Exploring Relationships between Students’ Discussion Patterns, Emotions, and Learning Outcomes in an Online Mathematics Course

Ji-Eun Lee & Mimi Recker

Utah State University
Instructional Technology and Learning Sciences Department
2018 American Educational Research Association Annual Meeting
Introduction
Background of the study

Online Discussions
- Widely used in higher education settings
- Promote individual and group knowledge construction
- Do not always lead to productive interactions and knowledge construction
- Prior studies have focused on students’ posting behaviors, rather than online speaking & listening behaviors

Students’ Emotions
- Directly or indirectly influence their learning outcomes
- Especially in developmental mathematics courses, students’ negative emotions and anxiety play a significant and negative role in performance
Introduction
Research Purpose and Research Questions

RQ1
What online **discussion behaviors** and **emotions** characterize different groups of students? How do these relate to student learning outcomes?

RQ2
How does the **content of online discussions** vary within different groups of students? How do these relate to student learning outcomes?

Canvas LMS

Clickstream data

Online discussion behaviors

Textual data (Content of online discussions)

Students’ emotions

Identifying subgroups of students

Learning outcomes

Data Pre-processing

Text mining

Classification and Regression Tree (CART)

Co-occurrence network analysis

Clickstream data

Online discussion behaviors

Textual data (Content of online discussions)

Students’ emotions

Identifying subgroups of students

Learning outcomes

Canvas LMS

Data Pre-processing

Text mining

Classification and Regression Tree (CART)

Co-occurrence network analysis
Theoretical Framework
Online Discussion Behaviors

- A framework for examining engagement in online discussions (Wise et al., 2013; 2014)

Online Speaking

- Externalizing one’s ideas by posting

Online Listening

- Taking in the externalizations of others (i.e., students’ attend to others’ posts)

Quantity

- Volume of discussion

Breadth

- Distribution throughout the discussion

Intensity

- Multiple contributions to a specific thread
Methods

Research context and participants

- **Canvas LMS** used at a university located in the western U.S.
- **Online developmental math (statistics)** course offered during Summer 2015
- 77 undergraduate students

- **Online Discussions**
 - 11 discussion board threads
 - Participation points were awarded for posting messages (3% of final grades)
 - No required minimum # of postings
 - **387 new messages & 430 replies**
 (a total of 15,176 words)

- Example of the discussion prompt:
 - **Module 6 Discussion**

 Ask and answer questions about Module 6 here. Here’s a great article about probability.....
Methods

Measure 1: Discussion behaviors

Discussion behaviors

Online Speaking

- quantity
 - Total # of new messages made
 - Average message length (in words)

- breadth
 - Percent of threads with a minimum of one message

Online Listening

- quantity
 - Total # of replies made
 - Total # of views of (any) discussion threads

- breadth
 - Percent of threads read at least once
Methods
Measure 2: Students’ emotions

<table>
<thead>
<tr>
<th>Positive emotions</th>
<th>Negative emotions</th>
<th>Anxiety</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of positive emotion words within a message</td>
<td>% of negative emotion words within a message</td>
<td>% of words related to anxiety within a message</td>
</tr>
<tr>
<td>e.g.) love, nice, thank</td>
<td>e.g.) hurt, ugly, nervous</td>
<td>e.g.) worried, fearful</td>
</tr>
</tbody>
</table>

Example
Thanks for your help!
- LIWC analysis results for positive emotions = 25.00 \(\frac{1}{4 \text{ words}} \times \frac{\text{positive word ("thanks")}}{\times 100} \),
 for negative emotions = 0.00.
Methods

Data analysis

<table>
<thead>
<tr>
<th>Research questions</th>
<th>Data mining techniques</th>
<th>Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>RQ1. What online discussion behaviors and emotions characterize different groups of students? How do these relate to student</td>
<td>Text mining</td>
<td>LIWC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>http://liwc.wpengine.com</td>
</tr>
<tr>
<td></td>
<td>Classification and Regression Tree (CART)</td>
<td>R studio</td>
</tr>
<tr>
<td></td>
<td>• non-parametric decision tree method</td>
<td></td>
</tr>
<tr>
<td>RQ2. How does the content of online discussions vary within different groups of students? How do these relate to student learning outcomes?</td>
<td>Co-occurrence network analysis</td>
<td>KH Coder</td>
</tr>
<tr>
<td></td>
<td></td>
<td>http://khc.sourceforge.net</td>
</tr>
</tbody>
</table>
Results

RQ 1. Online discussion behaviors, emotions and learning outcomes

- Results of the CART analysis predicting student final scores
Results

RQ 2. The content of online discussions and learning outcomes

- Co-occurrence diagram for group 1

Group 1: Low participators

- The **lowest average final scores** ($M = 55$, $SD = 28.87$)
- Sparse content network
- **Content not relate to course topics**

- Size of the nodes: Frequency of the words
- Color: Centrality in terms of social network analysis (light blue to white to pink in ascending order of centrality value)
Results

RQ 2. The content of online discussions and learning outcomes

- Co-occurrence diagram for group 3

Group 3: Negative Viewers (n = 14)

- Average final scores ($M = 76.64, SD = 14.68$)
- The highest average level of negative emotions, anxiety, and the # of views
- Used the discussion boards to express concerns or to ask questions
Results

RQ 2. The content of online discussions and learning outcomes

- Co-occurrence diagram for group 6

Group 6: Consistent Participators (n = 26)

- The highest average final scores
 ($M = 92.45$, $SD = 4.55$)
- Showed a higher level of online listening behaviors
- Talked about specific course content
Conclusion

Discussion Behaviors
- The most important variable in terms of predicting students’ learning outcomes were related to students’ online listening behaviors

Students’ Emotions
- Results showed that negative emotions (but not positive or anxious) also played an important role.

Discussion Content
- The lower performing subgroups did not appear to talk about course content.
- The highest performing subgroup, however, discussed specific course topics.
Key Citations

Thank you
Questions / Comments?

Ji-Eun Lee | jieun.lee@aggiemail.usu.edu
Instructional Technology and Learning Sciences Department
Utah State University

Dr. Mimi Recker | mimi.recker@usu.edu
Instructional Technology and Learning Sciences Department
Utah State University