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Abstract 

The mountain pine beetle (Dendroctonus ponderosae Hopkins) represents a signifi­
cant threat to ponderosa pine and lodgepole pine stands in the western United States, 
and has the potential to threaten commercially valuable jack pine in both the United 
States and Canada. The success of the mountain pine beetle is based on synchro­
nization of developmental events to time cold-hardened life stages for extreme winter 
temperatures and to facilitate mass attack and overwhelm the defenses of the host. 
This paper presents a solution methodology for an extended McKendrick - von Foer­
ster model for the development of the mountain pine beetle in varying temperature 
environments. The model reflects the effect of phenotypic variability on output, and 
is suitable for determining field distributions of emergence events. An efficient com­
putational method, based on Green's functions, is presented. Results are compared 
with direct numerical simulation, and the modelling and simulation strategy is ap­
plied to determine the distribution of emergence for mountain pine beetles. Eventually 
these results will be applied to improve forest management strategies in regard to the 
epidemic outbreak of pine beetles in northwestern North America. 
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1 Introduction 

The Mountain Pine Beetle (Dendroctonus ponderosae Hopkins) represents a significant threat 

to pondcrosa pine (Pinus ponderosae Lawson) and lodgepole pinC' (Pinus contorta Douglas) 

stands in the western United States, and has the potential to threaten commercially valuable 

jack pine (Pinus banksiana Lambert) [6]. Adult beetles attack a tree and deposit their eggs 

in the phloem. The larvae hatch and cat the phloem, interrupting circulation and effectively 

girdling the tree, which is generally fatal to the host. In addition beetles act as a delivery 

vector for the pathogenic blue stain fungus, which kills pines and lowers their commerical 

value. As a method of defense pines flood beetle egg galaries with resin. To overcome this 

defense, the Mountain Pine Beetle (MPB) must attack synchrollously in great numbers to 

overwhelm the tree. 

Synchronization of attacks is essential to the survival and reproduction of MPB, as is an 

appropriate seasonality. To be successful, adult beetles must time their cold-hardened life 

stages for winter and their emergence for August, when the trees arr under the greatest stress. 

Complicating matters further, MPB pass through 8 life stages, each with a distinct rate of 

development, and all dependent on temperature [15]. It has also been shown that, while there 

is no evidence of diapause in the MPB, seasonal temperature can synchronize life cycles and 

facilitate mass attack [5, 8, 9, 10, 14]. Because of its commercial and ecological significance, 

models which predict the phenology and seasonality of MPB are quite important. 

Two of the models currently used to predict the development of poikiliothermic organisms 

have been implemented in variable temperature environments. The probablistic Sharpe et al. 

model is based on assumptions about control enzymes and can be used to find the predicted 

distribution of emergence dates, or emergence distribution, of mountain pine beetles [5, 11, 

12, 3]. This model depends on the assumption that the mean and standard deviation of the 

developmental rate are proportional to determine how variance accumulates as populations 

develop. The plot of accumulated variance versus developmental rate in Figure (1) seems 

to contradict this assumption, as no linear relationship is apparent between the mean and 
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standard deviation. An alternative approach, distributed delay models, divide the life stages 

of an organism into discrete "phases" [3, 13]. Populations flow from one phase to the next 

at gi vrn rates, and as a consequence the developmental rate ( r) and the accumulation of 

variance. depend on the length of the phases. If 6a represents the length of a phase and 

>-.6a is the mean developmental rate, then figure (2) demonstrates that the choice of 6a 

for this model can not be arbitrary if >-.6a is held constant. Each choice of 6a produces a 

different distribution. While there has been some success in developing models that take the 

choice of 6a into account, these models are still only appropriate for a range of phase size 

values [8]. 

A third approach, the von Foerster model, was originally developed to model cell division, 

and has been extended to many other applications. An extension described in this paper 

introduces a term to account for accumulating variance over life stages. Here we develop two 

numerical solution techniques for the extended von Foerster equation. The first is a solution 

based on convolution techniques. The second employs a direct numerical approximation of 

the equation. Both schemes are implemented over all 8 stages of the mountain pine beetle life 

cycle using empirically determined functions for the rates of development and accumulatio11 

of variance \vithin each stage. The two solution methods are shown to be consistent and 

the predictive power of the model is tested against data collected in the Sawtooth National 

Recreation Area. 

2 The Extended von Foerster Model 

The von-Foerster equation is given by: 

a a 
a?(a, t) + oap(a, t) = g(a, t,p(a, t)), 

where t is laboratory time, a is age ( or the fraction of life stage completed), T(t) is tempera­

ture as a function of time, p(a, t) is the population density of individuals at age a and time t, 

and g(a, t, p(a, t)) is the total increase or decrease in the size of the population [3]. Although 
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life stages and temperatures. The figure casts doubt on the assumption of the Sharpe et al. 
model that there exists a linear relationship between v and r [3]. 
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the von-Foerster equation was originallv created to model cell division, it has been extended 

to applv to many different processes, including: natural forest age dynamics, population 

rescnsi t ization in cycling cells exposed to ionizing radiation, and analysis of intraspecific 

competition between adults and juveniles [4, 1, 2]. A variation of this equation used to 

model .\IIPB development is given by: 

a a a2 

~p(a, t) + r(T(t))-;;-p(a, t) = v(T(t))-;:;-:jp(a, t) ut ua ua 
(1) 

where r(T(t)) and v(T(t)) are the developmental and variability rates for each life stage as a 

functio11 of temperature (which may vary with time). The developmental rate is the inverse 

of the time to emergence for the mountain pine beetle, and the variability rate is related to 

the a,ccumulated variance across life stages for the population. The model was developed 

by Gilbcr (2002) based on an analysis of the flux of individuals through small age intervals. 

The rnoclel assumes an underlying population of beetles with developmental rates sampled 

from a normal distribution with mean r and standard deviation CJ, where CJ is the standard 

deviation in developmental rate for the beetle population [3]. The pa,rameter v = 0-
2

2 
controls 

the accumulation of variance across the population over time and is assumed to be constant 

over each life stage as the parameter varies only slightly with temperature within each life 

stage. The equation describing the /h life stage is given by: 

opj + r (T(t)) opj 
ot J oa 

a2p 
Vj Oa; , 0 < t, 0 < a ::; 1, (2) 

P1(a,0) 0, 0 <a::; 1, 

Pi (0, t) Pj-1(a = 1, t), 0 < t, 

where Pj-l is the population distribution of the (j - l) st life stage and rj(T(t)) and vj are the 

developmental rate and variability in the /h stage. The number of beetles passing into the 

/ 11 life stage is determined by the number leaving the (j - 1 )st life stage, thus the boundary 

condition is the populationof the (j - 1 )st stage evaluated at a = l, or when the beeltes 

reach the boundary of the stage. This equation is then iterated over the life cycle of the 
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MPB, using the respective r and I/ for each stage and the output from the previous stage 

('f½-t (1, t)) as the input for determining the following stage ('f½(O, t)). Thr rate functions were 

determined empirically and in general are nonlinear. Figure (3) depicts the rates as a function 

of temperature (see Appendix B for complete rate functions and parameter descriptions), 

although in a physical situation temperature also varies as a function of time. The output 

from the final iteration is the predicted population distribution for the next generation. 

3 Applying the Extended von Foerster Model 

3.1 Convolution Solution Method 

The solution to Equation (2) derived with Green's functions is (see AppPndix A for a complete 

derivation of this solution): 

-( ) _ ft f( ) H(t - T) [-(1 -J; rj(T(s))ds) 2] d p1 l,t - Jn T --;=====exp ---------''----- T 
o ✓41rvj(t _ T)3 4vj(t - T) 

(3) 

A numerical MATLAB program was coded to evaluate the solution defined m (3). The 

flowchart in Figure ( 4) outlines the steps involved in the implementation of the convolution 

code. 

The process is outlined in detail in PSEUDOCODE (1): 

PSEUDOCODE (1) 

Step 1 The hourly input temperature vector f is converted into a matri.T that is 24 x (nyears · 

365), where nyears is the number of years of data. After this conversion the temperature 

series over each day is represented by a column of the matrix, making integrating over 

days the sum over columns. 

Step 2 A seperate loop selects the appropriate variability constant, vJ, and rates function, 

rJ (T(j), P), for each life stage. The rates are computed as a function of temperature 

(T(n)) and input parameters (P) specifi,c to the mountain pine beetle (see Appendix 

BJ. 
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Figure 4: A flowchart outlining the MATLAB program used to compute the results of equation 
(3). The user inputs an initial population p0 and an initial temperature f, the necessary 
computations are made for one life stage, and the output population p1 becomes the input 
for the next life stage. This loop is repeated for each of the 8 life stages. 



Step 3 The exponent E and denominator i5 factors are computed term by term over all 

time values: E(n) = (
4
. ~( )) and D(j) = ~' where t(n) is the nth value of the 1/l n . 41/nl(n) 

time vector. 

Step 4 (i). The cumulative rates vector C(n) = Lk=l r-;(T(k)) and one minus the cumula­

tive value of the rates vector are stored: c\ ( n) = 1 - Lk= I 7j (T( k)). 

(ii). A series of time vectors are created that store the values of the time vector from 

n + 1 to t f - n + 1 where t f is the final time value. 

(iii). The exponent and denominator factors are evaluated at these time vectors to 

yield the convolution in the denominator and exponent of eqv,ation (3). 

(iv). C1 is evaulated from n + 1 to t f - 1, and the n th value of C is added to it to create 

a series of cumulative rates vectors for the integral in the convolution exponent of 

equation (3). 

( v). The denominator, exponent, and rates function factors, along with the time vec­

tors are combined to create the Green's function: GF = cxp[-E · ( Cl + C)2 
• DJ 

Step 5 The Green's function (GF) is normalized by dividing by the sum of its values to 

preserve the overall population from life stage to life stage. If the sum is smaller than 

a certain tolerance, skip this step. 

Step 6 The ov,tput is the result of multiplying term by term the Green's function by the 

input Po : P1 (n) = Po(n) · GF(n) 

Step 7 The output vector p1 is saved and replaces p0 and the loop begins again with Step 4. 

The loop in Pseudo code (1) is repeated 8 times using a different rate function and vari­

ability constant for each life stage. Step 4( ii) creates a series of time vectors for efficient 

computation of the denominator factor in the convolution (3). The process is outlined in 

13 



Figure (5). Step 4(iii) and (iv) "pack" the matrix of cumulative rate values into a series of 

vectors that can be evaluated more rapidly (see Figure (6)). The process takes advantage 

of symmetrv in the cumulative rate matrix to make the computation more efficient. The 

program produces a normalized population density function for each life stage of MPB. The 

final output is the predicted emergence distribution for the mountain pine beetles. The 

"packing" process results in an approximately 80% reduction in computation time. 

3.2 Direct Solution Method 

To corroborrtte the results obtained from the optimized convolution solution method a dis­

crete numerical approximation was created. The first step in the numerical calculation was 

to discretize the age-time domain without compromising the stability of the solution (see 

the van-Neumann analysis below). Next a flux form of the partial differential equation was 

derived. The flux form was derived to conserve the number of individuals across life stages 

and to resolve the discontinuities in the rate functions along the boundary of the stages. 

After this change (1) becomes: 

(4) 

The flux is defined as: 
f) 

F = r(T(t))p(a, t) - u oap(a, t). 

A hybrid of the central difference and upwinding schemes are then applied. At the a = 0 

boundary the condition: 

Pj,O = f (n6.t), 

holds, where J is the population distribution over time of eggs at a= 0, 6.a and 6.t are the 

age and time steps, and PJ,i is the population evaluated at time n6.t, age i6.a and life stage 

j. At the a= l boundary of the final age step a radiative boundary condition is applied to 

allow beetles to pass through the boundary without affecting the rest of the domain. The 
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poptilation density after one time step is approximated by: 

with: 

n n 
n Pj,i - Pj,i-1 

r -Pj,i - v_ t::.a 
n n 

n Pj,i+l - Pj,i 
r +Pj,i+l - V+ t::.a 

substituting the expressions for the flux terms (6),(7) into (5) produces (8). 

n+l _ n + _ n _ n _ Pj,i - Pj,i-l + Pj,i+l - Pj,i t::.t [ n n n n l 
Pj,i - Pj,i t::.a r -Pj,i r +Pj,i+l v_ 6.a V+ t::.a 

(5) 

(6) 

(7) 

(8) 

\i\.here the values r _ and v_ are the values of the rate function and variability constant on 

the left side of the node, and r + and v+ are the values on the right side. Along the boundaries 

for life stages (when a= 1 in the solution), there are discontinuities in the rate function and 

variability constant. To model these jumps the plus and minus rate function and variability 

constant must be used. Equation (8) can also be written as: 

P],t1 = (cl)P],i-l + (c2)P],i + (c3)Pj,i+l 

where: 

t::.t t::.t 
cl r - t::.a + v - t::.a2 

c2 [ 
t::.t v+t::.t 1.J_t::.q 

1 - r + t::.a + t::.a2 + t::.a2 J 

c3 
V+t::.t 

t::.a 2 

(9) 

(10) 

(11) 

(12) 

to maintain simplicity in the code. The results from this numerical technique were computed 

using MATLAB. The process is outlined in the flowchart in Figure (7). 

A more explicit description of the implementation appears in Pseudocode (2): 

PSEUDOCODE (2) 

Step 1 The input population Po= (p~,P6, ... p~1 ) where t1 is the final time step, is integrated 

over all time values to produce the weighting constant for each output population. 
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senes. 

2. The rates fWlCtions 
are called using f 

5. The loop over age steps 
begi.lis. Each separate life 
stage is computed using its 
parameters. 

3.The loop over each time 
step begins. Vector p is 
created for the ne xi ti.ilie step 

4. The boundary v:,lues are 
computed. 

Figure 7: A flowchart outlining the MATLAB program used to compute the results of equation 
(9). The user inputs an initial population p0 and an initial temperature T, the necessary 
computations are made for one life stage, and the output population p1 becomes the input 
for the next life stage. This loop is repeated over all age and time steps. 
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Step 2 The rates are computed as a function of temperature (T(j)) and input parameters 

(P) specific to the mountain pine beetle (see Appendix BJ. 

Step 3 Vector fi is defined as the value at the next time step. 

Step 4 The values of P6 and Pi are computed using the boundary conditions from equation 

(2). 

Step 5 The loop over life stages begins. The age vector is divided into 8 equal intervals. 

Away from the boundaries r _ = r+ and v_ = I/+ in equations {10),(11), and (12). 

At the boundaries the rates functions and variability constants differ. Equation ( 9) is 

evaluated at every age step. 

Step 6 At the end of each loop the population distribution at a speci.fic life stage (egg, larvae, 

etc.) is saved, then steps 5 and 6 are repeated over each life stage. 

Step 7 After all eight life stages have been completed. the values of p 1 are saved at particular 

time intervals (i.e. each Julian Day). 

Step 8 p1 = (Pi, PT, ... p\1
) is set to p0, the old p1 is cleared, and the loop begins again at 

Step 3. 

The results of a standard von Neumann analysis show that the scheme is stable provided 

that the conditions ~~~ :S ½ and maxr(t) c·(Tf~ti.t < 1) hold. The first requirement means 

flt may be many orders of magnitude smaller than !:la. For example, if !:la= .001, we have 

flt = .00001, and for decreasing values of !:la the difference becomes greater. Thus for a 

discretization smaller than !:la = .01 the program can take hours to complete. Even more 

costly are the varying rate functions r j and variability constants vj for the eight life stages 

that make it necessary to create a nested loop structure to evaluate the approximation over 

all age and time values. The convolution code bypasses these difficulties and can produce 

the same results much more rapidly. 
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3.3 Analytic Solution 

To verify the accuracy of the two solution methods an amtlytic solution can be derived. It is 

assumed that the rate and variance parameters take on constant values for each life stage. 

Applying the Laplace transform to (1) produces a second order linear differential equation, 

sp - p(a, 0) (13) 

p(a, 0) 0, 

p(0,s) 1. 

The solution to (13) is: 

( ) _ . [1 r + Jr 2 + 4vsl , [1 r - ✓r2 + 4vsl pa, s - c1 exp ------- + c2 exp ------- . 
2 V 2 V 

( 14) 

Since the solution must be bounded, set c1 = 0. Furthermore, from the boundary condition, 

c2 = 1. After application of these two conditions the solution to the differential equation is, 

( ) _ [~ r - Jr 2 + -lvsl p a, s - exp 
2 

v . (15) 

The analytic solution (16) is the inverse laplace transform of (15). 

a [ -(1 - rt) 2
] p(a,t) = ~exp ---- . 

41rvt3 4vt 
(16) 

The solution determined iu equation (16) can be coded into a numeric MATLAB program 

and compared with the other solution techniques to test their accuracy for constant values 

of the rate functions rj and and variability constants vj. Note that the analytic solution 

matches the convolution solution (3) when a constant value of rj is assumed. 

4 Results 

4.1 Comparison of Solution Techniques 

Each of the three programs (analytic, convolution based, and direct approximation) was run 

with r = .05 and v = .007 constant. The initial condition for all programs was equation (16) 
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evaluated at a= 1 and the boundary condition was p(O, a) = 0. The temperature series for 

each was a constant T = 12° C. The discretization for the numeric solution was (6t, 6a) = 

(.04, .04). The plots obtained from the analytic, convolution, and numeric MATLAB programs 

\\·ith r = .05 and v = .007 for the first life stage are shown in Figure (8). 

The graph clearly shows that for constant r and I/ the analytic, convolution, and numeric 

techniques produce nearly the same population distributions. The correlation coefficient is 

r2 ~ 0.9938 for the analytic and numeric solutions and r2 ~ 1.0000 for the analytic and 

convolution solutions. The approximation is assumed to be accurate to 0(6t, 6a), and the 

values of the correlation coefficient are well within this order of accuracy. 

Another comparision between the numeric and convolution techniques was performed 

using varying rate functions and variability constants. For this experiment, temperature 

was sinusoidal with an amplitude of 2° C and mean at 17° C. The rate functions were those 

shown in Figure (3) and the variability was held constant across each life stage but varied 

between life stages. In order to demonstrate that the solutions match asymptotically the 

results for several values of 6t and 6a are shown in Figure (9). The plot shown is the output 

from the seventh life stage for both programs. 

The correlation coefficients for (6t, 6a) = (0.2, 0.1),(0.04, 0.04), and (0.001, 0.002) arc 

0.8333, 0.9361, and 0.9934 respectively. From these values we can see that as the intervals 

approach zero, the direct numeric approximation seems to be converging to the convolution 

based solution. From Figure (9) it is clear that the solutions are converging graphically as 

well confirming our assumption that the convolution code provides an accurate numerical 

solution to equation (2). 

4.2 Comparison of Empirical Data and Convolution Solution 

The use of the extended von Foerster model as a tool for the prediction of emergence events 

is contingent on its accuracy in predicting the peaks in the population distribution for each 

life stage. To validate the model, data was collected in the Sawtooth National Recreation 
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Figure 8: The results for the first life stage from the numerical, convolution, and analytic 
solutions to the extended von Foerster model. The initial population for all programs is 
(16) evaluated at a = 1 and the boundary condition is p(0, a) = 0. The discretization 
for the numeric solution is (6..t, 6..a) = (.04, .04). The population distributions from the 
t hrce programs are almost identical, demonstrating that the two numerical approximations 
accurately represent the analytic solution for constant v and r. 
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Figure 9: The results of the Convolution and Numeric Programs for ('6.t, '6.a)=(0.2,0.1), 
(0.04, 0.04), and (0.001,0.005) respectively for the 7th life stage. The figure demonstrates 
that as '6.a and '6.t go to zero the direct numeric solution converges to the convolution 
solution. In the final graph the two produce nearly identical plots. 
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Area (SNRA). 

Selected trees in the SNRA were marked in May 2001, and the number of MPB attacking 

each tree was observed on a daily basis. In addition to counting the attacks, each tree 

was mounted with a temperature probe that monitored the temperature of the tree in the 

developmental environment of the MPB under the bark. The following summer (2002), 

beetles from the marked trees were collected using mesh "traps" developed at the Rocky 

~,fountain Research Station. The traps were collected on a daily basis and the number of 

beetles that emerged was noted. In Figure (10) the output of the production convolution 

code using the empirical population density from 2001 and the temperatures from the probes 

is plotted against the actual emergence data collected from the S RA in the summer of 2002. 

The "activity" term was added to model flight activity of the mountain pine beetle. 

Since the MPB is piokiliothermic, its metabolism is directly related to temperature. The 

metabolism of the MPB is not fast enough to allow flight unless the temperature is above 18° 

C for approximately 5 hours. Incorporating this observation gives an "activity" correction 

to the last life stage. 

From Figure (10) we can see that the von Foerster model, particularly with the activity 

term, is useful for describing general trends in the emergence behavior of the mountain 

pine beetle. The discrepancy between the observation and the predicted behavior may be 

attributed to a variety of factors. The small number of trees that were checked for emergence 

may not provide an accurate representation of the emergence behavior of the population as 

a whole. The empirical curve represents an average emergence over several trees at one 

location. Individual trees may experience slightly different environmental pressures, which 

rr:ay influence the accuracy of the prediction. Factors such as temperature differences due 

to snow pack, varying degrees of shade and sunlight, and many other small environmental 

fl·1ctuations may contribute to the differences between the predicted result and the data. 
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Figure 10: The results of the extended von-Foerster model using the empirical populati n 
density from 2001 and the temperature series from probed trees plotted against data collected 
in the summer of 2002 in the SNRA. 
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5 Conclusion 

The convolution solution to the extended von Foerster model matches the analytic and 

numeric solutions for constant rate functions. Furthermore for rate functions that depend 

on temperature the numeric solution approaches the convolution solution asymptotically. 

Therefore the convolution solution is an accurate representation of the behavior of the model 

in varying temperature regimes. In addition, the convolution solution of the von Foerster 

model compares favorably with observations from field sites. 

Modeling phenologic events is the first step toward a forest level predictive model of the 

mountain pine beetle outbreak in Northwestern North America. The next step is to evaluate 

potential combinations of temperature models with the convolution solution. Eventually the 

results will be incorporated into spatial models of mountain pine beetle attacks currently 

under development. 
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6 Appendix A 

The premise of the Green's function solution is to write each life stage's population density, 

p(l. t), as a function of some previous population density j(T). 

The Green's function can be determined from the fundamental solution, F, which satisfies: 

BF BF 82F 
8t + r(T(t)) Ba - V 8a2 = 0, F(a, 0) = o(a). 

To obtain a solution to Equation (17) let: 

z=a- rtr(T(T))dT, T=t. 
lto 

After the change of variables (17) can be written as: 

BF 82F 
OT - V [)z2 = 0, F(z, 0) = o(z). 

This is the second order heat equation with solution (19). 

F(z,T) = ~exp [-
22

], 0 < T. 41rvT 41A 

Inverting the change of variables yields: 

F ( ) _ H(t - to) [- (a - ft~ r(T(s)ds)) 2
] 

+ a, t - ---;===== exp ( ) , 
J41rv(t - to) 4v t - to 

and solving this equation when r'(T(t)) = -r(T(t)) the solution is: 

F ( ) _ H(t - to) , [-(-a+ ft~ r(T(s)ds)) 2
] 

_ a, t - exp ( ) . 
J41rv(t - to) 4v t - to 

(17) 

(18) 

(19) 

T king the difference of F+ and F_ imparts the property G(0, t) = 0, and taking the normal 

derivative with respect to a gives us the Green's function for the problem: 

C ( ) _ . H(t - t0 ) [- (1 - ft~ r(T(s)ds))
2

] 
a 1, t - --====exp ( ) . 

J41rv(t - t0 ) 3 4v t - to 

Therefore the solution for p(l, t) can be written as, 
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7 Appendix B 

The parameter values are given by: 

P= 
.3148 19.95 .2034 29.60 4.885 
.6887 57.28 .3004 25.22 4.596 
.3562 18.01 .4788 19.36 3.470 
.1909 19.70 .1542 8.768 7.905 
10.95 .0100 nan nan nan 
11.76 .0172 nan nan nan 
0.095 11.85 -.627 30.00 nan 
.1690 .0194 1.540 .8000 2.000 

where nan stands for "not a number", or an empirical parameter that has not beC'n deter­

mined. These undetermined values do not affect the performance of the model. The rate 

functions for the eight life stages were determined empirically in the laboratory. Beetles were 

incubated in lodgepole pine phloem and the number of days to emergence for each individual 

·was recorded. The developmental rate for the sample is then defined as the inverse of the 

t tal days for the median individual. The experiment was performed at several temperatures 

and the developmental rates were calculated for each. Then curves were fitted to the empir­

ical data to produce developmental rate functions. These empirically determined functions 

appear below [3]. 

Stage 1 ( egg) 

T1 = T(t) - P(8, 5), 

w:1ere T(t) is the temperature vector, P is the parameter matrix, and all values of T 1 that 

are less than 0 are set to 0. 

T 

r 

Stages 2,3,and 4 (larval 1, larval 2, and larval 3 ) 
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zl 

z2 

r 

1 
1 + P(i - 1, 2) * e-P(i-l,3)T 

P(i-1,4)-T 
e P(i-1,5) 

P ( i - 1, 1) ( z 1 - z2), 

wwhere i is the life stage (2,3, or 4). The values of r less than zero are then set to zero. 

Stage 5 (larval 4) 

xT T-P(4,5) 

T 
(P( 4, 2) - xT) 

P(4, 3) 

xT 2 

xl 
(xT 2 + P(4, 4)2) 

x2 P(4, 1)(1- e- 7
) 

r xl + x2 - P(4, 1), 

Then the values of r less than zero, and those with indices T < P(5, 5) are set equal to zero. 

Stages 6 and 7 (pupal and teneral adult) 

r = P(i - 1, 2)(T - P(i - 1, 1)), 

where i is the life stage ( 6 or 7). Then the values of r less than zero are set to zero. 

Stage 8 ( ovipositional adult) 

All values of T greater than P(7,4) are set equal to 2 * P(7, 4) - T. Then: 

P(7, 1) 
r=-------1 + e(P(7,2)+P(7,3)+T) . 

where T is the temperature vector an P is the parameter matrix. 
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