors. On the boats the only interface with the system are the buttons to record fish data.

On the computer there are a number of different systems administrator commands available, but

these will never need to be accessed by the end users. The system is designed so that the delay

76

times can be minimized between transmissions, to maximize the efficiency. These delays are all

changeable at the base computer, however these settings can be saved and after they have been

set the system can be run without modifying them. The only functions needed by the typical user

will be simple functions to access and print data. Other functions have been protected in such a

manner that the system cannot be damaged or altered by actions taken by the user. Thus, the

software is fool-resistant, and can be used by someone who has not had intense training in its

operation, which was another design goal.

Once the project concept was developed, hardware and protocols were selected. The

limitations of the components placed constraints on the design. This included the amount of data

that could stored and transmitted, the format which it would be transmitted between each device,

and the manner in which it could all be accomplished. Each device had to interface successfully

with the next without a loss of the pertinent data. Negotiating these connections was a

significant challenge that had to be overcome at every stage of the project.

As the project neared completion, continued input from the customer refined and

improved the product. Changes in the computer display were made after reviews from the

customer. Further improvements will be made in the future to ensure that this product will

always meet the needs of the customer. Future customers will also be able to count on the

continued support of the design team to create the perfect fleet monitoring system for their needs.

77

Appendix A
Materials List

1. Motorola Radius 1225 UHF 20 channel radio
a. Programmed with frequencies and desired settings
b. Includes the following items

i. Includes power cable
11. Fuse
111. Necessary connective hardware for power cable.

2. Antenna
a. 5 dB gain 5/8 wave antenna(part #RAE 4014A)
b. antenna cable(part #0180300B02)
c. antenna mount(optional)

3. Garmin G.P.S. Trakpak 35
a. Requires female DB9 connector

4. PIC-E
a. Requires assembly, Kit includes:

i. 4 1.2K ohm resistor
11. 3 2.2k ohm resistor
111. 9 1 Ok ohm resistor
1v. 2 22k ohm resistor
v. 3 1 OOk ohm resistor
v1. 1 1 Ok ohm Trimpot
Vll. 5
Vlll. 2
lX. 1
X. 1
XI. 3
Xll. 2
Xlll. 1
XIV. 1
xv. 2
XVI. 1
XVll. 1
xvm. 1
XIX. 1
xx. 1
XXL 1
XXll. 1
XXlll. 2

0.1 uF Mylar capacitor
1 uF Electrolytic capacitor
1 OOuF Electrolytic capacitor
1N34 Germanium Diode
1 N4002 Silicon Diode
1N4148 Silicon Diode
1N5231BDICT-ND 5.lV Zener Diode
Green LED
Yellow LED
Red LED
PIC l 6F84 LC.
MX614 LC.
2N3904 NPN Transistor
7805 Voltage Regulator
3 MHz Ceramic Resonator
10 MHz Ceramic Resonator
16-pin DIP IC Socket

78

5.

XXlV. 1 18-pin DIP IC Socket
XXV. 1 16-pin Machine Tooled DIP IC Socket
XXVl. 3 1 x2-pin male header
XXVll. 2 lx3-pin male header
xxvm. 3 1 x8-pin male header
XXIX. 12 2-pin Jumper, Push-On
XXX. 1 DB9 Female PCB right angle mount
XXXl. 1 DB9 Male PCB right angle mount
XXXll. 2 8-pin RJ-45 jack PCB right angle mount
xxxm. 1 2.1 mm Coaxial Jack
XXXlV. 1 2.1 mm Coaxial Plug
XXXV. 1 Printed Circuit Board
XXXVl. 1 Cable Assembly with RJ-45 connectors
XXXVll. 2 Miniture Toggle Switches
xxxvm. 4 4-40 x 3/8" seres
XXXlX. 4 4x40 nuts
xl. 1 Solid Wire

PK-96
a. Comes with connector from PK-96 to radio, however an RJ-45 plug needs to be

attached to one end of it.
b. Requires 12V 500 mA transformer.
c. Null modem cable (DB9 to DB25)

6. Enclosures
a. Exact specifications on enclosures have yet to be determined.

79

Qty.

20

20
20
20

20
5

20
40

1

1
1
1
1

1
1
1

1
1

1

2
3

Description

Motorola Radius
1225 Mobile Radio
with 5dB 5/8 wave
antenna
Speaker Microphone
Node Controller
GPS Antenna with
Decoder
Interface Cables
Waterproof
Enclosure For Radio
Enclosure for PIC-E
"Fish Caught"
buttons

Appendix B
Project Budget

Projected Actual
Unit CostO Unit Cost

MOBILE STATIONS
$850 $615.50

$67 $67
$399 $60
$150 $170

$50 $3
$0 $100

$0 $12
$0 $5

TOTAL COSTS FOR MOBILE STATIONS
BASE CAMP

Motorola Radius $850 $574
1225 Mobile Radio
Desktop Microphone $51 $40
Power Supply $296 $30
Antenna and Line Kit $500 $200
Node Controller $399 $200

TOTAL COSTS FOR BASE STATION
REPEATER

GR 1225 Repeater $1,995 $0
Duplexer $400 $0
Repeater Controller $73 $0
Cable
Preselector $336 $0
ZR 310 Repeater $950 $0
Controller
UC Repeater $950 $0
Controller
Antenna and Line Kit $500 $0
RSS Software $300 $0

TOTAL COSTS FOR REPEATER

80

Projected Actual
Total Total

$17,000 $12,310

$1,340 $1,340
$7,980 $1,200
$3,000 $3,400

$1,000 $60
$0 $500

$0 $240
$0 $200

$30,320 $19,250

$850 $574

$51 $40
$296 $30
$500 $200
$399 $200

$2,096 $1,044

$1,995 $0
$400 $0
$73 $0

$336 $0
$950 $0

$950 $0

$1,000 $0
$900 $0

$6,604 $0

TOTAL EQUIPMENT COSTS $39,020 $20,294
NON EQUIPMENT COSTS

30 I Hourly Rate for I $95 I $95 $2,850 $2,850
Installation Cost

TOT AL COSTS FOR LABOR $2,850 $2,850

SUB-TOTAL $41,870 $23,114
SHIPPING & HANDLING $1,335 $1,335
TOTAL $43,205 $24,479

SALES TAX $2,895 $1,641
GRAND TOTAL $46,100 $26,120

DEVELOMENTAL COSTS

ESTIMATED MAN-HOURS FOR DEVELOMENT
Research and design determination 250 hours

Base Computer Program development 300 hours

PIC-E assembly and programming 700 hours
Prototype testing 40 hours
Preliminary Radio installation and troubleshooting 50 hours
TOT AL MAN-HOURS 1,340 hours

Equipment and supplies used in developmental process Less than $300

81

Appendix C
Connections and Schematics

This section includes schematics and pinouts that are necessary to build and test this

system.

PIC-E Signals Microphone Jack Signals Wire Color

9 Ground 8V Brown 8

10 +5 Volts Not Used Brown/White 7

11 MIC Ground Hook Green 6

12 MIC Audio Ground Blue/White 5

13 RXA Mic Audio Blue 4

14 MIC PTT Radio PTT Green/White 3

15 Radio Ground SCI Orange 2

16 MIC Power Handset RX Audio Orange/White 1

Table: PIC-E interface to radio through microphone jack.

PK96 Color Radio

1 TX Blue 5 Mic Audio

2GND Blue/White 4 Ground

3 PTT Gm/White 6 Mic PTT

4RX Orange/White 8 Handset Rx AUD

5 SQ N.C

Table: PK96 to Radio Connection

82

14Figure 14: Schematic of PIC-E.

83

	A Fleet Tracking System using G.P.S. and Radios
	Recommended Citation

	tmp.1631217047.pdf.Ca63v

