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Key Points: 

 The new mathematical solution introduced in this paper, gives the acoustic-gravity wave 

equation without the need to Boussinesq approximation which has recognized limitations. 

 The resultant wave equation is a significant improvement to the well-known Taylor-

Goldstein equation, the starting point for most recent analyses of the effects of wind shear 

on gravity waves. 

 The new term in the amplitude of the vertical velocity of acoustic-gravity waves is 

introduced which may play a significant role in directional filtering of atmospheric waves 

in a realistic atmosphere with strong and highly variable winds. 
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Abstract 

Atmospheric gravity waves play fundamental roles in a broad-range of dynamical processes 

extending throughout the Earth’s neutral atmosphere and ionosphere. In this paper, we present a 

modified form for the acoustic-gravity wave equation and its dispersion relationships for a 

compressible and non-stationary atmosphere in hydrostatic balance. Importantly, the solutions 

have been achieved without the use of the well-known Boussinesq approximation which have 

been used extensively in previous studies. 

We utilize the complete set of governing equations for a compressible atmosphere with non-

uniform airflows to determine an equation for vertical velocity of possible atmospheric waves. 

This intricate wave equation is simplified by a proper substitution producing a useful new wave-

like equation for acoustic-gravity waves. The substitution introduces a term Ω (intrinsic 

frequency) in the amplitude of the wave solution for the vertical velocity of acoustic-gravity 

waves. This term may play a significant role in directional filtering of atmospheric waves in 

realistic atmospheres exhibiting strong and highly variable winds. It is also proven that the only 

difference in the wave equation of compressible fluid when non-uniform wind is added to the 

equations of motion is the term with second derivative of 𝑙𝑛Ω with respect to height. These new 

solutions may be particularly important for improved gravity wave propagation studies in the 

upper mesosphere and thermosphere/ionosphere regions. 

1 Introduction 

Since the seminal work of Hines [Hines, 1960] and colleagues paving the way forward 

for studying the propagation and impact of gravity waves on the upper atmosphere, there have 

been many improvements to the basic theory to account wave propagation in a realistic, highly 

variable ‘windy’ atmosphere [e.g. Bretherton, 1966; Booker and Bretherton, 1967; Jones, 1968; 

Hazel, 1972; Turner, 1973; Chimonas, 1974; Gossard and Hooke, 1975; Fua et al., 1976; Lalas 

and Einaudi, 1976; Fua and Einaudi, 1984; Garratt, 1992; Sutherland et al., 1994; Chimonas, 

2002; Drazin, 2002; Teixeira et al., 2004; and Nappo, 2008]. Atmospheric gravity waves (GWs) 

are now known to play key roles in a broad-range of dynamical processes extending from Earth’s 

surface well into the thermosphere and ionosphere. Due to their observed growth with altitude, 

and the onset of wave instability and dissipation effects, gravity wave influences are largest in 

the upper mesosphere [see review by Fritts and Alexander, 2003] and thermosphere/ionosphere 

regions [see e.g., Vadas and Fritts, 2005; Vadas, 2007; Hocke and Schlegel, 1996]. These waves 

are excited primarily in the lower atmosphere by strong convection, topography, and wind 

shears. Indeed, gravity waves are now known to play a global role with the deposition of wave 

momentum flux forcing closure of the mesospheric jets in the summer and winter hemispheres, 

and driving a residual meridional inter-hemispheric circulation that results in the remarkably cold 

summer mesopause at polar latitudes, due to strong adiabatic cooling [e.g., Lindzen, 1973, 1981; 

Holton, 1982; Garcia and Solomon, 1985]. Improving our knowledge of the basic properties, 

propagation and dissipation effects of gravity waves within the atmosphere is therefore of high 

importance. This study returns to the basic gravity wave equation sets and presents a new 

solution without the need for prior simplifying approximations. 

In general, there are two ways to introduce the wave-like equation for gravity waves. The 

first method uses the equations of motion in an approximation form, termed the “Boussinesq 

approximation”. This approximation assumes that the equation of continuity can be simplified by 

ignoring compressibility effects. This method with added non-uniform background winds to the 



 

equations of motion in hydrostatic balance, gives rise to the well-known Taylor-Goldstein (TG) 

equation [e.g. Taylor, 1931; Goldstein, 1931; Gossard and Hooke, 1975; and Nappo, 2008]. 

The second way is to use the full equation set for a compressible atmosphere which 

includes both sound waves and gravity waves. When non-uniform background winds are added 

to the equations of motion in hydrostatic balance, this method produces a complex differential 

equation (see Eq. (14)). That to date has deterred the determination of a wave-like solution 

analytically. In this paper, a proper substitution is presented that reduces the intricate terms of the 

differential equation and then introduces a useful new wave-like equation for acoustic-gravity 

waves in the presence of non-uniform wind. 

The resultant wave equation for compressible atmosphere differs from the TG relation 

not only because it includes the acoustic term but also because our solution for the wave equation 

involves the term Ω in the amplitude of the wave solution (where Ω is the intrinsic frequency 

which is the wave frequency noted by an observer drifting with the background flow). This term 

may play a significant role in the gravity wave amplitude growth in a highly variable 

atmosphere, when they propagate opposite to the wind direction. 

In section 2, the complete set of governing equations for compressible atmosphere is 

introduced and then the new wave equation for acoustic-gravity waves is extracted. It is shown 

that the only difference in the wave equation, with and without the background wind, is a term 

with a second derivative of 𝑙𝑛Ω with respect to height. This term involves the first and second 

derivatives of the wind velocity. The limits of the Boussinesq approximation used in the TG 

equation are discussed in details then. 

In section 3, we have compared the vertical wavenumber square 𝑚2 obtained by TG 

relation with the one obtained in this paper. We have simulated three different distributions to the 

background wind in isothermal conditions. First, we considered a background wind with a 

Gaussian distribution moving in the same wave direction. Then, we simulated the background 

wind profile with the first derivative of a Gaussian function moving in the same wave 

propagation direction. And finally, we considered a gravity wave propagating in opposite wind 

direction with a simulated first derivative of a Gaussian distribution for the background wind. It 

is shown that our equation presents a ducting region where the wind speed is approaching a 

maximum, and in the either side this region where the wind speed is decreasing in value, it 

predicts evanescent gravity waves. Indeed, our equation predicts that the peak in the background 

wind serves the wave energy and allows to carry wave system over great horizontal distance 

without significant leakage. The conditions for ducting is found to be quite different from the TG 

relation. 

In section 4, the dispersion relationships for acoustic-gravity waves in a moving 

atmosphere with constant vertical wavenumber is extracted. 

2 Governing equations 

Following in the footsteps of many prior gravity waves studies we assume that the 

Earth’s atmosphere behaves as an ideal gas and, in the absence of perturbation, is stratified under 

the influence of gravity. We then consider the wave motion in this stratified and compressible 

atmosphere with a non-uniform background wind field. We also do not consider the effects of 

friction, viscosity, rotation and sphericity. It is well explained in the literature that how wave 



 

motion is created in such an atmosphere by a small vertical perturbation of an air parcel. The 

momentum and mass conservation equations are then: 

𝜌
𝐷�⃗�

𝐷𝑡
= −∇⃗⃗⃗𝑝 + 𝜌�⃗� 

(1) 

𝐷𝜌

𝐷𝑡
+ 𝜌∇⃗⃗⃗ ∙ �⃗� = 0 

(2) 

Where 𝜌 is density, �⃗� the velocity vector of the air parcel, 𝑝 the pressure, 𝑔 the 

acceleration due to gravity and 
𝐷

𝐷𝑡
=

𝜕

𝜕𝑡
+ �⃗� ∙ ∇⃗⃗⃗ a material derivative which represents the wave 

intrinsic frequency. For a dry ideal gas, the internal energy is a function of temperature 𝑑𝑈 =
𝑐𝑣𝑑𝑇. Then, the first law of thermodynamics in the material derivative form becomes: 

𝑐𝑣

𝐷𝑇

𝐷𝑡
+ 𝑝

𝐷𝑉

𝐷𝑡
= �̇� 

(3) 

Where 𝑐𝑝 is the specific heat capacity at constant pressure, 𝑉 the specific volume (inverse 

density) and �̇� the rate of energy input per unit mass (in general with possible contributions from 

thermal diffusion, conductivity, viscous heating, radiative heating etc.). Eq. (3) is indeed a 

differential form of the first law of thermodynamics. Now, using the mass continuity equation, 

Eq. (3) takes the form: 

𝑐𝑣

𝐷𝑇

𝐷𝑡
+

𝑝

𝜌
∇⃗⃗⃗ ∙ �⃗� = �̇� 

(4) 

Alternatively, using the ideal gas equation 𝑝 = 𝜌𝑅𝑇, one may eliminate 𝑇 in favor of 𝑝 

as: 

𝐷𝑝

𝐷𝑡
+ 𝛾𝑝∇⃗⃗⃗ ∙ �⃗� = �̇�

𝜌𝑅

𝑐𝑣
 

(5) 

Where 𝑅 is the mean molecular weight of the gas and 𝛾 =
𝑐𝑝

𝑐𝑣
 is the heat capacity ratio. The later 

thermodynamic equation (Eq. 5) in combination with mass conservation equation (Eq. (2)) for an 

adiabatic process gives 
𝐷𝑝

𝐷𝑡
= 𝑐2 𝐷𝜌

𝐷𝑡
 where 𝑐 is the local speed of sound. This is a well-known 

equation that states that in a reversible process the rate of change of pressure of an air parcel is 

equal to the square of sound speed times the corresponding rate of change of density. This 

thermodynamic equation represents the principle of conservation of energy, and in fluids in 

which the equation of state involves temperature the thermodynamic equation is necessary to 

obtain a closed system of equations. 

In order to distinguish between background fluid properties and wave induced properties 

we use the subscript 0 to designate the background fluid properties and subscript 1 to perturbed 

fluid properties associated with the wave. All of the local fluid variables are linearized with 

background states and perturbation variable as: 

𝑢(𝑥, 𝑧, 𝑡) = 𝑢0(𝑧) + 𝑢1(𝑥, 𝑧, 𝑡) 

w(𝑥, 𝑧, 𝑡) = 𝑤1(𝑥, 𝑧, 𝑡) 

𝜌(𝑥, 𝑧, 𝑡) = 𝜌0(𝑧) + 𝜌1(𝑥, 𝑧, 𝑡) 

𝑝(𝑥, 𝑧, 𝑡) = 𝑝0(𝑧) + 𝑝1(𝑥, 𝑧, 𝑡) 

 

(6) 



 

We have used a two-dimensional (𝑥, 𝑧) reference plane where 𝑥 lies in horizontal 

direction and 𝑧 represents altitude. The velocities in the 𝑥 and 𝑧 directions are 𝑢 and 𝑤. To 

simplify the analysis we exclude dependence on the 𝑦 direction but note that waves with any 

direction of horizontal propagation could be written in the 𝑥 direction by suitable choice of the 𝑥 

axis. It is assumed that the background states are known and only a function of height, namely an 

atmosphere whose properties vary only in the 𝑧 direction. This is one of the basic assumptions 

which is frequently used for studying the Earth’s atmosphere but it has consequences e.g. it 

ignores horizontal wind shear effects. The vertical component of the background wind 𝑤0(𝑧) is 

considered to be zero because in the vertical direction, they are almost negligible compared to 

their horizontal components. We also assume that the perturbations are much smaller than 

background components so they do not affect the background state. Therefore, the products of 

the perturbations can be neglected with respect to background-perturbation products. Moreover, 

we assume that the background state is in hydrostatic balance. This is one of the most 

fundamental balances in geophysical fluid dynamics and for large scale flows (wavelength >1 

km) in the atmosphere, the conceptual simplifications afforded by this approximation can hardly 

be overemphasized [e.g. Vallis, 2006]. It is, indeed, a consequence of our initial assumption that 

the background fluid is static vertically (𝑤0(𝑧) = 0). Therefore, the momentum in 𝑧 direction 

leads to: 

𝑑𝑝0

𝑑𝑧
≈ −𝜌0𝑔 

(7) 

This shows that the pressure term is the only one which can balance the gravitational 

term. 𝑝0 is only a function of variable 𝑧 so its derivative with respect to 𝑧 is denoted by 
𝑑

𝑑𝑧
. Now, 

the momentum equation in the 𝑥 direction, the momentum equation in the 𝑧 direction, the 

equation of continuity and the thermodynamic equation for no heat conduction (�̇� = 0) together 

with linearized variables and background flow under hydrostatic balance take the following 

forms, respectively: 

 

𝜕𝑢1

𝜕𝑡
+ 𝑢0

𝜕𝑢1

𝜕𝑥
+ 𝑤1

𝑑𝑢0

𝑑𝑧
= −

1

𝜌0

𝜕𝑝1

𝜕𝑥
 

(8) 

𝜕𝑤1

𝜕𝑡
+ 𝑢0

𝜕𝑤1

𝜕𝑥
+

𝜌1

𝜌0
𝑔 = −

1

𝜌0

𝜕𝑝1

𝜕𝑧
 

(9) 

𝜕𝜌1

𝜕𝑡
+ 𝑢0

𝜕𝜌1

𝜕𝑥
+ 𝑤1

𝑑𝜌0

𝑑𝑧
= −𝜌0 (

𝜕𝑢1

𝜕𝑥
+

𝜕𝑤1

𝜕𝑧
) 

(10) 

𝜕𝑝1

𝜕𝑡
+ 𝑢0

𝜕𝑝1

𝜕𝑥
+ 𝑤1

𝑑𝑝0

𝑑𝑧
= −𝛾𝑝0 (

𝜕𝑢1

𝜕𝑥
+

𝜕𝑤1

𝜕𝑧
) 

(11) 

 

These are the governing equations used for analyzing the gravity waves in a compressible 

atmosphere with non-uniform background wind. Now, differentiating the momentum equation in 

the 𝑥 direction with respect to time, and using the thermodynamic equation under hydrostatic 

balance leads to (see Appendix A): 



 

𝜕2𝑢1

𝜕𝑡2
+ (𝑢0

2 −
𝛾𝑝0

𝜌0
)
𝜕2𝑢1

𝜕𝑥2
+ 2𝑢0

𝜕2𝑢1

𝜕𝑡𝜕𝑥

= [(−𝑢0

𝑑𝑢0

𝑑𝑧
− 𝑔 +

𝛾𝑝0

𝜌0

𝜕

𝜕𝑧
)

𝜕

𝜕𝑥
−

𝑑𝑢0

𝑑𝑧

𝜕

𝜕𝑡
]𝑤1 

(12) 

Similarly, differentiating the momentum equation in the 𝑧 direction with respect to time, 

and using the thermodynamic equation, the momentum equations in the 𝑥 direction and the 

equation of continuity again under hydrostatic balance leads to (see appendix A): 

𝜕2𝑤1

𝜕𝑡2
+ 𝑢0

2
𝜕2𝑤1

𝜕𝑥2
−

𝛾𝑝0

𝜌0

𝜕2𝑤1

𝜕𝑧2
+ 2𝑢0

𝜕2𝑤1

𝜕𝑡𝜕𝑥
+ 𝛾𝑔

𝜕𝑤1

𝜕𝑧
+ 𝑤1 (

𝑑𝑢0

𝑑𝑧
)
2

= [(−𝑢0

𝑑𝑢0

𝑑𝑧
− (𝛾 − 1)𝑔 +

𝛾𝑝0

𝜌0

𝜕

𝜕𝑧
)

𝜕

𝜕𝑥
−

𝑑𝑢0

𝑑𝑧

𝜕

𝜕𝑡
] 𝑢1 

 

(13) 

We may use 𝑐𝑠
2(𝑧) = 𝛾𝑅𝑇 =

𝛾𝑝0

𝜌0
 as the square of the speed of sound which is a function 

of temperature and the temperature itself is a function of height. We now, multiply 

(
𝜕2

𝜕𝑡2 + (𝑢0
2 − 𝑐𝑠

2)
𝜕2

𝜕𝑥2 + 2𝑢0
𝜕2

𝜕𝑡𝜕𝑥
) to Eq.  

(13) and then use Eq. (12) to cancel 𝑢1 in favor of 𝑤1 knowing that the variables inside 

the brackets in the right hand side of Eqs. (12) and  

(13) are not functions of 𝑥 and 𝑡. Then after some cancelation, Eq.  

(13) becomes only a function of 𝑤1 as (see appendix A): 

 

𝜕2

𝜕𝑡2
[
1

𝑐𝑠
2

𝜕2𝑤1

𝜕𝑡2
+ (

6𝑢0
2

𝑐𝑠
2

− 1)
𝜕2𝑤1

𝜕𝑥2
−

𝜕2𝑤1

𝜕𝑧2
+

𝛾𝑔

𝑐𝑠
2

𝜕𝑤1

𝜕𝑧
] + 

2𝑢0

𝜕2

𝜕𝑡𝜕𝑥
[
2

𝑐𝑠
2

𝜕2𝑤1

𝜕𝑡2
+ (

2𝑢0
2

𝑐𝑠
2

− 1)
𝜕2𝑤1

𝜕𝑥2
−

𝜕2𝑤1

𝜕𝑧2
+ (

𝛾𝑔

𝑐𝑠
2

+
1

𝑢0

𝑑𝑢0

𝑑𝑧
)
𝜕𝑤1

𝜕𝑧

−
𝛾𝑔

2𝑐𝑠
2
(

1

𝑢0

𝑑𝑢0

𝑑𝑧
)𝑤1] + 

𝑢0
2

𝜕2

𝜕𝑥2
[(

𝑢0
2

𝑐𝑠
2

− 1)
𝜕2𝑤1

𝜕𝑥2
−

𝜕2𝑤1

𝜕𝑧2
+ (

𝛾𝑔

𝑐𝑠
2

+
2

𝑢0

𝑑𝑢0

𝑑𝑧
)
𝜕𝑤1

𝜕𝑧

− (
𝛾𝑔

𝑐𝑠
2

(
1

𝑢0

𝑑𝑢0

𝑑𝑧
) + (

1

𝑢0

𝑑𝑢0

𝑑𝑧
)
2

+
(𝛾 − 1)𝑔2

𝑢0
2𝑐𝑠

2
)𝑤1] = 0 

(14) 

 

Although this forth-order partial differential equation with three variables seems 

superficially complicated, all the terms with single 𝑧 derivative are eliminated if we seek a plane-

wave like solution of the form 𝑤1 = �̃�1(𝑧) ∙ (𝜔 − 𝑢0(𝑧)𝑘) ∙ 𝑒
𝑖(𝑘𝑥−𝜔𝑡)+(

𝛾𝑔

2𝑐𝑠
2)𝑧

 with constant speed 

of sound. Indeed, we look for a solution that assumes the vertical perturbation velocity behaves 

as a plane-wave moving in the 𝑥 direction with a constant frequency 𝜔 and a constant horizontal 

wavenumber  𝑘. However, its amplitude is a function of 𝑧 and possesses an exponential increase 



 

with height. The perturbation velocity could behave as a plane-wave moving in 𝑧 direction, as 

well, if �̃�1(𝑧) consists of 𝑒𝑖𝑚𝑧 with constant vertical wavenumber of 𝑚. Note that the units of 

�̃�1(𝑧) are meters. 

The term (𝜔 − 𝑢0𝑘) ∙ 𝑒
(

𝛾𝑔

2𝑐𝑠
2)𝑧

 in the substitution comes from the exponential of the 

integral of 
𝛾𝑔

2𝑐𝑠
2 −

𝑘

Ω

𝑑𝑢0

𝑑𝑧
 along the wave’s propagation trajectory through the structured atmosphere 

namely the accumulation effects of the terms multiplied to 
𝜕𝑤1

𝜕𝑧
 in Eq. (14). After some 

mathematical developments, Eq. (14) with the given wave like solution results in the following 

simplified form for �̃�1(𝑧): 

𝑑2�̃�1

𝑑𝑧2
+

[
 
 
 (𝛾 − 1)𝑔2

(
𝜔
𝑘

− 𝑢0)
2
𝑐𝑠

2
+

(𝜔 − 𝑢0𝑘)2

𝑐𝑠
2 −

(
𝑑𝑢0
𝑑𝑧

)
2

(
𝜔
𝑘

− 𝑢0)
2 −

𝑑2𝑢0

𝑑𝑧2

(
𝜔
𝑘

− 𝑢0)
− (

𝛾𝑔

2𝑐𝑠
2)

2

− 𝑘2

]
 
 
 

�̃�1 = 0 (15) 

 

All the terms inside the bracket can be replaced by 𝑚2(𝑧). With no background wind 

(stationary atmosphere), Eq. (15) reduces to the same equation presented in the literature by 

initially considering the compressibility [e.g., Hines, 1960; and Vallis, 2006]. The first term 

inside the bracket 
(𝛾−1)𝑔2

𝑐𝑠
2  in Eq. (15) is the buoyancy term. It can be replaced by 

𝑔𝜅

𝐻𝑠
 where the 

scale height is defined as 𝐻𝑠 =
𝑅𝑇

𝑔
=

𝑐𝑠
2

𝛾𝑔
 and 𝜅 =

𝑅

𝑐𝑝
=

𝛾−1

𝛾
. For an isothermal atmosphere, this 

term becomes the Brunt-Väisälä frequency 𝑁2 (the general form of Brunt-Väisälä frequency 

comes from 𝑁2 =
(𝛾−1)𝑔2

𝑐𝑠
2 +

𝑔

𝑇0

𝑑𝑇0

𝑑𝑧
 where the positive 

𝑑𝑇0

𝑑𝑧
 increases the buoyancy in the 

atmosphere, e.g. in stratosphere and negative decreases the buoyancy, e.g. in the troposphere and 

mesosphere). The second term is related to sound waves and is a function of 𝑧. It is because of 

this term that Eq. (15) gives the wave equation for acoustic waves, as well. For gravity waves 

with the horizontal phase speed of (𝑐𝑝 − 𝑢0)
2

≪ 𝑐𝑠
2, this term can be ignored in order to study 

pure gravity waves. The third and fourth terms are due to the non-uniform wind field and both 

can be replaced by 
𝑑2

𝑑𝑧2 𝑙𝑛Ω. The fifth term inside the bracket can be replaced by the term 
1

4𝐻𝑠
2 

where the scale height is a function of temperature and becomes constant in isothermal 

atmosphere. Eq. (15) is called acoustic-gravity wave equation and gives the exact solution for 

�̃�1(𝑧). The solution for the vertical wave velocity then comes from 𝑤1(𝑥, 𝑧, 𝑡) = �̃�1(𝑧) ∙

Ω ∙ 𝑒
𝑖(𝑘𝑥−𝜔𝑡)+

𝑧

2𝐻𝑠. Once we have the solution for 𝑤1(𝑥, 𝑧, 𝑡), we can find all the other variables 

𝑢1, 𝜌1 and 𝑝1 from Eqs. (12), (9) and (8), respectively. 

The resultant wave equation for compressible atmosphere differs from the TG equation, 

the wave equation extracted using the Boussinesq approximation, not only because it includes 

the acoustic term but also because our solution for the wave equation involves the term Ω in the 

amplitude of the wave solution. 

The Boussinesq approximation exploits a set of governing equations using only small 

density variations in a fluid. This significantly simplifies math involved with the set of motion 

equations. However, this approximation which assumes no change in fluid density (except when 



 

multiplied to gravity acceleration in momentum equation) is not valid for Earth atmosphere in 

large scale. In atmosphere, the density varies significantly in the vertical direction as it reduces 

by large factors without limit. Therefore, the Boussinesq approximation limits to gravity waves 

with a wavelength much less than the fluid scale height (e.g. for an isothermal atmosphere it 

requires 𝑘𝐻𝑠 𝑜𝑟 𝑚𝐻𝑠 ≫ 1) [see e.g., Lighthill, 1978; Vallis, 2006; and Nappo, 2008]. 

If we consider the fluid incompressible (𝛿𝜌/𝜌 ≪ 1) with a basic calculation for an ideal 

fluid (no viscosity effect) in a steady state, one can show that this incompressibility is satisfied 

only when fluid velocity is low in comparison with the speed of sound in the fluid 𝛿𝜌/𝜌 ≈
𝑣2/𝑐𝑠

2 [see e.g. Levich, 1962]. In the other words, the Boussinesq approximation should be used 

for the fluids with velocities much less than the speed of the sound waves. Therefore, the 

conditions under which incompressibility is a good approximation to the equation of continuity 

depends not only on the physical nature of the fluid but also on the flow itself. 

The upper atmosphere is very irregular as it contains non-uniform horizontal winds with 

velocities that vary in magnitude and direction continuously [see e.g., Liller and Whipple, 1954]. 

The typical values of atmosphere wind velocity 𝑢0 and horizontal phase speed of gravity waves 

𝑐𝑝 below 100 km altitude are usually less than 100 m/s still much less than the speed of sound. 

The typical interested range of gravity wavelengths are 5-200 km and the typical scale height in 

mesosphere is around 5-6 km. Now, the typical range of data proves that the condition 

𝑘𝐻𝑠 𝑜𝑟 𝑚𝐻𝑠 ≫ 1 is satisfied only for shorter wavelength gravity waves with nearly 𝜆𝑥 or  𝜆𝑧 <
20 km and the Boussinesq approximation (i.e. incompressibility) is not valid in scales larger than 

that. 

Eq. (15) is extracted for a compressible fluid so it includes the possible presence of sound 

waves as well as gravity waves. Like the TG relation, it is limited to an isothermal atmosphere, 

due to the constant speed of sound assumption. However, in its wave solution, the amplitude of 

the wave vertical velocity includes an additional term Ω, that is not present in the TG equation 

solution. 

3 Vertical wavenumber comparison 

In this section, we have compared the vertical wavenumber squared, given by Taylor-

Goldstein relation (e.g. Eq. 2.42, Nappo, 2014) with the one given herein by Eq. (15). To do this, 

we have considered three different distributions to the background wind in an isothermal 

atmosphere. For the first simulated case, we considered a background wind with a Gaussian 

distribution moving in the same direction as the wave. We then simulated the background wind 

given by the first derivative of a Gaussian function and again moving in the same wave 

propagation direction. Finally, we considered a gravity wave propagating in opposite wind 

directions with a background wind distribution simulated by first derivative of the Gaussian 

function. For these comparisons, we have considered an isothermal atmosphere from 80 to 

100 𝑘𝑚 altitude and assumed 𝑁2 = 5.5 ∙ 10−4 𝑠−2, the speed of sound 𝑐𝑠 = 270 𝑚/𝑠 and scale 

height 𝐻𝑠 = 5.5 𝑘𝑚, all appropriate to this region of the atmosphere. The range of horizontal 

wavelengths was varied from 10 to 100 𝑘𝑚. The selected gravity wave observed periods were 5, 

10, 20 and 30 𝑚𝑖𝑛. The waves of interest here are such that 𝑐𝑝 > 𝑢0 so no critical levels in the 

Doppler-shifted intrinsic frequency are involved. 

3.1 Background wind with Gaussian profile 



 

The first simulated case is a Gaussian distribution for the background wind moving in the 

direction of wave propagation. Consider the Gaussian distribution in the form of: 

𝑢0(𝑧) = 𝑈0 ∙ 𝑒
−

(𝑧−𝑧0)2

2∙𝜎2  
(16) 

It is assumed that this wind duct is distributed from 80 to 100 𝑘𝑚 height. The values of 

𝑈0 = 30, 𝑧0 = 90 𝑘𝑚 and 𝜎 = 2 𝑘𝑚 gives a peak of wind velocity of 30 𝑚/𝑠 centered at 

90 𝑘𝑚 and the tails with approximately zero velocity. 

 

 

   

 

Figure 1. Gaussian background wind profile from 80 to100 km altitude with its first and second derivative profiles. 

Figure 2Figure 3 display the contour plots for 𝑚2 for a gravity wave with a 5 min period. 

The magnitude of 𝑚2 is presented by the coloring contour from Blue to VioletRed. We have 

considered the following seven different values for 𝑚2as −1 ∙ 10−8, −1 ∙ 10−9, 0, 1 ∙ 10−9, 1 ∙
10−8, 1 ∙ 10−7 and 1 ∙ 10−6 spanning the vertical wavelength range from about 6 to 200 𝑘𝑚. The 

Blue color represents the smallest (−1 ∙ 10−8) while VioletRed denotes the largest vertical 

wavenumber square (1 ∙ 10−6). The solid lines in each plot represent 𝑚2 = 0 where the 

transition from positive 𝑚2 to negative occurs. The contour plots in Figure 2 are obtained from 

Eq. (15) while Figure 3 results from the TG relation. Both plots use the same axes scales for 

direct comparison. 

As is evident, for shorter horizontal wavelengths (𝜆 ≤ 15 𝑘𝑚), both the TG relation and 

our new Eq. (15) predict positive 𝑚2 with almost identical vertical wavelengths. However, for 

horizontal wavelengths longer than 15 𝑘𝑚  the discrepancies between two figures becomes 

increasingly evident where the Boussinesq approximation is no longer valid. 

For gravity waves with horizontal wavelengths from 15 to 65 𝑘𝑚, Eq. (15) gives positive 

𝑚2 (real vertical wavenumber) within about 2 𝑘𝑚 of the location of the maximum of the wind 

peak, negative 𝑚2 (complex vertical wavenumber) above and below the wind peak (i.e. 𝑧 <
87 𝑘𝑚 and 𝑧 > 93 𝑘𝑚) and positive 𝑚2 again in the tails of the wind profile. In comparison, for 

waves with horizontal wavelengths from 25 to 45 𝑘𝑚, the TG relation predicts a negative 𝑚2 

within about 2 𝑘𝑚 of the location of the maximum of the wind peak and positive 𝑚2 above and 

below. 

Second derivative 

First derivative 



 

 

 

Figure 2. Vertical wavenumber square obtained for a gravity 

wave with 5 min period and the horizontal wavelength range 

from 10 to 100 km propagating in an isothermal atmosphere 

from 80 to 100 km altitude. The 𝑚2 values must be multiplied 

by 10−7. 

 

Figure 3. Vertical wavenumber square obtained by TG 

relation for a gravity wave with 5 min period and horizontal 

wavelength range from 10 to 100 km propagating in an 

isothermal atmosphere from 80 to 100 km altitude. The 𝑚2 

values must be multiplied by 10−7. 

It is well documented in the literature that Doppler ducting can occur whenever the mean 

profile of wind has a local maximum [see e.g., Chimonas, 1986; Lindzen, 1976; Isler, 1997; and 

Nappo, 2014]. Indeed, a strong localized peak in the background wind is able to trap the wave 

energy and allow the wave to propagate over large horizontal distance without significant 

dissipation [see e.g., Pautet, 2005]. 

Eq. (15) predicts that longer wavelength gravity waves in the vicinity of the wind 

maximum remain ducted while the TG relation predicts that such waves would be evanescent. 

This is because of the dominance of the term with the second derivative of wind velocity in Eq. 

(15). Indeed, the second derivative of background wind plays a main role in both the TG relation 

and in Eq. (15). However, in TG relation this term appears with a positive sign and therefore 𝑚2 

closely follows the second derivative of wind profile. In Eq. (15), this term is subtractive and so 

𝑚2 follows the opposite to the second derivative of wind profiles. 

Eq. (15) also predicts that the waves above and below the wind peak become evanescent 

(i.e. no longer ducted) while the TG relation still indicates propagating conditions for the gravity 

waves. For gravity waves with longer horizontal wavelengths both figures give negative 𝑚2 in 

the altitude of tails of the wind profile. 

 



 

 
Figure 4. Vertical wavenumber square obtained for a gravity wave with 5 min period without the second term in Eq. 15. The 𝑚2 

values must be multiplied by 10−7. 

As mentioned before, the second term in Eq. (15) is related to acoustic waves and does 

not appear in the TG relation. For gravity waves with the horizontal phase speed limit of 

(𝑐𝑝 − 𝑢0)
2

≪ 𝑐𝑠
2, one can neglect this term as compared with the sixth term, 𝑘2. Ignoring this 

term gives a wave equation and a solution for a pure gravity waves. This approximation, 

however, is not equivalent to the Boussinesq approximation as it does not deal with the 

compressibility of the fluid. Hines called this the ‘asymptotic limit’ and showed that it is 

sufficiently accurate for the most pertinent calculations [Hines, 1960]. Keeping the second term 

and omitting the first one inside the bracket in Eq. (15) provides the wave equation and 

dispersion relationship for a pure sound wave i.e. waves unaffected by buoyancy. This 

approximation completely decouples the two types of sound and gravity waves, and assumes that 

neither is influenced by the presence of the other. 

The Figure 4 displays 𝑚2 for the case where the term 
Ω2

𝑐𝑠
2  is ignored in Eq. (15). 

Comparing this plot with Figure 2, you can see only where the horizontal wavelength becomes 

longer there are changes in the 𝑚2 profiles. This term only plays a role when the wave period is 

small and the horizontal wavelength is large which means the wave phase speed increases and 

the asymptotic limit (𝑐𝑝 − 𝑢0)
2

≪ 𝑐𝑠
2 is not valid any more. For higher wave periods the results 

with and without this term are almost identical and this term does not play a central role as 

compared with the term 𝑘2. 

The following figures represent the contour plots for 𝑚2 in the same conditions but for a 

gravity waves with  observed periods of 10, 20 and 30 min. For comparison the contour plots for 

𝑚2 are the same as the ones in Figures 2 and 3. The primary difference between these longer 

period results is that the distance between the individual contours has increased significantly and 

this tends to support waves with larger horizontal scales. This in turn changes the threshold 

values for horizontal wavelengths where the discrepancy becomes apparent. 

  



 

 
Figure 5. Vertical wavenumber square obtained for a gravity 

wave with 10 min period. 

 
Figure 6. Vertical wavenumber square obtained by TG 

relation for a gravity wave with 10 min period. 

 
Figure 7. Vertical wavenumber square obtained for a gravity 

wave with 20 min period. 

 
Figure 8. Vertical wavenumber square obtained by TG 

relation for a gravity wave with 20 min period. 

 
Figure 9. Vertical wavenumber square obtained for a gravity 

wave with 30 min period. 

 
Figure 10. Vertical wavenumber square obtained by TG 

relation for a gravity wave with 30 min period. 



 

3.2 Background wind with derivative of Gaussian profile 

The background wind in upper atmosphere may also have a profile similar to the first 

derivative of Gaussian distribution and representing a strong shear. Consider a gravity wave 

propagating in the same direction as the wind with the following distribution: 

𝑢0(𝑧) = 𝑈0 +
𝑑

𝑑𝑧
(𝛼 ∙ 𝑒

−
(𝑧−𝑧0)2

2∙𝜎2 ) 
(17) 

With the values of 𝑈0 = 15, 𝛼 = 4.95×104, 𝑧0 = 90 𝑘𝑚 and 𝜎 = 2 𝑘𝑚, this function 

gives a maximum of wind velocity of 30 𝑚/𝑠 at 88 𝑘𝑚 and a minimum with the zero velocity at 

92 𝑘𝑚. As before, it is  assumed this wind shear is distributed from 80 to 100 𝑘𝑚 height. 

 

 

   

 

Figure 11. The background wind profile from 80 to100 km altitude with its first and second derivative profiles. 

Figure 12Figure 13 plot the square of vertical wavenumber for a gravity wave with 5 min 

period propagating in the same direction as the wind represented by Eq. (17) . For shorter gravity 

waves with 𝜆 ≤ 25 𝑘𝑚 and except over altitudes ranging from 91 to 93 𝑘𝑚, both the TG relation 

and Eq. (15) predict positive 𝑚2 with almost identical vertical wavelengths. However, for longer 

horizontal waves the discrepancy between two figures becomes evident as the Boussinesq 

approximation is no longer valid. 

The main reason that our equation does not yield ducting region in heights between 91 

and 93 km is because the second derivative of the background wind profile has an extremum in 

this region. This term in combination with the extremum in the first derivative of the background 

wind creates evanescent conditions for gravity waves with all horizontal wavelength. Again, 

because of the dominance of the second derivative term of the background wind in Eq. (15), to a 

good approximation one can neglect the acoustic waves term and the term with first derivative of 

wind velocity. 

 

Second derivative 

First derivative 



 

 
Figure 12. Vertical wavenumber square obtained for a 

gravity wave with 5 min period and horizontal wavelength 

range from 10 to 100 km propagating in an isothermal 

atmosphere from 80 to 100 km altitude. The 𝑚2 values must 

be multiplied by 10−7. 

 
Figure 13. Vertical wavenumber square obtained by TG 

relation for a gravity wave with 5 min period and horizontal 

wavelength range from 10 to 100 km propagating in an 

isothermal atmosphere from 80 to 100 km altitude. The 𝑚2 

values must be multiplied by 10−7. 

For gravity waves with horizontal wavelength between 35 and 75 km, Eq. (15) predicts 

ducting conditions in the region where a maximum wind exists (from about 86 to 90 km) and 

evanescent conditions above and below this region. Eq. (15) predicts positive m2 with a value 

from 10 ×10−7 to 0.1 ×10−7 in altitudes within about 2 km of the location of the maximum of 

the wind peak, complex m in the height above and below the wind peak (namely z < 86 km and 

z > 90 km) and real m the tails if the wind profile. The wind peak interacts with the acoustic-

gravity waves to cause total reflection and horizontal ducting of the waves. Like before, the peak 

in the background wind serves the wave energy in this region and allows to carry wave system 

over great horizontal distance without significant leakage. In comparison, for waves with 

horizontal wavelengths from 25 to 55 𝑘𝑚, the TG relation predicts that the these waves are 

evanescent. 

In the following figures, the contours of 𝑚2 for gravity waves with periods of 10, 20 and 

30 min are plotted. Again, on the same scale as before, the main differences are he distances 

between the contours which increases significantly to support waves with larger horizontal 

scales. 

  



 

 
Figure 14. Vertical wavenumber square obtained for a 

gravity wave with 10 min period. 

 
Figure 15. Vertical wavenumber square obtained by TG 

relation for a gravity wave with 10 min period. 

 
Figure 16. Vertical wavenumber square obtained for a 

gravity wave with 20 min period. 

 
Figure 17. Vertical wavenumber square obtained by TG 

relation for a gravity wave with 20 min period. 

 
Figure 18. Vertical wavenumber square obtained for a 

gravity wave with 30 min period. 

 
Figure 19. Vertical wavenumber square obtained by TG 

relation for a gravity wave with 30 min period. 



 

3.3 Background wind with reversal derivative of Gaussian profile 

Finally, we consider a gravity wave propagating in both same and opposite direction to 

the wind for the same distribution expressed by Eq. (17) but with the values of 𝑈0 = 0, 𝛼 = 105, 

𝑧0 = 90 𝑘𝑚 and 𝜎 = 2 𝑘𝑚. This function with the given values provides a maximum in the 

wind velocity of 30 𝑚/𝑠 at 88 𝑘𝑚 and a minimum velocity of −30 𝑚/𝑠 at 92 𝑘𝑚. The negative 

values in the velocity profile indicate that the background wind is moving opposite to the wave 

propagation direction. It is again assumed this wind duct is distributed from 80 to 100 𝑘𝑚 

altitude. 

 

 

   

 

Figure 20. The background wind profile from 80 to100 km altitude with its first and second derivative profiles. 

Figure 21Figure 22 represent the contour plots for 𝑚2 for a gravity wave with 10 min 

period with a background wind profile as shown in Figure 20. Again, for shorter gravity waves 

and except in altitudes between 90 to 94 𝑘𝑚, both the TG relation and Eq. (15) predict real 𝑚 

with almost identical vertical wavelengths. This is as expected as the Boussinesq approximation 

is valid. 

For larger horizontal wavelength gravity waves, 𝑚2 obtained by the TG relation follows 

well the second derivative of wind profiles. However, 𝑚2 from Eq. (15) follows closely the 

opposite to the second derivative of wind profiles. This term in combination with an extremum in 

the first derivative of the background wind at 90 𝑘𝑚 indicates evanescent conditions for any 

gravity waves for all horizontal wavelength at altitudes above the critical altitude of the wind 

distribution (90 𝑘𝑚) to about 94 𝑘𝑚. Our solution shows a ducting region where the wind speed 

is approaching a maximum, and on either side of this region where the wind speed decreases in 

value, it predicts evanescent gravity waves. The smallest value of 𝑚2 occurs at the altitudes 

where the wind speed has its minimum value. 

 

Second derivative 

First derivative 



 

 
Figure 21. Vertical wavenumber square obtained for a 

gravity wave with 10 min period and horizontal wavelength 

range from 10 to 100 km propagating in an isothermal 

atmosphere from 80 to 100 km altitude. The 𝑚2 values must 

be multiplied by 10−7. 

 
Figure 22. Vertical wavenumber square obtained by TG 

relation for a gravity wave with 10 min period and horizontal 

wavelength range from 10 to 100 km propagating in an 

isothermal atmosphere from 80 to 100 km altitude. The 𝑚2 

values must be multiplied by 10−7. 

Except for altitudes of the tails of the wind profile, the vertical wavenumber squared 

attained by the TG relation and by Eq. (15) are opposite in sign. One gives real 𝑚 while the other 

one gives complex 𝑚 for the same wave at  the same altitude. Our equation predicts that the peak 

in the background wind serves the wave energy. These are all in contrast with the solution for 

𝑚2 predicted by TG relation. The conditions for ducting is found to be quite different from the 

TG relation. 

One interesting experimental example is the gravity waves captured by Advanced 

Mesospheric Temperature Mapper (AMTM) from Bear Lake Observatory, UT on July 28 of 

2015. The AMTM is a ground-based infrared imaging system that measures selected emission 

lines in the mesospheric Hydroxyl (OH) airglow emission in order to create intensity and 

temperature maps around 88 ± 5 𝑘𝑚 altitude. It provides high spectral sensitivity over a large 

120° field of view and covers about 150×120 km2 area of the mesosphere/mesopause. The 

atmospheric wind is recorded by Lidar at Utah State University, UT. The Lidar provides the 

continuous atmospheric wind and it’s propagation direction from 82 to 98 𝑘𝑚 altitude with 

±5 𝑚/𝑠 uncertainty. Both the AMTM and the Lidar are looking in the same volume of sky and 

thus provide realistic atmospheric properties for the wave propagation through the 

mesosphere/mesopause. 

The AMTM data on July 29 of 2015 shows a ducted gravity wave with a nearly constant 

horizontal wavelength of 18 ± 2 𝑘𝑚. The wave phase speed is gradually increasing as it 

propagates initially with the period is 12 ± 2 𝑚𝑖𝑛 and later with the period of 7 ± 2 𝑚𝑖𝑛. The 

wave is propagating horizontally in the direction of 150° from North (i.e. Southeastward) 

continuously from 4:00 to 9:00 UT (see Figure 23). Then, the waves suddenly disappear. The 

hourly averaged wind recorded by Lidar shows the change of the wind profile in the wave 

propagation direction. The background wind gets a new profile like a negative Gaussian 



 

distribution with a minimum wind peak of −45 ± 5 𝑚/𝑠 at 87 ± 3 𝑘𝑚 altitude. As explained 

before, the new equation predicts that the minimum of the wind speed creates the evanescent 

conditions for the gravity waves however, the TG relation predicts the propagation conditions in 

these regions. 

 

 
Figure 23. The AMTM data on July 28 of 2015 over Bear Lake Observatory, UT. The Figure presents a ducted gravity wave 

propagating horizontally in altitude of 87 ± 5 𝑘𝑚 with a nearly constant horizontal wavelength of 20 ± 5 𝑘𝑚 and period of 
12 ± 2 𝑚𝑖𝑛. The wave is propagating in the direction of 150° from North (namely toward Southeast) continuously from 4:00 to 

8:00 UT and then suddenly disappears. 

4 Acoustic-gravity waves dispersion relation 

Observational studies of gravity waves in the upper atmosphere often report that their 

horizontal propagation is opposite, or perpendicular to the background wind direction. The wave 

solution with the form of 𝑤1(𝑥, 𝑧, 𝑡) = �̃�1(𝑧) ∙ Ω ∙ 𝑒
𝑖(𝑘𝑥−𝜔𝑡)+

𝑧

2𝐻𝑠 indicates that the wave 

amplitude is proportional to the intrinsic frequency Ω, or the term 𝑘(𝑐𝑝 − 𝑢0). This means the 

amplitude of waves moving opposite to the wind direction should increase. Indeed, high intrinsic 

frequency waves exhibit larger amplitude to the vertical motions. Therefore, these waves are free 

from severe reflection and continue to grow and propagate vertically as long as they progress in a 

different direction with respect to prevailing winds. The waves propagating in the same wind 

direction are more likely to decrease in amplitudes and finally become evanescent or be reflected 

by the winds. This could be an alternative explanation to the directional filtering of atmospheric 

waves as initially discussed by Hines and Reddy [Hines and Reddy, 1967] that, if the waves that 

reach the ionosphere are detected there as drifts, they would then exhibit preferred directions of 

motion that could be interpreted erroneously as preferred direction of the local ionospheric 

winds. Therefore, the waves moving opposite to the wind gain momentum from background 

flow while moving in the same wind direction deliver momentum to the background flow. 

Clearly, the waves moving perpendicular to the wind are unaffected by the background flow. 

Using Eq. (15), the well-set form of the acoustic-gravity wave equation for a 

compressible atmosphere with non-uniform wind velocity can be rewritten as: 

𝑑2�̃�1

𝑑𝑧2
+ [

𝑘2𝑁2

Ω2
+

Ω2

𝑐𝑠
2

+
𝑑2

𝑑𝑧2
𝑙𝑛Ω −

1

4𝐻𝑠
2
− 𝑘2] �̃�1 = 0 

(18) 



 

Where the intrinsic frequency Ω = 𝜔 − 𝑢0(𝑧)𝑘 is a function of 𝑧 therefore, 
𝑑Ω

𝑑𝑧
= −𝑘

𝑑u0

𝑑𝑧
, 

𝑑2Ω

𝑑𝑧2
= −𝑘

𝑑2u0

𝑑𝑧2
 and 

𝑑2

𝑑𝑧2
𝑙𝑛Ω =

𝑑2Ω

𝑑𝑧2

𝑑

𝑑Ω
𝑙𝑛Ω + (

𝑑Ω

𝑑𝑧
)
2 𝑑2

𝑑Ω2
𝑙𝑛Ω. The only difference in the wave 

equation when background wind in added to the governing equations is the term with the second 

derivative of 𝑙𝑛Ω. Indeed, this term contains the first and second derivatives of wind velocity and 

is only a function of height. 

In a stratified atmosphere where the undisturbed density 𝜌0 and other properties vary 

with the vertical coordinate 𝑧, it is only the 𝑧-component of wavenumber 𝑚 that can vary with 

altitude. The horizontal wavenumber 𝑘 and frequency 𝜔 remain constant. Therefore, it is not 

possible to obtain an exact solution to Eq. (18)(18) unless all the atmospheric terms inside the 

bracket take a general form of 𝑧. Much, however, can be found out about wave-like solutions to 

the equation from the local dispersion relationship where 𝑚 becomes locally constant. 

Accordingly, the dispersion relationship for acoustic-gravity waves with a plane-wave form 

solution in the 𝑧 direction, e.g. �̃�1(𝑧) = �̅�𝑒𝑖𝑚𝑧, becomes: 

𝑐𝑠
−2Ω4 − (𝑚2 + 𝑘2 +

1

4𝐻𝑠
2
−

𝑑2

𝑑𝑧2
𝑙𝑛Ω)Ω2 + 𝑘2𝑁2 = 0 

(19) 

Where the vertical wavenumber 𝑚 is purely real for propagating waves and imaginary for 

evanescent waves. Therefore, the dispersion relation for pure gravity waves, under asymptotic 

limit, reduces to: 

Ω(𝑧) ≈ −
𝑘

2K2

𝑑2𝑢0

𝑑𝑧2

[
 
 
 
 

1 ±

(

 1 +

𝑔𝜅
𝐻𝑠

−(
𝑑𝑢0

𝑑𝑧
)
2

(
1
2K

𝑑2𝑢0

𝑑𝑧2 )
2

)

 

1/2

]
 
 
 
 

 

 

(20) 

Where K2 = 𝑚2 + 𝑘2 +
1

4𝐻𝑠
2. This equation in a stationary atmosphere gives the known 

dispersion relation of 𝜔2 ≈
𝑘2𝑁2

K2 . 

5 Conclusion 

A modified form for the acoustic-gravity wave equation and its dispersion relationships 

for a compressible and non-stationary atmosphere in hydrostatic balance are presented. These 

solutions are achieved without the use of standard approximations, as has been the practice in 

past studies. It is shown that the only difference in the wave equation with and without a non-

uniform wind field is a term with a second derivative of 𝑙𝑛Ω. It is also presented that the wave 

solution introduces the intrinsic frequency in the amplitude of the vertical velocity which may 

play a significant role in directional filtering of atmospheric waves in a realistic atmosphere with 

strong and highly variable winds. These new solutions may be particularly important for 

improved gravity wave propagation studies in the upper mesosphere and 

thermosphere/ionosphere regions. 

The analyses based on conservation of wave action and impedance have identified the 

importance of intrinsic frequency in determining the transport of energy by gravity waves. The 

role of intrinsic frequency in changing the relative amplitudes of vertical and horizontal fluid 

motions and thus controlling the wave momentum and energy flux indeed, appears in a wide 



 

range of literature in different contexts. The analysis presented here derives a new solution and 

further identifies potentially important role of Ω in supporting the amplitude growth for the 

waves propagate opposite to the wind direction. 

The new wave equation introduced here is an important improvement to the well-known 

Taylor-Goldstein equation, the starting point for most recent analyses of the effects of wind shear 

on gravity waves. Three different background wind profiles are simulated. It is shown that our 

equation presents a ducting region where the wind speed is approaching a maximum, and in the 

either side this region where the wind speed is decreasing in value, it predicts evanescent gravity 

waves. Indeed, our equation predicts that the peak in the background wind serves the wave 

energy and allows to carry wave system over great horizontal distance without significant 

leakage. It also predicts the evanescent region where the wind speed is approaching a minimum. 

The conditions for ducting is found to be quite different from the TG relation. 
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