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Abstract

The mountain pine beetle (Dendroctonus ponderosae Hopkins) represents a signifi-
cant threat to ponderosa pine and lodgepote pine stands in the western United States.
and has the potential to threaten commercially valuable jack pine in both the United
States and Canada. The success of the mountain pine beetle is based on synchro-
nization of developmental events to time cold-hardened life stages for extreme winter
temperatures and to facilitate mass attack and overwhelm the defenses of the host.
This paper presents a solution methodology for an extended McKendrick - von Foer-
ster model for the development of the mountain pine beetle in varying temperaturce
environments. The model reflects the effect of phenotypic variability on output, and
15 suitable for determining field distributions of emergence events. An efficient com-
putational method, based on Green’s functions, is presented. Results are compared
with direct numerical simulation, and the modelling and simulation strategy is ap-
plied to determine the distribution of emergence for mountain pine beetles. Eventually
these results will be applied to improve forest management strategics in regard to the

epidemic outbreak of pine beetles in northwestern North America.
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standard deviation. An alternative approach, distributed delay models, divide the life stages
of an organism into discrete “phases™ [3. 13]. Populations flow from one phase to the next
at given rates, and as a consequence the developmental rate (1) and the accumulation of
variance. depend on the length of the phases. If Aa represents the length of a phase and
A« 1s the mean developmental rate, then figure (2) demonstrates that the choice of Aq
for this model can not be arbitrary if A\« is held constant. Each choice of Aq produces a
different distribution. While there has heen some success in developing models that take the
choice of Aa into account, these models are still only appropriate for a range of phase size
values [8].

A third approach, the von Foerster model, was originally developed to model cell division,
and has been extended to many other applications. An extension described in this paper
mtroduces a term to account for accumulating variance over life stages. Here we develop two
numerical solution techniques for the extended von Foerster equation. The first is a solution
based on convolution techuniques. The second employs a direct numerical approxiniation of
the equation. Both schemes are implemented over all 8 stages of the mountain pine beetle life
cvele using empirically determined functions for the rates of development and accumulation
of vartance within cach stage. The two solution methods are shown to be consistent and
the predictive power of the model is tested against data collected in the Sawtooth National

Recreation Area.
2 The Extended von Foerster Model
The von-Foerster equation is given by:

d 0
5{[)((1‘7 f) + a—ap(av t) - g((L7 t7p(a'7 t))

where ¢ is laboratory time, a is age (or the Ifraction of life stage completed), T'(t) is tempera-

ture as a function of time, p(a.t) is the population density of individuals at age « and time ¢,

and g(a.t. p(a, 1)) is the total increase or decrease in the size of the population [3]. Although
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Figure 4 A flowchart outlining the MATLAB program used to compute the results of equation
(3). The nser inputs an initial population pj and an initial temperature 7. the necessary
computations are made for one life stage, and the output population pj becomes the input
for the next life stage. This loop is repeated for each of the 8 life stages.
















population density after one time step is approximated hy:

At : -
pyjl =+ o (FJ-T,LZ'_% _ Ffjm%) L O(AP) (5)
with:
Pii — Plio
noo gy, P T P .
F]Aze% = TPy V- Na (6)
Piic — DY ~
" . . n _ Jst J:t
gith o = FyPjiv1 — Vit An (7)
substituting the expressions for the flux terms (6),(7) into (5) produces (8).
At pl—=pt Pl — P
AN+l on R ) . Jit i1 Jytt+1 It Q
Pji =Py Na PPy = T4Pji41 = V= Aa Vs Aa (&)

Where the values v and v_ are the values of the rate function and variability constant on
the left side of the node, and 1, and 1, are the values on the right side. Along the boundaries
for life stages (when o = 1 in the solution), there arc discontinuities in the rate function and
variability constant. To model these jumps the plus and minus rate function and variability

constant must be used. Equation (8) can also be written as:

Pi = ()P (e2)p) A+ (3], )
where:
1 At N At (10)
1 = v_
¢ Aa Aa?

At N vy At N VoAt (11)
TAa | Aa? Aa? |
vy At

3 = 12
‘ Aqa? (12)

2 = 1 —|r

to maintain simplicity in the code. The results from this numerical technique were computed
using MATLAB. The process is outlined in the flowchart in Figure (7).
A more explicit description of the implementation appears in Pseudocode (2):

PSEUDOCODE (2)

Step 1 The input population py = (p), p2, ...péf) where t; s the final time step, 1s integrated

over all time values to produce the weighting constant for each output population.

17
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Figure 70 A flowchart outlining the MATLAB program used to compute the results of equation
(9). The user inputs an initial population py and an initial temperature i the necessary
computations are made for one life stage, and the ontput population p; becomes the input
for the next life stage. This loop is repeated over all age and time steps.
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Step 2 The rates are computed as a function of temperature (T (7)) and inpul parameters

P) s ccific to the mountain pine beetle (see Appendiz B).
p p Pl
Step 3 Vector pi is defined as the value at the next time step.

Step 4 The values of pi and p; are computed using the boundary conditions from equation
(2).

Step 5 The loop over lLife stages begins. The age vector is divided into 8 equal intervals.
Away from the boundaries v_ = r and v_ = vy i equations (10),(11). and (12).
At the boundarics the rates functions and variability constants differ. FEquation (9) is

evaluated at every age step.

Step 6 At the end of cach loop the population distribution at a specific life stage (cqy. larvae,

ete.) is saved, then steps 5 and 6 are repeated over each life stage.

Step 7 After all eight life stuges have been completed. the values of py are saved at particular

tune intervals (i.e. cach Julian Day).

Step 8 p1 = (pi,pt. ...p,,“') 15 set to py, the old pi 1s cleared, and the loop begins again at

Step 3.

The results of a standard von Neumann analysis show that the scheme is stable provided

v At
Aa” S 2

=

that the conditions

T(O)AL

and maxy, ( <

) hold. The first requirement means
At may be many orders of magnitude smaller than Aa. For example, if Aa = .001. we have
At = .00001, and for decreasing values of Aa the difference becomes greater. Thus for a
discretization smaller than Aa = .01 the program can take hours to complete. Even more
costly are the varving rate functions r; and variability constants v; for the eight life stages
that make it necessary to create a nested loop structure to evaluate the approximation over

all age and time values. The convolution code bypasses these difficulties and can produce

the same results much more rapidly.
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3.3 Analytic Solution

Lo verify the accuracy of the two solution methods an analvtic solution can be derived. It is
assumed that the rate and variance parameters take on constant values for each life stage.

Applving the Laplace transform to (1) produces a second order linear differential equation,

5[} - ?)((L: O) - _TpAu + [‘/);l(u ( 13)
pla,0) = 0,
p(0,s) = L

The solution to (13) is:

(14)

Z 1% 124

Lr+ Vr? + dus
pla, s) = ¢ exp ST

1r—Vr2+ 41/3]
5 )

+ ¢, eXp {

Since the solution must be bounded, set ¢, = 0. Furthermore, from the boundary condition,

c» = 1. After application of these two conditions the solution to the differential equation is,

Ly — V2 + dvs .
pla,s) =exp|= : (15)

2 1z

The analytic solution (16) is the inverse laplace transform of (15).

a —(1 - rf)z}

———exp | —
Varut3 I{ it

The solution determined in equation (16) can be coded into a numeric MATLAB program

pla,t) = (16)

and compared with the other solution techniques to test their accuracy for constant values
of the rate functions r; and and variability constants v,. Note that the analytic solution
matches the convolution solution (3) when a constant value of r; is assumed.

4 Results

4.1 Comparison of Solution Techniques

Each of the three programs (analytic, convolution based, and direct approximation) was run

with r = .05 and v = .007 constant. The initial condition for all programs was equation (16)
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evaluated at @ = 1 and the bonndary condition was p(0,a) = 0. The temperature series for
each was a constant T = 12" (. The discretization for the numeric solution was (. \a) =
(.04..04). The plots obtained from the analytic, convolution, and nuneric MATLAB programs
with = .05 and v = .007 for the first life stage are shown in Figure (8).

The graph clearly shows that for constant » and v the analyvtic, convolution, and numeric
technigues produce nearly the same population distributions. The correlation cocfficient is
22 0.9938 for the analvtic and numeric solutions and 72 =~ 1.0000 for the analvtic and
convelution solutions. The approximation is assumed to be accurate to O(At, Aa), and the
values of the correlation coefficient are well within this order of accuracy.

Another comparision between the numeric and convolution techniques was performed
using varying rate functions and variability constants. For this experiment, temperature
was sinusoldal with an amplitude of 2° C and mean at 17° C'. The rate functions were those
shown 1 Figure (3) and the variability was held constant across each life stage but varied
between life stages. In order to demonstrate that the solutions match asymptotically the
results for several values of At and Aa are shown in Figure (9). The plot shown is the output
from the seventh life stage for both programs.

The correlation cocfficients for (At, Aa) = (0.2,0.1).(0.04.0.04), and (0.001,0.002) are
0.8333, 0.9361, and 0.9934 respectively. From these values we can see that as the intervals
approach zero, the direct numeric approximation seems to be converging to the convolution
based solution. From Figure (9) it is clear that the solutions are converging graphically as
well confirming our assumption that the convolution code provides an accurate numerical

solution to equation (2).

4.2 Comparison of Empirical Data and Convolution Solution

The use of the extended von Foerster model as a tool for the prediction of emergence events

15 contingent on its accuracy in predicting the peaks in the population distribution for each

lite stage. To validate the model, data was collected in the Sawtooth National Recreation




T l T T T 7 T | T T
— Analytic Solution
e + Convolution Solution
¥ X * Numeric Solution
; *
: *
*

0.02} o -
20.015+ - .
%))

C
(O]
&)
c
9
E I
3 *
S 001 ¥ -
%
0.005 - .
0 ! £ | i Wi RIRTR A ]
20 40 60 80 100 120 140 160 180 200

Time (Days)

Figure 8: The results for the first life stage from the numerical, convolution, and analvtic
solutions to the extended von Foerster model. The initial population for all programs is
(16) evaluated at @ = 1 and the boundary condition is p(0.a) = 0. The discretization
for the numeric solution is (At, Aa) = (.04,.04). The population distributions from the
three programs are almost identical, demonstrating that the two numerical approximations
accurately represent the analvtic solution for constant v and r.
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Figure 90 The results of the Convolution and Numeric Programs for (At, Aa)=(0.2,0.1),
(0.04. 0.04), and (0.001,0.005) respectively for the Tth life stage. The figure demonstrates
that as Aa and At go to zero the direct numeric solution converges to the convolution
solution. In the final graph the two produce nearly identical plots.
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Area (SNRA).

Selected trees in the SNRA were marked in May 2001, and the number of MPB attacking
cach tree was observed on a daily basis. In addition to counting the attacks. cach tree
was mounfed with a temperature probe that monitored the temperature of the tree in the
developmental environment of the MPB under the bark. The following summer (2002),
beetles from the marked trees were collected using mesh “traps” developed at the Rocky
Mountain Research Station. The traps were collected on a daily basis and the number of
beetles that emerged was noted. In Figure (10) the output of the production convolution
code using the empirical population density from 2001 and the temperatures from the probes
15 plotted against the actual emergence data collected from the SNRA in the sumuer of 2002.

The “activity” term was added to model flight activity of the mountain pine beetle.
Since the MPD is piokiliothermic, its metabolism is directly related to temperature. The
nietabolism of the MPB is not fast enough to allow flight unless the temperature is above 18°
C for approximately 5 hours. Incorporating this observation gives an “activity” correction
to the last life stage.

From Figure (10) we can sce that the von Foerster model, particularly with the activity
term, is useful for describing general trends in the emergence behavior of the mountain
pine beetle. The discrepancy between the observation and the predicted behavior may be
attributed to a variety of factors. The small number of trees that were checked for cmergence
n.ay not provide an accurate representation of the emergence behavior of the population as
a whole.  The empirical curve represents an average emcrgence over several trees at one
lccation. Individual trees may experience slightly different environmental pressures. which
nay influence the accuracy of the prediction. Factors such as temperature differences due

to snow pack, varying degrees of shade and sunlight, and many other small environmental

flictuations may contribute to the differences between the predicted result and the data.
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in the summer of 2002 in the SNRA.




5 Conclusion

The convolution solution to the extended von Foerster model matches the analytic and
numeric solutions for constant rate functions. Furthermore for rate functions that depend
on temperature the numeric solution approaches the convolution solution asymptotically.
Therefore the convolution solution is an accurate representation of the behavior of the model
w varying temperature regimes. In addition, the convolution solution of the von Foerster
model compares favorablv with observations fromn field sites.

Modeling phenologic cvents is the first step toward a forest level predictive model of the
mountain pine beetle outbreak in Northwestern North America. The next step is to evaluate
potential combinations of temperature models with the convolution solution. Eventually the
results will be incorporated into spatial models of mountain pine beetle attacks currently

under development.
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