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A B S T R AC T Objective: Findings from meta-analytic studies that use standardized
mean differences (SMDs) may be overly dependent on the original measures that
were used to generate SMDs. This may be particularly true when measures have

arbitrarymetrics or whenmeasures fail to meet measurement equivalence.We test
the hypothesis that in such cases, meta-analytic results may vary significantly—
statistically and practically—as a function of the measures used to derive SMDs.
Methods: We conducted 5 secondary random-effects meta-analyses of SMDs—each
under a different measurement scenario—from a published meta-analysis com-
paring the efficacy of cognitive–behavioral therapy with that of reminiscence ther-
apy for depression in older adults. In each scenario, SMDs were based on scores
from measures with arbitrary metrics, some of which failed to meet measurement
equivalence. Results: Consistent with the hypothesis, meta-analysis results differed
significantly—statistically and practically—between the measurement scenarios
under conditions of measurement nonequivalence. Conclusions: Results of meta-
analyses involving measures with arbitrary metrics may depend on the measures
that the SMDs are based on when measurement equivalence fails to hold. Infer-
ences concerning the relative efficacy of different treatments can be measurement
dependent.

K E YWORD S : meta-analysis, measurement, effect sizes, measurement equivalence,
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A
s meta-analysis has become a preferred method for identifying evidence-

based interventions (e.g., Murad, Asi, Alsawas, & Alahdab, 2016; Rubin & Bel-

lamy, 2012), the number of published meta-analyses has increased rapidly

(Borenstein, Hedges, Higgins, & Rothstein, 2009;White, 2009). Often, different stud-

ies use different measures. Consequently, the meta-analyst must accumulate and

compare effect sizes (ESs) based on scores from different measures that frequently
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have arbitrary metrics (Kazdin, 2006). Blanton and Jaccard (2006, p. 27) define a met-

ric as arbitrary “when it is not known where a given score locates an individual

on the underlying psychological dimension or how a one-unit change on the ob-

served score reflects the magnitude of change on the underlying dimension.”

Unique to each scale (Lord & Novick, 1968), arbitrary metrics are problematic not

only because of their inherent uncertainties but also because the relationships be-

tween these metrics are unknown and thus, the scores cannot be directly compared

(Dorans, Pommerich, & Holland, 2010). Trying to directly compare them would be

like trying to compare the temperature in Town X (35 7C) with that in Town Y (95 7F)

without knowing the relationship between the units on the Fahrenheit and Celsius

scales—7F 5 (1.8 � 7C) 1 32—that facilitates the direct comparison (35 7C 5 95 7F).

The use of different measures in different studies and the associated score com-

parison problems led Lipsey and Wilson (2001) to frame the following question in

their introduction to meta-analysis:
With these quite different measures yielding different numerical values that
are meaningful only in relation to the specific operationalization and scales
used, how can their quantitative findings be encoded in a way that allows
them to be statistically combined and compared? (p. 4)
Lipsey andWilson (2001, p. 4) emphasized that the answer to this question “relates

to an essential feature of meta-analysis, indeed, the feature that makes meta-analysis

possible and provides the hub around which the entire process revolves [emphasis added].”

Lipsey and Wilson’s (2001) answer to this question is that ESs are standardized.

Because ESs represent a statistical standardization of study findings, they are pre-

sumably interpretable in a consistent manner across all measures involved (Lip-

sey & Wilson, 2001). In the words of Grissom and Kim (2005, p. 49), this creates

“a measure of effect size that places different dependent variable measures on the same

scale [emphasis added].” This explanation suggests that ESs—such as the standard-

ized mean difference (SMD), which is commonly used in treatment outcome stud-

ies—have taken the scores from different measures, with different and arbitrary

metrics, and transformed them into ESs expressed on the same numerical scale

inmuch the sameway that the temperatures inTownXandTownYcanbe converted

to the same temperature scale (e.g., 7F) using the relationship between the Fahren-

heit and Celsius scales and then be compared.

For any construct of interest, a number (m) of measurement procedures ( j ) exist

( j 5 1, 2 . . . m; the measures are expressed as j 5 1, j 5 2 . . . j 5 m) and produce

scores that are inferred to represent the construct of interest. The numberm can be

rather large; for example Mitchell (2010) identified 50 general depression scales.

The true SMD for Study i (i 5 1, 2 . . . n) based on scores from Measure j is symbol-

ized by di( j); for example, the true SMD for Study 1 based on the scores from Mea-
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sure j 5 2 would be d1(2). In some cases, the true SMD for Study i may be based on

the average of g true SMDs; the true SMDs are based on scores from g (g ≤ m) of

the m measures (Borenstein et al., 2009). In this case, the true SMD would be sym-

bolized by di(1, 2 . . . g) 5 avg[di(1), di(2) . . . di(g)] since this SMD is an average and

involves the true SMDs based on scores from the g measures. For example, say

the true SMD for Study 2 is the average of the true SMDs based on scores from

Measures j 5 1 and j 5 5. The true SMD for Study 2 would thus be symbolized

by d2(1, 5) 5 avg[d2(1), d2(5)]. Of course, the meta-analyst will not have the true

SMD for any study; rather, they will have an estimate of the true SMD. The estimate

of a true SMD will be symbolized the same way as the true SMD but with the low-

ercase d in place of the lowercase Greek d. Thus, for example, the estimated true

SMD for Study 1 based on the scores from Measure j 5 2 will be symbolized as

d1(2).

It is important to note that estimated SMDs for any study (i) based on the scores

from all measures (m) will almost certainly not be available to a meta-analyst; that

is, di(1), di(2) . . . di(m) will not all be available. Researchers select one or more mea-

sures for use in their studies based on considerations of their particular research

exigencies, and it is unlikely that all m measures will be used (especially if m is

large). To illustrate, suppose that a group of three studies is to be meta-analyzed

and that the outcome variable in these studies could, with justification, have been

measured using any of four measures ( j 5 1 through j 5 4). This is illustrated in

Figure 1. In this figure, the left-hand column shows themeasures used in Studies 1–

3 (above the line) as well as the estimated SMDs available to a meta-analyst for

each study (below the line). Measure j 5 1 was used in Study 1, Measures j 5 3

and j 5 4 were used in Study 2, and j 5 4 was used in Study 3; Measure j 5 2

was not used in any of the studies. This collection of measures used in the three

studies is called the measurement scenario for the three studies and is symbolized

as {( j 5 1)1, ( j 5 3, j 5 4)2, ( j 5 4)3}, where the measures used in the studies

are contained within parentheses and the subscript attached to each parenthesis

indicates the particular study. This measurement scenario leads to the estimated

SMDs—d1(1) for Study 1; d2(3), d2(4), and, possibly, avg[d2(3), d2(4)] for Study 2; and

d3(4) for Study 3—that are available to the meta-analyst. In Figure 1, the right-hand

column shows, above the line, the measures not used in the studies; the estimated

SMDs not available to the meta-analyst are shown below the line. Because Measures

j 5 2, j 5 3, and j 5 4 were not used in Study 1; j 5 1 and j 5 2 were not used

in Study 2; and j5 1, j5 2, and j5 3 were not used in Study 3, any estimated SMDs

based on scores from these measures are unavailable to a meta-analyst. These in-

estimable SMDs are a form of what Gilovich (1991) called absent data—in this case,

estimated SMDs that cannot be computed and hence are unavailable to the meta-

analyst. This scenario readily generalizes to circumstances in which there are m

reasonable measures and n studies.
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If arguments by methodologists such as Lipsey and Wilson (2001) and Grissom

and Kim (2005)—that the standardization inherent in the SMD places estimated

true SMDs on the same scale—are assumed to be correct, then the true SMD for

Study i based on scores from Measure j 5 1, di(1) will be equal to that for Study i

based on the scores from a different measure—j 5 2, di(2)—even if the metrics of

j 5 1 and j 5 2 are arbitrary, different, and the relationship between them is un-

known. Similarly, the estimated true SMDs di(1) and di(2) will be on the same scale

and will therefore be statistically interchangeable since, although they will differ

due to sampling variability, they will nonetheless be estimates of the same true

SMD. Consequently, all measurement scenarios will be statistically interchangeable

and the results of meta-analyses of the n studies will be the same, within limits of

samplingvariability, across all possiblemeasurement scenarios involving themmea-

sures. It will not matter which measures are used in which studies. This is, theoret-

ically, whatmakesmeta-analysis so informative and valuable for research synthesis.

It has been argued that true SMDs for Study i based on scores from twomeasures

( j 5 1 and j 5 2) will be equal only when two measurement conditions—construct

equivalence and equal reliabilities—simultaneously hold for the scores from Measures

j5 1 and j5 2 in all subpopulations of a population of interest (Nugent, 2012). The

construct equivalence condition is formally expressed by Equation 1,
Figure 1. Illustration of hypothetical measurement scenario for three studies. The left-hand column shows
measures actually used in the hypothetical studies, and the right-hand column shows the measures not used
in the hypothetical studies. The estimated SMDs below the line in the right-hand column are absent data.
SMD 5 standardized mean difference.
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T1 5 F12 � T2ð Þ 1 H12, (1)

where Τ1 and Τ2 represent the true scores on Measures j5 1 and j5 2, respectively,

and F12 and H12 represent real-number parameters defining the relationship be-

tween the metrics of Τ1 and Τ2. Conceptually, this relationship implies that the

scores from Measures j5 1 and j5 2 represent the exact same construct ( Joreskog,

1971). The equal reliabilities condition asserts that the reliability coefficients for

the scores from Measures j 5 1 and j 5 2 are equal. The conjunction of construct

equivalence and equal reliabilities defines a form of measurement equivalence,

stated conceptually asMeasures j5 1 and j5 2 produce scores representing the exact same

construct, with the exact same reliability, in all subpopulations of the population of interest.

For the sake of brevity, we will hereafter refer to the term “the conjunction of con-

struct equivalence and equal reliabilities” as CE (for construct equivalence) and

ER (for equal reliabilities), or CE and ER.

If CE and ER does not hold—particularly if CE fails to hold—the scores from one

or more of the m measures will not represent the exact same construct with the

same reliability (Solow, 2002). Thus, vectors of estimated SMDs input into a meta-

analysis can differ statistically. Consequently, meta-analytic results can differ based

onwhich vectors of estimated SMDs are input into themeta-analysis, and thuswhich

measures are used in which studies. Nugent (2012, 2013) argued that the greater the

extent to which the estimated SMD for any study (i) in a group of n studies differs

between measurement scenarios as a consequence of violations of CE and ER,

and the larger the fraction of the n studies for which these large differences exist,

the greater the likelihood that results of a meta-analysis of the studies will differ

between measurement scenarios and, therefore, be measurement dependent.
The Current Study
The current study augments previous research by empirically demonstrating themea-

surement dependence of meta-analytic results. Nugent (2013) conducted a model-

based simulation showing that violation of the CE condition can lead to large dif-

ferences between di(1) and di(2) for Study i, and that simultaneous violations of CE

and ER can lead not only to greater differences between di(1) and di(2) for Study i

but also to different rank orderings of these true SMDs for the same pair of stud-

ies. More recently, Nugent (2017) conducted a Monte Carlo simulation testing the

conjecture that meta-analytic results can vary as a consequence of true SMDs based

on scores from measures that violate CE. Findings suggested that violations of CE

can lead to contradictory results in a meta-analysis of the same set of studies. The re-

sults of these model-based simulations can be considered as hypotheses, or predic-

tions, that require empirical verification (Banks, 2009; Harrison, Carroll, & Carly,

2007). However, no empirical studies have investigated whether the results of actual



166 Journal of the Society for Social Work & Research Spring 2019
meta-analyses may be measurement dependent. The current study addresses this

absence.

Method
The secondary analyses in this study were of estimated SMDs comparing treatments

for depression in older adults; the estimated SMDs were from eight studies of ran-

domized clinical trials thatwere included in a systematic review conducted by Peng,

Huang, Chen, and Lu (2009). The secondary meta-analyses involved 11 compari-

sons of the efficacy of types of cognitive–behavioral therapy (e.g., problem-solving

therapy, cognitive and behavioral bibliotherapy, and cognitive and behavioral self-

management)—the various forms ofwhichwewill subsequently refer to as “cognitive–

behavioral therapy”—and various forms of reminiscence therapy, which we will

henceforth refer to as “reminiscence therapy.” Seven of the studies compared

cognitive–behavioral therapywithwaiting-list control or delayed treatment, and four

studies compared reminiscence therapy with waiting list control or delayed treat-

ment. We will subsequently refer to the waiting-list control and delayed-treatment

conditions as “no treatment.” We included a single estimated SMD for the direct

comparison of cognitive–behavioral therapy with reminiscence therapy by Arean

and colleagues (1993) because this estimated SMD was correlated with two others

from this study, and this inclusion brought the information contained in these co-

variances into analyses (Gleser & Olkin, 2009). Readers are referred to Peng et al.

(2009) for details of this systematic review and meta-analysis.

Measures
The measures used in the eight studies included in the secondary meta-analyses

were the Beck Depression Inventory (Beck, Steer, & Garbin, 1988); the Center for

Epidemiologic Studies Depression scale (Radloff, 1977); the Hamilton Rating Scale

(Hamilton, 1960); the Geriatric Depression Scale (Sheikh & Yesavage, 1986); and the

Brief Symptom Inventory depression subscale (Derogatis & Melisarotos, 1983). All of

these frequently used and well-knownmeasures have arbitrary metrics. Three mea-

sureswere used in three of the studies, twowere used in three of the studies, and one

was used in two of the studies. Table 1 displays the measures upon which the esti-

mated SMDs were based in the current study.

Estimated SMDs
Each of the authors independently computed the estimated SMDs for treatment

comparisons and then compared results. There was 100% agreement for the SMD

estimates. We computed the estimated SMDs from information in the published

studies using formulas from Borenstein et al. (2009) and Gleser and Olkin (2009).

The estimated true SMD for a treatment/no-treatment comparison fromStudy i based

on scores from Measure j was estimated by
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di jð Þ 5
�Y jð Þg1 2 �Y jð Þg2

sp jð Þ , (2)

where �Yð jÞg1 was the sample mean score on the dependent variable for Group 1 and
�Yð jÞg2 was the sample mean score on the dependent variable for Group 2, based on

scores from Measure j. Also, sp( j) was the pooled sample standard deviation based

on scores from Measure j, given by

sp jð Þ 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ng1 2 1ð Þ � s2 jð Þg1

� �
1 ng2 2 1ð Þ � s2 jð Þg2

� �
ng1 1 ng2 2 2

s
, (3)

where ng1 was the sample size of Group 1 and ng2 was the sample size for Group 2;

s2( j)g1 was the sample variance of scores for Group 1 and s2( j)g2 was the sample var-

iance of scores for Group 2, based on the scores from Measure j. These estimated

SMDs were corrected for small-sample bias by multiplying them by

J 5 1 2
3

4 ng1 1 ng2 2 2ð Þ 2 1
: (4)

We estimated the small-sample bias-corrected variances of sample estimates of di( j)—

symbolized as var[di( j)]—by

var di jð Þ½ � 5 J2 � 1
ng1

1
1
ng2

1
d2
i jð Þ

2 � ntotal

� �
, (5)

where ntotal was the total number of people in the study (Gleser & Olkin, 2009).

In studies in which multiple treatments were compared with a common no-

treatment group, the values of di( j) for treatment group versus no-treatment group

comparisons were correlated due to sharing the same no-treatment group (Gleser &

Olkin, 2009; Higgins & Green, 2011). We computed the covariance between esti-

mates of di( j) in these cases—symbolized as cov(di( j)tx1, di( j)tx2)—from

cov di jð Þtx1, di jð Þtx2ð Þ 5 1
nc

1
di jð Þtx1 � di jð Þtx2

2 � ntotal

, (6)

where nc was the number of people in the shared no-treatment group, and di( j)tx1 and

di( j)tx2 were the estimated SMDs based on scores fromMeasure j for comparing Treat-

ment 1 (tx1) with the common no-treatment group and Treatment 2 (tx2) with the

common no-treatment group, respectively (Gleser & Olkin, 2009).

In three of the five measurement scenarios described later, we estimated un-

weighted mean SMDs for studies in which multiple measures were used. We com-

puted the variances of these estimated SMDs using Equation 24.5 from Borenstein

et al. (2009, p. 230). In the interest of clarity, this complex formula is shown here

using the symbolism we defined earlier. For an estimated SMD that was the average



T
ab

le
1

St
ud

ie
s,
Tr
ea
tm

en
t
Co
m
pa
ri
so
ns
,M

ea
su
re
s,
an

d
Sy
m
bo
lic

Re
pr
es
en
ta
ti
on
s
of

Es
ti
m
at
ed

SM
D
s
In
cl
ud

ed
in

th
e
Se
co
nd

ar
y
M
et
a-
A
na

ly
se
s

St
u
dy

an
d
Tr
ea
tm

en
ts

C
om

p
ar
ed

M
ea
su
re
m
en

t
Sc
en

ar
io

1
M
ea
su
re
m
en

t
Sc
en

ar
io

2A
M
ea
su
re
m
en

t
Sc
en

ar
io

2B
M
ea
su
re
m
en

t
Sc
en

ar
io

3A
M
ea
su
re
m
en

t
Sc
en

ar
io

3B

A
re
an

et
al
.
(1
99

3)
—
C
B
T
vs
.
n
tx

H
R
S,

G
D
S,

B
D
I

H
R
S*

B
D
I*

H
R
S*
*

G
D
S
an

d
B
D
I*
*

av
g[
d 1
(H

R
S)
,
d 1
(G
D
S)
,

d 1
(B
D
I)
]

d 1
(H

R
S)

d 1
(B
D
I)

d 1
(H

R
S)

av
g[
d 1
(G
D
S)
,d

1
(B
D
I)
]

A
re
an

et
al
.
(1
99

3)
—
R
T
vs
.
n
tx

H
R
S,

G
D
S,

B
D
I

G
D
S

H
R
S

H
R
S,

G
D
S,

B
D
I

H
R
S,

G
D
S,

B
D
I

av
g[
d 8
(H

R
S)
,
d 8
(G
D
S)
,

d 8
(B
D
I)
]

d 8
(H

R
S)

d 8
(B
D
I)

d 8
(H

R
S)

av
g[
d 8
(G
D
S)
,d

8
(B
D
I)
]

Fl
oy

d,
Sc
og

in
,
M
cK

en
dr
ee
-S
m
it
h
,

Fl
oy

d,
&
R
ok

ke
(2
00

4)
—
C
B
T
vs
.
n
tx

H
R
S,

G
D
S

H
R
S

G
D
S

H
R
S,

G
D
S

H
R
S,

G
D
S

av
g[
d 2
(H

R
S)
,
d 2
(G
D
S)
]

d 2
(H

R
S)

d 2
(G
D
S)

av
g[
d 2
(H

R
S)
,

d 2
(G
D
S)
]

av
g[
d 2
(H

R
S)
,

d 2
(G
D
S)
]

M
as
te
l-
Sm

it
h
,
M
cF
ar
la
n
e,

Si
er
p
in
a,

M
al
ec
h
a,

A
.,
&
H
ai
le

(2
00

7)
—
R
T
vs
.n

tx
B
SI
-D

B
SI
-D

B
SI
-D

B
SI
-D

B
SI
-D

d 9
(B
SI
-D
)

d 9
(B
SI
-D
)

d 9
(B
SI
-D
)

d 9
(B
SI
-D
)

d 9
(B
SI
-D
)

R
ok

ke
,
To

m
h
av
e,

&
Jo
ci
c
(1
99

9)
—

C
B
T
vs
.
n
tx

B
D
I,
G
D
S,

H
R
S

H
R
S*

B
D
I*

G
D
S
an

d
H
R
S*
*

B
D
I*
*

av
g[
d 3
(H

R
S)
,
d 3
(G
D
S)
,

d 3
(B
D
I)
]

d 3
(H

R
S)

d 3
(B
D
I)

av
g[
d 3
(H

R
S)
,

d 3
(G
D
S)
]

d 3
(B
D
I)

R
ok

ke
et

al
.
(1
99

9)
—
C
B
T
vs
.
n
tx

B
D
I,
G
D
S,

H
R
S

H
R
S*

B
D
I*

G
D
S,

H
R
S

B
D
I

av
g[
d 4
(H

R
S)
,
d 4
(G
D
S)
,

d 4
(B
D
I)
]

d 4
(H

R
S)

d 4
(B
D
I)

av
g[
d 4
(H

R
S)
,

d 4
(G
D
S)
]

d 4
(B
D
I)

168



T
ab

le
1
(c
on
ti
nu

ed
)

St
u
dy

an
d
Tr
ea
tm

en
ts

C
om

p
ar
ed

M
ea
su
re
m
en

t
Sc
en

ar
io

1
M
ea
su
re
m
en

t
Sc
en

ar
io

2A
M
ea
su
re
m
en

t
Sc
en

ar
io

2B
M
ea
su
re
m
en

t
Sc
en

ar
io

3A
M
ea
su
re
m
en

t
Sc
en

ar
io

3B

Sc
og

in
,
H
am

bl
in
,
&
B
eu

tl
er

(1
98

7)
—

C
B
T
vs
.
n
tx

H
R
S,

G
D
S,

B
D
I

H
R
S*

B
D
I*

H
R
S*
*

G
D
S
an

d
B
D
I*
*

av
g[
d 7
(H

R
S)
,
d 7
(G
D
S)
,

d 7
(B
D
I)
]

d 7
(H

R
S)

d 7
(B
D
I)

d 7
(H

R
S)

av
g[
d 7
(G
D
S)
,d

7
(B
D
I)
]

Sc
og

in
,
Ja
m
is
on

,
&
G
oc
h
n
ea
u
r
(1
98

9)
—

C
B
T
vs
.
n
tx

H
R
S,

G
D
S

H
R
S*

G
D
S*

H
R
S*
*

G
D
S*
*

av
g[
d 5
(G
D
S)
,
d 5
(H

R
S)
]

d 5
(H

R
S)

d 5
(G
D
S)

d 5
(H

R
S)

d 5
(G
D
S)

Sc
og

in
et

al
.
(1
98

9)
—
C
B
T
vs
.
n
tx

H
R
S,

G
D
S

H
R
S*

G
D
S*

H
R
S*
*

G
D
S*
*

av
g[
d 6
(G
D
S)
,
d 6
(H

R
S)
]

d 6
(H

R
S)

d 6
(G
D
S)

d 6
(H

R
S)

d 6
(G
D
S)

Se
rr
an

o,
La
to
rr
e,

G
at
z,

&
M
on

ta
n
es

(2
00

4)
—
R
T
vs
.
n
tx

C
ES

-D
B
D
I

C
ES

-D
C
ES

-D
,
B
D
I

C
ES

-D
,
B
D
I

d 1
0
(C
E
S-
D
)

d 1
0
(C
E
S-
D
)

d 1
0
(C
E
S-
D
)

d 1
0
(C
E
S-
D
)

d 1
0
(C
E
S-
D
)

W
an

g,
H
su
,
&
C
h
en

g
(2
00

5)
—
R
T
vs
.
n
tx

G
D
S

G
D
S

G
D
S

G
D
S

G
D
S

d 1
1
(G
D
S)

d 1
1
(G
D
S)

d 1
1
(G
D
S)

d 1
1
(G
D
S)

d 1
1
(G
D
S)

N
ot
e.
Sy
m
bo

li
c
re
p
re
se
n
ta
ti
on

s
of

es
ti
m
at
ed

tr
u
e
st
an

da
rd
iz
ed

m
ea
n
di
ff
er
en

ce
s
(S
M
D
s)
ar
e
in
di
ct
ed

in
b
o
ld

ty
p
e.

Fo
r
ex
am

p
le
,
d 1
(B
D
I)
is
th
e
es
ti
m
at
ed

tr
u
e
SM

D
fo
r
St
u
dy

1
(A
re
an

et
al
.,
19

93
)b

as
ed

on
sc
or
es

fr
om

th
e
B
ec
k
D
ep

re
ss
io
n
In
ve
n
to
ry

(B
D
I)
.B

SI
-D

5
B
ri
ef

Sy
m
p
to
m

In
ve
n
to
ry

de
p
re
ss
io
n
su
bs
ca
le
;

C
ES

-D
5

C
en

te
r
fo
r
Ep

id
em

io
lo
gi
c
St
u
di
es

D
ep

re
ss
io
n
sc
al
e;

C
B
T
5

co
gn

it
iv
e–
be

h
av
io
ra
l
th
er
ap

y;
G
D
S
5

G
er
ia
tr
ic

D
ep

re
ss
io
n
Sc
al
e;

H
R
S
5

H
am

il
to
n

R
at
in
g
Sc
al
e;

n
tx

5
n
o
tr
ea
tm

en
t;
R
T
5

re
m
in
is
ce
n
ce

th
er
ap

y.
*E
st
im

at
ed

SM
D
s
ar
e
st
at
is
ti
ca
ll
y
di
ff
er
en

t
be

tw
ee
n
M
ea
su
re
m
en

t
Sc
en

ar
io
s
2A

an
d
2B

**
Es
ti
m
at
ed

SM
D
s
ar
e
st
at
is
ti
ca
ll
y
di
ff
er
en

t
be

tw
ee
n
M
ea
su
re
m
en

t
Sc
en

ar
io
s
3A

an
d
3B

.

169



170 Journal of the Society for Social Work & Research Spring 2019
of three estimated SMDs—say, di(1), di(2), and di(3)—based on scores from Measures

j 5 1, j 5 2, and j 5 3, this formula is

var avg di 1ð Þ, di 2ð Þ, di 3ð Þ½ �f g 5
1
3

� �2

var di 1ð Þ½ � 1 var di 2ð Þ½ � 1 var di 3ð Þ½ �f

1 2rj51, j52

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var di 1ð Þ½ �

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var di 2ð Þ½ �

p
1 2rj51, j53

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var di 1ð Þ½ �

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var di 3ð Þ½ �

p
1 2rj52, j53

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var di 2ð Þ½ �

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var di 3ð Þ½ �

p
g,

(7)

where rj 5 1, j 5 2 is the correlation between the scores on Measures j 5 1 and j 5 2,

and similarly for the correlations rj 5 1, j 5 3 and rj 5 2, j 5 3. If there were only two mea-

sures—for instance, j5 1 and j5 2—the terms involving rj 5 1, j 5 3 and rj 5 2, j 5 3 drop

out of this equation; the multiplicative term at the front of the right-hand side of

this formula would be (1/2)2. Because estimates of these correlations were not re-

ported in any of the studies in the Peng et al. (2009) meta-analysis, per Borenstein

et al. (2009), we conducted analyses for upper and lower ends of a range of plausi-

ble values of the correlations, specifically .90 and .70. In the interest of brevity, we

are reporting only the results assuming the correlations were .90.

Tests of Construct Equivalence and Equal Reliabilities
Hedges and Olkin (1985, pp. 210–212) described a test of the null hypothesis for a

study (i) in which g differentmeasureswere used tomeasure the dependent variable:

H0 : di 1ð Þ 5 di 2ð Þ 5 ::::: 5 di gð Þ 5 di: (8)

Expressed in words, this null hypothesis states: The estimated population of true

SMDs for Study i based on the scores from the g measures of presumably the same

construct used in Study i is an estimate of a mutual (i.e., the same) SMD (di). The al-

ternate hypothesis (H1) is that one or more of the g estimated SMDs for Study i based

on scores from the gmeasures is not an estimate of themutual true SMD (di).We used

this method to test the plausibility that CE and ER held for the scores from the g5 2

or g5 3measures upon which estimated SMDs were based in studies usingmultiple

measures of depression. Statistically nonsignificant results of this test would suggest

it was plausible to assume that CE and ER held for the scores from the g measures

used in the study; statistically significant results would suggest it was plausible to as-

sume CE and ER did not hold.

We computed the chi-square statistic for this test using the matrix equation

(the letters in bold type indicate matrices; see Equation 7 in Hedges & Olkin, 1985,

p. 211),

x2 g 2 1ð Þ 5 dTMd, (9)

where gwas the number of measures (and estimated SMDs) in the study, dwas a col-

umn vector of estimated SMDs for the given study based on the scores from the g dif-
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ferent depression measures, and dT was the transpose of this column vector. In this

equation,

M 5 L – 1=eTLe
� �

LeeTL, (10)

L was the inverse of the variance–covariance matrix for the g estimated SMDs for

Study i based on the scores from the different measures, and e was a column vector

of ones, the number of which was equal to g; eT was the transpose of this vector

(see Equation 8 in Hedges & Olkin, 1985, p. 211).

The variance–covariance matrix of the g estimated SMDs (∑g) was estimated by

Σ̂g 5 DRD, (11)

(Hedges & Olkin, 1985, p. 211), where D was a diagonal matrix (the elements of

which were the estimated standard deviations of the estimates of the true SMDs

given by the square root of Equation 5), and R was the matrix of correlations be-

tween the scores from the g different measures used in Study i. Assuming a range

of plausible correlations from .70–.90, we computed the chi-square statistics at val-

ues of .70 and .90. If the results of the chi-square test produced statistically signif-

icant results at a correlation of either .70 or .90, we inferred that it was plausible

that the SMDs were based on scores from different measures that failed to meet CE

and ER.

Weused a two-step procedure. First, we conducted an omnibus test, which tested

the null hypothesis that at least one of the g estimated SMDs was based on scores

that failed to meet CE and ER. If this test was statistically significant, then we con-

ducted pair-wise tests to determinewhich estimated SMDswere based on scores fail-

ing to meet CE and ER.
Measurement Scenarios
Our general scheme was to create measurement scenarios meeting the conditions

that Nugent (2013) identified as most likely to lead to different meta-analytic out-

comes as a consequence of measurement nonequivalence. Thus, measurement sce-

narios were created such that

• sizable percentages of large, statistically significant differences existed be-

tween the estimated SMDs for given treatment/no-treatment comparisons

between scenarios but based on different measures in the studies included

in Peng et al.’s (2009) meta-analysis; and

• if there were multiple treatment/no-treatment comparisons in a study, the

estimated SMDs for all comparisons were based on scores from the same

measure or average of measures. We considered it unlikely that a researcher

would use one measure, or combination of measures, for a treatment/no-
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treatment comparison, but then use a different measure, or combination of

measures, for a second such comparison within the same study.

Measurement Scenario 1. The estimated SMD for a given treatment/no-treatment

comparison in this scenario was the average across the g estimated SMDs based on

scores from the g measures used in the study. Symbolic representations of the es-

timated SMDs and the measures they were based on in this scenario are shown in

Table 1.

Measurement Scenarios 2A and 2B. These scenarios exemplified circumstances in

which researchers used only a singlemeasure of depression in their study. Themea-

sures that estimated SMDs were based on, and symbolic representations of the esti-

mated SMDs in these scenarios, are shown in Table 1. For comparisons of cognitive–

behavioral therapy with no treatment, we created these scenarios as follows:

• If a study included a single comparison of cognitive–behavioral therapy

with no treatment, we used the largest estimated SMD in Scenario 2A and

the smallest in Scenario 2B.

• If a study compared two forms of cognitive–behavioral therapy with no

treatment, we used the largest SMDs for the two treatments based on the

same measure in Scenario 2A, and we used the smallest based on the same

measure in Scenario 2B.

For comparisons of reminiscence therapy with no treatment:

• For any study in which only reminiscence therapy was compared with no

treatment, if there was a single estimated SMD based on a single measure,

we used that SMD in Scenarios 2A and 2B.

• For the study in which both reminiscence therapy and cognitive–behavioral

therapy were compared with no treatment (Arean et al., 1993), the SMD for

reminiscence therapy used in Scenario 2A was based on the same measure

as that for cognitive–behavioral therapy. The SMD for reminiscence therapy

used in Scenario 2B was based on the same measure as that for cognitive–

behavioral therapy.

Of the seven estimated SMDs for comparing cognitive–behavioral therapy with no

treatment in Scenario 2A, 86% were larger than the corresponding SMDs for the

same comparison in Scenario 2B to statistically significant levels (see Table 2). The

differences between Scenarios 2A and 2B embodied Nugent’s (2012, 2013) measure-

ment condition likely to lead to differing meta-analytic results.

Measurement Scenarios 3A and 3B. The measures that the estimated SMDs were

based on, and symbolic representations of the estimated SMDs in these scenarios,



The Existence of Measurement Dependence 173
are shown in Table 1. These estimates incorporated all measures by using averages

of SMDs based on scores from measures that appeared to meet CE and ER as indi-

cated by results of the Hedges and Olkin (1985) tests. For comparisons of cognitive–

behavioral therapy with no treatment, we created these measurement scenarios as

follows:
• If there were two estimated SMDs for a cognitive–behavioral therapy/no

treatment comparison based on scores from two different measures, and

if these two did not differ to a statistically significant degree, we used the

average of the two in Scenarios 3A and 3B.

• If there were two estimated SMDs for a cognitive–behavioral therapy/no

treatment comparison based on scores from two different measures, and

if these two did differ statistically, we used the larger of the two in Sce-

nario 3A, and we used the smaller in Scenario 3B.

We used a slightly more complicated procedure (illustrated in Figure 2) if there

were three estimated SMDs for a comparison of cognitive–behavioral therapy with

no treatment:

• If one of the SMDs for a cognitive–behavioral therapy/no-treatment compar-

ison differed from the other two to a statistically significant degree and the

other two did not, the other two were averaged. We used whichever was

larger—the single SMD or the average of the two—in Scenario 3A and used

the smaller in Scenario 3B.

• To maintain consistency in the measures used for the cognitive bibliotherapy/

no-treatment comparison in the Rokke, Tomhave, and Jocic (1999) study,

the SMDs in Scenarios 3A and 3B were based on the same measures that

the SMDs for the behavioral bibliotherapy/no-treatment comparison were

based on.

For comparisons of reminiscence therapy with no treatment:

• For any study in which only reminiscence therapy was compared with no

treatment, if there was a single estimated SMD based on a single measure,

we used that SMD in Scenarios 3A and 3B.

• For the study in which both reminiscence therapy and cognitive–behavioral

therapy were compared with no treatment (Arean, et al., 1993),
○ the SMD for reminiscence therapy used in Scenario 3A was based on

the same single measure as the SMD for cognitive–behavioral therapy

in 3A, and



T
ab

le
2

Re
su
lts

of
H
ed
ge
s
an

d
O
lk
in

(1
98

5)
Te
st
s
of

Co
ns
tr
uc
t
Eq
ui
va
le
nc
e
an

d
Eq
ua

lR
el
ia
bi
lit
ie
s

St
u
dy

an
d
Tr
ea
tm

en
t

R
es
u
lt
s
of

Te
st
s
of

H
om

og
en

ei
ty

of
SM

D
s
B
as
ed

on
Sc
or
es

Fr
om

D
if
fe
re
n
t
M
ea
su
re
s

A
re
an

et
al
.
(1
99

3)
—
C
B
T
vs
.
n
tx

O
m
n
ib
u
s
te
st
,
v2
(2
)5

10
7.
6,

p
<
.0
5

SM
D
s
ba

se
d
on

H
R
S
an

d
B
D
I
di
ff
er
,
v
2
(1
)5

87
.5
,
p
<
.0
5;

SM
D
s
ba

se
d
on

H
R
S
an

d
G
D
S
di
ff
er
,
v
2
(1
)5

81
.1
,
p
<
.0
5;

SM
D
s
ba

se
d
on

B
D
I
an

d
G
D
S
do

n
ot

di
ff
er
,
v2
(1
)5

.0
06

,
p
>
.0
5;

SM
D
ba
se
d
on

H
RS

di
ff
er
ed

fr
om

m
ea
n
SM

D
ba
se
d
on

G
D
S
an

d
BD

I,
x
2
(1
)5

85
.8
,p

<
.0
5.

A
re
an

et
al
.
(1
99

3)
—
R
T
vs
.
n
tx

O
m
n
ib
u
s
te
st
,
v2
(2
)5

3.
42

,
p
>
.0
5

Fl
oy

d
et

al
.
(2
00

4)
—
C
B
T
vs
.
n
tx

O
m
n
ib
u
s
te
st
,
v2
(1
)5

2.
99

,
p
>
.0
5

M
as
te
l-
Sm

it
h
et

al
.
(2
00

7)
—
R
T
vs
.
n
tx

O
n
ly

a
si
n
gl
e
es
ti
m
at
ed

SM
D

ba
se
d
on

sc
or
es

fr
om

B
SI
-D
.

R
ok

ke
et

al
.
(1
99

9)
—
C
B
T
vs
.
n
tx

O
m
n
ib
u
s
te
st
,
v2
(2
)5

9.
44

,
p
<
.0
5

SM
D
s
ba

se
d
on

B
D
I
an

d
H
R
S
di
ff
er
,
v
2
(1
)5

6.
69

,
p
<
.0
5;

SM
D
s
ba

se
d
on

G
D
S
an

d
B
D
I
di
ff
er
,
v
2
(1
)5

4.
46

,
p
<
.0
5;

SM
D
s
ba

se
d
on

G
D
S
an

d
H
R
S
do

n
ot

di
ff
er
,
v
2
(1
)5

.0
2,

p
>
.0
5;

SM
D
ba
se
d
on

BD
I
di
ff
er
ed

fr
om

m
ea
n
SM

D
ba
se
d
on

G
D
S
an

d
H
RS
,x

2
(1
)5

41
.4
,p

<
.0
5.

R
ok

ke
et

al
.
(1
99

9)
—
C
B
T
vs
.
n
tx

O
m
n
ib
u
s
te
st
,
v2
(2
)5

9.
86

,
p
<
.0
5

SM
D
s
ba

se
d
on

G
D
S
an

d
H
R
S
di
ff
er
,
v
2
(1
)5

9.
86

,
p
<
.0
5;

SM
D
s
ba

se
d
on

B
D
I
an

d
H
R
S
do

n
ot

di
ff
er
,
v
2
(1
)5

2.
73

,
p
>
.0
5;

SM
D
s
ba

se
d
on

G
D
S
an

d
B
D
I
do

n
ot

di
ff
er
,
v2
(1
)5

2.
24

,
p
>
.0
5;

SM
D
ba
se
d
on

BD
I
di
d
no
t
di
ff
er

fr
om

m
ea
n
SM

D
ba
se
d
on

G
D
S
an

d
H
RS
,x

2
(1
)5

.0
07

,p
>
.0
5.

174



T
ab

le
2
(c
on
ti
nu

ed
)

St
u
dy

an
d
Tr
ea
tm

en
t

R
es
u
lt
s
of

Te
st
s
of

H
om

og
en

ei
ty

of
SM

D
s
B
as
ed

on
Sc
or
es

Fr
om

D
if
fe
re
n
t
M
ea
su
re
s

Sc
og

in
et

al
.
(1
98

7)
—
C
B
T
vs
.
n
tx

O
m
n
ib
u
s
te
st
,
v2
(2
)5

9.
31

,
p
<
.0
5

SM
D
s
ba

se
d
on

H
R
S
an

d
G
D
S
di
ff
er
,
v
2
(1
)5

5.
90

,
p
<
.0
5;

SM
D
s
ba

se
d
on

H
R
S
an

d
B
D
I
di
ff
er
,
v
2
(1
)5

8.
75

,
p
<
.0
5;

SM
D
s
ba

se
d
on

G
D
S
an

d
B
D
I
do

n
ot

di
ff
er
,
v2
(1
)5

0.
24

,
p
>
.0
5;

SM
D
ba
se
d
on

H
RS

di
ff
er
ed

fr
om

m
ea
n
SM

D
ba
se
d
on

G
D
S
an

d
BD

I,
x
2
(1
)5

6.
88

,p
<
.0
5.

Sc
og

in
et

al
.
(1
98

9)
—
C
B
T
vs
.
n
tx

O
m
n
ib
u
s
te
st
,
v2
(1
)5

41
.5
5,

p
<
.0
5

Th
e
tw

o
es
ti
m
at
ed

SM
D
s
ba

se
d
on

di
ff
er
en

t
m
ea
su
re
s
di
ff
er
ed

st
at
is
ti
ca
ll
y.

Sc
og

in
et

al
.
(1
98

9)
—
C
B
T
vs
.
n
tx

O
m
n
ib
u
s
te
st
,
v2
(1
)5

38
.3
2,

p
<
.0
5

Th
e
tw

o
es
ti
m
at
ed

SM
D
s
ba

se
d
on

di
ff
er
en

t
m
ea
su
re
s
di
ff
er
ed

st
at
is
ti
ca
ll
y.

Se
rr
an

o
et

al
.
(2
00

4)
—
R
T
vs
.
n
tx

O
n
ly

a
si
n
gl
e
es
ti
m
at
ed

SM
D

ba
se
d
on

sc
or
es

fr
om

C
ES

-D
.

W
an

g
et

al
.
(2
00

5)
—
R
T
vs
.
n
tx

O
n
ly

a
si
n
gl
e
es
ti
m
at
ed

SM
D

ba
se
d
on

sc
or
es

fr
om

G
D
S.

N
ot
e.
B
D
I5

B
ec
k
D
ep

re
ss
io
n
In
ve
n
to
ry
;B

SI
-D

5
B
ri
ef
Sy
m
p
to
m

In
ve
n
to
ry

de
p
re
ss
io
n
su
bs
ca
le
;C

B
T
5
co
gn

it
iv
e–
be

h
av
io
ra
lt
h
er
ap

y;
C
ES

-D
5

C
en

te
r
fo
r
Ep

id
em

io
lo
gi
c
St
u
di
es

D
ep

re
ss
io
n
sc
al
e;

G
D
S
5

G
er
ia
tr
ic

D
ep

re
ss
io
n
Sc
al
e;

H
R
S
5

H
am

il
to
n
R
at
in
g
Sc
al
e;

n
tx

5
n
o
tr
ea
tm

en
t;

R
T
5

re
m
in
is
ce
n
ce

th
er
ap

y.

175



176 Journal of the Society for Social Work & Research Spring 2019
○ the SMD used in Scenario 3B was the average of two SMDs based

on the same two measures that the averaged SMD for cognitive–

behavioral therapy was based on.
Of the seven estimated SMDs comparing cognitive–behavioral therapy with no treat-

ment in Scenario 3A, 71% were statistically larger than the corresponding SMDs

in Scenario 3B (see Table 2). This condition exemplified Nugent’s (2012, 2013) condi-

tion likely to lead to differing meta-analytic results between scenarios. Scenarios 3A

and 3B were conceived as a generalization of 2A and 2B; the estimated SMDs in 3A

and 3B included SMDs that were averages of SMDs based on scores from different

measures that appeared to meet CE and ER.

Analysis Methods
We used random effects analysis methods (Borenstein et al., 2009) given the differ-

ent forms of cognitive–behavioral therapy and reminiscence therapy involved in

the studies included in Peng et al.’s (2009) meta-analysis. The weighted regression

methods for multiple treatment studies described by Gleser and Olkin (2009) were

used as well. The estimated mean SMDs for cognitive–behavioral therapy as com-
Figure 2. Illustration of the procedure used to create Measurement Scenarios 3A and 3B when there were
three measures used in a study and there were three estimated standardized mean differences (SMDs) for
each comparison of a form of cognitive–behavioral therapy with no treatment.
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pared with no treatment, for reminiscence therapy as compared with no treatment,

and the differences between thesemeans, were estimated using the weighted regres-

sion model,

cdm 5 XTLX
� �21

XTLd, (12)

wherecdm was the column vector of estimated mean SMDs for the treatment effects,

dwas the column vector of sample estimated SMDs for the different treatment com-

parisons, and X was the design matrix composed of dummy variables indicating

treatment. The transpose of the design matrix was

XT 5

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 1 1 1 1 0 0 1

0 0 1 0 1 0 0 0 0 1 1 0

0BBB@
1CCCA, (13)

where the ones in the first row in XT indicated direct comparison of cognitive–

behavioral therapywith reminiscence therapy; the ones in the second row indicated

comparison of cognitive–behavioral therapy with no treatment; and the ones in the

thirdrow indicated comparison of reminiscence therapywithno treatment. As noted

earlier, we included this single direct comparison of cognitive–behavioral therapy

with reminiscence therapy (Arean et al., 1993) in order to infuse into the analyses

the information contained in the covariances between this study’s estimated SMD

and the two other estimated SMDs. (The results for this single direct comparison

are not described here because they were based on a single study.) Finally, we com-

puted the Q-statistics needed for estimating s2 (the variance of true SMDs) and I2 (the

ratio of true heterogeneity to total variance of observed SMDs; Borenstein, 2009) for

these analyses from

Q 5 dTLd 2 cdT
mX

TLXcdm, (14)

where cdT
m was the transpose of the column vector from Equation 12.

Practical Significance
Weassessed thepractical significance of themagnitude of estimatedmeanSMDs—and

the practical significance of the estimated differences between them—by compar-

ing the estimated mean SMDs to the mean (.47) and standard deviation (SD 5 .28)

of Lipsey and Wilson’s (1993) “refined” distribution of mean ESs from 156 meta-

analyses of 9,400 treatment-effectiveness studies (see Lipsey & Wilson, 1993, Fig-

ure 7, p. 1198). Lipsey and Wilson stated that this refined distribution had better

statistical properties than a more inclusive distribution of mean ESs from 302meta-

analyses (1993, Figure 1, p. 1192).
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Meta-Analytic Research Questions and Hypotheses
In the current study, we conducted analyses to address threemeta-analytic questions:

1. What was the efficacy of cognitive–behavioral therapy as compared with

no treatment for decreasing depression in older adults, and what was the

magnitude of this treatment effect?

2. What was the efficacy of reminiscence therapy as compared with no treat-

ment for decreasing depression in older adults, and what was the magni-

tude of this treatment effect?

3. What was the efficacy of cognitive–behavioral therapy as compared with

no treatment—relative to the efficacy of reminiscence therapy as compared

with no treatment—for decreasing depression in older adults, and what

was the difference between the magnitudes of these treatment effects?

The latter research question indirectly addressed comparison of the efficacy of cog-

nitive–behavioral therapy with that of reminiscence therapy; if one treatment was

more efficacious than the other, then the SMDs representing the efficacy of that

treatment relative to no treatment should be larger in magnitude than those rep-

resenting the efficacy of the other treatment relative to no treatment. Measurement

Scenarios 2A and 2B, 3A and 3B, 2A and 3B, and 3A and 2B were not interchange-

able; however, 2A and 3A and 2B and 3B were interchangeable.

Results

Results of Tests of CE and ER
The results of Hedges and Olkin (1985) tests, shown in Table 2, suggested that SMDs

based on scores from different measures failed to meet CE and ER for six of the

seven comparisons of cognitive–behavioral therapy with no treatment. In contrast,

the scores from all the measures that the estimated SMDs for comparisons of rem-

iniscence therapy with no treatment were based on appeared to meet CE and ER.

For example, as shown in Table 2, the results of the omnibus test for differences be-

tween the estimated SMDs in the Arean et al. (1993) study for comparing cognitive–

behavioral therapy with no treatment based on scores from the Hamilton Rating

Scale, Geriatric Depression Scale, and Beck Depression Inventory was v2(2)5 107.6,

p < .05, suggesting that at least one of the estimated SMDs was not an estimate of

a shared true SMD. Results of follow-up pair-wise comparisons indicated that the

estimated SMD based on the Hamilton Rating Scale differed from the estimated

SMD based on the Geriatric Depression Scale—v2(1) 5 81.1, p < .05—and the esti-

mated SMD based on the Beck Depression Inventory—v2(1) 5 87.5, p < .05. The es-

timated SMDs based on the Geriatric Depression Scale and the Beck Depression In-

ventory did not differ beyond what is expected if both were estimates of a mutual
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true SMD, v2(1)5 0.006, p > .05. Finally, the estimated SMD based on the Hamilton

Rating Scale differed statistically from the average of the estimated SMDs based

on the Geriatric Depression Scale and the Beck Depression Inventory, v2(1) 5

85.8, p < .05.

Results for Different Measurement Scenarios
The results for the different measurement scenarios are illustrated in Figure 3.

Results for Measurement Scenario 1. The estimated variance of true SMDs (s2)

was .074, s 5 .272, and the estimated I2 was 38.7%. The mean SMD for cognitive–

behavioral therapy as compared with no treatment was 2.92, with Z 5 24.86, p <

.05, 95% CI [21.29, 20.55]. The mean SMD for reminiscence therapy as compared

with no treatment was 20.55, with Z 5 22.77, p < .05, 95% CI [20.94, 20.16].
Figure 3. Results for estimated mean standardized mean differences (SMDs) for comparing cognitive–
behavioral therapy (CBT) with no treatment (circular points); for comparing reminiscence therapy (RT)
with no treatment (diamond-shaped points); and estimated differences between mean SMDs for compar-
ing CBT with no treatment and mean SMDs for comparing RT with no treatment (X markers). The ver-
tical bars show 95% confidence intervals. Numbers in italicized and bold type in parentheses show the
number of SDs of the refined Lipsey and Wilson (1993) distribution that a difference between estimated
mean SMDs represents. The brackets above each partitioned section of the graph indicate the different
comparisons made. The alphanumeric labels in the figure indicate the measurement scenarios that the results
are based on. A minus sign on an estimated mean SMD, or difference between estimated mean SMDs,
indicates that the treatment reduces depression to a greater degree than no treatment, while a positive sign
indicates the reverse. ES 5 effect size.
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The difference between the mean SMD for comparing cognitive–behavioral therapy

with no treatment and that for comparing reminiscence therapy with no treatment

was2.40, with Z521.50, p > .05, 95% CI [20.92, 0.12]. This statistically nonsignif-

icant difference covered about 1.4 SDs in the Lipsey and Wilson (1993) refined dis-

tribution.

Results for Measurement Scenario 2A. The estimated s2 was .144, s5 .379, and the

estimated I2 was 55.1%. The estimated mean SMD for cognitive–behavioral therapy

as compared with no treatment was21.38, with Z526.43, p < .05, 95% CI [21.80,

20.96]. For reminiscence therapy as compared with no treatment, the estimated

mean SMD was 20.53, with Z 5 22.24, p < .05, 95% CI [21.0, 20.07]. The differ-

ence between the mean SMD for cognitive–behavioral therapy compared with

no treatment and that for reminiscence therapy compared with no treatment was

2.84, with Z 5 22.71, p < .05, 95% CI [21.46, 20.23]. This statistically significant

difference covered about 3.0 SDs in the Lipsey and Wilson (1993) refined distri-

bution.

Results for Measurement Scenario 2B. The estimated s2 was .094, s5 .306, and the

estimated I2 was 46.1%. The estimated mean SMD for cognitive–behavioral therapy

as compared with no treatment was 2.59, with Z 5 23.16, p < .05, 95% CI [20.96,

20.23]. For reminiscence therapy as compared with no treatment, the estimated

mean SMD was 20.55, with Z 5 22.65, p < .05, 95% CI [20.96, 20.14]. The esti-

mated difference between the mean SMD for cognitive–behavioral therapy com-

pared with no treatment and that for reminiscence therapy compared with no

treatment was 2.04, with Z 5 0.15, p > .05, 95% CI [20.57, 0.49]. This statistically

nonsignificant difference covered only about .14 SDs in the Lipsey and Wilson

(1993) refined distribution.

Results for Measurement Scenario 3A. The estimated s2 was .198, s 5 0.445, and

the estimated I2 was 63.0%. The estimated mean SMD for cognitive–behavioral ther-

apy as compared with no treatment was 21.31, with Z 5 25.67, p < .05, 95%

CI [21.76,20.86]. For reminiscence therapy as compared with no treatment, the es-

timated mean SMD was20.57, with Z522.13, p < .05, 90% CI [21.10,20.05]. The

difference between the estimated mean SMD for comparing cognitive–behavioral

therapy with no treatment and that for comparing reminiscence therapy with no

treatment (2.74) was statistically significant, Z 5 22.14, p < .05, 95% CI [21.42,

20.06]. This statistically significant difference covered about 2.6 SDs in the Lipsey

and Wilson (1993) refined distribution.

Results for Measurement Scenario 3B. In this measurement scenario, we esti-

mated s2 to be .103, s 5 .32; I2 was 48.5%. The estimated mean SMD for cognitive–

behavioral therapy as compared with no treatment was 2.63, with Z 5 23.31, p <

.05, 95% CI [21.01,20.26]. For reminiscence therapy compared with no treatment,

the estimated mean SMD was2.53, with Z522.50, p < .05, 95% CI [20.95,20.11].

The difference between the estimatedmean SMD for comparing cognitive–behavioral
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therapy with no treatment and that for comparing reminiscence therapy with no

treatment (2.10) was statistically nonsignificant, Z 5 2.36, p > .05, 95% CI [20.64,

0.44]. This statistically nonsignificant difference covered .36 SDs in the Lipsey and

Wilson (1993) refined distribution.

Comparison of Results Between Measurement Scenarios
First, in allfivemeasurement scenarios themeta-analytic results suggested cognitive–

behavioral therapy as superior to no treatment for decreasing depression in

older adults. In terms of magnitude, for the exact same group of comparisons of

cognitive–behavioral therapy with no treatment, the magnitude of the estimated

mean SMDs ranged from 2.59 to 21.38. In terms of the Lipsey and Wilson (1993)

refined distribution of mean SMDs, this range covered about 2.8 SDs. Referenced

to the mean of the Lipsey and Wilson (1993) refined distribution, these mean SMDs

ranged from 1.43 SDs to 13.25 SDs above the mean ES.

The smallest differences between estimatedmean SMDs for comparing cognitive–

behavioral therapy with no treatment were between the interchangeable Scenarios 2A

and 3A (2.07; 0.25 SD in the Lipsey & Wilson refined distribution), and between 2B

and 3B (0.04; 0.14 SD in the Lipsey &Wilson distribution). In contrast, the largest dif-

ferences were between the noninterchangeable scenarios 2A and 2B (2.79; 2.8 SD in

the Lipsey & Wilson distribution); 2A and 3B (2.75; 2.7 SD in the Lipsey & Wilson

distribution); 3A and 2B (2.72; 2.6 SD in the Lipsey & Wilson distribution); and 3A

and 3B (2.68; 2.4 SD in the Lipsey&Wilson distribution). The small degree of overlap

of the 95% CIs for the estimated mean SMDs for scenarios 2A and 2B, 3A and 2B, 2A

and 3B, and 3A and 3B suggested that these differences might be statistically signif-

icant (Cumming, 2012), though we could not test this. These findings are consistent

with our hypothesis and with Nugent’s (2012, 2013) speculation that mean SMDs—

for the same group of studies when based on scores from different measures violat-

ing CE and ER—could vary substantially.

Second, in all five measurement scenarios, the meta-analytic results suggested

that reminiscence therapy was better than no treatment for reducing depression

in older adults. For this exact same group of comparisons, the estimatedmean SMDs

ranged from2.53 to2.57. In terms of the Lipsey andWilson (1993) refined distribu-

tion of mean SMDs, this range covered only about 0.14 SDs. Referenced to the mean

of the Lipsey and Wilson refined distribution, these mean SMDs ranged from .21 to

.36 SDs above the mean ES. The 95% CIs for these estimated mean SMDs all over-

lapped substantially (see Figure 1), suggesting that none differed to a statistically sig-

nificant degree. These estimated mean SMDs were far less variable across the differ-

ent measurement scenarios than those for the comparisons of cognitive–behavioral

therapy with no treatment. This lower variability is consistent with Nugent’s (2012,

2013) conjecture that SMDs based on scores from measures meeting CE and ER will

not vary to a significant degree.
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Two of the five comparisons of the estimatedmean SMDs for comparing cognitive–

behavioral therapy and no treatment with the estimated mean SMDs for compar-

ing reminiscence therapy and no treatment—those for measurement scenarios 2A

and 3A—suggested that cognitive–behavioral therapy may have statistically signifi-

cant larger magnitude reductions in depression for older adults than reminiscence

therapy. The differences between these mean SMDs covered 3.0 and 2.6 SDs, respec-

tively, in the Lipsey and Wilson (1993) refined distribution. These differences were

of statistical and practical significance.

Sensitivity Analyses
Asmentioned earlier, we conducted secondary analyses using correlations between

measures of .70 when estimating variances of estimated SMDs that were averages.

We conducted analyses a second time to assess the sensitivity of the previous re-

sults, based on these correlations set at .90, towhat these correlationswere assumed

to be. The results of these sensitivity analyses did not differ significantly from the

previous results and are not reported here.

Discussion
In a real-data situation for a given set of studies, the results demonstrated the exis-

tence of plausible alternate measurement scenarios in which scores from different

measures appeared to violate CE and ER; as a consequence, meta-analyses based on

the different measurement scenarios produced results that differed to statistically

and practically significant degrees. The results shown in Figure 1 reveal significant

variability in estimated mean true SMDs for cognitive–behavioral therapy com-

pared with no treatment; results also show significant variability in estimated dif-

ferences between mean SMDs for comparing cognitive–behavioral therapy with

no treatment and mean SMDs for comparing reminiscence therapy with no treat-

ment between different measurement scenarios. The estimated mean true SMDs

for comparing reminiscence therapy with no treatment were quite consistent and

showed relatively low variability acrossmeasurement scenarios. The set of seven es-

timated SMDs for comparisons of cognitive–behavioral therapy with no treatment

were not interchangeable between measurement scenarios, but all four estimated

SMDs for the comparisons of reminiscence therapy with no treatment were inter-

changeable. Thus, the differences in variability of results appears to be associated

with whether the scores from the different measures the estimated SMDs were

based on met CE and ER and were interchangeable.

As noted earlier, Nugent (2012, 2013) had speculated that meta-analytic results

were most likely to differ between measurement scenarios when large differences

existed between the estimated SMDs for any study (i) based on scores from different

measures as a consequence of violations of CE and ER, and when a substantial per-
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centage of the studies in a meta-analysis exhibited these large differences. These

circumstances held for the measurement scenarios in this study. Eighty-six percent

of the estimated SMDs for comparisons of cognitive–behavioral therapy with no

treatment exhibited such large differences between measurement scenarios, and

these differences appeared to be associated with violations of CE and ER. Thus, the

measurement dependence of the foregoing meta-analytic results appears to have

been associated with the conditions Nugent (2012, 2013) hypothesized.

The measurement scenarios were eminently plausible. All the measures used in

the studies from the Peng et al. (2009) meta-analysis were well established and com-

monly used measures of depression. The use of estimated SMDs based on single

measures in Scenarios 2A and 2B, and in some cases in 3A and 3B, assumed that

researchers chose to use only a single measure of depression. This would be a plau-

sible methodological choice. For example, such a choice might be made whenmul-

tiple measures of other constructs are going to be used in a planned study and use

of a single measure of depression will reduce the likelihood of measurement fa-

tigue. Similarly, the use of averages of estimated SMDs based onmultiple measures

used in Scenarios 3A and 3B presumed that researchers chose to use multiple mea-

sures of depression. Such a choice would also be reasonable. For example, the use

of the Hamilton Rating Scale, a clinician rating scale, and concomitant use of either

the Geriatric Depression Scale or the Beck Depression Inventory, both self-report

scales, could readily be conceptualized as a multimethod measurement strategy.

These findings confirm Nugent’s (2013, 2017) model-based simulation results.

The results of the current study, as well as the prior research by Nugent (2012, 2013,

2017), extend the literature on the importance of measurement equivalence (e.g.,

Chen, 2008; Vandenberg & Lance, 2000). The results of the current study suggest that

measurement equivalence not only concerns the integrity of results from individual

studies in which, for example, themeans of different groups are compared, but also

the validity of meta-analytic results.

The foregoing considerations concern the existence of counterfactual measure-

ment scenarios involving plausible measures not used by researchers in their stud-

ies and the possibility thatmeta-analyses of the same studies, but based on alternate

measurement scenarios, might produce different results. The concern is that the re-

sults ofmeta-analysesmay bemeasurement dependent unless the scores from all of

the measures in a set that researchers might justifiably use meet the form of mea-

surement equivalence defined by CE and ER. It should also be noted the results of

the current study, as well as Nugent’s (2013, 2017) previous research, are relevant

for situations in which researchers use multiple measures of a construct—so there

aremultiple estimated ESs for a given treatment comparison—yet meta-analysts se-

lect only one, or a subset of the estimated ESs to include in a meta-analysis. Such

practices may also lead to measurement-dependent results of meta-analyses.
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The findings of the current study pertain to circumstances in which the mea-

sures used in studies in a meta-analysis have arbitrary metrics and fail to meet CE

and ER. These problems are most likely to be a concern for social work, psychiatric,

psychological, and behavioral meta-analyses of studies of treatments for mental

health, substance abuse, and behavioral problems because measures with arbi-

trary metrics are frequently used in such studies (Blanton & Jaccard, 2006; Kazdin,

2006).

Along with Nugent’s (2013, 2017) prior work, the results of the current study

suggest that the we must use caution in interpreting the results of meta-analyses

in which the ESs are based on scores from measures with arbitrary metrics that

fail to meet the measurement equivalence defined by CE and ER. The meta-analyst

or social work practitioner who is a consumer of meta-analytic results will need

to carefully investigate the nature of the measures on which the ESs in the meta-

analysis are based. When at least some of the measures that the ESs are based on

have arbitrarymetrics, and when they do notmeet the form ofmeasurement equiv-

alence defined by CE and ER, the results of the meta-analysis may be valid only for

the particularmeasurement scenario uponwhich themeta-analysis was based. Had

the ESs in the included studies been based on scores from different but defensible

measures, the results could have been quite different—perhaps with contradictory

findings and implications.

The methodology of the current study might be considered as a form of sensitiv-

ity analysis of the results of a meta-analysis. As was done in this study, the ESs in a

meta-analysis in which at least some of the studies used multiple measures of the

same construct can be subjected to secondary analyses based on different measure-

ment scenarios. The results may offer insight into the degree of measurement de-

pendence for meta-analysis results.

Finally, this study is a single empirical demonstration of the measurement de-

pendence of meta-analytic results. These findings do not address the frequency

with which measurement-dependent meta-analytic results actually occur. Further

research on this topic is needed.
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