
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Theses and Dissertations Graduate Studies 

5-2011 

Measuring the Removal of Trichloroethylene from Measuring the Removal of Trichloroethylene from 

Phytoremediation Sites at Travis and Fairchild Air Force Bases Phytoremediation Sites at Travis and Fairchild Air Force Bases 

Heather A. Klein 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/etd 

 Part of the Environmental Engineering Commons 

Recommended Citation Recommended Citation 
Klein, Heather A., "Measuring the Removal of Trichloroethylene from Phytoremediation Sites at Travis and 
Fairchild Air Force Bases" (2011). All Graduate Theses and Dissertations. 860. 
https://digitalcommons.usu.edu/etd/860 

This Thesis is brought to you for free and open access by 
the Graduate Studies at DigitalCommons@USU. It has 
been accepted for inclusion in All Graduate Theses and 
Dissertations by an authorized administrator of 
DigitalCommons@USU. For more information, please 
contact digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F860&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/254?utm_source=digitalcommons.usu.edu%2Fetd%2F860&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/860?utm_source=digitalcommons.usu.edu%2Fetd%2F860&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


MEASURING THE REMOVAL OF TRICHLOROETHYLENE FROM 

PHYTOREMEDIATION SITES AT TRAVIS AND  

FAIRCHILD AIR FORCE BASES 

 
 

by 
 
 

Heather A. Klein 
 

A thesis submitted in partial fulfillment 
of the requirements for the degree 

 
of 

MASTER OF SCIENCE 

in 

Civil and Environmental Engineering 

 
Approved: 
 

 
_____________________    _____________________ 
William Doucette     Bruce Bugbee 
Major Professor     Committee Member 
Environmental Chemistry    Plant Physiology 

 
 

_____________________    _____________________ 
R. Ryan Dupont     Byron R. Burnham 
Committee Member     Dean of Graduate Studies 
Environmental Engineering 

 
 

UTAH STATE UNIVERSITY 
Logan, Utah 

2011 



 ii
 

 

 

 

 

 

 

 

 

Copyright © Heather Klein 2011 

All Rights Reserved



 iii
ABSTRACT 

Measuring the Removal of Trichloroethylene from  

Phytoremediation Sites at Travis and  

Fairchild Air Force Bases 

by 

Heather Klein, Master of Science 

Utah State University, 2011 

Major Professor:  Dr. William J. Doucette 
Department:  Civil and Environmental Engineering 

 
 

Past use of trichloroethylene (TCE) as a degreasing solvent for aircraft 

maintenance has resulted in widespread groundwater contamination at Air Force Bases 

around the world.  Travis AFB in California and Fairchild AFB in Washington are 

evaluating phytoremediation as a treatment option, since trees have been reported to take 

up dissolved TCE from shallow groundwater and volatilize it to the atmosphere while 

enhancing the volatilization of TCE from surrounding soil.  Previous studies generally 

focused on the identification of removal mechanisms.  The emphasis of this research was 

to quantify total TCE removal from phytoremediation demonstration plots at Travis and 

Fairchild AFBs. 

Tree cores, collected using an increment borer and analyzed using headspace 

GC/MS, were used to determine the relative TCE concentrations within the plume 

beneath the trees and to estimate the mass of TCE in each tree.  To estimate the 
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volatilization of TCE from leaves, a small section of tree branch was placed inside a 

flow-through glass chamber.  Continuous air flow through the chamber maintained 

normal transpiration and temperature.  Air exiting the chamber was sampled for TCE 

using Tenax® tubes.  Humidity probes placed at the chamber entry and exit were used to 

estimate transpiration.  Volatilization of TCE from tree trunk and soil surfaces was 

measured by enclosing a section of trunk or ground surface within a small stainless steel 

chamber.  Fans in the chamber mixed the air that was recirculated through Tenax® tubes 

to continuously remove TCE.  After a measured time interval, the Tenax® tubes were 

analyzed for TCE by thermal desorption GC/MS.  

By using a Thiessen polygon method, the removal of TCE was estimated to be 

839 g/yr at Travis and 18 g/yr at Fairchild with the majority from leaf and soil 

volatilization.  Soil surface volatilization of TCE was greater inside the planted areas than 

outside the planted areas, indicating that the trees enhance this removal by this 

mechanism.  Based on these estimates phytoremediation removed 5 and 50% of the mass 

of TCE in the groundwater at Fairchild and Travis Air Force sites, respectively. 

(113 pages) 
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CHAPTER 1 

INTRODUCTION 

 The widespread use of trichloroethylene (TCE) in chemical processing and as a 

degreasing solvent has caused it to become a common contaminant in groundwater.  

Since TCE has often been used in aircraft maintenance operations, many Air Force bases 

around the United States and the world have TCE groundwater contamination; however, 

the focus of this thesis is confined to two specific Air Force bases. TCE does not readily 

degrade under aerobic conditions and when introduced into the environment can form a 

dense, non-aqueous phase liquid (DNAPL) that is very difficult and costly to remediate.  

The Air Force Center for Engineering and the Environment (AFCEE) has invested a great 

deal of research into developing and investigating alternative remediation mechanisms to 

replace or enhance the expensive and somewhat inefficient techniques that have 

historically been used for TCE contaminated site remediation, such as pump and treat 

systems, barrier walls, and trenches (Mitretek Systems, 1999). 

One technology that the Air Force has evaluated within the last decade is 

phytoremediation.  Phytoremediation is defined as the use of trees to clean up or control 

the spread of groundwater contaminants.  This method has gained considerable attention 

because of its apparent effectiveness and relatively inexpensive capital and maintenance 

costs.  As many as six bases around the country have on-going phytoremediation 

demonstration sites where feasibility studies are underway including Travis Air Force 

Base in California and Fairchild Air Force Base in Washington, which are the subjects of 

this research (Parsons, 2005a).  These sites were considered to be great candidates for 

phytoremediation since they are located in climates with hot, dry summers that make the 
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trees more likely to depend on groundwater to meet their metabolic needs since surface 

water supplies are limited. 

Studies have shown that trees not only take up volatile organic compounds 

(VOCs) such as TCE from shallow groundwater (Burken and Schnoor, 1998), but they 

can also volatilize it through the trunk (Ma and Burken, 2003) and leaves (Burken and 

Schnoor, 1998; Newman et al., 1999) while potentially enhancing volatilization through 

the nearby soil (Smith, Tisdale, and Cho, 1996; Marr et al., 2006; Andersen et al., 2008).  

Metabolism within trees is another potential mechanism that could contribute to the 

removal of TCE, but limited field data suggests it is small (10 to 20 %) relative to the 

amount removed by volatilization (Doucette et al., 2003; Burken et al., 2005).  The 

ability of trees to act as a sorptive reservoir for TCE is another potential mass removal 

process that has not been adequately evaluated but will be assessed in this study.  The 

term “sorption” will be used to encompass the material adsorbed and absorbed by the tree 

as well as the material contained within the transpiration stream since tree core samples 

operationally include mass of TCE from these sources. 

Despite numerous field studies, few have attempted to predict the total amount of 

TCE that is or could be removed from a specific site using phytoremediation although 

Wang et al. (2004) tried to quantitate the removal of carbon tetrachloride from a site 

through leaf, trunk, and soil volatilization, using different methodologies.  Studies such as 

this, although site specific, are valuable to the Air Force and others with similar projects 

because they provide a means of estimating the effectiveness of such a system and 

remediation timeframes at a site using phytoremediation technology. 
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There are several important limitations associated with this project that affect the 

accuracy of the estimations presented.  The budget allowed for only three sampling trips 

to each site where a small percentage of the trees were sampled.  More frequent trips with 

many trees sampled would be more appropriate.  The groundwater data were collected by 

Parsons from 13 existing wells at Travis and three existing wells at Fairchild during 

various years.  At Travis, there were inconsistencies with the specific wells that were 

sampled each year, so only 2004 and 2009 data were used since all the wells in or near 

the site were sampled at these times.  At Fairchild, the problem was the small number of 

wells that are being used to make calculations for the entire site.  The most recent soil 

data are from 2001 and are considered to have questionable accuracy.  Without accurate 

soil data, it is difficult to verify what percentage of the TCE may be sorbed to the soil. 

  
Objectives 

The main purpose of this research is to quantify TCE removal from the 

groundwater at Travis and Fairchild Air Force Base sites through leaf, trunk, and soil 

surface volatilization as well as through sorption within the trees.  The amount of TCE 

removed by metabolism was not evaluated due to budget constraints and previous data 

suggesting it was small relative to volatilization.  The concentration of TCE in tree core 

samples was used to help select representative trees for the leaf and trunk volatilization 

flux samples and to estimate the amount of TCE contained within the trees for evaluation 

as a potential reservoir for TCE.  Another objective is a prediction of the amount of time 

required to remediate each site.  Specific objectives were to: 
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1. Measure the amount of TCE volatilized from the tree leaves using a flow-

through chamber system and scale these measurements to whole trees over 

the entire site using a modified Penman-Monteith approach in conjunction 

with the Thiesson Polygon method. 

2. Measure the amount of TCE volatilized from the trunk and soil surface 

using recirculating chamber systems that are scaled to the entire site using 

the Thiesson Polygon method. 

3. Collect and analyze core samples from trees across the site and, assuming 

constant concentration throughout the tree, determine the average amount of 

TCE contained within the trees.  Scale to the entire site using the Thiesson 

Polygon Method. 

4. Calculate the total TCE removal per year for each phytoremediation site and 

compare with the amount of TCE in the groundwater within the site to 

determine the approximate time for complete removal of TCE. 

 

Site Descriptions 

 Travis Air Force Base (AFB) is located in Solano County, California, 5 km east of 

the city of Fairfield.  Although there are several areas on base with reported groundwater 

contamination, a phytoremediation demonstration site was implemented as an attempt to 

remediate only one of them.  For this site, the source of contamination was Building 755, 

shown in Figure 1.1, located on base in the northern section of the West/Annexes/Base 

Wide Operable Unit (WABOU).  Building 755 had been used first as a rocket engine 
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testing site and then as the Battery and Electric Shop where battery acids and 

chlorinated solvents were regularly discharged until 1978 (Parsons, 2010a).  Since then, 

the source area of contamination has been removed, along with Building 755, and a 

bioreactor has been installed at that site (Figure 1.1). 

 Remediation of the groundwater down gradient from Building 755 began in 1998 

with the planting of 100 red ironbark eucalyptus trees (eucalyptus sideroxylon rosea) to 

the southeast of the building.  In 2000, another 380 trees were planted for a total of 480 

trees over a 2.24-acre plot.  As of October 2009, only 388 trees remained alive. 

 

 

Figure 1.1.  Travis AFB site location and plume map (Parsons, 2010a). 
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The bioreactor, installed in 2008, is 400 ft2 in area and extends 20 ft below the 

ground surface.  The bottom of the reactor is filled with 3,000 pounds of iron pyrite.  A 

50/50 mix of gravel and tree mulch that has been sprayed with three gallons of vegetable 

oil per cubic yard of mix fill the rest of the bioreactor to within two feet of the ground 

surface.  A groundwater infiltration system was installed on top of the mulch, followed 

by a geotextile layer and clean soil backfill.  To date, an average decrease in TCE 

concentration of 94% has been reported for the monitoring well network around the 

bioreactor (CH2MHill, 2010a).  A biobarrier, also shown in Figure 1.1, was installed mid 

2010.  It consists of a row of 13 wells, aligned perpendicular to groundwater flow, which 

has been injected with emulsified vegetable oil (EVO).  The natural hydraulic gradient is 

being used to carry water to and through the biobarrier (CH2MHill, 2010b).  Analysis of 

monitoring well samples around the biobarrier has not yet been conducted. 

 Climate data from the nearby city of Vacaville indicate a moderate climate with 

average maximum temperatures in January and July of 13°C and 35°C, respectively, and 

average minimum temperatures in January and July of 3°C and 13°C, respectively.  The 

highest average monthly rainfall occurs in the winter (December – February), followed 

by the spring (March – May) with 124 mm and 46 mm accumulated, respectively.  The 

fall months of September through November follow closely with 36 mm of average 

monthly rainfall, while the summer months of June through August only get 2 mm of 

average monthly rainfall.  These conditions allow for a 289-day growing season (Parsons, 

2010a). 

Fairchild Air Force Base is located in Spokane County, Washington, 14 km west 

of the city of Spokane.  Like Travis Air Force Base, there are many areas on base with 
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groundwater contamination.  A phytoremediation demonstration site was implemented 

for an area where the sources of contamination are separate groundwater plumes from 

Sites PS-10 and PS-3.  Figure 1.2 shows the site location and plume with groundwater 

flow direction.  In 2001, 1134 trees consisting of three different types of hybrid poplar 

clones, 184-411(Populus trichocarpa x Populus deltoides), OP-367 (Populus trichocarpa 

x Populus nigra), and Eridano (Populus deltoides x maximowiczii), were planted over an 

area of approximately 1 acre near the previously existing intersection of Patriot and 

Wainwright Boulevards near Building M286 in Site SS-39.  As of September 2009, only 

273 trees remained alive. 

Climate data from the Spokane Airport (Western Regional Climate Center) 

reports an average annual maximum temperature of 14°C and a minimum of 3°C.  Winter 

(December-February) months are the coldest, followed by fall (September – November), 

 

 

Figure 1.2.  Fairchild AFB site location and plume map (adapted from Parsons, 2010b). 
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 spring (March – May), and then summer (June – August) with average temperatures of 

0°C, 9°C, 13°C, and 19°C, respectively.  Rainfall follows a similar pattern with winter 

being the wettest, followed by fall, spring, and then summer with average total rainfall of 

49 mm, 35 mm, 30 mm, and 20 mm, respectively.  Fairchild AFB also receives an 

average total snowfall of 1062 mm.  These conditions result in a 153-day growing season 

(Parsons, 2003). 
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CHAPTER 2 

LITERATURE REVIEW 

Characteristics of TCE 

TCE is a chlorinated hydrocarbon commonly used as a degreasing agent for 

metals and as an extraction solvent for greases, waxes, and tars.  It is used in the 

manufacturing process of other chemicals and is found in consumer products such as 

paint removers, adhesives, and rug cleaners (USEPA, 2000).  Because of its widespread 

use, TCE contamination in groundwater is a common problem and can be particularly 

troublesome for those communities that depend on groundwater for their drinking water.  

Last estimated by the EPA in 2000, between 9 and 34% of drinking water supply sources 

in the U.S. are contaminated with TCE.  Other sources of exposure for the general public 

include using products that contain TCE, evaporation from disposal sites, and industrial 

exposure to factory workers and people living in areas around factories where TCE is 

being used (USEPA, 2000).  Health effects from both acute and chronic exposure have 

been reported and include:  damaged central nervous, immune and endocrine systems; 

lung, kidney and liver damage; high incidences of miscarriages; congenital heart disease 

in children; and various types of cancers (USEPA, 2000).  Because of the serious health 

risks associated with TCE, the federal government has put the maximum contaminant 

level (MCL) for drinking water at 5 parts per billion (ppb).  The state MCLs in California 

and Washington are the same as the federal standard, however, some states have more 

stringent regulations.  Table 2.1 provides a list of the chemical and physical properties of 

TCE.  Burken and Schnoor (1999) correlated volatilization of VOCs from poplar trees  
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Table 2.1.  Chemical and physical properties of TCE 

 
Parameter Value Reference 
Chemical Formula C2HCl3 USEPA (2000) 
Molecular weight 131.4 g/mol USEPA (2000) 
Odor threshold 28 ppm USEPA (2000) 
Vapor Pressure @ 25°C 74 mm Hg USEPA (2000) 

Henry’s Law Constant @ 25°C 0.011 atm-m3/mol U. S. Dept. of Health and 
Human Services (1997) 

Water Solubility 25°C 1.366 g/L U. S. Dept. of Health and 
Human Services (1997) 

Density @ 20°C 1.465 g/mL U. S. Dept. of Health and 
Human Services (1997) 

Log Kow 2.42 USEPA (2000) 

Boiling Point 86.7°C U. S. Dept. of Health and 
Human Services (1997) 

Half-life in air 7 days USEPA (2000) 
Federal Max. Contaminant 
Level (MCL) in Drinking Water 5 µg/L USEPA (2000) 

OSHA Permissible Exposure 
Limit (PEL) Time Weighted 
Average (TWA) 

100 ppm  ATSDR (2007) 

NIOSH 10 hr TWA 25 ppm ATSDR (2007) 
 

with vapor pressure, where a larger vapor pressure (> 0.01 atm) corresponds to more 

volatilization.  The octanol-water partitioning coefficient (log Kow) is related to the 

lipophilicity (the preferential partitioning into fats, oils, lipids, and non-polar solvents 

over water) of a compound and indicates potential for partitioning into soil organic 

matter.  It is inversely related to the water solubility of the compound.   

 
Uptake of Organic Contaminants by Trees 

 The transpiration stream concentration factor (TSCF) has been used to describe 

how readily organic chemicals are taken up and translocated by plants.   The TSCF is 

equal to the concentration of the compound in the transpiration stream divided by the 
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concentration in the bulk solution (Russell and Shorrocks, 1959). The amount of TCE 

taken up by trees in the field can be estimated by multiplying the TSCF by the volume of 

water transpired and the concentration in the bulk solution.  Doucette et al. (2003) 

reported that laboratory measured TSCF values for TCE range between 0.02 and 0.75.  

As previously mentioned, once TCE has been taken up by the trees, it will then follow 

one of several fate pathways including: transformation within the plant, sorption (mainly 

to the lignin), volatilization from the leaves, and/or the trunk.  Each of these volatilization 

mechanisms will be explained in further detail in the following sections. Other reported 

transformation processes associated with trees include: the microbial degradation of TCE 

in the rhizosphere (Burken et al., 2005; Chappell, 1997) and within the tree (Chappell, 

1997; Gordon et al., 1998).  As previously mentioned, transformation of TCE was not 

evaluated in this project.  

Several factors affect the uptake of contaminants by trees including water source 

(ground or surface water), transpiration rate, and lipophilicy of contaminant (log Kow) 

(Doucette et al., 2003).  Briggs, Bromilow, and Evans (1982) reported an optimal 

lipophilicity for plant uptake, based on log Kow to be between 1.5 and 2.0.  Burken and 

Schnoor (1998) used a similar approach and found the optimum log Kow for uptake to be 

at 2.5, which is very similar to the log Kow for TCE reported as 2.42 (Table 2.1).  

However, more recent studies have presented an empirical relationship between TSCF 

and log Kow that indicates that compounds that are nonionizable, polar, and more water 

soluble are most likely to be taken up by plants than those compound that are not 

(Dettenmaier, Doucette, and Bugbee, 2009). Using either approach, TCE is expected to 

be taken up by trees.  
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Tree Cores 

The passive uptake of TCE by trees along with the water used for transpiration 

has been used to map and monitor groundwater contaminant plumes by relating the 

concentration of TCE in tree core samples to that in the groundwater below the trees 

(Sorek et al., 2008; Larsen et al., 2008).  Generally, higher groundwater concentrations 

result in higher tree core concentrations, but this is not always the case (Lewis, 2001; 

Vroblesky et al., 2004; Larsen et al., 2008; Sorek et al., 2008).  The relationship between 

tree core and groundwater concentrations can vary for many reasons including:  tree 

species (Vroblesky, Nietch, and Morris, 1999; Vroblesky et al., 2004; Larsen et al., 2008; 

Sorek et al., 2008), height along trunk (Vroblesky, Nietch, and Morris, 1999; Lewis, 

2001; Vroblesky et al., 2004; Baduru, Trapp, and Burken, 2008; Doucette et al., 2003, 

2007), side of the tree from which the core was taken and extent of the root system 

(Vroblesky, Nietch, and Morris, 1999; Lewis, 2001; Sorek et al., 2008; Ma and Burken, 

2003; Larsen et al., 2008), depth to groundwater and age of the tree (Vroblesky et al., 

2004; Ma and Burken, 2003; Sorek et al., 2008), and water source (Vroblesky et al., 

2004; Sorek et al., 2008).   

Due to the extensive variability of the tree core-groundwater relationship, Sorek et 

al. (2008) and Larsen et al. (2008) suggest using tree cores only as a tool to determine the 

relative distribution of a contaminant in the groundwater and to identify the best locations 

for groundwater wells.  Sorek et al. (2008) also reported that VOCs such as TCE do not 

accumulate in trees over an extended period of time, making trees relatively better 
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indicators of recent contamination.  However, Lewis (2001) reported relatively stable 

concentrations of TCE within tree core samples collected over the entire year. 

Despite generally consistent and reliable results, it is possible to get a false 

positive hit for contamination as well as false negatives.  False positives can occur, as 

with any sampling, from contaminated sampling equipment, analytical contamination, 

etc.  Factors that contribute to false negatives include low transpiration rates caused by 

limited deep root growth in the ground water, or poor tree health (Sorek et al., 2008).  

The contaminant can also be broken down in the tree or rhizosphere or volatilized and 

diffused outward from the trunk, changing the steady-state tree core to groundwater 

concentration ratio. 

 
Leaf Volatilization  

 The volatilization of TCE from tree leaves along with transpired water has been 

reported as a potential fate pathway.  Many studies including those by Burken and 

Schnoor (1998) and Newman et al. (1999) have indicated that TCE is taken up into the 

plant and can be transpired from the leaves or metabolized and dechlorinated within the 

plant tissue.  Newman et al. (1999) attempted to measure the TCE transpired from a 

single leaf inside a Teflon bag but did not observe significant volatilization of TCE.  

However, it is unclear if the flow rate of air through the bag was high enough to prevent 

humidity from approaching 100% which would cause the leaf to stop transpiring.  In an 

attempt to maintain more natural transpiration rates, Doucette et al. (2003) used a 

different approach for measuring TCE from leaf flux.  A small section of branch was 

placed inside a glass chamber instead of a single leaf.  Flow through the chamber was 
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also significantly larger, 3 to 6 liters per minute, to prevent a buildup of humidity 

within the chamber.  It was reported that between 2 and 53 mg of TCE would be removed 

by each tree every year for their site at Hill Air Force Base (Hill AFB) in Utah, which 

could account for significant removal over the lifetime of the trees. 

 More recent research by Utah State University at other Air Force bases has added 

to the limited pool of data for TCE volatilization from leaves.  Rogers (2006) conducted 

studies at Hill AFB located in Northern Utah and Vandenberg Air Force Base in 

California.  A glass chamber method adapted from Doucette et al. (2003) was used to 

measure TCE volatilized from the leaves in conjunction with water transpired.  Five trees 

were sampled at Hill AFB resulting in a range of transpiration stream concentration 

(TSC) values from 13 to 23 µg/L and TCE removal from the leaves ranging from 0.03 to 

0.97 g/tree/year with an average of 152 L/day transpired.  The TSC is the ratio of the 

mass of TCE collected to the mass of water collected and is used to determine the mass 

of TCE fluxed during transpiration (Doucette et al., 2003).  At Vandenberg AFB, of the 

19 trees that were sampled, only two contained measurable levels of TCE.  However, the 

average transpiration rate for these trees at 55 L/day was much lower than at Hill AFB.  

In addition to the lower transpiration rates, the TCE groundwater concentrations at 

Vandenberg AFB (maximum concentration of 4,600 µg/L) were about half the 

concentrations at Hill AFB (10,000 µg/L).  Both factors suggest that TCE would be less 

likely to be taken up by the trees at the Vandenberg AFB site. 

Winters (2008) sampled poplar, willow, and Russian olive trees at Hill Air Force 

Base in much the same way as Rogers (2006).  Transpiration at this site was between 15 

and 160 L/day resulting in a range of TSC values between 2.4 and 46 µg/L.  It was 
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reported that phytovolatilization could be a significant fate at that site with TCE 

removal from the leaves resulting in between 0.05 to 1 g/tree/year, similar to Rogers 

(2006). 

 
Trunk Volatilization 

 Vroblesky, Nietch, and Morris (1999) noticed a statistically significant decrease 

in concentration with height up a tree trunk and suggested that trunk volatilization may be 

responsible.  Other explanations include degradation and sorption within trunk.  This 

claim was examined by Ma and Burken (2003) who also suspected that diffusion from 

the trunk to be another potential fate of TCE after it is taken up by the tree.  Diffusion is 

related to flux through Fick’s First Law, which states that flux is equal to the diffusion 

coefficient multiplied by the concentration gradient over a distance, with the diffusion 

coefficient being dependent on the medium through which the contaminant is moving.  

Since diffusion appears to take place in tree trunks (Ma and Burken, 2002), it is 

reasonable to suggest that a flux of TCE from the trunk would also occur, however few 

direct measurements of flux from tree trunks have been reported to date.  Winters (2008) 

sampled trunk flux using a tedlar bag recirculating system sealed to the trunk of a tree.  

Results ranged from 0.02 – 1.32 pg/cm2/min translating into an average flux rate of 4.1 

mg/tree/year and a high of 62 mg/tree/year. Overall results at the site indicated that 

volatilization of TCE through the tree trunk was much smaller than volatilization from 

the tree leaves or surface of the soil located around the trees.  

As with the tree core samples previously mentioned, a decrease in trunk 

volatilization has been measured with height up the trunk (Ma and Burken, 2004; James 
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et al., 2009).  Some suggest that this decrease is related to the transpiration rate since 

the concentration of TCE in the transpiration stream decreased in all cases (Ma and 

Burken, 2003).  Other researchers have not see a decrease in flux with height (Baduru, 

Trapp, and Burken, 2008; Wang et al., 2004).   

Wang et al. (2004) used a glass chamber attached to the trunk to measure trunk 

flux of carbon tetrachloride (CT) and reported a max trunk flux that accounted for only 

7% of the average CT removed, therefore deeming it an insignificant removal path.  The 

differences in the chemical and physical properties of the contaminants and trees 

sampled, as well as the sampling method, may have much to do with the differences in 

results between the various studies. 

 Diffusion from tree trunks also depends on physical and chemical properties of 

the contaminant.  Highly volatile compounds are potentially removed more easily than 

compounds with lower vapor pressures through volatilization; this could result in larger 

loss of mass through the trunk (Ma and Burken, 2003; Baduru, Trapp, and Burken, 2008).  

Effective diffusivity is inversely related to the square root of the molecular weight of the 

contaminant as demonstrated by Fick’s Law, where the diffusion coefficient decreased 

with increasing molecular weight.  In other words, larger compounds do not as readily 

diffuse through the trunk. 

 Not only has TCE efflux been seen to decrease with height, but it is also reported 

to decrease with radial distance from the center of the trunk.  Concentration of TCE 

decreases with outward radial distance, which provides evidence that diffusion is in fact 

taking place (Ma and Burken, 2003).  However, Gopalakrishnan, Burken and Werth  

(2009) concluded that the diffusion coefficients in the bark are between 2 and 10 times 
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smaller than in the wood, and TCE is preferentially stored in the bark rather than in the 

wood.  This was supported by core samples containing 42-60% of the total measured 

TCE in the bark, indicating that the bark is a barrier to volatilization into the atmosphere 

(Gopalakrishnan, Burken, and Werth, 2009).  Volatilization from large, tall trees has been 

found to be slower than from smaller trees and the small branches of trees due to the 

decreases in TCE efflux with height and radial distance (Baduru, Trapp, and Burken, 

2008; Trapp, 2007). 

 
Soil Volatilization 

 Volatilization of contaminant from the soil surface is another potential pathway 

for removal of VOCs from field sites with contaminated groundwater; however, there are 

many factors that contribute to the level of volatilization that will occur.  Some of these 

factors include:  changes in atmospheric conditions, depth to groundwater, concentration 

of contamination in the groundwater, soil moisture, porosity of the soil, and the presence 

of trees (Marr et al., 2006; Choi, Tillman, and Smith, 2002). 

Although diffusion is considered the dominant transport mechanism through soil, 

a difference of 1 to 4 orders of magnitude has been measured between total and diffusive 

volatilization fluxes of TCE, which indicates that another mechanism is present (Smith, 

Tisdale, and Cho, 1996).  That mechanism is thought to be advection, which is driven by 

atmospheric temperature and pressure changes (Smith, Tisdale, and Cho, 1996; Marr et 

al., 2006).  A decrease in atmospheric pressure would increase the advection of TCE 

upward to the soil surface.  The response of subsurface air to atmospheric pressure 

changes is known as barometric pumping (Auer et al., 1996). 
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Since changes in atmospheric pressure are generally small, the increased 

volatilization of VOCs from the soil surrounding the trees may be due to another 

phenomenon known as Hydraulic lift.  The occurrence of hydraulic lift in plants is driven 

by the transpirational demand of the plants during the day that depletes soil water.  At 

night, water rapidly flows from the deeper roots as a function of soil water potential into 

the upper layers of soil (Richards and Caldwell, 1987).  This water rehydrates the plants 

and is able to be stored in the upper soil layers to support transpiration and provide a 

buffer for several days of drought.  Volatile organic compounds contained in this water 

may then more readily volatilize through the soil surface  

 Characteristics of the groundwater have an enormous effect on contaminant 

volatilization flux from the soil surface.  Water table elevation has a direct effect on flux 

in that the closer the groundwater is to the soil surface the larger the fluxes (Auer et al., 

1996; Marr et al., 2006; Andersen et al., 2008).  Similarly, vapor concentrations in the 

soil increase with depth of groundwater (Smith, Tisdale, and Cho, 1996).  Also, as would 

be expected, soil over areas of high groundwater concentrations results in larger 

volatilization fluxes of the contaminant than areas of lower groundwater concentrations 

(Marr et al., 2006). 

 The presence of trees over areas of groundwater contamination has also been 

shown to enhance the flux of VOCs from the soil by affecting several soil characteristics.  

One particular case showed that a phytoremediation planting over a contaminated area 

increased volatilization through the soil by a factor of four (Marr et al., 2006).  Trees pull 

water from the soil thereby decreasing the soil moisture content surrounding them and 

increasing the flux from the soil (Smith, Tisdale, and Cho, 1996; Choi, Tillman, and 
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Smith, 2002; Marr et al., 2006; Andersen et al., 2008).  After a rainfall event, trees will 

preferentially use that easily accessible water over soil water or groundwater.  With air 

then replacing the water-filled pore spaces in the soil, diffusion of TCE to the ground 

surface is more rapid since diffusion coefficients in air are higher than those in water.  

The decrease in rainfall infiltration does not allow the rain to reduce the soil 

concentrations by dilution (Marr et al., 2006; Andersen et al., 2008).  The root systems 

themselves can also enhance volatilization by creating “preferential pathways” through 

which the VOC vapors can easily navigate to the soil surface (Marr et al., 2006).  
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CHAPTER 3 

FIELD SAMPLING AND SAMPLE ANALYSIS METHODS 

 Three separate trips were taken to each base for sampling.  In each case, the first 

trip consisted of taking tree core samples from approximately 20 trees and sampling soil 

surface flux at three locations within the planted area and six locations outside the planted 

area.  The tree core samples were used to assess the relative distribution of TCE in the 

trees and to determine the most appropriate trees to sample leaf and trunk flux on the next 

trip.  The last two trips focused on six trees from which tree cores and leaf and trunk flux 

samples were taken.  Soil surface flux samples were also taken during the last two trips, 

but were measured from within the planted area only.  Descriptions of the processes by 

which tree cores and leaf, trunk, and soil flux samples were collected and analyzed 

follow. 

 
Method Detection Limits 

Method Detection Limits (MDLs) are the minimum concentration of a substance 

that can be measured and reported with 95% confidence that the analyte concentration is 

greater than zero.  In this project, MDLs were calculated by multiplying the standard 

deviation of a minimum of seven replicate spiked samples (tree cores or Tenax® tubes) 

by the appropriate student’s t value following the general approach outlined in the 

USEPA guidance document for method development and validation (USEPA, 1992).  For 

the tree core analysis, sample specific MDLs were dependent on the sample size (average 

sample size is 1.37 grams) but were generally 0.1 µg TCE/kg fresh plant tissue, as shown 
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Table 3.1.  Method detection limits 

 MDL 
Tree Core 0.1 µg/kg 
Leaf Flux 0.05 - 0.30 µg/m2-hr 

TSC 0.31 - 4.03 µg/L 
Trunk Flux 0.003 µg/m2-hr 
Soil Flux 0.002 µg/m2-hr 

 

in Table 3.1.  For transpiration stream concentrations, MDLs were dependent on the 

amount of transpired water collected in addition to the amount of TCE captured on the 

Tenax® sorbent tube.  Using the range of volumes of transpired water collected and the 

minimum mass of TCE that can be reliably detected (39 pg), the range of sample specific 

MDLs for TSC was calculated.  For volatilization flux measurements, the MDLs were 

dependent on the leaf, trunk, or soil surface area covered by the flux chambers, split ratio, 

and time interval of sample collection in addition to the amount of analyte captured on 

the Tenax® sorbent tube.  Based on typical values used during the field sampling, the 

MDLs, presented in Table 3.1, were determined for leaf, trunk and soil flux 

measurements.  Measurements detected above the MDLs are considered useable with 

respect to evaluating the significance of phytoremediation. 

 
Tree Cores 

 Tree cores were collected using an increment borer with a 5.15 mm diameter core 

(Ben Meadows Company, Janesville, WI).  The borer was hand drilled into the tree trunk 

to produce a core approximately 10 cm long.  The core was pulled out, broken into 

several pieces, and placed into a pre-weighed, 20 milliliter (mL) headspace vial with a 

screw thread cap (MicroLiter Analytical Supplies, Suwanee, GA) containing 10 mL of a 
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matrix modifier solution (MMS).  The MMS is a saturated solution of sodium chloride 

that is acidified to pH 2 using phosphoric acid.  It was prepared and used according to the 

USEPA in SW-846, Method 5021 (USEPA, 1992).  After sample collection was 

complete, all samples were shipped overnight to the Utah Water Research Laboratory 

(UWRL) where they were re-weighed and analyzed using a gas chromatograph/mass 

spectrometer (GC/MS).  The difference in initial and final weights of each vial was 

assumed to be the mass of the tree core.  Quality control measures included trip blanks 

and spikes sent on each sampling trip as well as laboratory blanks and control samples. 

 A Hewlett-Packard® 7890A gas chromatograph (GC)/5973C mass spectrometer 

(MS) equipped with a CTC PAL autosampler configured for headspace sampling was 

used to determine the concentrations of TCE in the plant tissue samples.  Headspace vials 

containing the tree core samples and MMS were heated to 60˚C with gentle agitation for 

10 minutes.  A 1 mL sample of the headspace gas was then injected into the GC at a rate 

of 200 microliters per second (µL/second) in a pulsed splitless mode, 20 pounds per 

square inch (psi) for 20 seconds, and then split at a 15:1 ratio for 1 minute.  The 

concentrations of TCE in the plant tissue samples were determined indirectly from the 

concentrations of TCE in the headspace.  External standards (minimum of five different 

concentrations), made by spiking known amounts of a commercial standard into the 

MMS, were used to define the relationship between the headspace and MMS 

concentrations.  The standards were made directly in headspace vials just prior to 

calibration.  The GC/MS was operated in Selected Ion Monitoring (SIM) mode 

monitoring three ion channels per analyte.    Field tree core data from Travis and 

Fairchild are found in Table A-1 and B-1, respectively. 
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Leaf Flux 

To measure the flux of TCE from the leaves, an apparatus adapted from Doucette 

et al. (2003) was used.  A small section of a tree branch was placed inside a glass 

chamber and sealed around the stem with a closed cell foam stopper as shown in Figure 

3.  Electrical tape around the foam provided an even tighter seal and helped hold the 

foam to the glass chamber.  Stainless steel fittings and Teflon tubing connect all parts of 

the system so as to minimize adsorption of the TCE.  A compressed gas mixture 

containing 21 percent (%) oxygen, 78% nitrogen, and 0.04% carbon dioxide (Praxair 

Certified Standard) was used to purge the chambers of TCE and water vapor.  This 

simulated air mixture, containing 400 parts per million (ppm) carbon dioxide, was used to 

maintain natural stomatal response and avoid potential TCE contamination commonly 

found in compressed breathing air. 

Air flow through the chamber was maintained between 6 and 8 L/min to prevent a 

buildup of humidity and condensation inside the chamber.  With such a high flow rate, it 

was necessary to subsample the chamber effluent.  As shown in Figure 3.1, the sample 

was pulled through Tenax® tubes at a flow rate of between 100 and 200 mL/min where 

the TCE was collected, by a sampling pump (SKC Inc., Eighty Four, PA).  The Tenax® 

tubes were connected in series to capture the TCE on the front tube and any breakthrough 

on the back tube.  A mass flow meter (Model GFS-010343, Aalborg, Orangeburg, NY) 

was used to regulate the flow through the tubes.  Samples were collected for between 30 

and 40 minutes at a time.  Where possible, a gas cylinder blank sample was  
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Figure 3.1.  Leaf volatilization sampling schematic (adapted from Doucette et al., 2003). 

run in parallel to measure background concentrations specific to each sampling time.  

This was not possible when the number of available Tenax® tubes was very limited. 

 Humidity and temperature were measured directly before and after the glass 

chamber using Campbell Scientific, Inc. Model CS-215 probes.  The difference in 

humidity was used to calculate the amount of water transpired from the leaves.  The 

relative humidity probes and mass flow meters were connected to a datalogger (Model 

CR200, Campbell Scientific, Inc., Logan, UT) where measurements of relative humidity, 

temperature, and flow rate were recorded every 60 seconds for both the sample and the 

cylinder blank. 

 After each sampling, the portion of the branch within the chamber was cut and 

preserved in a plastic bag so that the leaf area could be measured.  The cuttings were sent 

back to the UWRL with the leaf volatilization samples by overnight air delivery.  To 



 

 

25
measure the leaf area for each tree cutting, the leaves were carefully taken off the 

branch and fed through a LICOR Instruments, Model 6000 leaf area meter at the Crop 

Physiology Laboratory.   

The Tenax® sorbent tubes were analyzed using thermal desorption GC/MS.  

These samples were introduced into a Hewlett-Packard® 6890/5793 GC/MS equipped 

with a J&W DB-624 capillary column (30 meter x 0.25 mm inside diameter [ID] x 1.4 

µm film thickness) using a Perkin Elmer Turbomatrix ATD thermal desorber equipped 

with cryo-focusing and moisture control-system.   

The secondary desorption trap was connected directly to the analytical column via 

the transfer line, and the GC injection port was bypassed.  The MS was operated in SIM 

mode with three ion channels monitored per compound.  TCE was quantified using a 

five-point external standard curve.  Each run included the initial calibration samples, 

method blank, calibration check and calibration verification samples.  Standards were 

prepared by loading known amounts of TCE dissolved in methanol onto clean Tenax 

traps with a microsyringe.  Field leaf volatilization data from Travis and Fairchild are 

found in Table A-2 and B-2, respectively. 

 
Trunk Flux 

 Volatilization of TCE through the tree trunks was measured using a stainless steel 

chamber constructed from an 8.5 x 5 inch loaf pan with foam gasket shown in Figure 3.2.  

The chamber was strapped to the tree with the open side against the trunk and pulled tight 

to form a seal.  The area of trunk sampled beneath the pan was 0.025 m2.  Slotted, 

stainless steel tubing running through the inside of the chamber allowed the air 
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underneath to be pulled through Tenax® tubes using a portable sampling pump (SKC 

Inc., Eighty Four, PA) at approximately 100 mL/min.  Two small DC fans (Model 273-

240, RadioShack) inside the chamber helped circulate the air underneath.  Tenax® tubes 

were placed back to back, as with the leaf flux setup, to capture the TCE on the front tube 

and any breakthrough on the back tube.  Sampling time for the trunk flux measurements 

was approximately 30 minutes.  Once sampling was complete, all Tenax® tubes were 

carefully packaged and shipped overnight to the UWRL for analysis using a thermal 

desorber and GC/MS in the same manner as the leaf flux samples.  Field trunk 

volatilization data from Travis and Fairchild are found in Table A-3 and B-3, 

respectively. 

 

 

Figure 3.2.  Trunk flux sampling schematic. 
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Soil Surface Flux 

 The design for soil flux measurement equipment was modeled after the vertical 

flux chamber used by Tillman and Smith (2004), which proved to have little impact on 

natural fluxes from the soil.  Figure 3.3 shows the design used in the present experiment 

of flux of TCE through the soil surface, which was measured using a 1.5 quart stainless 

steel mixing bowl with an 8 inch diameter.  The bowl was placed, open side down, on the 

ground, and clean playground sand was put around the edges to minimize exchange with 

the atmosphere.  Smith, Tisdale, and Cho (1996) reported that disturbing the shallow soil 

was not a significant source of error.  The area of soil surface sampled beneath the 

chamber was 0.035 m2.  Slotted, stainless steel tubing running through the inside of the 

chamber allowed the air underneath to be pulled through Tenax® tubes using a portable 

sampling pump (SKC Inc, Eighty Four, PA) at approximately 100 mL/min.  Since 

Tillman and Smith (2004) reported inadequate mixing which increased the headspace 

concentration, two small fans (Model 273-240, RadioShack) inside the chamber were 

used to help circulate the air underneath.  Tenax® tubes were placed back to back, as 

with the leaf and trunk flux setups, to capture the TCE on the front tube and any 

breakthrough on the back tube.  Sampling time for the trunk flux measurements was 

approximately 30 minutes.  Once sampling was complete, all Tenax® tubes were 

carefully packaged and shipped overnight to the UWRL for analysis using a thermal 

desorber and GC/ MS in the same manner as the leaf and trunk flux samples.  Field soil 

surface volatilization data from Travis and Fairchild are found in Table A-4 and B-4, 

respectively. 
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Figure 3.3.  Soil surface flux sampling schematic. 

Thiessen Polygon Method 

Thiessen polygons, known by a wide variety of names such as Dirichlet 

Tessellations, Voronoi Diagrams, and Wigner-Seitz unit cells, have been used for 

centuries and applied to areas such as epidemiology, condensed matter physics, and 

meteorology.  In the early 1900’s, Alfred Thiessen used this method to interpret data 

from rain gauges within a watershed, and it was renamed the Thiessen polygon method 

when used for this application.   

The Thiessen polygon method can be used to determine the best estimate of a 

measurement over an area given several data points across that area.  Straight lines are 

drawn between sampling points and perpendicular bisectors are used to create the 

polygons.  Figure 3.4 shows an example of the Thiessen polygon method using the  
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Figure 3.4.  Thiessen polygon method.  A) Connect sampling points with straight lines. 
 B) Draw perpendicular bisectors through lines created in previous step. 

    C) Cut off lines where they intersect each other and the site boundaries to 
          form polygons.  D) Final sketch of polygons at the site. 

            A                                                                          B 
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groundwater monitoring wells at Fairchild AFB.  This method was used extensively to 

provide estimates of TCE removal over each site based on a small number of samples.  

The sample flux within each polygon is considered to be representative of the entire area 

of the polygon.  By calculating a mass for each polygon and summing all polygons, it is 

possible to estimate the total mass removed at each site.  Since the number of sample 

locations at each site was large enough to make the manual creation of polygons 

complicated, a computer program (Gorder and Holbert, 2010) was used to create the 

polygons and to calculate the area of each polygon.  For each site, the sum of the areas of 

each of the smaller polygons created for each sampling set was equal to the total area at 

each site as shown in the calculation tables in Appendix C and D. 
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    CHAPTER 4 

RESULTS AND DATA ANALYSIS 

Tree Cores 

 At both Travis and Fairchild Air Force Bases, cores were collected from 20 trees 

during the initial visit to the sites.  These cores were used to delineate relative 

groundwater concentrations of the TCE plume beneath the phytoremediation sites so that 

areas of higher concentration could be focused on during subsequent sampling events.  

These core concentrations were also later used to calculate the mass of TCE that is sorbed 

within the trees across each site.  The locations with the highest concentrations, indicated 

by the oranges and reds, in Figures 4.1 and 4.2 can be compared to the locations of 

further investigation on subsequent sampling trips as shown in the following sections. 

 The ranges of tree core concentrations, shown in Table 4.1 varied widely among 

sampling trips and also between sites.  At Travis, six trees were sampled on all three 

trips.  Plotting core concentrations over time shows a generally decreasing trend for most 

trees (Figure 4.3).  This may be the result of the eucalyptus trees response to the 

increasing temperatures observed during the three sampling periods.  One mechanism 

that trees can use to survive high heat, low water conditions is to close their stomata and 

reduce transpiration (Whitehead and Beadle, 2004).  The decrease in groundwater use 

decreases the amount of TCE taken into the tree.  If the TCE within the tree continues to 

be removed through volatilization and metabolism, the concentration within the tree 

would decrease.   
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Figure 4.1.  Initial core sampling locations at Travis AFB and relative core 
        concentrations. 

 
 
 

 

Figure 4.2.  Initial core sampling locations at Fairchild AFB and relative core  
     concentrations. 
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At Fairchild, only four trees were sampled on all three trips and the trend is less 

obvious (Figure 4.4).  Two of the trees peaked in concentration in July.  Since it is 

warmest during the summer months, unless under stressed conditions, the trees will take 

up more groundwater to stay alive, because it is available.  As previously mentioned, the 

more contaminated water the trees are taking up typically results in higher core 

concentrations relative to losses. 

The trees at each site are utilizing different mechanisms to survive the hot 

summer conditions since they are living in different climates.  At Travis, average high 

temperatures are at least 70 °F April through October, while at Fairchild those 

temperatures are reached between June and September, three months less than Travis.  

Fairchild also receives more average monthly precipitation than Travis.  For any given 

month during the summer, the trees at Fairchild are not likely to be heat stressed since 

they are getting more water from precipitation and have potentially not been exposed to 

high temperatures for as long as the trees at Travis based on average high temperatures 

since “summer” begins later.   Table 4.1 shows the daytime high temperatures for each  

 
Table 4.1.  Ranges of tree core concentrations at Travis and Fairchild AFBs 

Travis Fairchild 
Number 

of 
Samples 

TCE Range 
(µg TCE/kg 
Fresh Wt) 

Daytime High 
Temperature 

(°F) 

Number 
of 

Samples

TCE Range 
(µg TCE/kg 
Fresh Wt) 

Daytime High 
Temperature 

(°F) 
Trip 1: June 2 Trip 1: June 9 

25 2 - 6026 79 25 0.05 - 56 69 
Trip 2: June 23-24 Trip 2: July 15 

18 0.56 - 3515 96, 86 19 4.5 - 142 85 
Trip 3: October 6-7 Trip 3: September 8-10 

27 72.5 - 3438 76, 81 23 0.07 - 201 69, 76, 78 
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trip.  Trip 1 is the only one close enough to compare directly between sites, and Travis 

was already 10 °F warmer than Fairchild in early June. 

 

   

0

1000

2000

3000

4000

5000

6000

7000

22-May 11-Jun 1-Jul 21-Jul 10-Aug 30-Aug 19-Sep 9-Oct 29-Oct

Sampling Date

µg
 T

C
E/

kg
 c

or
e

R1T27

R2T51

R4T3

R4T28

R4T40

R8T1

 
Figure 4.3.  Core concentrations at Travis AFB over time. 
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Figure 4.4.  Core Concentrations at Fairchild AFB over time. 
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 Decreasing contaminant concentrations within tree cores as sampling height 

increases has led some researchers to suggest that volatilization from the trunk is a 

significant mechanism in TCE loss from trees.  While not a main focus of the sampling 

effort, at each site, multiple trees were cored at a minimum of two heights along the trunk 

to evaluate this trend.  Looking at the most recent sampling events at each site (Trip 3), 

concentration was plotted against height to determine if there is TCE loss as it moves up 

the trunk.  Trip 3 was used because there were the most instances of duplicate 

measurements at multiple heights for both sites.  At Travis, five trees were cored at 

multiple heights with three of the five trees showing a decrease in concentration with 

height (Figure 4.5).  At Fairchild only three trees were cored at multiple heights on the 

third trip and in only one of the three trees concentration decreased with height (Figure 

4.6).  If there is no significant change in concentration with height, the trees are thought 

to be at a steady state condition.  This means that the amount of TCE that is taken up is 

the same amount that is leaving the tree by various mechanisms.  It would be less likely 

to see measureable leaf volatilization at sites where trees are not at steady state.  

However, if groundwater concentrations are low, trees could still be at steady state but 

leaf volatilization may be too low to measure.   

To summarize, due to different climactic conditions, the trees at each site use different 

strategies to survive the hot summer months.  Since temperatures begin to rise as early as 

April at Travis, the trees may be stressed by June and continue to experience heat stress 

as the summer progresses.  In response, the trees close their stomata and reduce 

transpiration to survive the drought conditions.  At Fairchild, high temperatures are not 

typically experienced until June, and more precipitation falls during the summer months, 
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Figure 4.5.  Travis tree core concentrations with height along trunk (error bars represent 

          the 95% confidence interval). 
 

 

 
Figure 4.6.  Fairchild tree core concentrations with height along trunk (error bars 

            represent the 95% confidence interval). 
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so the potential for heat stress is reduced compared to Travis.  Since the trees at 

Fairchild do not typically experience drought conditions, they continue to take up water 

and transpire.  

Many studies have looked at the change in tree core concentration with an 

increase in height along the trunk and have seen a wide range of results:  increase in 

concentration, decrease, or no change as height increases.  In this study, some trees 

showed a decrease in concentration, while in others there was no statistically significant 

change.  If there is no change in concentration, the trees are potentially at a steady state 

and TCE is likely to volatilize through the leaves in measureable quantities where the 

groundwater concentrations are high enough.   

 
 TCE Contained Within Trees 

 To calculate the amount of TCE contained within the trees, the Thiessen polygon 

method was used to create 20 polygons corresponding to the first sampling event at each 

site.  The first sampling trip was used for this calculation since the largest number of trees 

was sampled (20).  In addition, the sampled trees were spread out across the entire site, 

theoretically yielding the most representative results.  Figure C-1 shows these 20 

polygons at Travis AFB, and Figure D-1 shows them for Fairchild AFB.  The following 

equations were then used to calculate the TCE contained within the trees at each site.  

Since the species of tree at each site is different, eucalyptus at Travis and hybrid poplar at 

Fairchild, different empirical equations, typically used in the forestry industry to predict 

wood yield, were found to calculate the dry mass of each type of tree. 

At Travis, dry mass was calculated by: 



 

 

38
Mdry = 1.22 * D2 * (H x 10-4) (1) 

where Mdry is the dry mass in kilograms (kg), D is the average diameter of trees within 

the polygon in millimeters (mm), and H is the average height of trees within the polygon 

in meters (m) (Senelwa and Sims, 1997).   

 The dry mass at Fairchild was calculated by: 

Mdry = 0.05 * D – 0.35 when D < 4 cm        (2) 

Mdry = 2.6 * D – 9.64 when D > 4 cm        (3) 

where Mdry is the dry mass (kg) and D is the average diameter of trees within the polygon 

in centimeters (cm) (Felix et al., 2008).  For both sites, fresh weight was calculated by: 

moisture%1
M

M dry
fresh −

=  (4) 

where Mfresh is the fresh mass (kg) and % moisture is assumed to be 0.55 (Donaldson et 

al., 1988; Tharakan et al., 2003) for both species of tree using an average of 

measurements  from multiple trees within the eucalyptus and poplar families.  The 

amount of TCE contained by each polygon was calculated by: 

Msorbed = N * Mfresh * 106 µg/g * CTCE (5) 

where Msorbed is the mass of TCE sorbed by the trees in each polygon in grams (g), N is 

the number of trees in the polygon, Mfresh is the fresh mass of each tree (kg), and CTCE is 

the concentration of TCE found in the tree cores of the trees sampled within the polygon 

in micrograms per kilogram (µg/kg).  The mass of TCE contained within the trees in each 

polygon was added together to yield the total mass contained within the trees at each site. 

By using these calculations, it was determined that the TCE contained within the 

trees Travis accounts was 45 g.  The data associated with this calculation are found in 
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Table C-1.  A significantly smaller mass of TCE, 0.1 g, was contained in the trees at 

Fairchild.  Data associated with the Fairchild sorption calculation are found in Table D-1.  

At both sites, the TCE contained within the trees is considered removed from the site 

since it will eventually be volatilized or metabolized.  

 
Leaf Volatilization 

 Since only a small branch on a tree is measured for TCE volatilization, it was 

necessary to scale that branch to the whole tree stand.  This was done by multiplying the 

average TSC value in micrograms per liter (µg/L) by the annual water use of the tree 

stand (L).  The annual water used and transpired by the tree stand was calculated by a 

modified Penman-Monteith approach: 

ETc = ETr * Kc (6) 

Qt = ETc * A (7) 

where ETc is the crop evapotranspiration (mm), ETr is the reference evapotranspiration 

(mm), Kc is the crop coefficient (dimensionless), Qt is the total evapotranspiration of the 

stand of trees (L/year), and A is the area of the tree stand (m2) (Allen et al., 1998). The 

Penman-Monteith equation is a combination of energy balance and mass transfer.  It is 

used to compute the evaporation of water from an open water surface.  The parameters 

used in this calculation include solar radiation, temperature, humidity, wind speed.  It has 

been further developed for application to crops by including factors for aerodynamic and 

surface resistance (Allen et al., 1998).  It is possible and appropriate to use these 

equations as opposed to others that include a leaf area index (LAI) since it is assumed 
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that the canopies at both sites are closed and most of the solar radiation is intercepted 

(Parsons, 2010a). 

 Each site has its own reference evapotranspiration, determined by local 

meteorological data.  The ETr for Travis is very straightforward and found using a map 

provided by the California Irrigation Management Information System (CIMIS).  The ETr 

for Fairchild was calculated using the average of the AgriMet database’s three closest 

stations to the base (CHAW, RTHI, and SBMW) (AgriMet, 2010a).  The crop coefficient 

accounts for differences in crop canopy and aerodynamic resistance as well as physical 

and physiological differences between crops and the reference crop. Kc changes 

throughout the growing season and throughout the stages of life. It is often larger in areas 

of high rain or irrigation and under windy conditions (Allen et al.,1998).  The crop 

coefficients were determined for the type of tree at each site, eucalyptus at Travis and 

hybrid poplar at Fairchild.  At Travis a Kc of 0.6 was found to be relevant (Haver, 2009) 

while at Fairchild the average of the poplar crop curve for three year or older trees, 

shown in Figure 4.7, yielded a Kc of 0.8 (AgriMet, 2010b).  This information and 

subsequent calculations are located in Table 4.2. 

Leaf volatilization is scaled from the small branch to the whole site using a 

modified Penman-Monteith approach that uses a reference crop evapotranspiration and 

crop coefficient to calculate evapotranspiration for the whole site.  The crop coefficient is 

important because it accounts for differences between the reference crop and the trees at 

each site as well as the characteristics of the canopy and potential stresses inflicted by 

climate or site conditions.  Using these parameters, as well as the area of each site, the  
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Figure 4.7.  Poplar crop curve for various aged trees (Agrimet, 2010b). 

 

Table 4.2.  Travis and Fairchild transpiration data and calculations 

 ETr      
(mm) Kc ETc 

(mm) 
Area 
(m2) 

Qt            
(L/yr/stand) 

Travis AFB 1254.8 0.6 753 9065 6800000 
Fairchild AFB 1146.2 0.8 917 4047 3700000 

 
 

total evapotranspiration rate at Travis was calculated to be nearly twice the rate at 

Fairchild.  

Removal by Leaf Volatilization 

After the volatilization measurements were scaled appropriately, they were used 

to calculate the mass of TCE that is being removed through this pathway.  Polygons were 

created at each site using the trees that were sampled for leaf volatilization.  At Travis, 

seven polygons (Figure C-2) were created whereas at Fairchild eight polygons were 
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created (Figure C-3).  These polygons were used to provide an estimate of TCE loss 

through the leaves.  The mass of TCE removed by trees in each polygon was calculated 

by:  

Mleaf = TSC * Qt * F * (10-6 g/µg) (8) 

where Mleaf is the mass of TCE removed through the leaves (g), TSC is the average 

transpiration stream concentration (µg/L), Qt is the total evapotranspiration 

(L/year/stand), and F is the fraction of the total area represented by the polygon.  The 

mass removed from each polygon was summed to determine the total removal of TCE 

from the groundwater by volatilization through the leaves. 

Using the yearly evapotranspiration from Table 4.2, the TSCs, and polygon 

information from Table C-3, the removal of TCE attributed to the leaves at Travis AFB is 

300 g/yr.  If we assume that the trees were under water stress and were no longer 

transpiring, the TCE that is already in the leaves will have continued to volatilize.  With 

the same mass of TCE being collected with little to no transpiration water, it is possible 

to obtain artificially high TSC values resulting in an inflated removal rate.  The removal 

at Fairchild AFB, calculated using Tables 4.2 and D-4 is 11 g/yr. 

  The TSC from each of the sampled trees can also be used to calculate the tree 

TSCF by dividing it by the concentration of TCE in the groundwater.  To do this, 

groundwater monitoring well polygons were created and overlaid with the leaf 

volatilization sampling locations.  The TSC for each tree within a polygon was divided 

by the groundwater concentration measured in that well to get the TSCF for each tree.  

The average TSCF for the trees at Travis is 0.04 with a 95% confidence interval of ± 

0.03.  At Fairchild the average TSCF is 0.03 with a 95% confidence interval of ± 0.02.  
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Statistically, the TSCFs for these sites are no different from each other.  Calculations 

are found in Table C-7 and D-7 for Travis and Fairchild, respectively. 

 
Trunk Volatilization 

 Flux measurements were taken from trees whose diameters were large enough for 

the sampling apparatus to be securely attached to the trunk.  The minimum diameter 

trunk that was sampled was 40 cm.  Only a few measurements of trunk flux were taken at 

varying heights along the trunk in total.  Since no replicate samples were taken, it is 

unclear whether or not there is any change in flux as height increases. 

 Measurements of tree height, diameter, and circumference were taken of trees 

throughout each site as indicated by Table 4.3.  The table shows that the size of the trees 

at each site is not statistically different from the other.  These measurements were broken 

down further to obtain more appropriate averages corresponding to individual polygons. 

 
Table 4..3.  Tree measurements at Travis and Fairchild Air Force Bases (reported as  

         average value ± standard deviation) 
 

 Trees 
Measured

Average 
Height 

(m) 

Average 
Diameter 

(cm) 

Average 
Circumference 

(cm) 
Travis 51 10 ± 4 14 ± 7 43 ± 21 

Fairchild 43 9 ± 5 11 ± 7 34 ± 2 
 

Removal by Trunk Volatilization 

The removal of TCE through volatilization from the tree trunks was determined 

by Thiessen polygons created using the trees in which trunk volatilization was measured 

at each site and average tree sizes from each polygon.  At Travis, the seven trunk flux 
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polygons are identical to the leaf flux polygons shown in Figure C-2.  At Fairchild, 

five entirely new polygons were created, shown in Figure D-2.  The following calculation 

provided the mass of TCE removed through trunk volatilization. 

SA*N*g/µg10*
seasongrowing

days*
day

hr24*TFM 6
trunk

−=  (9) 

where Mtrunk is the mass of TCE removed through the trunk (g), TF is the flux of TCE 

measured in the field (µg/m2/hr), N is the number of trees in the polygon, and SA is the 

average surface area of trees within the polygon.  The mass removed from each polygon 

was summed to determine the total removal of TCE from the groundwater by 

volatilization through the trunks. 

Removal of TCE at Travis through volatilization from the tree trunks accounts for 

4.55 g/yr using the information in Table C-2.  The polygon information in Table D-2 

shows 0.67 g/yr removed from the tree trunks at Fairchild AFB. 

 
Volatilization from Soil Surface 

 Soil volatilization flux samples were taken during each of the three trips to both 

sites.  During the first trip to each site, nine measurements were taken consisting of three 

within the tree stand and six outside the tree stand, shown in Figures 4.8 and 4.9.  These 

measurements are later compared.  Subsequent trips focused sampling within the planted 

areas.  At Travis, the third trip paired soil flux locations with leaf and trunk flux 

locations.  Although similar pairing was planned for Fairchild, there was a limited 

number of sampling tubes available, so only three locations were sampled.  Samples from 

Trip 3 were used to calculate removal of TCE from each site through soil flux. 
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Figure 4.8:  Soil Flux Sampling Locations at Travis AFB. 

 

 

Figure 4.9.  Soil Flux Sampling Locations at Fairchild AFB. 
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Removal by Soil Surface Volatilization 

 For soil volatilization flux calculations, three separate sets of polygons were 

created for each site.  The first set divides the sites by sampling locations measured on 

Trip 3 within the tree stand.  At Travis, this set consists of six polygons (Figure C-3), and 

at Fairchild there are three (D-4).  These polygons were used to appropriately scale TCE 

removal from the soil surface within the planted areas of each site, since they were better 

spatially distributed over each site.  The mass of TCE removed was calculated by: 

( )N*A-A*g/µg10*
seasongrowing

days*
day

hr24*SFM T
6

soil
−=  (10) 

where Msoil is the mass of TCE removed through the soil (g), SF is the flux of TCE 

measured in the field (µg/m2/hr), A is the area of the polygon, AT is the average cross 

sectional area of the trees within the polygon, and N is the number of trees in the 

polygon.  The mass removed from each polygon was summed to determine the total 

removal of TCE from the groundwater by volatilization through the soil.  The area that 

the trees take up at each site was accounted for in the calculation using the average cross 

sectional area of the trees within each soil flux polygon; however, it did not make a 

significant difference in the total mass removed each year.  Growing season was used 

instead of an entire year since the ground is assumed to be frozen during the rest of the 

year, not allowing TCE to volatilize through to the ground surface.  These polygons and 

calculations showed that 470 g/yr is being removed at Travis (Table C-4), while 7 g/yr is 

being removed at Fairchild (Table D-4). 

For comparison, two additional sets of polygons were created using samples from 

Trip 1 located within the planted area and outside the planted area at each site to 
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determine if the presence of trees enhances the soil volatilization.  Polygons for outside 

the planted area and inside the planted area at Travis are shown in Figures C-4 and C-5, 

respectively, while polygons for Fairchild are in Figures D-5 and D-6, respectively.  The 

calculations shown in Tables C-5 and C-6 indicate that significantly less volatilization is 

taking place outside the planted areas at Travis with only 5 g/yr removed in the unplanted 

area and 126 g/yr removed in the planted area.  Tables D-5 and D-6 show that slightly 

less volatilization is occurring inside the planted area at Fairchild with 0.7 g/yr removed 

as opposed to 1 g/yr removed from an unplanted site with an equal area. 
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    CHAPTER 5 

DISCUSSION 

Groundwater concentrations at Travis AFB are much higher than at Fairchild 

AFB.  In 2009, groundwater concentrations at Travis ranged from 1.4 to 9196 µg/L, 

corresponding to an approximate mass of 6.7 kg of TCE beneath the site, while at 

Fairchild the range was 9 to 190 µg /L, which corresponds to an approximate mass of 0.9 

kg of TCE beneath the site.  Mass of TCE in the groundwater beneath each site was 

calculated by creating polygons based on the groundwater monitoring well locations.  

The area of each polygon was multiplied by the porosity of the site, the aquifer thickness, 

and the concentration measured at the well.  Appropriate conversions were made and the 

mass of each polygon was summed to get the mass for the entire site.  The differences in 

concentration and mass of TCE at each site have a direct effect on the fluxes and total 

removal.  Phytoremediation sites with higher concentrations of contaminated 

groundwater are expected to have relatively higher concentrations in the trees and larger 

mass removed than sites with lower groundwater concentrations. 

The distribution of TCE throughout the phytoremediation site at Travis, based on 

mapping from core concentrations, match closely to the groundwater concentration 

contours shown in Figure 5.1.  This observation shows a direct correlation between tree 

cores and groundwater concentration.  Relatively speaking, the higher the groundwater 

concentration, the more TCE will be in the trees.  A similar comparison was not done for 

Fairchild since a detailed map of the plume was not available.  Concentrations in the  
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Figure 5.1.  Correlation between tree core and groundwater data at Travis. 

cores and groundwater monitoring wells at Fairchild are somewhat correlated, but there 

are so few wells that a clear picture cannot be derived. 

Using previous year’s groundwater data for Travis (Parsons, 2010a) and Fairchild 

(Parsons, 2003, 2005b, 2010b), a clear reduction in the mass of TCE in the plume 

beneath the planted area is observed at both sites as shown in Figure 5.2.  Since there is 

no evidence of TCE in the form of a DNAPL at either site, all of the TCE in the 

phytoremediation area is assumed to be in the dissolved phase.  The difference in 

groundwater mass, as calculated by Parsons using the Thiessen Polygon Method and the 

groundwater monitoring wells onsite, over the 5-year period between 2004 and 2009 

indicates that 1.68 kg is being removed each year at Travis.  This calculation assumes 
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that the removal rate of TCE from the groundwater is linear.  In actuality, the rates of 

removal should decrease over time as the concentrations of TCE in the groundwater 

decline.  Nevertheless, this rate is approximately twice the rate that was calculated in 

2009 (0.84 kg/yr) as the sum of all phytoremediation loss rates.  Since the larger number 

is an average of five years, it is possible that the mass of TCE removed in 2009 was on 

the lower end of that range.  Another possibility for the discrepancy is that there is 

another major mechanism at work at this site that was not accounted for in this study, 

such as reductive dechlorination from the upstream bioreactor or metabolism within the 

trees.  Groundwater sampling data over an 8-year period was available for Fairchild as 

shown in Figure 5.2.  The slope of the best-fit line gives the average mass removed per 

year, 376.5 g.  This is well above the mass calculated mass removed at Fairchild in 2009 

by the phytoremediation sampling (18 g/yr).  Using only the groundwater samples 

collected between 2004 and 2009 provides an average estimated removal of 15 g/yr, 

which is much closer to the removal by phytoremediation observed in 2009.  More 

sampling will be necessary to tell if the sampling and calculations consistently fit the 

groundwater data over the next few years. 

At Travis, there is evidence that reductive dechlorination is taking place with the 

decrease in TCE mass and increase in the mass of total dichloroethylene (DCE) and vinyl 

chloride (VC), shown in Figure 5.3.  These products are likely moving on-site from the 

biobarrier up gradient where microorganisms are degrading TCE near the source area.  

No reductive dechlorination products were found in the groundwater samples taken in 

2004 or 2009 at Fairchild. 
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Figure 5.2.  TCE mass reduction over time at Travis and Fairchild. 
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Figure 5.3.  Change in mass of TCE and its dechlorination products below the planted 

           area within the plume at Travis AFB over time. 
 
 
 By using the Thiessen Polygon software, a calculation of the center of mass of the 

plume can be made.  Knowing how the centroid moves over the years provides an 
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estimate of the stability of the plume.  Figure 5.4 shows the location of the center of 

mass at Travis AFB in 2004 and 2009.  Despite having only two years of data, it appears 

that the centroid is moving in the opposite direction of groundwater flow.  This, coupled 

with the decrease in mass over the same time period, indicates that attenuation within the 

plume has increased.  More data is necessary to conclusively determine the state of the 

plume.  The mass of TCE in the groundwater at Fairchild is also decreasing over time; 

however the center of mass, shown in Figure 5.5, is clearly moving in the direction of 

groundwater flow indicating a shrinking plume that is undergoing some attenuation.  It 

also provides evidence that the source of contamination has been cut off or removed. 

 

 

Figure 5.4.  Location of the center of mass over time of the TCE groundwater plume at  
          Travis AFB. 
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Figure 5.5.  Location of the center of mass over time of the TCE groundwater plume at  
          Fairchild AFB. 

 

A summary of the mass removed by the mechanisms within the phytoremediation 

site at each base is provided in Table 5.1.  It shows that leaf and soil volatilization are the 

most import removal mechanisms, and trunk volatilization and sorption are least 

important at these sites. 

 
Table 5.1.  Summary of annual TCE mass removal at Travis and Fairchild AFBs 

Removal 
Mechanism 

Travis 
(Eucalyptus)

(g/yr) 

Fairchild 
(Hybrid Poplar) 

(g/yr) 
Leaves 300 11 
Trunk 5 0.7 

Sorption 45 0.1 
Soil 470 7 
Total 0.8 kg/yr 0.02 kg/yr 
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Tree Cores and Sorption 

A comparison of core concentrations between 2004 and 2009 at Travis and is 

shown in Figure 5.6 and compiled from data in Parsons (2005a, 2010a).  The figure 

shows a comparison between the 2004 sampling and the nearest tree sampled in 2009.  In 

almost every case, the core concentrations at both sites have dramatically increased.  One 

tree at Fairchild was sampled in both 2004 and 2009; however, unlike Travis, the 

concentration decreased slightly.  Since no replicates were taken, it is unclear if the 

decrease is statistically significant.  Lower concentrations in 2004 would be expected for 

several possible reasons.  Both sites were irrigated during the first few years after 

planting.  At Travis, irrigation water was supplied to the initial trees planted until 2002, 

while trees in the secondary planting were irrigated until 2003.  At Fairchild, the trees 

were irrigated until 2004.  The trees will preferentially take up surface water over 

groundwater since it is easier to access.  Irrigation water that reached the groundwater 

would dilute the concentrations that the trees would be taking up when groundwater is 

used.  It may also have taken a few years for the trees to acclimate to the climate without 

regular watering after irrigation was discontinued.  Another contributing factor may be 

the growth rates of young trees compared to older trees.  During the first several years of 

life, plants grow at an exponential rate (Leopold and Kriedemann, 1975), possibly 

resulting in the new biomass being comparable to the mass of TCE taken up from the 

water by a phenomenon known as growth dilution.  Later in life, the growth rate slows 

and generally stabilizes until the end of life where it begins to drop off. 
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Figure 5.6.  Comparison of tree core concentrations between 2004 and 2009 at Travis  
     AFB.  (Tree ID in parentheses refers to closest tree sampled in 2009 for 

           comparison.) 
 
 
 

Sorption calculations for each site are based on empirical equations from the 

literature for two different tree species.  Despite very different groundwater 

concentrations feeding each system, the removal results for each site are a fairly low 

percentage of the overall TCE removed.  At Travis, sorption accounts for 45 g/yr or 5.3% 

of removal, while at Fairchild, it is only 0.1 g/yr or 0.6%.  Low removal rates may be due 

to the sampling and analysis of tree cores.  The equilibrium headspace method used for 

analysis of the tree core samples does not completely account for the TCE that is sorbed 

to the sample. Evaluation of this method using spiked samples of MMS with and without 

tree cores should provide an estimate of the percent of TCE that is being recovered and 

used for sorption calculations. 
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Leaf Volatilization 

Leaf flux is one of the most important removal mechanisms at both sites.  At 

Travis, approximately 300 g/yr or 37.9% of the total TCE removed was through the 

leaves, while at Fairchild, it accounted for 11 g/yr or 56.1% of the total TCE removed.  

Although leaf flux was the dominant removal mechanism at Fairchild, the mass removed 

was very small compared to Travis.  On average, trees at Travis transpired 48 L/tree/day 

while the trees at Fairchild only transpired 37 L/tree/day.  The amount of water transpired 

has a direct effect on the mass removed.  There is a large difference between the two sites 

in both average TSC values and mass removal values with Travis being the larger in both 

cases.  There was not a significant decrease in transpiration in replicate samples that 

would indicate plant stress as described by Rogers (2006).  As previously mentioned, the 

average TSCF values for both sites were not significantly different from one another.   

This makes sense since it is a ratio of TSC to groundwater.  Although Travis has high 

groundwater concentrations, the average TSC values are also high and vice versa for 

Fairchild.  Since they TSCFs are essentially the same, it indicates that there is a 

relationship between groundwater concentration and leaf volatilization for trees of similar 

age, relying on groundwater of at similar depth. 

 
Trunk Volatilization 

Trunk flux was very insignificant at Travis (5g/yr or 0.5% total mass removed) 

but more significant than sorption at Fairchild (0.7 g or 3.6%).  This difference is 

possibly due to differences in type of tree, including wood and bark.  Poplars have a 
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softer wood and thinner, smoother bark than eucalyptus, which could translate into a 

tighter seal of the sampling apparatus on the poplar trunks.  Again, although a larger 

percentage of the total mass was removed through the trunks at Fairchild, more absolute 

mass was removed at Travis.  This is likely due to the maximum groundwater 

concentrations being nearly 50 times higher at Travis. 

 
Soil Volatilization 

Soil flux proved to be another important and effective removal mechanism for 

TCE at both sites.  At Travis, 470 g/yr or 56.3% of the total TCE removed was through 

the soil.  At Fairchild, 7 g/yr or 39.6% of the total removal was through the soil.  These 

percentages are almost exactly opposite the leaf flux numbers.  It is possible that the less 

dense planting at Travis allows more TCE to penetrate the surface.  This may be the 

preferred pathway over uptake from trees.  Another contributing factor is the difference 

in groundwater concentration between the sites, which has a direct effect on volatilization 

from the soil.  Fairchild has almost two orders of magnitude less TCE concentration at its 

maximum than Travis.  With less of a TCE concentration gradient between the 

groundwater and the soil surface, the flux is much less. 

 
Limitations 

 There are several limitations to this study involving the frequency of sampling 

and limited data available and collected.  The trees were cored and soil flux 

measurements were taken a maximum of three times during the growing season.  Leaf 

and trunk volatilization sampling was done a maximum of twice during the growing 
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season for a given tree.  These measurements were averaged over the entire growing 

season to provide an estimate of TCE removal.  Another issue is the number of trees 

sampled.  The original 20 trees cored at each site, used for estimating the TCE contained 

within the trees, represent only 5-7% of the total trees per site.  Of those 20 trees, only the 

six or seven most likely to produce results were used for trunk and leaf volatilization 

sampling.  At Travis, the same six trees were sampled during Trips 2 and 3, while at 

Fairchild only four trees were sample during both trips.  The small number of trees 

sampled and the inconsistency in which trees were sampled limits proper comparison 

between sites and sampling events. 

 There is also some danger associated with scaling up to the entire site from so few 

measurements.  The most accurate scenario for site estimations would be to sample every 

single tree, so scaling would not be necessary; however, that is not realistic.  A small 

subset of those trees was sampled and scaled to the entire site.  One of the major issues, 

besides the obviously small quantity of trees sampled, is the matter of their 

representativeness.  The original 20 trees were chosen to be representative, but the subset 

of those trees was chosen based on the highest tree core concentrations and general 

proximity to each other.  Sampling only the highest concentrations may contribute to an 

overestimation of TCE removal at each site. 

Groundwater data at each site is very limited by both the number of wells and the 

historical data available.  It appears that not all wells at the sites were sampled during the 

same years at Travis, making it difficult to determine what is happening to the plume.  At 

Fairchild, there are only three monitoring wells in or near the one acre phytoremediation 

site.  These few measurements are being used to estimate the extent of contamination 
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beneath the phytoremediation site, but may not be representative.  More wells would 

provide a better picture and more accurate estimations of groundwater concentrations 

below the phytoremediation plots.  The same is true with Travis, which has only 13 wells 

in or near the 2.24 acre site. 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

The trees at Travis and Fairchild Air Force Bases are using the contaminated 

groundwater beneath the sites for their water needs and are volatilizing TCE to the 

atmosphere through trunk and leaves, sorbing it to the woody tissue, and enhancing 

volatilization in surrounding soil (at Travis).  From the results, most of the TCE at Travis 

is removed by volatilization from the soil surface, followed by volatilization from the 

leaves, then sorption, and finally volatilization through the trunk.  Fairchild is similar 

with the most removal from the leaves, followed by the soil, then the trunk, and lastly 

sorption.  This shows that at these two phytoremediation sites, leaf and soil volatilization 

are the most import removal mechanisms, and trunk volatilization and sorption are least 

important. 

Considering that the TCE plume beneath the phytostabilization site at Travis 

currently contains 6.7 kg and TCE is being removed at a rate of 0.8 kg/yr, it will take 

approximately eight years to remove the TCE at that site, assuming the removal rate is 

constant. At Fairchild, 0.9 kg of TCE is present beneath the phytostabilization site.  At a 

removal rate of 0.02 kg/yr, it will take approximately 49 years to remove the TCE at that 

site.  This is likely not a reasonable timeframe for removal compared to alternative 

methods, so additional or alternative remediation techniques may help reduce the 

timeframe.  The scattered data points for groundwater sampling between 2001 and 2009 

show a more significant average removal of TCE and indicate that phytoremediation may 
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not be very effective at this site.  More data is needed to determine a better estimate of 

the TCE removal rate in the groundwater. 

 
Recommendations 

The more information available about a site, the better the remediation plan and 

estimates can be.  For this reason, it is recommended that more groundwater monitoring 

wells be placed throughout the phytostabilization sites, especially at Fairchild.  Adequate 

soil data are also needed at both sites to assess the proportion of TCE that is potentially 

associated with soil particles.  Monitoring every year or every few years could more 

accurately describe what is happening with the plume.  This research provides a starting 

point for determining if the plumes are shrinking or growing and at what rate.  This is 

especially important at Travis, where the groundwater sampling has not been consistent 

with the wells used in the past. 

Considering reports of tree bark acting as a barrier to volatilization and allowing 

contaminants to build up within it, the concentrations of TCE in the bark should be 

measured in addition to the tree core concentrations.  Miles and Smith (2009) reported 

various eucalyptus trees having an average bark volume of 15.2% of the tree and poplar 

trees having a range of average bark volume between 14 and 22%.  As previously 

mentioned, one study found that 42-60% of the total measured TCE in core samples is in 

the bark (Gopalakrishnan, Burken, and Werth, 2009).  By these numbers, the mass of 

TCE within the bark could account for a significant change in the sorption calculations 

and indicate that it plays a larger part in TCE removal in trees than is presented here. 
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Statistical analyses of trunk flux measurements, especially with height along 

the trunk, were not performed since no replicate samples were taken.  It is recommended 

that replicates be taken to provide a better understanding of trunk volatilization as a loss 

mechanism for TCE. 

More frequent sampling of the trees and soil surface flux could also provide more 

accurate estimates of the magnitude of these loss mechanisms.  Monthly sampling events 

throughout the growing season would help our understanding of seasonal effects on plant 

uptake and translocation and build a reliable sampling history that can be extrapolated to 

obtain a more realistic time frame for complete TCE removal.  Monthly sampling may 

not be realistic, but the more often, the better. 

 
Engineering Significance 

 In this research, volatilization of TCE was measured from leaves and trunks of 

trees as well as from the soil surface near the trees.  Tree core samples were used to 

estimate the amount of TCE that is being sorbed by the trees at each site.  These 

measurements were scaled to represent the entire phytoremediation demonstration site at 

two air force bases to estimate the removal of TCE from the groundwater below them. 

 This type of research and information is important because it quantifies the mass 

of contaminant removed from a site and highlights some of the important and site-

specific factors that contribute to the effectiveness of such an endeavor such as species of 

tree, depth to groundwater, etc.  This information is useful to others using 

phytoremediation to restore a site because a complete picture of removal pathways is 

included and can be easily reproduced.  From such measurements and calculations, a 
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timeframe for total removal can be estimated to provide a comparison to other 

techniques. 
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Table A-1.  Tree core TCE Concentrations for 2009 at Travis AFB 

 

Tree 
ID 

Vial 
Number 

Sample 
Date 

TCE 
(µg/kg) 

Sample 
Weight

(g) 

Sample 
Height 
(cm) 

Sample 
Orientation 

R2T27 66 06/02/2009 1798.10 1.59 120 North 
R4T28 67 06/02/2009 1023.90 1.77 120 North 
R1T27 68 06/02/2009 2634.29 1.64 110 North 
R8T28 69 06/02/2009 439.63 1.73 120 North 
R8T39 70 06/02/2009 214.09 1.79 126 North 
R1T39 71 06/02/2009 851.95 1.7 124 North 
R2T39 72 06/02/2009 2076.14 1.56 110 North 
R4T40 73 06/02/2009 1077.33 2.02 115 North 
R5T60 74 06/02/2009 2.17 1.52 102 South 
R1T60 75 06/02/2009 196.95 1.78 100 South 
R8T58 76 06/02/2009 344.58 1.72 116 Southwest 
R2T56 77 06/02/2009 301.80 1.76 110 South 
R5T52 78 06/02/2009 113.00 1.95 104 North 
R2T51 79 06/02/2009 1044.33 2.05 120 North 
R1T50 80 06/02/2009 345.70 2.19 110 South 
R8T50 81 06/02/2009 163.00 1.54 120 North 
R8T1 83 06/02/2009 6026.07 1.47 106 North 
R1T1 84 06/02/2009 5196.94 2.07 116 Southwest 
R1T1 85 06/02/2009 3795.27 2.03 116 Southeast 
R1T1 86 06/02/2009 1197.31 2.02 116 West 
R2T2 87 06/02/2009 2255.15 1.79 124 North 
R4T3 88 06/02/2009 4960.66 2.08 109 Northeast 
R2T27 89 06/02/2009 1537.04 1.16 260 Southwest 
R1T27 90 06/02/2009 1922.33 1.65 270 Northeast 
R2T51 201 06/23/2009 620.00 1.59 121 North 
R2T51 202 06/23/2009 753.69 1.41 121 North 
R2T51 203 06/23/2009 0.56 1.64 260 West 
R2T27 204 06/23/2009 1485.88 1.7 110 East 
R2T27 205 06/23/2009 3101.21 1.65 110 East 
R2T27 206 06/23/2009 1516.59 1.67 220 Northeast 
R8T1 207 06/23/2009 1217.78 1.67 100 Southwest 
R8T1 208 06/23/2009 792.90 1.97 100 Southwest 
R4T3 209 06/24/2009 3515.34 1.76 105 North 
R4T3 210 06/24/2009 1514.39 1.53 190 West 
R4T28 211 06/24/2009 475.96 1.83 114 North 
R4T28 212 06/24/2009 624.60 1.26 114 North 
R4T40 214 06/24/2009 736.02 1.86 108 South 
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Table A-1 (Continued) 

 

Tree ID Vial 
Number Sample Date TCE 

(µg/kg) 

Sample 
Weight

(g) 

Sample 
Height 
(cm) 

Sample 
Orientation 

R4T40 215 06/24/2009 700.00 1.75 115 Southwest 
R1T27 216 06/24/2009 1737.70 1.83 124 West 
R1T27 217 06/24/2009 933.73 1.69 120 Southwest 
R1T27 218 06/24/2009 937.64 1.78 203 Southwest 
R8T1 485 10/6/2009 3437.90 1.79 100 Southwest 
R8T1 486 10/6/2009 3197.49 1.83 100 Southwest 
R8T1 487 10/6/2009 1639.21 1.79 100 Southwest 
R4T3 488 10/6/2009 2032.10 1.83 100 Southwest 
R4T3 489 10/6/2009 2177.11 0.62 40 Southwest 
R4T3 490 10/6/2009 1320.63 1.9 110 West 
R4T3 491 10/6/2009 1394.31 1.69 110 West 
R4T28 492 10/7/2009 611.00 1.67 180 West 
R4T28 493 10/7/2009 835.58 1.79 180 West 
R4T28 494 10/7/2009 141.20 1.83 115 West 
R4T28 495 10/7/2009 858.25 1.54 115 West 
R4T28 496 10/7/2009 786.10 1.18  West 
R4T40 497 10/7/2009 72.57 1.41 224 West 
R4T40 498 10/7/2009 517.94 1.71 224 West 
R4T40 499 10/7/2009 580.29 1.28  South 
R2T51 500 10/7/2009 599.39 1.44 107 Northwest 
R2T51 501 10/7/2009 602.24 1.55 107 Northwest 
R2T51 502 10/7/2009 439.06 1.56 114 Northwest 
R2T51 503 10/7/2009 500.31 1.62 114 Northwest 
R1T27 504 10/7/2009 886.41 1.95 185 West 
R1T27 505 10/7/2009 1183.83 1.4 185 West 
R4T40 506 10/7/2009 475.87 1.6 118 West 
R4T40 507 10/7/2009 454.94 1.46 118 West 
R1T27 508 10/7/2009 959.78 1.93 170 West 
R8T1 512 10/7/2009 2658.74 1.22 180 Southwest 
R8T1 513 10/7/2009 3323.14 1.89 180 Southwest 
R1T27 514 10/7/2009 445.83 1.53 202 West 

N.D.: Non-detect. Sample concentration was below instrument detection limits. 
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Table A-2.  Leaf TCE volatilization data for 2009 at Travis AFB 

 

Tree 
ID 

Sample 
Date 

Mass 
TCE  
(pg) 

Leaf 
Area 
(m2) 

Sample
Time 
(hr) 

Split 
Ratio 

Water 
collected 

(g) 

Flux 
(µg/m2-hr)

TSC 
(µg/L) 

R1T27 6/24/09 2005.73 0.052 0.5 0.023 0.019 3.35 106.18
R1T27 10/7/09 127.28 0.029 0.717 0.016 0.010 0.38 13.16 
R2T27 6/23/09 171.65 0.039 0.5 0.019 0.123 0.47 1.40 
R2T51 6/23/09 782.66 0.043 0.5 0.015 0.042 2.51 18.69 
R2T51 6/23/09 1474.51 0.043 0.667 0.013 0.058 4.12 25.51 
R2T51 10/7/09 858.81 0.061 0.5 0.019 0.035 1.50 24.61 
R4T3 6/24/09 3816.92 0.091 0.5 0.018 0.075 4.77 50.70 
R4T3 10/7/09 4760.79 0.035 0.5 0.015 0.048 17.79 100.00
R4T3 10/7/09 5316.03 0.035 0.5 0.017 0.047 17.58 112.64
R4T28 6/24/09 4057.62 0.062 0.5 0.017 0.061 7.59 66.30 
R4T28 6/24/09 1733.80 0.062 0.5 0.019 0.058 2.93 30.02 
R4T28 10/7/09 2278.84 0.0346 0.5 0.021 0.068 6.40 33.49 
R4T40 6/24/09 1209.07 0.0414 1.05 0.024 0.128 1.17 9.46 
R4T40 10/7/09 858.09 0.0400 0.5 0.010 0.037 4.16 23.51 
R8T1 6/23/09 2528.73 0.043 0.567 0.012 0.019 8.63 132.51
R8T1 10/6/09 3474.23 0.019 0.5 0.019 0.032 19.78 109.13
R8T1 10/6/09 3151.91 0.019 0.5 0.020 0.033 16.37 96.73 
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Table A-3.  Trunk TCE volatilization data for 2009 at Travis AFB 

 

Tree ID Sample 
Date 

Area 
(m2) 

Height 
(cm) 

Mass 
TCE  
(pg) 

Sampling 
Time  
(hr) 

TCE flux 
(µg/m2-hr) 

R1T27 6/24/09 0.02468 73 3740.35 0.55 0.276 
R1T27 10/7/09 0.02468 62 3267.28 0.5 0.265 
R2T27 6/23/09 0.02468 102 4323.14 0.483 0.362 
R2T27 6/23/09 0.02468 225 6757.69 0.5 0.548 
R2T51 6/23/09 0.02468 110 1404.90 0.5 0.114 
R2T51 6/23/09 0.02468 110 1268.76 0.517 0.100 
R2T51 6/23/09 0.02468 220 130.36 0.5 0.011 
R2T51 10/7/09 0.02468 75 3472.47 0.5 0.281 
R4T3 6/24/09 0.02468 65 17344.20 0.5 1.429 
R4T3 10/6/09 0.02468 34 44696.40 0.567 3.196 
R4T28 6/24/09 0.02468 100 2960.42 0.5 0.240 
R4T28 10/7/09 0.02468 46 6661.59 0.55 0.491 
R4T40 6/24/09 0.02468 107 4131.89 0.55 0.304 
R4T40 10/7/09 0.02468 118 2173.40 0.5 0.176 
R8T1 6/23/09 0.02468 40 1226.42 0.5 0.099 
R8T1 10/6/09 0.02468 42 7787.39 0.5 0.631 
R8T1 10/6/09 0.02468 42 10616.12 0.517 0.833 
Blank 10/7/09 0.02468  242.98 0.5 0.020 
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Table A-4.  Soil surface flux data for 2009 at Travis AFB 

 

Location Sample 
Date 

Area  
(m2) 

Mass TCE 
(pg) 

Sampling 
Time  
(hr) 

TCE Flux 
(µg/m2-day) 

Waypoint 016 6/2/09 0.034636 966.07 0.5 0.056 
Waypoint 017 6/2/09 0.034636 1211.00 0.5 0.070 
Waypoint 018 6/2/09 0.034636 567.65 0.5 0.033 
Waypoint 019 6/2/09 0.034636 95.53 0.5 0.006 
Waypoint 020 6/2/09 0.034636 60815.96 0.5 3.512 
Waypoint 021 6/2/09 0.034636 53156.50 0.5 3.069 
Waypoint 022 6/2/09 0.034636 6796.45 0.5 0.392 
Waypoint 023 6/2/09 0.034636 135.44 0.5 0.008 
Waypoint024 6/2/09 0.034636 482.00 0.5 0.028 

Blank 6/2/09 0.034636 935.29 0.5 0.054 
Waypoint 059 6/23/09 0.034636 30148.34 0.5 1.741 
Waypoint 059 6/23/09 0.034636 30655.30 0.5 1.770 
Waypoint 059 6/23/09 0.034636 82045.22 0.55 4.307 
Waypoint 0091 6/23/09 0.034636 70468.89 0.467 4.360 

Blank 6/23/09 0.034636 140.15 0.5 0.008 
Waypoint 0022, R8T1 10/6/09 0.034636 626579.06 0.5 36.8 
Waypoint 0032, R4T3 10/6/09 0.034636 336337.87 0.5 19.42 
Waypoint 0042, R4T28 10/7/09 0.034636 110567.26 0.517 6.179 
Waypoint 0053, R4T40 10/7/09 0.034636 <MDL 0.5 <MDL 
Waypoint 0063, R2T51 10/7/09 0.034636 43991.8 0.517 2.458 
Waypoint 0074, R1T27 10/7/09 0.034636 17089.92 0.5 0.987 

Blank 10/6/09 0.034636 1283.43 0.5 0.074 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX B 
 

FAIRCHILD DATA



 

 

78
Table B-1.  Tree core TCE concentrations for 2009 at Fairchild AFB 

 

Tree ID Vial 
Number 

Sample 
Date 

TCE  
(µg/kg) 

Sample 
Weight 

(g) 

Sample 
Height 
(cm) 

Sample 
Orientation

R36T2 153 6/9/2009 17.71 1.52 108 Southeast 
R37T11 154 6/9/2009 0.66 0.98 106 East 
R34T20 155 6/9/2009 0.05 1.07 66 Southeast 
R30T24 156 6/9/2009 3.21 1.51 115 East 
R38T3 157 6/9/2009 10.09 1.99 114 East 
R38T3 158 6/9/2009 13.46 1.47 114 East 
R38T3 159 6/9/2009 13.56 0.75 278 East 
R38T3 160 6/9/2009 7.37 1.93 278 South 
R26T3 161 6/9/2009 29.64 1.53 120 East 
R23T11 162 6/9/2009 0.33 1.60 120 East 
R25T25 163 6/9/2009 1.80 1.24 125 East 
R21T4 164 6/9/2009 4.99 1.83 116 East 

R20R10 165 6/9/2009 15.05 1.79 120 East 
R20R10 166 6/9/2009 15.01 1.16 42 East 
R22T16 167 6/9/2009 55.48 1.12 118 East 
R17T23 168 6/9/2009 2.75 1.78 118 East 
R11T4 169 6/9/2009 0.33 1.53 100 East 
R11T10 170 6/9/2009 4.69 1.79 116 East 
R10T13 171 6/9/2009 9.75 2.01 122 East 
R9T27 172 6/9/2009 42.12 1.71 123 East 
R5T5 173 6/9/2009 0.43 1.51 123 East 
R7T8 174 6/9/2009 0.18 1.47 120 East 
R2T15 175 6/9/2009 0.69 2.23 117 East 
R2T25 176 6/9/2009 11.11 1.48 110 East 
R2T25 177 6/9/2009 N/A -1.73 110 East 

Cottonwood1 178 6/9/2009 29.90 1.72 117 East 
Maple1 179 6/9/2009 0.33 1.39 110 East 
Maple2 180 6/9/2009 2.88 1.81 123 East 

Cottonwood2 181 6/9/2009 42.14 0.16 140 East 
Cottonwood2 182 6/9/2009 6.90 1.19 140 East 
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Table B-1 (Continued) 

 

Tree ID Vial 
Number 

Sample 
Date 

TCE  
(µg/kg) 

Sample 
Weight 

(g) 

Sample 
Height 
(cm) 

Sample 
Orientation

R11 T30 249 7/15/2009 120.47 1.24 115 West 
R11 T30 250 7/15/2009 74.81 1.76 115 West 
R11 T30 251 7/15/2009 102.59 1.13 300 West 
R11 T30 252 7/15/2009 91.19 1.19 300 West 
R17 T 30 253 7/15/2009 45.65 1.81 70 West 
R17 T 30 254 7/15/2009 67.10 1.21 128 West 
R17 T 30 255 7/15/2009 65.36 1.57 264 West 
R21 T16 256 7/15/2009 117.95 1.63 113 Northwest 
R21 T16 257 7/15/2009 141.72 0.96 260 Northwest 
R19 T10 258 7/15/2009 22.76 1.60 262 Northeast 
R19 T10 259 7/15/2009 12.69 1.61 120 Northeast 
R38 T3 260 7/15/2009 4.53 1.22 105 Northeast 
R38 T3 261 7/15/2009 12.33 1.36 105 Northeast 
R38 T3 262 7/15/2009 12.29 1.45 235 Northeast 
R38 T3 263 7/15/2009 11.49 1.35 235 Northeast 
R36 T2 264 7/15/2009 40.38 0.77 108 West 
R36 T2 265 7/15/2009 22.34 1.89 108 West 
R36 T2 266 7/15/2009 18.31 1.65 250 West 
R36 T2 267 7/15/2009 23.16 1.29 250 West 
R11T30 410 9/8/2009 132.63 1.98 110 West 
R11T30 411 9/8/2009 200.94 1.66 110 West 
R11T30 412 9/8/2009 149.29 1.40 290 Southwest 
R11T30 413 9/8/2009 78.03 1.41 290 Southwest 
R17T30 414 9/8/2009 105.43 1.26 110 Southwest 
R17T30 415 9/8/2009 143.34 0.96 258 Southwest 
R21T16 416 9/8/2009 86.18 1.66 116 North 
R21T16 417 9/8/2009 0.07 1.21 255 Northwest 
R23T15 418 9/8/2009 0.07 1.65 112 Southeast 
R23T15 419 9/8/2009 0.08 1.40 260 South 
R20T10 420 9/8/2009 11.29 1.95 121 North 
R20T10 422 9/8/2009 14.95 0.85 285 North 
R21T4 423 9/8/2009 19.62 1.08 115 North 
R21T4 424 9/8/2009 6.78 1.44 115 North 
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Table B-1 (Continued) 

 

Tree ID Vial 
Number 

Sample 
Date 

TCE  
(µg/kg) 

Sample 
Weight 

(g) 

Sample 
Height 
(cm) 

Sample 
Orientation 

R21T4 425 9/8/2009 8.89 1.12 290 Northeast 
R21T4 426 9/8/2009 10.48 0.73 290 Northeast 
R36T2 427 9/8/2009 19.79 2.13 104 Southeast 
R36T2 428 9/8/2009 39.40 1.68 265 East 
R38T3 429 9/8/2009 26.39 1.27 88 East 
R38T3 430 9/8/2009 33.10 1.46 88 East 
R38T3 431 9/8/2009 13.95 1.68 256 East 
R38T3 432 9/8/2009 16.71 1.54 256 East 
R38T2 433 9/8/2009 11.81 1.62 106 East 

Control 1 434 9/8/2009 0.02 1.10 104 East 
Control 1 435 9/8/2009 0.02 0.98 104 East 
Control 2 436 9/8/2009 N.D. 1.18 106 Northeast 
Control 2 437 9/8/2009 N.D. 1.13 106 Northeast 

N.D.: Non-detect. Sample concentration was below instrument detection limits. 
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Table B-2.  Leaf TCE volatilization data for 2009 at Fairchild AFB 

 

 Tree 
ID 

Sample 
Date 

Mass 
TCE 
(pg) 

Leaf 
Area 
(m2) 

Sample
Time  
(hr) 

Split 
Ratio 

Water 
collected  

(g) 

TCE 
Flux 

(µg/m2-hr)

TSC 
(µg/L) 

R11T30 7/15/09 51.75 0.037 0.5 0.017 0.056 0.17 0.92 
R11T30 7/15/09 66.72 0.037 0.5 0.014 0.068 0.22 0.99 
R11T30 9/9/09 232.58 0.045 0.5 0.022 0.028 0.47 8.37 
R17T30 7/15/09 129.78 0.061 0.5 0.014 0.072 0.30 1.81 
R17T30 9/9/09 242.93 0.042 0.5 0.021 0.042 0.56 5.77 
R20T10 7/15/09 <MDL 0.031 0.5 0.017 0.048 <MDL <MDL
R20T10 9/9/09 <MDL 0.030 0.5 0.016 0.015 <MDL <MDL
R21T4 9/9/09 <MDL 0.052 0.5 0.019 0.061 <MDL <MDL
R22T16 7/15/09 406.10 0.021 0.517 0.017 0.035 2.19 11.46 
R23T15 9/9/09 <MDL 0.047 0.5 0.015 0.035 <MDL <MDL
R23T15 9/9/09 43.44 0.047 0.5 0.018 0.049 0.10 0.88 
R36T2 7/15/09 73.85 0.015 0.5 0.018 0.0396 0.56 1.86 
R36T2 7/15/09 <MDL 0.015 0.5 0.017 0.0371 <MDL <MDL
R36T2 9/9/09 179.03 0.024 0.5 0.018 0.0329 0.85 5.44 
R38T3 7/15/09 83.70 0.038 0.517 0.018 0.0638 0.24 1.31 
R38T3 7/15/09 <MDL 0.042 0.5 0.022 0.0708 <MDL <MDL
R38T3 9/9/09 270.18 0.063 0.5 0.019 0.0698 0.46 3.87 

Control 1 9/10/09 <MDL 0.042 0.5 0.023 0.1048 <MDL <MDL
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Table B-3.  Trunk TCE volatilization data for 2009 at Fairchild AFB 

 

Tree ID Sample 
Date 

Area 
(m2) 

Height 
(cm) 

Mass 
TCE 
(pg) 

Sampling 
Time 
(hr) 

TCE flux 
(µg/m2-hr) 

R11T30 7/15/09 0.02468 120 6676.38 0.5 0.54 
R11T30 7/15/09 0.02468 300 761.66 0.5 0.062 
R11T30 9/9/09 0.02468 64 <MDL 0.5 <MDL 
R17T30 7/15/09 0.02468 70 5142.99 0.5 0.417 
R17T30 9/9/09 0.02468 47 733.75 0.5 0.060 
R21T4 9/9/09 0.02468 50 3403.27 0.567 0.243 
R36T2 7/15/09 0.02468 23 1099.93 0.5 0.089 
R36T2 7/15/09 0.02468 23 1028.14 0.5 0.083 
R36T2 9/9/09 0.02468 75 57.65 0.5 0.005 
R38T3 7/15/09 0.02468 100 1118.25 0.5 0.091 
R38T3 7/15/09 0.02468 230 915.13 0.5 0.074 
R38T3 9/9/09 0.02468 78 47.92 0.5 0.004 

Control 1 9/10/09 0.02468 130 31.57 0.5 <MDL 
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Table B-4.  Soil surface flux data for 2009 at Fairchild AFB 

 

Location Sample 
Date 

Area 
(m2) 

Mass TCE 
(pg) 

Sampling 
Time 
(hr) 

TCE Flux 
(µg/m2-day) 

Waypoint 025 6/9/09 0.034636 132.67 0.5 0.008 
Waypoint 026 6/9/09 0.034636 337.74 0.5 0.020 
Waypoint 027 6/9/09 0.034636 3797.88 0.5 0.219 
Waypoint 028 6/9/09 0.034636 869.73 0.5 0.050 
Waypoint 029 6/9/09 0.034636 1240.89 0.5 0.072 
Waypoint 030 6/9/09 0.034636 729.97 0.5 0.042 
Waypoint 031 6/9/09 0.034636 173.51 0.5 0.010 
Waypoint 032 6/9/09 0.034636 248.77 0.5 0.014 
Waypoint 033 6/9/09 0.034636 1763.00 0.5 0.102 

Blank 6/9/09 0.034636 133.77 0.5 0.008 
Blank 6/9/09 0.034636 100.75 0.5 0.006 

Waypoint 007 7/16/09 0.034636 217.34 0.5 0.013 
Waypoint 007 7/16/09 0.034636 219.03 0.5 0.013 
Waypoint 007 7/16/09 0.034636 262.52 0.5 0.015 
Waypoint 009 7/16/09 0.034636 539.87 0.5 0.031 
Waypoint 009 7/16/09 0.034636 309.33 0.5 0.018 
Waypoint 009 7/16/09 0.034636 99.56 0.5 0.006 
Waypoint 012 7/16/09 0.034636 5063.85 0.5 0.292 
Waypoint 012 7/16/09 0.034636 774.92 0.5 0.045 
Waypoint 012 7/16/09 0.034636 2810.06 0.5 0.162 
Waypoint 004 9/8/09 0.034636 29823.87 0.5 1.722 
Waypoint 004 9/9/09 0.034636 8792.50 0.5 0.508 
Waypoint 008 9/8/09 0.034636 10418.48 0.5 0.602 
Waypoint 008 9/9/09 0.034636 78.62 0.5 0.005 
Waypoint 013 9/8/09 0.034636 44.96 0.5 0.003 
Waypoint 013 9/9/09 0.034636 <MDL 0.5 <MDL 

Control 1 9/10/09 0.034636 64.65 0.5 0.004 
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APPENDIX C 
 

TRAVIS POLYGON AND REMOVAL RESULTS
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Figure C-1.  Initial tree core sampling polygons at Travis AFB.
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Table C-2.  Trunk sampling polygon information and TCE removal 

            calculations at Travis AFB 
 

Polygon 
ID 

Number 
of Trees 

Trunk 
Flux 

(µg/m2/hr)

Average 
Height 

(m) 

Average 
Circumference

(cm) 

Average 
Surface 

Area 
(m2) 

TCE 
Removal

(g/yr) 

R8T1 42 0.52 10.92 44.92 4.91 0.74 
R1T27 84 0.27 11.81 44.92 5.31 0.84 
R2T51 94 0.13 6.12 32.00 1.96 0.16 
R2T27 32 0.46 12.27 60.48 7.42 0.75 
R4T40 56 0.24 10.52 47.20 4.96 0.46 
R4T28 17 0.36 8.76 42.73 3.74 0.16 
R4T3 63 0.72 10.10 45.18 4.56 1.43 

Totals: 388     4.55 
 

 
 
 

Table C-3.  Leaf sampling polygon information and TCE removal 
  calculations at Travis AFB 

 

Polygon 
ID 

Area 
(m2) 

TSC 
(µg/L) 

TCE 
Removal 

(g/yr) 
R8T1 856.98 112.80 72.67 
R1T27 1909.22 59.67 85.64 
R2T51 2667.61 22.94 46.00 
R2T27 641.41 1.40 0.68 
R4T40 1274.23 16.48 15.79 
R4T28 514.12 43.27 16.72 
R4T3 1214.44 87.78 80.14 

Totals: 9078  317.64 
 

 



 

 

88
    

 
Figure C-2.  Trunk and leaf volatilization sampling polygons at Travis AFB. 
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Table C-4.  Trip 3 soil flux sampling polygon information and TCE removal   

calculations for the phytostabilization site at Travis AFB 
 

Polygon ID Area 
(m2) 

Soil Flux 
(µg/m2-hr) 

Average 
X-section 

Area 
(m2) 

Number 
of 

Trees 

TCE 
Removal 

(g/yr) 

R8T1 856.98 36.18 0.018 37 214.89 
R1T27 2,329.22 0.99 0.020 105 15.93 
R2T51 2,667.61 2.46 0.010 93 45.47 
R4T40 1,274.86 <MDL 0.018 58 0.00 
R4T28 725.87 6.18 0.010 28 31.09 
R4T3 1,223.48 19.42 0.015 67 164.68 
Totals: 9,078.00    472.06 

 
 
 

 
 

Figure C-3.  Trip 3 soil volatilization sampling polygons within  
      phytostabilization site at Travis AFB. 
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Table C-5.  Trip 1 soil flux sampling polygon information and removal calculations 

          outside planted area at Travis AFB 
 

Waypoint Area 
(m2) 

Soil Flux 
(µg/m2-hr) 

TCE 
Removal 

(g/yr) 
WP24 1,833.58 0.0278 0.35 
WP22 942.08 0.3924 2.56 
WP23 1,946.51 0.0078 0.11 
WP16 878.67 0.0558 0.34 
WP17 1,611.54 0.0699 0.78 
WP18 1,865.62 0.0328 0.42 
Totals: 9,078.00  4.57 

 
 
 
 

Table C-6.  Trip 1 soil flux sampling polygon information and removal calculations  
            inside planted area at Travis AFB 

 

Waypoint Area 
m2 

Flux 
(µg/m2-hr) 

Removal 
(g/yr) 

WP019 3,425.95 0 0 
WP020 1,743.30 3.512 42.4653 
WP021 3,908.75 3.069 83.204 
Totals: 9,078.00  125.67 
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Figure C-4.  Trip 1 soil volatilization  Figure C-5.  Trip 1 soil volatilization 
sampling polygons for    sampling polygons for 

   samples outside the planted       samples inside the planted 
   area at Travis AFB .                  area at Travis AFB.
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Table C-7.  Groundwater sampling polygon information and TSCF 

           values at Travis AFB 
 

Well ID 
Groundwater 
Concentration

(µg/L) 

Average 
GW Conc. 

(µg/L) 
Tree TSC 

(µg/L) TSCF 

755PHYTO42 146 
755PHYTO25 5082 2614 R8T1 

R4T3 
112.79 
87.78 

0.04 
0.03 

755PHYTO39 1.4 
755PHYTO37 443 
755PHYTO44 9196 
755PHYTO41 191 

2457.85 R4T40
R2T51

16.48 
22.94 

0.01 
0.01 

755PHYTO30 658 
MW779x39 1530 

755PHYTO45 188 
792 R4T28 43.27 0.05 

MW778x39 9 
MW777x39 1110 559.5 R1T27

R2T27
59.67 
1.40 

0.11 
0.003 

    Average 0.04 
    95% CI 0.03 



 

 

93

 
 

Figure C-6.  Monitoring well locations within tree polygons at Travis AFB. 
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APPENDIX D 
 

FAIRCHILD POLYGON AND REMOVAL RESULTS 
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Table D-1.  Tree core sampling polygon information and TCE removal calculations  

          at Fairchild AFB 
 

Tree ID Area 
(m2) 

Fraction
Total 
Area 

Number
of  

Trees 

Core  
TCE 

(µg/kg) 

Average 
Diameter

(cm) 

Dry 
Weight 

(kg) 

Fresh 
Weight

(kg) 

Sorbed
(g) 

R5T5 170.29 0.04 1 0.43 3.35 1.33 2.94 0.00 
R7T8 106.91 0.03 6 0.18 15.00 29.36 65.24 0.00 

R11T14 169.97 0.04 5 0.33 3.40 1.35 3.00 0.00 
aR11T10 117.67 0.03 10 4.69 10.83 18.51 41.14 0.00 
R10T13 223.01 0.06 26 9.75 16.00 31.96 71.02 0.02 
R2T15 195.72 0.05 15 0.69 7.00 8.56 19.02 0.00 
R2T25 180.98 0.05 15 11.11 16.17 32.39 71.99 0.01 
R9T27 262.24 0.07 32 42.12 13.42 25.25 56.12 0.08 
R17T23 328.75 0.08 41 2.75 12.80 23.64 52.53 0.01 
R25T25 247.41 0.06 18 1.80 7.43 9.69 21.53 0.00 
R22T16 237.20 0.06 17 55.48 10.58 17.86 39.68 0.04 

bR23T11 187.96 0.05 4 0.33 10.64 18.04 40.08 0.00 
R20T10 147.25 0.04 8 15.03 11.00 18.96 42.13 0.01 
R21T4 158.18 0.04 9 4.99 10.50 17.66 39.24 0.00 
cR26T3 190.88 0.05 8 29.64 11.50 20.26 45.02 0.01 
R30T24 277.78 0.07 23 3.21 9.90 16.10 35.78 0.00 
R34T20 341.83 0.09 16 0.05 7.50 9.86 21.91 0.00 

dR37T11 271.03 0.07 6 0.66 10.00 16.36 36.36 0.00 
R36T2 116.10 0.03 7 17.71 13.00 24.16 53.69 0.01 
R38T3 68.83 0.02 6 11.12 10.50 17.66 39.24 0.00 
Totals: 4,000.00  273     0.11 

aAverage diameter of polygons R10T13, R20T10, R11T14, R7T8.  bAverage diameter of 
polygons R21T4, R20T10, R22T16.  cAverage diameter of polygons R21T4, R36T2. dAverage 
diameter of polygons R38T3, R36T2, R34T20 
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Figure D-1.  Initial tree core sampling polygons at Fairchild AFB. 
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Table D-2.  Trunk sampling polygon information and TCE removal calculations at  

           Fairchild AFB 
 

Tree 
ID 

 

Number 
of Trees 

Trunk Flux
µg/(m2-hr) 

Average
Height 

(m) 

Average 
Circumference

(cm) 

Average 
Surface Area 

(m2) 

TCE 
Removal 
(g/year) 

R11T30 84 0.20 11.86 43.23 5.13 0.32 
R17T30 90 0.24 8.34 28.05 2.34 0.18 
R21T4 68 0.24 7.95 32.99 2.62 0.16 
R36T2 9 0.06 8.38 21.21 1.78 0.00 
R38T3 22 0.02 8.84 37.70 3.33 0.01 
Totals: 273     0.67 

 

 

Figure D-2.  Trunk volatilization sampling polygons at Fairchild AFB. 
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Table D-3.  Leaf sampling polygon information and TCE removal calculations at  

            Fairchild AFB 
 

Tree 
ID 

Area 
(m2) 

Fraction
Total 
Area 

TSC 
(µg/L) 

TCE 
Removal 
(g/year) 

R11T30 658.43 0.16 3.43 2.09 
R17T30 412.72 0.10 3.79 1.45 
R22T16 509.73 0.13 11.46 5.42 
R20T10 750.45 0.19 0.00 0.00 
R21T4 501.40 0.13 0.00 0.00 
R23T15 687.58 0.17 0.44 0.28 
R36T2 230.75 0.06 2.44 0.52 
R38T3 248.92 0.06 2.59 0.60 
Totals: 4000.00   10.36 

 

 

Figure D-3.  Leaf volatilization sampling polygons at Fairchild AFB. 
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Table D-4:  Trip 3 soil flux sampling polygon information and TCE removal 

        calculations for the phytostabilization site at Fairchild AFB 
 

Well 
 

Area 
(m2) 

Soil Flux 
(µg/m2-hr) 

Avg. Tree 
X-section 

Area 
(m2) 

Number 
Of 

Trees 

TCE  
Removal 
(g/year) 

WP013 684.14 0.00 0.009 32 0.003 
WP008 2,102.70 0.30 0.007 118 2.34 
WP004 1,213.15 1.11 0.012 123 4.96 
Totals: 4,000.00    7.30 

 

 

 

Figure D-4.  Trip 3 soil volatilization sampling polygons within phytostabilization site at 
          Fairchild AFB. 
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Table D-5.  Trip 1 soil flux sampling polygon information and removal calculations 

outside the planted area at Fairchild AFB 
 

Waypoint Area 
(m2) 

Soil Flux 
(µg/m2-hr) 

Removal 
(g/yr) 

WP25 1,062.11 0.01 0.03 
WP26 456.95 0.02 0.03 
WP27 741.56 0.22 0.60 
WP33 1,095.24 0.10 0.41 
WP32 580.71 0.01 0.03 
WP31 63.43 0.01 0.002 
Totals: 4,000.00  1.10 

 

 

 

Figure D-5.  Trip 1 soil volatilization sampling polygons for samples outside the 
    planted area at Fairchild AFB. 
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Table D-6.  Trip 1 soil flux sampling polygon information and removal calculations  

   inside the planted area at Fairchild AFB 
 

Waypoint Area 
(m2) 

Flux 
(µg/m2-hr)

Removal 
(g/yr) 

WP028 1,220.94 0.05022 0.22515 
WP029 496.93 0.07165 0.13074 
WP030 2,282.13 0.04215 0.35322 
Totals: 4,000.00  0.71 

 
 
 

 
 

Figure D-6.  Soil volatilization sampling polygons for samples inside  
      phytostabilization site Trip 1 at Fairchild AFB. 
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Table D-7.  Groundwater sampling polygon information and TSCF  

             values at Fairchild AFB 
 
 

Well 
ID 

Groundwater 
Concentration

(µg/L) 
Tree TSC 

(µg/L) TSCF 

MP 07 67 R21T4 
R20T10 

0.00 
0.00 

0.00 
0.00 

MP 38 150 
R11T30 
R22T16 
R17T30 

3.43 
11.46 
3.79 

0.02 
0.08 
0.03 

MP 41 
 51 

R23T15 
R36T2 
R38T3 

0.44 
2.44 
2.59 

0.01 
0.05 
0.05 

   Average 0.03 
   95% CI 0.02 

 
 
 

 

Figure D-7.  Monitoring well locations at Fairchild AFB. 
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