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ABSTRACT 

 

Dynamics of Equatorial Spread F Using Ground-Based Optical and  

Radar Measurements 

 

by 

 

Narayan P. Chapagain, Doctor of Philosophy 

Utah State University, 2011 

 

Major Professor:  Dr. Michael J. Taylor 

Department:  Physics 

 

The Earth‟s equatorial ionosphere most often shows the occurrence of large 

plasma density and velocity fluctuations with a broad range of scale sizes and 

amplitudes. These night time ionospheric irregularities in the F-region are commonly 

referred to as equatorial spread F (ESF) or plasma bubbles (EPBs). This dissertation 

focuses on analysis of ground-based optical and radar measurements to investigate the 

development and dynamics of ESF, which can significantly disrupt radio 

communication and GPS navigation systems. OI (630.0 nm) airglow image data were 

obtained by the Utah State University all-sky CCD camera, primarily during the equinox 

period, from three different longitudinal sectors under similar solar flux conditions: 

Christmas Island in the Central Pacific Ocean, Ascension Island in South Atlantic, and 

Brasilia and Cariri in Brazil. Well-defined magnetic field-aligned depletions were 

observed from each of these sites enabling detailed measurements of their morphology 



iv 
 

 

 

 

and dynamics. These data have also been used to investigate day-to-day and longitudinal 

variations in the evolution and distribution of the plasma bubbles, and their nocturnal 

zonal drift velocities. In particular, comparative optical measurements at different 

longitudinal sectors illustrated interesting findings. During the post midnight period, the 

data from Christmas Island consistently showed nearly constant eastward bubble 

velocity at a much higher value (~80 m/s) than expected, while data from Ascension 

Island exhibited a most unusual shear motion of the bubble structure, up to 55 m/s, on 

one occasion with westward drift at low latitude and eastward at higher latitudes, evident 

within the field of view of the camera. 

In addition, long-term radar observations during 1996-2006 from Jicamarca, 

Peru have been used to study the climatology of post-sunset ESF irregularities. Results 

showed that the spread F onset times did not change much with solar flux and that their 

onset heights increased linearly from solar minimum to solar maximum. On average, 

radar plume onset occurred earlier with increasing solar flux, and plume onset and peak 

altitudes increased with solar activity. The F-region upward drift velocities that precede 

spread F onset increased from solar minimum to solar maximum, and were 

approximately proportional to the maximum prereversal drift peak velocities. 

 (218 pages) 
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CHAPTER 1 

INTRODUCTION 

 

1.1. Introduction  

The Earth‟s ionosphere often shows the occurrence of highly irregular plasma 

density and velocity fluctuations with a large range of scale sizes and amplitudes at 

almost all altitudes throughout the latitude and longitude sectors. The plasma 

irregularities at F-region ionosphere are predominantly a nighttime phenomenon and this 

is a region of greatest interest to space scientists because of the complex dynamical 

phenomena and instability occurrence in this region. The horizontal geomagnetic field 

lines at the magnetic equator perpendicular to gravity, and also prevailing natural wind 

and background electric field, compose unique phenomena to develop the plasma 

irregularities in the equatorial region. This post-sunset phenomenon is commonly referred 

to as equatorial spread F (ESF) or simply plasma irregularity or depletion. These plasma 

irregularities are generally magnetic field aligned. They have zonal widths of typically a 

few tens of km and extend along the magnetic field lines for hundreds to thousands of km 

depending on the peak altitude of the irregularity (bubble) development (e.g., Sobral et 

al., 2002), while their vertical heights range from a few tens of km to several hundred km 

[e.g., Labelle et al., 1997].  

When radio signals propagate through these disturbed regions, they cause 

scintillation. This results in a fade in received signal power, meaning a loss of signal. 

Scintillations are known to occur on frequencies below 3 GHz and are a concern to many 

sectors, both civilian and military. The generation of these irregularities is one of the 
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most spectacular manifestations of space weather in the Earth's ionosphere. 

Understanding the day-to-day variability of these irregularities has become a highly 

active area of research in the aeronomy community and much work remains to be done 

before we have a complete understanding of this phenomenon.  

Ionospheric irregularities were first reported by scientists using HF (High-

Frequency) radio ionospheric sounding experiments that took place about seven decades 

ago. Berkner and Wells [1934] described well known accounts of ionosonde reflections 

above the nighttime F peaks. Booker and Wells [1938] published nighttime ionograms 

with virtual height traces that were mysteriously spread in altitude. The bottomside 

profiles of the plasma were also found to be disturbed after sunset, which affected radio 

wave propagation near the critical frequency. This disturbance, called equatorial spread 

F, is now known as the process that causes large-scale plasma depletions (termed 

bubbles, wedges, or plumes). As the plasma depletions advect upwards from the 

bottomside to the topside ionosphere, they generate a broad spectrum of disturbances that 

can be detected by digital ionosondes and ionospheric radars and result in spectacular 

airglow images. Haerendel [1973] published a theory for bubbles where he applied the 

concept of flux tube integrated variables. In 1973, Hanson and Sanatoni used the satellite 

observations and reported density bite-outs of over three orders of magnitude deep in the 

bottomside F-region. Woodman and LaHoz [1976] used radar observations from 

Jicamarca, Peru, and reported plume-like structures extending to high altitudes. In 

addition to the ionosonde and radar observations [e.g., Fejer and Kelley, 1980], the 

plasma irregularities (or bubbles) have been detected by satellite [e.g., McClure et al., 
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1977], rockets [e.g., Kelley et al., 1982], as well as other ground-based optical 

instruments [e.g., Weber et al., 1978; Mendillo and Baumgardner, 1982; Taylor et al., 

1997]. 

The instability mechanism responsible for the development of ESF (discussed in 

Chapter 2) is most effective at the magnetic equator in the post-sunset time period, 

although occasionally post-midnight and pre-sunrise events have been observed. Much 

progress in studying ESF has been made, but several important questions remain unclear 

including an understanding of the seeding mechanisms favorable to instability growth. 

The several-generation mechanisms of the ESF have been reported, which often include a 

complex interplay of plasma, electrostatic turbulence, convection, chemical and neutral 

atmospheric effects, and particle precipitation. The Rayleigh-Taylor instability (RTI) 

process was first suggested as the physical mechanism for the generation of ESF by 

Dungey [1956]. RTI can develop when heavier plasma is supported by the lighter plasma, 

which is exactly the case in the post-sunset F-region ionosphere. The conditions required 

for the RTI are generally met around post-sunset at the magnetic equator where the 

bottomside of the F-layer has recombined and the entire F-layer itself has been raised 

considerably by the pre-reversal enhancement in the eastward electric field. This creates a 

very sharp vertical density gradient that is unstable to vertical perturbations in the 

ionosphere. The exact source of the perturbation is still the cause of much debate, and 

several mechanisms, including gravity waves [McClure et al., 1998] have been 

suggested. The resultant release of gravitational energy stored in the height of the 

ionosphere leads to the growth of an equatorial plasma bubble (EPB). Internal to this 
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depleted region are intense, small-scale perturbations in the electric field and electron 

density. These perturbations cause the widespread effects of ESF, which sometimes reach 

more than 20º latitude from the generation region at the magnetic equator [e.g., Kelley et 

al., 2002; Makela and Kelley, 2003]. This is due to the large conductivity along the 

magnetic field lines, allowing the perturbed electric fields to efficiently map poleward 

where they can affect the local ionosphere. 

These electric fields perturb the local ionosphere poleward of the equator and 

allow for ground-based imaging techniques to capture two-dimensional spatial 

information on the depletions. Several previous studies have employed all-sky imagers 

pointed to the zenith to make observations of the kilometer-and-greater scale-size 

depleted regions associated with ESF [e.g., Mendillo and Baumgardner, 1982; Taylor et 

al., 1997; Makela, 2006]. The advantage of imaging over other techniques of studying 

these irregularities (e.g., coherent radar observations and VHF scintillation 

measurements) is that imaging reveals the two-dimensional structure of these depleted 

regions rather than their properties along a single viewing direction. 

The occurrence and severity of an ESF event depends on the condition of the local 

equatorial ionosphere, as well as that of the plasma in electrical contact with it (namely, 

the off-equatorial E-region) through coupling within the appropriate magnetic flux tube. 

Convective plumes of turbulent plasma that develop during strong ESF events rising to 

higher altitudes can degrade communications system and can last for several hours as the 

plumes (bubbles) drift as fossilized bubbles with the background plasma. Consequently, 

further study of development and propagation of the plasma bubbles during the night- 
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time period has become very important for space weather prediction. Additionally, the 

knowledge of space and time variations of the ionospheric zonal and vertical drifts in the 

equatorial region is of fundamental importance to the understanding of the low-latitude 

ionospheric climatology [Fejer et al., 1991]. The study of these drifts also helps us to 

better understand the local mechanisms of coupling processes of the ionosphere-

thermosphere (I-T) system under magnetically quiet conditions, as well as global 

mechanisms of the equatorial ionosphere coupling with magnetosphere, interplanetary 

medium and high-latitude I-T system under magnetic storm conditions. On the other 

hand, ESF has been convincingly linked to variations in the strength of the prereversal 

enhancement (PRE), which is an increase in the vertical drift velocity during the post-

sunset period that drives equatorial plasma to higher altitudes where conditions are more 

conducive to instability. Therefore, the studies of several ionospheric parameters 

including the onset heights and times of the ESF and plumes that are associated with the 

variations of PRE with solar activities are significant for the characterizations of ESF.  

 

1.2.  Overview of This Work 

In this dissertation, we present detailed investigations of the generation, 

structures, and development of equatorial plasma bubbles as measured by airglow 

imaging systems in the equatorial F-region. We focus on the study of the zonal drift 

velocities of EPB from several sites near the magnetic equator on different longitude 

sectors. Furthermore, the ESF have also been characterized using long-term coherent and 

incoherent scatter radar observations from Jicamarca Radio Observatory, Jicamarca, 

Peru.  



6 
 

 

 

 

The content of this dissertation generally progresses from the general introduction 

to the specific research work.  Chapter 2 gives an overview of the upper atmosphere. The 

review begins with neutral atmosphere, ionosphere, airglow layers, equatorial F-region 

ionosphere with introduction of equatorial fountain effect and equatorial anomaly. We 

briefly discuss equatorial spread F or plasma bubbles, and Rayleigh-Taylor instability. In 

addition, the day and nighttime zonal and vertical plasma drift velocities derived from 

Jicamarca radar measurements have been introduced. 

In Chapter 3, we review the experimental techniques from which data have been 

used in this research work. We will briefly discuss airglow measurement techniques, the 

Utah State University (USU) all-sky (180˚ field of view) charge couple device (CCD) 

camera, and airglow measurement campaigns carried out to study the ionospheric plasma 

irregularities. There is also brief discussion of coherent and incoherent scatter radar 

techniques used from Jicamarca Radio Observatory. 

In Chapter 4-6, we deal with results of optical measurements of airglow 

depletions obtained from ionospheric campaigns from different sites near equatorial 

regions using the USU all-sky CCD camera. Chapter 4 presents detailed investigations of 

the airglow depletions using the first time optical image measurements from Christmas 

Island in the central Pacific Ocean. We present the equatorial plasma bubble generation, 

their spatial characteristics and propagation. We also compare observational zonal drift 

results with model drift velocity obtained from simple electric field model. Chapter 5 

reports the airglow depletion results from Ascension Island in the South Atlantic Ocean, 

which is close to the equator region, but at different longitude sectors from Christmas 
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Island. This Chapter also highlights the latitudinal shear velocities of the plasma bubble. 

In Chapter 6, we turn our attention to evidence of the longitudinal variability of 

equatorial ionospheric evolution, spatial structures and development of the plasma 

bubbles using the image data obtained simultaneously from two closely spaced sites at 

Brasilia and Cariri in Brazil. The airglow depletion velocity is also compared with 

coincidence measurements of the GPS scintillation drift. 

Chapter 7 presents climatological results of post-sunset equatorial spread F using 

long-term coherent and incoherent scatter radar observations during 1996-2006 from 

Jicamarca, Peru. We investigated the seasonal, solar cycle variations of the equatorial 

spread F parameters including onset times and heights of initial equatorial spread F and 

that of radar plumes. 

 Finally, in Chapter 8, we review some of the most important results presented in 

this dissertation. We conclude with suggestions for future research work on equatorial 

spread F. 
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CHAPTER 2 

LOW-LATITUDE IONOSPHERE 

 

This Chapter presents the background physics of the Earth‟s atmosphere including 

the structure of the neutral atmosphere and ionosphere, airglow layers, and the low-

latitude ionospheric electrodynamics with introduction of fountain effects and the 

equatorial anomaly. We also present the equatorial Spread F and plasma bubbles with a 

brief explanation of the Rayleigh-Taylor instability that is considered to be the primary 

mechanism responsible for the generation of equatorial spread F. Finally, we will review 

the vertical and zonal plasma drift velocities from the equatorial F-region ionosphere, 

derived from ground-based radar measurements. 

 

2.1. Atmospheric Structure 

The regions of the neutral atmosphere are classified on the basis of variation of 

height with the temperature, the composition, and the state of mixing. The primary 

classification is according to temperature gradient that includes the troposphere, 

stratosphere, mesosphere, thermosphere, and exosphere [Schunk and Nagy, 2000; Kelley, 

1989] as shown in Figure 2.1. The data are derived from the MSIS (Mass Spectrometer-

Incoherent Scatter) model over Jicamarca, Peru (12˚S, 76.9˚W, dip latitude 1˚N) on solar 

minimum and maximum conditions on September 22, 2006 and 2001, respectively. The 

temperature structure is governed by the absorption of solar radiation, and different 

wavelength bands are absorbed by various constituents in the region. The troposphere, 

the region  associated  with  atmospheric weather  phenomena, is defined by a well-mixed  
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composition of primarily molecular nitrogen and oxygen, with decreasing temperatures 

with height, and ranges from the surface to tropopause at around 10-12 km. The 

stratosphere is the region where the ozone layer exists, and extends from the tropopause 

to a height of around 45-50 km. Its temperature increases with height due to the 

absorption of solar ultraviolet radiation and this region is thermodynamically stable. The 

mesosphere is a middle atmosphere, which extends from the stratopause (45-50 km) 

Figure 2.1. Structure of the Earth‟s neutral atmosphere on the basis of temperature 

gradient from MSIS model for solar minimum and maximum conditions.  
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altitude up to the mesopause around 90-95 km. In this region, the temperature decreases 

with increasing height to a minimum at the mesopause with a temperature around 180 K, 

which is the coldest part of the atmosphere. This region experiences very little solar 

absorption and consists of primarily molecular nitrogen and oxygen, but, in addition, 

there are many minor species. Some metals, such as iron and sodium, are suspended in 

the mesosphere from meteor debris.  

The thermosphere is the region that extends from about 90 km to 500 km. In this 

region, the temperature initially increases with altitudes to a maximum value of ~1000 K 

(during the solar maximum condition) and eventually becomes almost constant with 

altitude. This is the hottest part of the atmosphere. This is the region where most of the 

radiation from the atmospheric atoms and molecules in the visible spectrum originate, 

i.e., the night glow, day glow, and aurora. The transition to the thermosphere is due to the 

dissociation of diatomic oxygen and ionization through solar radiation absorption. The 

exosphere is the uppermost layer of the atmosphere near Earth space where the 

atmosphere gets very tenuous. Particles of light species, like hydrogen, moving fast 

enough are able to escape the Earth‟s gravity. Gas molecules in this region are unlikely to 

collide with other molecules due to the low-density atmosphere. The outermost region 

where the geomagnetic field controls particle motion is termed the magnetosphere. The 

thermosphere is coupled energetically, dynamically, and chemically to the mesosphere at 

its lower bound, and to the exosphere and magnetosphere at its upper bound. 

 

2.2. Ionosphere  

The ionosphere is the ionized region of the upper atmosphere extending from ~60  

http://en.wikipedia.org/wiki/Atmosphere
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km to beyond 1000 km. This region contains significant numbers of free electrons and 

positive ions and also some negative ions in lower altitudes. The electron concentration 

may amount to only about one percent of the neutral concentration. However, the 

presence of these electrons has a profound effect on the properties and behavior of the 

medium.  

The vertical structure of the ionosphere has been divided into four layers 

according to ion constituent and associated chemistry. These distinct layers develop 

because (a) the solar spectrum deposits its energy at various heights depending on the 

absorption characteristics of the atmosphere, (b) the physics or recombination depends on 

the atmospheric density, and (c) the composition of the atmosphere changes with height. 

The vertical structure of the electron density of the ionosphere at the local noon (solid 

lines) and local midnight (dashed lines) for solar minimum (blue lines) and solar 

maximum (red lines) conditions are shown in Figure 2.2. The data were obtained by 

running the International Reference Ionosphere (IRI) model [Bilitza, 1990] for solar 

minimum (September 22, 2006) and maximum conditions (on September 22, 2001) at 

Jicamarca, Peru, which lies close to the dip latitude. The dip latitude is the imaginary 

horizontal line running east-west normal to the magnetic field lines and is an angular 

measurement in degrees ranging from 0° at the magnetic equator to 90° at the magnetic 

poles.   

During the day, the ionosphere separates into several layers depending upon the 

local time of day. The main layers are D-region, E-region, F1-region, and F2-region. The 

layers are generally characterized by a density maximum at a certain altitude and a density 
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decrease with altitude on both sides of the maximum. The D-region ranges from about 60 

km to 90 km and is controlled by ionization of neutrals by solar X-Rays and Lyman alpha 

radiation, which cause two- and three-body recombination and electron attachment. The 

dynamics of the D-region are mostly dominated by the neutral atmosphere. In this region, 

the plasma density range is 10
2
-10

4
 cm

-3
. The E-region extends from ~90 km to 150 km 

altitude with an electron density ~10
5
 cm

-3
. This region is chemically dominated and 

contains molecular ions such as N2
+
, O2

+
, NO

+
 as primary constituents. The F1-region 

Figure 2.2. IRI model of electron density profile of the equatorial ionosphere at noon 

(solid lines) and midnight (dashed lines) for solar minimum (blue lines) and solar 

maximum conditions (red lines) [Courtesy of David Hansen, CASS, Utah State 

University, 2010]. 
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ranges from ~150 km to 200 km altitude with electron density range of ~10
5
-10

6
 cm

-3
. 

The F2-region extends from an altitude of ~200 km to 500 km and the electron density 

maximum varies around 300 km up to 10
6
 cm

-3
. This is the region of peak electron 

density of the ionosphere, which is usually over an order of magnitude greater than the E-

region peak density. These F1- and F2-regions are dominated by monoatomic oxygen and 

the ions transported through diffusion.  

 The D- and F1-regions vanish during the night and the E-region become much 

weaker. The daytime electron densities are greater than that of the nighttime and also 

larger during the solar maximum than in solar minimum. At solar maximum, the electron 

densities are greater by a factor of two to four than at solar minimum, especially in the F-

region. The E-region and lower part of the F-region undergo relatively greater variations 

in electron density between day and nighttime than does the upper F-region. The F2- layer 

is the principle reflecting layer for HF communications and is responsible for most sky 

wave propagation of radio waves. Thus, this region is of the greatest interest for radio 

wave propagation. Unfortunately, this layer is also the most anomalous, the most variable 

and the most difficult to predict.  

 Furthermore, the dynamics of the upper atmosphere are primarily driven by solar 

heating tidal forces. On the dayside, solar radiation sets up a global system of neutral 

winds that tend to flow toward the colder regions on the nightside. When these neutral 

winds push the ionospheric plasma across magnetic field lines, electric fields and currents 

are generated, which play an important role in the distribution of ionization. On the other 

hand, collisions between the neutral  atmosphere  and the ions, the ions and electrons, and 
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the neutrals and electrons are the cause of the conductivity in the ionosphere. 

The ionospheric conductivity plays a major role in the electrodynamics of the F-

region. These conductivities are: Pedersen, Hall, and parallel conductivity. The 

conductivity parallel to the electric field, but perpendicular to the magnetic field, is called 

Pederson conductivity. The conductivity perpendicular to both the electric and magnetic 

fields is called Hall conductivity, while the conductivity parallel to the magnetic field 

alone is defined as the parallel conductivity. The magnitudes of these conductivities as a 

function of altitudes are shown in Figure 2.3. The Pedersen and Hall conductivity 

decrease with increasing altitudes, whereas the parallel conductivity increases 

Figure 2.3.  Pedersen (σp), Hall (σH), and parallel (σǁ) conductivity at 10˚N, 105˚E 

[Courtesy of Christian Wohlwend, CASS, Utah State University,  2008]. 
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continuously with altitude. The parallel conductivity is several orders of magnitude larger 

than both the Pedersen and Hall conductivities everywhere above 100 km altitudes. 

Therefore, ionospheric electric fields can be transferred along these lines virtually 

uninhibited.  

 

2.3. Airglow Layers 

In the Earth‟s atmosphere, there are additional sources of light during the 

nighttime period in addition to the moon and stars. From the ground we can observe the 

continuum of frequencies of light, as well as a series of lines emissions that have sharp 

peaks in intensity, referred to as airglow. The airglow energy source is primarily stored 

chemical energy provided by sunlight, and it therefore occurs at all latitudes. A detailed 

description of the mechanisms involved in the production of airglow emission and in its 

reactance to dynamic disturbances is beyond the scope of this dissertation; however, a 

brief overview is important and is presented in this section. 

The atmospheric airglow layers have been observed from rocket experiments. The 

layers have an abundance of a number of chemical constituents that undergo chemical 

processes producing light (airglow) at certain wavelengths. The brightest of the airglow 

emissions are the NIR (near infrared) hydroxyl (OH), 557.7 nm (O
1
S), the 630.0 nm 

(O
1
D), and the emissions from metallic atoms such as sodium, calcium, potassium, and 

magnesium. The OH NIR and 557.7 nm emissions are due to reactions between neutral 

species. They originate in the MLT (Mesosphere-Lower-Thermosphere) region where the 

chemistry is dominated by the neutrals, but where the density is not so great as to quench 

the emissions. In comparison, the 630.0 nm reaction involves ion chemistry and so occurs  
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at much  higher altitudes, where the  atmosphere  has plasma embedded  in  it.  Figure 2.4 

shows the heights of the different airglow layers viewed with the digital Charge Coupled 

Device (CCD) cameras. The full width at half maximum (FWHM) of the mesospheric 

layers is generally on the order of ~10 km for OH (NIR) and green line emissions at 

altitudes of 87 km and 96 km, respectively [Baker and Stair, 1988]. On the other hand, 

the width of the FWHM for the OI 630.0 nm emissions in the thermosphere is about 100 

km between 200 and 300 km altitudes [Mendillo and Baumgardner, 1982]. We cannot 

independently determine the height from our integrated measurements, but several rocket 

experiments have verified the illustration in Figure 2.4 [e.g., Tsunoda et al., 1982].  

Figure 2.4.  Illustration of heights of the different airglow layers viewed with the 

CCD imagers along with the wavelengths of the emissions (not to scale). 
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 2.4. The OI (630.0 nm) Airglow Emission  

Atomic oxygen emits at a wavelength of 630.0 nm in the visual spectrum at 

altitude range of 200-300 km to form red airglow, when it decays from the excited state 

to the ground state. The excited atomic oxygen is available from ionized atomic oxygen 

as shown in the following reaction [Mendillo and Baumgardner, 1982]: 

                            

  O
+
 + O2             O2

+
   +  O, 

               O
2+

 +e              O(
1
D) + O(

3
P), 

                           O(
1
D)              O(

3
P) + hν (λ=630.0 nm). 

 

That is, the (O
1
D) state is populated by the dissociative recombination of O

2+
, 

which itself arises from a collision charge transfer between neutral molecular oxygen and 

ionized atomic oxygen. This emission is from a forbidden transition with a lifetime of 

110 sec in the thermosphere [Mendillo and Baumgardner, 1982]. Hence by observing the 

depleted airglow intensity using OI (630.0 nm) all-sky images, equatorial F-region 

ionospheric irregularities (or plasma depletions) can be studied.  

However, the OI (630.0 nm) emissions, which are emitted during the process of 

recombination of ionized molecular oxygen, come from the thermosphere. The emission 

layer is highly dependent upon the F-layer, and so its peak height and width is also 

significantly variable. The height of the F-peak, which can be measured using an 

ionosonde or incoherent scatter radar, may vary for about 250 km to 400 km or more and 

its width at half maximum is several tens of kilometers. The assumed emission heights 

used in these studies employing the OI (630.0 nm) emission range from 250 to 300 km. 



18 
 

 

 

 

The model results show this assumed height varies approximately 10 km over the course 

of the evening. 

The 630.0 nm emission is effective at tracing out the dynamics of the ionosphere 

near the F-region peak (250-300 km). Its volume emission rate is dependent on both the 

electron density and the neutral O2 density. So its peak emission altitude follows the rise 

and fall of the F-layer with the peak emission altitude in general lying below the F-peak. 

Furthermore, the emission intensity drops off dramatically with altitude if the F-layer 

rises. This effect is easily confused with decreasing intensity due to a drop in electron 

content. The total airglow intensity viewed from the ground is given by the height 

integral of the volume emission rate. It is clear that if the electron density profile were to 

rise, the airglow intensity would fall because of the exponential drop-off of the O2 

concentration. For the same reason the airglow intensity would increase if the electron 

density profile fell. 

 

2.5. Low-Latitude Ionosphere 

Low-latitude ionospheric electrodynamics strongly affect various ionospheric and 

thermospheric phenomena such as the equatorial anomaly, the global distribution of low-

latitude ionization, the generation of equatorial spread F, and radio wave scintillations. 

Overviews of these phenomena have been presented by several authors [e.g., Kelley, 

1989; Schunk and Nagy, 2000].  

The dynamo electric fields generated in the equatorial E-region by thermospheric 

winds are transmitted along the dipole magnetic field lines to F-region altitudes because 

of the high parallel conductivity [Schunk and Nagy, 2000]. The daytime dynamo electric 
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fields are directed eastward, which causes an upward E×B plasma drift as shown in 

Figure 2.5, while the reverse occurs at night. The upward drift in the daytime raises 

freshly ionized plasma near the equator to great heights, where recombination is slow. 

Subsequently, the plasma diffuses down along the magnetic field lines and away from the 

equator under the action of gravity that adds extra plasma to that produced locally at 

higher altitudes. These combined phenomena of electromagnetic drift and diffusion 

produce a fountain-like pattern of plasma motions. This phenomenon is referred to as the 

fountain effect or the equatorial fountain. Because of this fountain motion, the ionization 

peaks are formed in the subtropics on each side of the magnetic equator to form two 

crests with maximum ionization density near ±15° magnetic latitude (as denoted by crests 

in Figure 2.5) and minimum ionization at the magnetic equator. This feature is termed the 

equatorial anomaly or Appleton anomaly. The equatorial anomaly varies during the day, 

with a maximum about 14:00 local time (LT), and a second often larger peak, occurring 

in the late evening. 

The latitude of the peak electron density formations is often not symmetrical 

about the magnetic equator because of plasma transport along the magnetic field lines 

produced by an interaction with the neutral winds. The neutral winds usually cause 

plasma to be pushed from the summer hemisphere to winter hemisphere. Such a wind 

acts to transport plasma up the field lines in the southern hemisphere and down along the 

field line to the northern hemisphere. This causes an unsymmetrical form of equatorial 

anomaly peaks between the two hemispheres as shown in Figure 2.5, with a larger crest 

on winter  hemisphere than that  in summer hemisphere.  An example  of  this  equatorial  
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anomaly is also shown in Figure 2.6, which was calculated with a numerical model for 

December solstice conditions on day 363, 1998 [Courtesy of David Anderson, University 

of Colorado, Boulder, 2004]. The figure represents contour plot of electron density with 

altitudes as a function of magnetic latitudes at 14:00 LT. The upward E×B drift raises the 

F-layer at the magnetic equator to ~800 km. This leads to ionization peaks on both sides 

of the magnetic equator due to the fountain effect, as explained above. The figure also 

indicates larger electron density profiles in winter hemisphere than in summer 

hemisphere. 

 

Figure 2.5. Schematic of the formation of the latitudinal variation of ionization 

density in the equatorial F-region, known as the equatorial anomaly. E×B upward 

plasma drift and following the downward diffusion along the field lines are shown by 

the arrows, producing the fountain effect. The two equatorial anomaly peaks (crests) 

are shown on both hemispheres [Courtesy of David Anderson, University of Colorado, 

Boulder, 2004].   
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2.6. Equatorial Spread F and Plasma  

 Bubbles or Plumes 

The occurrence of the nighttime plasma irregularities in the equatorial F-region 

ionosphere is commonly referred to as equatorial spread F (ESF). The term spread F was 

introduced first by Berkner and Wells [1934] from the spreading of the ionogram traces. 

Since then, numerous studies have been carried out on the observational and physical 

theories of ESF. Several reviews of ESF have been published [e.g., Fejer and Kelley, 

1980; Ossakow, 1981]. The ESF echoes are caused by scattering from kilometer scale 

irregularities when HF radio waves are vertically reflected by the disturbed nighttime F-

region ionosphere. The wide spectral distribution of plasma bubble irregularities are 

Figure 2.6.  Electron density contour plot as a function of altitude and magnetic 

latitude for December solstice conditions [Courtesy of David Anderson, 

University of Colorado, Boulder, 2004] 
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known to cause interference with satellite-to-ground-based telecommunication channels, 

and the degradation of navigation and GPS systems due to the random fluctuations of the  

amplitude and phase of the radio waves as they  pass thorough these irregularity regions 

[e.g., Basu et al., 1999]. 

The ionospheric irregularities have broad range scale sizes over several orders of 

magnitude from tens of centimeters to hundreds of kilometers. They extend from the F-

region up to ~1700 km altitudes within the dip latitudes of about ±20° and are driven by a 

number of wave generation processes. Due to the high parallel conductivity and mobility 

in the ionosphere, the signature of ESF can be observed in all latitudes between the 

Appleton anomalies. The spread F occurrences in the equatorial F-region can be 

particularly severe, although they can appear at all latitudes. However, their occurrences 

depend on the season, solar cycle, latitude, and longitude.  

At night, a fully developed ESF is characterized by plasma bubbles (the region of 

the deep plasma depletion). The plasma density inside the bubbles can be up to three 

orders of magnitude lower than that of its surroundings. Figure 2.7 shows an example of 

an OI (630.0 nm) airglow image measured by the USU all-sky CCD camera on 

September 28, 1995 from Christmas Island. The dark bands on the image are plasma 

depletion structures or plasma bubbles. During the development phase of the plasma 

bubbles, they are known to drift upward and eastward. When the ESF onset ends, 

generally during the post-midnight period, the upward drifts ceases and the bubble 

becomes a fossilized one. The fossil bubbles then drift eastward with the ambient plasma, 

while the bubbles at higher-latitudes generally tend to lag behind. 
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Figure 2.8 presents an example of a very large quasi-periodic structure of plasma 

depletions with a sequence of radar plumes observed using the 50 MHz Jicamarca radar 

on September 18, 1996. The radar plumes are vertically elongated wedges of the depleted 

plasma convected upward from beneath the bottomside F-layer to the top side of the 

ionosphere. These echoes were strong and tilted westward.  

Figure 2.9 shows a schematic diagram to explain the phenomena of the generation 

of the ESF (or EPB) [Schunk and Nagy, 2000]. An eastward dynamo electric field (E) is 

generated in the lower ionosphere during the daytime by the thermospheric wind. This 

electric field is mapped to the F-region altitude along the magnetic field (B) lines. The 

upward E×B plasma drift is produced in the F-region due to this combination of eastward 

Figure 2.7.  An example of OI (630.0 nm) airglow depletion image measured by the 

USU all-sky CCD camera from Christmas Island on September 28, 1995. White dots 

in the image are stars and dark bands denote the plasma bubbles. 
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 electric field and the northward magnetic field as explained above. When the ionosphere 

co-rotates with the Earth toward the dusk terminator, the eastward component of the 

neutral wind increases with the wind blowing predominantly across the terminator from 

the dayside to the nightside. The combination of the increased eastward wind component 

with the sharp day-night conductivity gradient across the terminator leads to the 

prereversal enhancement (PRE) in the eastward electric field [Schunk and Nagy, 2000]. 

As a result, the F-layer rises when the ionosphere co-rotates into darkness. On the other 

hand, the lower ionosphere rapidly decays in the absence of sunlight and a steep vertical 

density gradient develops on the bottomside of the raised F-layer, as shown in the vertical 

electron density profile (NE) in Figure 2.9. In this condition, a heavier fluid (plasma in 

this case)  is situated  above  the  lighter one (magnetic field lines), which is the necessary  

Figure 2.8.  Backscatter power of 3-m irregularities (i.e. the radar plume) 

observed by the Jicamarca radar, Peru. 
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configuration for the Rayleigh-Taylor instability (RTI). 

 

2.7. Rayleigh-Taylor Instability  

The theory of the cause of the Rayleigh-Taylor instability in the ionosphere was 

first presented by Johnson and Hulburt [1950], with the work of Dungey [1956] making a 

connection between the Rayleigh-Taylor instability and ESF. The simplest form of the 

RTI (also known as the interchange instability) occurs when a high-density fluid is 

situated on top of a low-density fluid in a gravitational field. Any fluctuation at the fluid 

interface allows gravity to pull the high-density fluid downwards so that the low-density 

fluid ends up on top and an interchange of the two fluids takes place. More generally, 

Figure 2.9. A schematic diagram to show the classical configuration for the Rayleigh-

Taylor instability [Schunk and Nagy, 2000, Figure 11.29].  
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interchange instability occurs when two types of fluid are situated with an external force 

such that the heavy fluid pushes against the light fluid, and the potential energy of the 

system is not a minimum. In plasmas with a magnetic field, both the plasma and the field 

have an associated pressure; therefore the plasma may interchange position with the 

magnetic field.  

The RTI theory involves a vertical plasma density gradient with dense F-region 

plasma over less dense E-region plasma, enhanced by the steeping of the bottomside at 

night. This gradient, when perturbed, will generate polarization electric fields that grow 

the perturbation through E×B plasma drift. The situation shown in Figure 2.10 is post- 

sunset equatorial ionosphere just below the F-region. The D- and E-regions disappear due 

to recombination after sunset steepens the bottomside and prevents the shorting of the F-

region currents. We can approximate the layer below the F-region as a vacuum in terms 

of plasma density with heavy fluid supported by the lighter one, as shown in Figure 2.10 

(upper panel). The electrons and ions drift in opposite directions. As a result of random 

thermal motion of electrons and ions, a ripple develops along the interface. The further 

drift velocity will cause the ripple to grow as shown in bottom panel of Figure 2.10, and 

they cause a charge build up on the side of the ripple. Additionally, an electric field E 

develops, which changes the sign from crest to trough in the perturbation wave. The E×B 

drift is always upward in the upper surface of the ripple and is downward in the lower 

region of the ripple. As a result, the ripple becomes unstable producing the small-scale 

irregularities. As they rise, these irregularities spread out along the magnetic field lines in 

north and south higher latitudes.  
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The F-region fields cause the F-layer to rise at higher altitude, which reduces the 

collisions between the charged particles and the neutral species, and hence, the E-region 

conductivity, which then enhances the R-T growth rate [e.g., Balsley et al., 1972; 

Haerendel, 1973; Sultan, 1996]. Seeds are necessary to set the linear instabilities in 

motion, and the fact nonlocal linear growth for interchange instabilities decreases with 

increasing wavelength suggests that strong seeds are necessary to incite large-scale (very- 

long wavelength) F-region irregularities. Numerous theoretical and experimental studies 

have suggested the importance of gravity wave effects on the seeding and evolution of 

ESF [e.g., Klostermeyer, 1978; Kelley et al., 1981; Hysell et al., 1990; Vadas and Fritts, 

2009; Takahashi et al., 2009]. Recently, much attention has gone toward identifying 

Figure 2.10. Characterization of Rayleigh-Taylor instability in equatorial ionosphere 

at dusk. Axes x, y, and z point to the south, east and upward directions, respectively. 

Here,   0 is the electron density gradient, G is the gravitational field, and B0 is the 

Earth‟s magnetic field [Schunk and Nagy, 2000, Figure 11.30].   
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seeds for waves that will grow and produce radar plumes in their mature stage. 

Additionally, the onset of ESF may also be affected by breaking of gravity waves 

propagating upward from the lower altitude and by electric field perturbations of high- 

latitude origin during the magnetic disturbed conditions. On the other hand, there are 

several processes, such as meridional neutral winds, electric field shear effects, diffusion, 

and E-region conductivity, which inhibit the growth of the irregularities. The large 

number of potentially important factors effecting ESF evolution make it difficult to 

model and predict the day-to-day and short-term variability of ESF, which is one of the 

outstanding problems in the study of ESF.  

 

2.8. Equatorial F-Region Plasma Drifts 

  The climatology and characteristics of low-latitude F-region plasma drift have 

been extensively studied over the past few decades using ground-based radar 

observations, optical measurements, ionosonde, and satellite observations [e.g., 

Woodman, 1972; Mendillo and Baumgardner, 1982; Sobral et al., 1985; Fejer et al., 

1991, 2005; Taylor et al., 1997; Martinis et al., 2003; Makela et al., 2004; Jensen and 

Fejer, 2007; Pautet et al., 2009]. The majority of the information about plasma drifts at 

equatorial latitudes has come from observations at the Jicamarca Radio Observatory near 

Lima, Peru using incoherent scatter radar (ISR) at 50 MHz [e.g., Woodman, 1972; Fejer 

et al., 1991, 2005].  

Figure 2.11 shows the seasonal and solar flux (F10.7 cm) dependence of the 

average vertical plasma drift velocities in the height range of about 200-600 km over 

Jicamarca [Fejer et al., 1991].  Upward  drifts  correspond  to positive values in the plots.  
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Figure 2.11. Average vertical plasma drift velocities over Jicamarca for equinox 

(March-April, September-October), southern hemisphere winter (May-August), and 

summer (November-February) at low, moderate, and high solar flux conditions 

[Fejer et al., 1991]. 

The plasma drifts are upward during the day and downward during the night. The 

daytime drifts are typically solar flux independent and peak at about 11:00 LT with 

magnitudes around 20 m/s during the equinox (March-April, September-October) and 

winter (May-August) seasons, with quiet smaller magnitudes during summer (November-

February). The large evening upward drift velocities commonly known as prereversal 

velocity enhancement were observed during the equinox and summer (December 

solstice), while a much smaller enhancements were seen during winter (June solstice). 
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The prereversal enhancement has clear solar flux dependence during all seasons 

with greater upward drifts at higher fluxes. The nighttime downward drifts have typical 

values of 10-30 m/s, and their magnitudes increase with solar flux. The evening reversal 

times show significant solar flux variation, while the morning reversal times are almost 

independent of solar flux during all seasons. 

 Figure 2.12 shows the F-region model zonal plasma drift velocities above 

Jicamarca during all seasons for low and moderately high solar flux conditions as 

reported by Fejer et al. [2005]. The eastward drifts correspond to positive values in the 

plots. Open circles represent solar minimum conditions, whereas filled symbols are for 

solar maximum conditions. During the day, these zonal drifts are westward and reach 

values up to 40 m/s, and at nighttime they become eastward and have large variations in 

magnitudes from ~40 m/s to 160 m/s. The zonal drifts have a large eastward peak near 

21:00 LT, shortly after the evening reversal, and then they slowly decrease throughout 

the night. The daytime westward drifts and evening reversal times are almost solar flux 

independent while the nighttime eastward drift increase with solar flux, which is more 

pronounced during the December solstice and the equinox. It is also noted that the zonal 

drifts are much larger than the vertical drifts, and the peak eastward drift is about twice as 

large as the peak westward drift. The detailed description of equatorial vertical and zonal 

plasma drifts velocities has been reported by Fejer et al. [1991, 2005]. 

 The daytime westward and nighttime eastward zonal drift velocities are due to the 

upward vertical electric field during the day and the downward field during the night, 

respectively.  Similarly, the upward and downward drifts during the  day  and  night  are  
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Figure 2.12. Jicamarca model zonal drift velocities at low and moderately 

high solar flux conditions during the equinox, June, and December solstice 

[Fejer et al., 2005]. 
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caused by the eastward and westward electric fields developed on the day and nighttime 

period, respectively [e.g., Woodman, 1970; Fejer et al., 1981, 1991, 1995; Coley and 

Heelis, 1989; Maynard et al., 1995]. The zonal electric fields are developed due to 

separation of positive and negative charges caused by their differential motions. The 

magnitude of these electric field changes with solar local time and hence the plasma drift. 

The zonal velocity of equatorial plasma bubbles in the premidnight sector corresponds to 

the velocity of the ambient plasma during the quiet magnetic day.   

Furthermore, a prereversal enhancement (PRE) of the vertical plasma drift has 

been seen shortly after sunset (see in Figure 2.11) as the drift reverses from upward to 

downward from the day to night transition. The important feature of PRE is that it drives 

the F-layer to higher altitudes (at about 400 km) after the sunset, where the growth rate of 

Rayleigh-Taylor instability is larger, which leads to the equatorial spread F occurrence. 

To explain this PRE phenomenon, several theories have been developed [e.g., Risbeth, 

1971; Farley et al., 1986; Haerendel et al., 1992; Eccles 1998], however, more research 

work needs to be done to investigate the actual physical process involved on this 

phenomenon.
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CHAPTER 3 

MEASUREMENT TECHNIQUES 

 

Ionospheric irregularities can be detected by using several techniques including 

radar measurements [e.g., Farley et al., 1970], in situ space probe [e.g., Tinsley et al., 

1997; Tsunoda et al., 1982], radio wave propagation and scintillation experiments [e.g., 

Valladares et al., 1996], airglow-measurements [e.g., Mendillo and Baumgardner, 1982; 

Taylor et al., 1997], and ionosonde [e.g., Hammer and Bourne, 1976]. In this dissertation 

work, we use airglow measurements from the USU all-sky CCD camera and radar 

observations from Jicamarca, Peru. In this section, we briefly review these techniques.   

  

3.1. Airglow Measurements 

The atmospheric nightglow emissions provide an excellent medium for the remote 

sensing of short-period gravity waves in the upper mesosphere and lower thermosphere, 

and plasma depletion in the thermosphere. Gravity waves are generated in the 

troposphere by frontal systems by airflow over mountains. These waves are important for 

transferring momentum from the troposphere to the stratosphere/thermosphere and play a 

key role in controlling the dynamics of the middle atmosphere.  

As the airglow is faint, we cannot see it readily because the strongest airglow 

emission lies outside the range of the human eye‟s sensitivity, in the near infrared region 

[e.g., Wayne, 1991]. However, we can use sensitive optical equipment, such as 

photometers and CCD cameras, to observe airglow emissions during the nighttime 

period. As atmospheric disturbances, such as internal gravity waves, pass through the 
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airglow layers, they cause perturbations in the temperature and density of the relevant 

constituents, which in turn, produce intensity fluctuations of the airglow. These intensity 

variations are used to study the disturbances in the upper atmosphere, including the 

ionospheric plasma irregularities.  

As discussed in the previous chapter, the ionospheric plasma depletion is 

measured by observing the OI (630.0 nm) airglow intensity depletion. However, the 

volume emission rate of 630.0 nm O(
1
D) decreases at higher altitudes as molecular 

oxygen density exponentially decays with height. As a result, the higher minimum F-

layer height required for plume formation leads to low airglow intensities. Thus, it is 

unlikely that the development of plumes after sunset will be observed through 630.0 nm 

airglow photometry near the magnetic equator. When the post-sunset ionosphere 

decreased in virtual height to less than ~275 km, airglow intensities increased and fully 

developed depletions became visible as dark bands in the ambient airglow. On the other 

hand, when the virtual height at the magnetic equator is above ~275 km for the entire 

night, the airglow depletion will not be visible, even though plumes and scintillations will 

have occurred [Mendillo and Baumgardner, 1982]. 

The development of highly sensitive CCD cameras has proven to be an ideal 

instrument for the imaging of nighttime airglow in the sky and the study the upper 

atmospheric phenomenon. Taylor and Hill [1991] were able to obtain high-quality 

images of wave structure using a CCD camera. These cameras were first used for narrow 

field of view (FOV) measurements. They further developed a fish-eye (180˚ FOV) lens to 

image airglow emissions. Taylor and Garcia [1995] have published the first results using 
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this method for the airglow measurements. Since then, numerous studies have been 

carried out using this technique [e.g., Taylor et al., 1997; Santana et al., 2001; Makela 

and Kelley, 2003; Mukherjee, 2003; Martinis et al., 2003; Arruda et al., 2006].  

 

3.1.1. USU All-Sky CCD Camera  

The development of the USU all-sky CCD camera (optical imager) has proven to 

be a powerful additional instrument in nighttime airglow measurements. The principle 

components of the USU CCD imager are shown in Figure 3.1. The imaging system 

consists of an all-sky or fish-eye (180˚FOV) telecentric lens system, a computer- 

controlled filter wheel, and a CCD camera head fitted with a 1024×1024 pixel back- 

illuminated bare CCD (quantum efficiency ~80% at visible and 50% at NIR 

wavelengths). The incoming light passes through the fish-eye lens and it further passes 

through one of the filters in the filter wheel and is reimaged onto the CCD chip in the 

camera head with dimensions of 25mm×25mm in the cooled CCD camera. The chip itself 

is thermoelectrically cooled to a temperature of about -50˚C and the heat is removed 

using a liquid circulation heat exchange. By cooling the chip to a very low temperature, 

the power of the thermal noise has been reduced so the data recorded will be of good 

quality. The data are transferred to a PC and stored on a hard disk. Control software on 

the PC automatically operates the imager system, and the detailed parameters of 

observation, such as the start and end times, can be changed remotely by editing the 

parameter file on the network.  

Table 3.1 lists the details of filter characteristics with wavelengths, bandwidth, 

transmission  efficiency  and  exposure  times of  the  CCD  camera that can  be used  for  
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different types of airglow emissions measurements for different purposes. Six emissions 

were measured as: the OI (557.7 nm) green line emission, the OI (630.0 nm) red line 

emission, Na (589.2 nm) line emission, the near infrared (NIR) hydroxyl (OH) Meinel 

broadband emission (710-930 nm), and the O2 (0,1) band at 865.5 nm. In addition, 

background sky measurements (Bg) were also made at 572.5 nm to aid the analysis of the 

visible wavelength data, which is used to monitor cloud coverage and to provide a 

background measure for the narrow band filters. The NIR OH filter incorporated a notch 

at 865.5 nm to limit contributions from the O2 (0,1) band. The exceptional sensitivity of 

the imager enabled sequential measurements at a high repetition rate of 3-12 min. Further 

details of this imaging system and the filter specifications are given in Taylor et al. 

[1995]. As explained earlier, the OI (630.0 nm) airglow red line emissions were used to  

Figure 3.1. The principal components of the USU all-sky CCD camera. 
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Table 3.1. Filter details and exposure times for the USU CCD camera. 

Filter 
Wavelength 

(nm) 

Bandwidth 

(nm) 

Transmission 

(%) 

Integration 

Time (sec) 

OI 557.7 2.65 ~83 90 

Bg 572.5 2.67 ~83 90 

Na 589.1 2.50 ~80 120 

OI 630.0 2.40 ~80 90-180 

O2(0,1) 865.5 12.0 ~85 90 

OH 715-930 215 ~80 15 

 

 
 

study the thermospheric plasma depletion, and our dissertation work will be focused on 

the data obtained from these measurements. 

 

3.1.2. USU Campaigns 

 The USU cameras were deployed at several sites to measure the OI (630.0 nm) 

thermospheric airglow emission. Table 3.2 summarizes the sites of the campaigns, 

geographic locations, dip latitudes, average solar flux index during the campaign, average 

range of geomagnetic index (Kp), and date of the campaign using the USU all-sky CCD 

cameras. Figure 3.2 shows the map of the locations of sites and the solid lines represent 

the plots for dip latitudes. White disks represent the airglow images with the field of view 

covered by the camera at 250 km altitude in respective locations. The dark bands aligned 

approximately in the north-south direction in the images are the plasma depletions 

(bubbles). These optical images have been used during minimum solar flux and magnetic 

quiet conditions from Christmas Island, Alcantara and Brasilia in Brazil, and Ascension 

Island for detail analysis of the equatorial plasma bubbles in this dissertation work. 
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Table 3.2. USU campaigns for OI (630.0 nm) airglow emission measurements. 

Sites 
Geographic 

location 
Dip latitude 

Solar flux index 

(F10.7 cm) 

Avg. Kp 

value 

Campaign 

period 

Alcantara, 

Brazil 

2.4°S 

44.4°W 6°S 79 
<3.5 

October         

1994 

Christmas 

Island 

2.1°N 

157.4°W 2.8°N 73 
<4 

Sep-Oct 

1995 

Ascension 

Island 

7.6°S 

14.4°W 16°S 74 
<3 

Mar-Apr 

1997 

Brasilia, 

 Brazil 

14.8°S 

47.6°W 10.6°S 75 
<4 

Sep-Nov 

2005 

Cachoeira, 

Paulista, Brazil 

22.7°S 

45°W 
17.5°S 95-200  

1998-

2000 

Petrolina, 

Brazil 

9.7°S 

40.7°W 
10°S 72  

2009-

2010 

 

Figure 3.2. Map showing the locations of USU OI (630.0 nm) airglow emissions 

campaigns. White disks represent the airglow images with the field of view covered by 

the camera at 250 km altitude in respective locations. The dark bands in the images are 

the plasma bubbles. 
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3.1.3. Processing of Optical Image Data 

The fish-eye lens has the advantage of imaging the entire sky, but at the expense 

of adding geometric distortion. The image must be carefully calibrated in order to map 

pixel locations to physical positions in the sky, enabling sequential observations of 

several different airglow emissions with an interval of several minutes. The imager has a 

sensitive back-thinned solid state 1024×1024 pixels CCD array and data were 2×2 binned 

on a chip providing a spatial zenith resolution of approximately 0.5 km. Since the CCD 

camera is a linear device, it is easy to convert from pixel counts to intensity once a 

calibration has been done. It is also important to perform accurate spatial calibrations for 

mapping between pixel locations and positions along the airglow layer. Pixels away from 

zenith correspond to much larger geographic areas than the pixels near zenith do. 

Therefore, it should be noted that even small errors in the spatial calibration will 

contribute significant error in the final analysis, and so we should be careful to account 

for this.  

The stars in the images are very useful for calibration and are also good indicators 

of the quality of the images. In general, the more stars that are visible, the higher the 

image quality. However, the stars become a problem as they cause streaking when 

averaging images together or when projecting them onto a geographic grid. Figure 3.3 

(left image) is an example of a raw image with stars measured from Christmas Island on 

September 28, 1995. The raw image is calibrated with help of the star references and this 

calibrated image has been unwarped with the geographic projection onto 1500×1500 km 

grid  as shown in right  image in  Figure 3.3.   In  this case, the stars  are removed.  These  
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 processed images were then used for further detail analysis. Here, the dark bands in the 

image are plasma bubbles that are aligned along the magnetic field lines due to high 

parallel conductivity. Similarly, most bubble structures from all observation sites have 

been seen to be aligned along the magnetic north-south direction. These dark bands, the 

region of the airglow emission minima (i.e. the center of the plasma depletion), can be 

assumed to represent in time and space a value corresponding to a minimum in the 

plasma density. These dark bands are used as a reference from successive images for 

calculating the zonal drift velocities of depletion structures and their scale sizes or 

distance between adjacent structures. 

Figure 3.3.  Examples of OI (630.0 nm) airglow raw image (left side) and unwarped 

image onto 1500×1500 km geographic grid (right side). 
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3.2. Radar Techniques 

Radar techniques have been used since the dawn of the space age in the 1950s to 

study the ionosphere [Gordon, 1958]. In this study, long-term Jicamarca incoherent and 

coherent scatter radar observations from 1996 to 2008 have been used. Here, we briefly 

discuss these two radar techniques.    

 

3.2.1. Incoherent Scatter Radar 

Incoherent scatter radar (ISR) is a very powerful ground-based remote sensing 

technique that can be used to measure many ionospheric quantities including electron 

density, electron temperature, ion temperature, and line-of-sight ion flow velocity, as well 

as some of the properties and behavior of the neutral atmosphere. It can also observe both 

sides of the peak electron density region simultaneously. It has a larger antenna relative 

to the radio wavelength and hence, it produces a narrow beam and achieves far better 

resolution. As incoherent radar scatter has to work with very weak signals, it requires a 

high power transmitter, a large antenna and the most sensitive receiver and sophisticated 

data processing available. This can be observed in very powerful radars like Jicamarca 

and Arecibo.  

The physical basis of the incoherent radar technique is Thomson scattering in 

which the echo is the result of the scattering of electromagnetic energy radiated by the 

radar and reflected by electrons in the ionospheric plasma. Incoherent radars transmit a 

radar signal and receive a reflected echo from the ionosphere. ISRs‟ usually emit at a 

frequency of a few hundred MHz up to ~1200 MHz [Kelley, 1989], which is much higher 

than the peak plasma frequency. Since the frequencies used by ISR are much higher than 
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the plasma frequency, almost the entire transmitted signal passes through the ionosphere 

and out into space. Therefore, ISR can probe the ionosphere above the F-region peak. 

The transmitted signals are emitted in pulses so the distance of the echoing region 

(altitude) can be calculated from the delay time and the speed of light. However, there is 

a very small amount of the transmitted signal that gets reflected by the ionosphere and is 

received back to the radar. It is the spectrum of this received signal that contains the 

information about the ionospheric region being investigated. Overviews of this technique 

have been presented by several authors [e.g., Kelley, 1989; Hargreaves, 1995].  

Thermal backscatter level is the source of the ISR echoes often used to determine 

ionospheric parameters. This method requires a minimum plasma density in the scattering 

volume determined by the system noise, antenna size, transmitter power, integration time 

etc. For the Jicamarca radio observatory, this minimum is ~10
4
 cm

-3
. This limitation 

usually prohibits measurements at night in the altitude range below the F peak.  

The Jicamarca Radio Observatory (JRO) is in the equatorial region of the western 

hemisphere and was established in 1961 at Lima, Peru (12˚S, 76.9˚W, dip latitude ~1˚N). 

The 50 MHz incoherent scatter radar has a beam width of 7˚ with a bandwidth of ~1 

MHz. Figure 3.4 shows an example of radar echo measured by ISR from Jicamarca on 

September 14, 2005. The figure indicates three nicely developed plumes with quasi-

periodic ESF structure on its bottom. The altitudinal resolution was 25-40 km with an 

integration time of 5 min. In this dissertation work, we use extensive F-region ISR data 

from Jicamarca to investigate the relationships between spread F onset velocities and the 

prereversal drift peak velocities with variations of solar  flux on different  seasons. These  
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velocities were calculated at altitude range of ~300-400 km, where signal-to-noise ratio is 

large. 

 

3.2.2. Coherent Scatter Radar  

The radar scatters from irregularities in the medium, km, according to the 

relationship [e.g., Kelley, 1989] 

kT = ks + km,                      (3.1) 

where, kT and ks are transmitted and scattered wave, respectively. Since ks = −kT for 

backscatter, km = 2kT. Thus, the scattering wavelength is one-half the transmitted 

wavelength. 

When plasma instabilities are present in the ionosphere, the amplitude of 

fluctuations in the medium can grow to values much greater than the thermal level. If the 

wave number of these fluctuations matches the requirement in equation (3.1), then 

smaller radar systems can be used to detect these fluctuations. The Doppler spectrum in 

Figure 3.4. An example of radar echo obtained from Jicamarca incoherent scatter 

radar observation on September 14, 2005. 
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such a case is then representative of the phase velocity of the nonthermal waves rather 

than of the bulk motion and temperature of the plasma.  

Most of the plasma instabilities detected by coherent scatter radars (CSRs) 

produce waves with k vectors nearly perpendicular to the magnetic field. At the magnetic 

equator, the plane perpendicular to B includes the vertical direction. Thus, coherent 

scattering can occur at all elevations in that plane. The large antenna at Jicamarca can be 

oriented only a few degrees off vertical, but smaller steerable antennas are used to look 

obliquely east or west to study electrojet and spread F instabilities. It is easier to keep the 

beam perpendicular to B in the case of the equator. 

The CSR echoes can be observed even with relatively modest radar systems. It 

operates in the frequency range 20-50 MHz. The strong abnormal signals can appear in a 

time of less than 8 msec over regions of kilometers across. Sometimes these echoes 

persist for hours and during this time, the altitude of a particular irregularity patch will 

often increase by hundreds of kilometers. In addition, Jicamarca Unattended Long-term 

investigations of the Ionosphere and Atmosphere (JULIA) have been used for studying 

the equatorial ionosphere. JULIA is a MST/Coherent scatter radar used for studying the 

day-to-day and long-term variability of ESF, 150-km drift echoes, and neutral 

atmospheric waves.  

Figure 3.5 shows an example of radar echo (plume) measured by coherent scatter 

radar observations from Jicamarca, Peru on September 14, 2002. Initially, the echo was 

observed at early evening (~19:15 LT) and then a very tall plume was developed after ~2 

hours (at  ~21:00 LT)  that extended to altitudes  beyond 1600 km. Such types of very tall 
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 plumes were observed on solar maximum conditions, while at solar minimum condition, 

relatively short plumes occurred from Jicamarca, Peru. In our dissertation work, we have 

focused on detail analysis of coherent and incoherent radar echoes to investigate the solar 

flux and seasonal dependence of onset time and height of initial spread F and also that of 

radar plumes. 

 

3.3. Other Techniques 

Ionosondes techniques work by transmitting radar signals, usually in the 1-20 

MHz range, and receiving a returned echo at a later time. The transmitted signal reflects 

from the ionosphere at the altitude where its frequency equals the local plasma frequency. 

The ionospheric plasma density is measured as a function of altitude by varying the 

transmitted frequency, which measures densities at different altitudes. These altitudes are 

Figure 3.5. An example of coherent scatter radar echo (plume) observed from 

Jicamarca Radio Observatory. 
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estimated by using the time taken to travel by the signals. However, this technique can 

only measure plasma density at altitudes below the plasma peak density, which is usually 

the F-region peak at around 400 km altitude. This is because transmitted frequencies 

above the peak plasma frequency will pass right through the ionosphere.  

The other devices used to study the ionospheric irregularities are in situ 

measurements, such as diagnostic probes flown aboard sounding rockets and satellites. 

Common spacecraft instruments include Langmuir probes or plasma frequency probes for 

measuring the electron density. Satellite scintillation techniques are used to study 

irregularities at any given latitude and longitude sectors. Spaced-receiver techniques can 

be used to estimate remotely the drift velocity and the velocity variance of ionospheric 

motions along the ray path. Global Positioning System (GPS) techniques for studying the 

ionosphere have come to the fore within the past two decades. Traditionally, GPS studies 

of the ionosphere have focused on total electron content (TEC) measurements and the 

undisturbed ionosphere. Two GPS techniques are used to study the ionospheric 

irregularities by measuring the change in Total Electron Content (TEC) and scintillation.  

 

3.4. Comparison with Other Techniques  

The ionosondes technique can only measure plasma density at altitudes below the 

F-region peak electron density. Occasionally, the measurements are restricted in the E-

region (~100 km) because of the enhancement of electron precipitation exceeding the 

electron density of the F-region. Whereas the coherent scatter radars can measure the 

irregularities echoes up to 2000 km altitudes. Similarly, the plasma depletion can be 
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measured up to 3000 km using the OI (630.0 nm) airglow image measurements through 

the apex mapping.  

Spacecraft have the advantage over remote sensing equipment of being able to 

provide very high resolution analysis precisely in the regions of greatest interest. Their 

disadvantage is that they require a tremendous amount of support and, in the case of 

rockets, only fly for short intervals (~10 min) every few years. Low-latitude atmospheric 

satellite programs are rare by comparison, but the durations of satellite missions are much 

longer. The common spacecraft instruments, such as Langmuir probes or plasma 

frequency probes, measure the same kind of physical properties as in incoherent scatter 

radar, but ground-based and in situ data are quite different in nature. Whereas the radar 

acts like a pass band filter in wave number space and makes statistical, time-averaged 

observations, spacecraft probes make instantaneous, broadband observations along their 

trajectory. Rocket and satellite data are physically local, but spectrally non-local. Both 

spacecraft and ground-based data additionally suffer from varying degrees of ambiguity 

as to what degree where variations are spatial or temporal. For example, ground-based 

GPS diagnostics will never match radar installations for wealth of ionospheric data. 

All-sky airglow optical images taken of the OI (630 nm) ionospheric emissions 

provide a powerful technique to obtain two dimensional images of the depleted regions of 

the ionosphere associated with the radar plumes and ESF. Depletions show up as dark 

bands or regions in the all-sky images. By assuming the emissions come from a relatively 

narrow layer around 250-300 km and the depletions are elongated along the magnetic 

fields line, it is possible to map the horizontal images to an image of the depletions in the 
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(magnetic) equatorial East-West-vertical plane. The technique complements the radar 

images nicely, not only showing the large-scale morphology of the depletions, but also 

the assumed correspondence between these depletions and the small scale irregularities 

are responsible for the radar echoes [e.g., Mendillo et al., 2005; Makela, 2006, and 

references therein]. The characteristics of radar echoes can be changed drastically if the 

plasma bubble arises just passing the field of view of the radar antenna or it passes away 

from some sideway or just after the radar field of view. Since the optical imaging can be 

taken wherever and whenever one wishes, such limitations can be overcome by the 

simultaneous measurements from these techniques.   
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CHAPTER 4 

AIRGLOW OBSERVATIONS AND MODELING OF F-REGION 

DEPLETION ZONAL VELOCITIES OVER 

CHRISTMAS ISLAND
1
 

 

Abstract 

We report image measurements of plasma depletions (bubbles) in the equatorial 

F-region ionosphere over Christmas Island (2.1°N, 157.4°W, dip latitude 2.8°N) in the 

central Pacific Ocean. The observations were made during the equinox period, 

September-October 1995 using a Utah State University CCD imaging system filtered to 

observe thermospheric OI (630.0 nm) airglow emissions centered at ~280 km altitude. 

Well-defined magnetic field-aligned depletions were observed on 18 nights during the 

campaign, including strong post-midnight fossilized structures, enabling detailed 

measurements of their morphology and dynamics. The number of bubbles during each 

night was influenced by their initial onset times and their persistence. The separations 

between adjacent bubbles ranged from ~150-250 km in good agreement with results from 

Alcantara, Brazil and also with prior observations from other sites. However, 

measurements of their eastward zonal drift speeds indicated normal behavior peaking 

around 90-100 m/s prior to local midnight, with exceptionally high velocities, ~80 m/s 

during the post-midnight period that persisted until dawn. These results differ markedly 

from optical measurements at similar equatorial latitudes, but at different longitude 

                                                 
1
 A published paper: Chapagain, N. P., M. J. Taylor, and J. V. Eccles (2011), Airglow Observations and  

Modeling of F-region Depletion Zonal Velocities Over Christmas Island, J. Geophys. Res., 116, A02301, 

doi:10.1029/2010JA015958. Copyright 2011 by the American Geophysical Union. Reproduced with the 

permission of AGU (see Appendix B) 
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sectors suggesting the zonal drift velocities can have a significant longitudinal 

dependence. Model drift velocities calculated using a simple electric field model with 

winds defined by the Horizontal Wind Model (HWM-07) produced an eastward drift 

throughout the night, but their post-midnight magnitudes were much smaller than 

observed. Using a modified HWM-07 wind field, a basic nighttime trend similar to the 

Christmas Island trend was successfully obtained. 

 

  4.1. Introduction 

Optical observations of the nighttime F-region equatorial ionosphere have been 

conducted from various low-latitude sites over the past three decades to study plasma 

irregularities associated with equatorial spread F (ESF) [e.g., Weber et al., 1978; Sahai et 

al., 1981; Mendillio and Baumgardner, 1982; Meriwether et al., 1985; Taylor et al., 

1997; Santana et al., 2001; Kelley et al., 2002; Mukherjee, 2003; Makela et al., 2004]. 

These irregularities originate at or near the magnetic equator in the post-sunset 

ionosphere. As they rise up with time through the F-region ionosphere, they map along 

the magnetic field lines, thereby extending over a large region of the low-latitude 

ionosphere, greater than ±15° dip latitude [e.g., Mendillo and Tyler, 1983; Rohrbargh et 

al., 1989; Sahai et al., 1994]. These regions of deep plasma depletions are also referred to 

as equatorial plasma bubbles (EPBs). They have zonal widths of typically a few tens of 

km and extend along the magnetic field lines for hundreds to thousands of km depending 

on the peak altitude of the irregularity (bubble) development (e.g., Sobral et al., 2002), 

while their vertical heights range from a few tens of km to several hundred km [e.g., 

Labelle et al., 1997; Muralikrishna and Abdu, 2006]. When radio waves propagate 



51 
 

 

 

 

through such plasma-depleted regions, they suffer significant amplitude and phase 

distortions producing disruptions in communications and degrading the capability of GPS 

navigation systems [e.g., Basu et al., 1999].  

Studies of the structure and time evolution of large-scale airglow depletions 

measured in the thermospheric OI (630.0 nm) airglow emissions have proven to be very 

useful for investigating the onset, spatial development and dynamics of F-region plasma 

irregularities [e.g., Mendillo and Baumgardner, 1982; de Paula et al., 2002; Makela et 

al., 2004; this study]. The OI (630.0 nm) airglow emission is a well-known nighttime 

phenomenon that results when excited atomic oxygen O(
1
D) decays into its ground state 

as explained in section 2.4. The excited atomic oxygen is produced by charge exchange 

between O
+
 and O2 followed by dissociative recombination of O2

+
 in the ionospheric F-

region [e.g., Tinsley et al., 1973; Mendillo and Baumgardner, 1982]. The emission 

intensity depends on the O
+
 and O2 altitude profiles and peaks at about 250-300 km 

altitude (depending on the solar activity) in the bottomside of the F–region layer. The 

localized regions of reduced airglow emission intensity represent in time and space 

minima in the O
+
 ions (i.e. regions of low plasma density) and have been used 

successively for measuring the zonal motions of the depletions [e.g., Mendillo and 

Baumgardner, 1982; Taylor et al., 1997; de Paula et al., 2002; Martinis et al., 2003; 

Makela et al., 2004; Arruda et al., 2006].  

The equatorial F-region plasma depletion zonal velocity has proven to be an 

important parameter for modeling the electrodynamics of the equatorial ionosphere used 

for the prediction of ionospheric scintillations [e.g., Valladares et al., 2002]. The plasma 



52 
 

 

 

 

drift velocity was first described by Woodman [1972] using radar measurements at 

Jicamarca, Peru (12°S, 76.9°W). Since then, extensive studies of plasma depletion zonal 

velocities have been carried out using a variety of techniques including ground-based 

radar, thermospheric airglow, and satellite measurements [e.g., Fejer et al., 1991; Sobral 

et al., 1985, 1999; de Paula et al., 2002; Pimenta et al., 2003a; Sagawa et al., 2003; 

Terra et al., 2004; Abalde et al., 2004; Arruda et al., 2006]. All of above cited studies 

show that plasma bubbles propagate eastward during the nighttime, and rarely westward, 

under quiet magnetic conditions [e.g., Taylor et al., 1997; Abdu et al., 2003].  

At equatorial latitudes, ionospheric plasma zonal drifts are driven by the F-region 

vertical electric fields, which in turn, are generated by the E- and F-region neutral wind 

dynamos [e.g., Haerendel et al., 1992]. The background plasma zonal drift reaction to the 

neutral winds is not a local effect, but a result of the interaction of the zonal winds with 

the plasma along the flux tube. The plasma depletions embedded in the background 

ionosphere mostly develop in the nighttime ionosphere and are also due to a field-line-

integrated electrodynamics with the field-line-integrated Rayleigh-Taylor instability 

(RTI) driving the bubble development [e.g., Haerendel, 1973; Sultan, 1996]. During its 

growth, the plasma velocity within a bubble is different from the ambient background 

plasma drift velocity. However, for fully-grown, mature bubbles, the depletions move 

together with the background plasma drift as fossilized structures until the morning 

sunlight refills the depleted flux tubes due to enhanced ionization [Makela et al., 2004]. 

Several studies obtained by different techniques have reported longitudinal 

variations of EPB development and their nocturnal zonal drift velocities [e.g., Maruyama 
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and Matuura, 1984; Tsunoda, 1985; Immel et al., 2004; Makela et al., 2004; Henderson 

et al., 2005; Jensen and Fejer, 2007; Pautet et al., 2009]. Of importance for this paper are 

studies of plasma irregularities in the Pacific sector mainly using airglow measurements 

with the earliest observations in the mid -1980s [Rohrbaugh et al., 1989; Tinsley et al., 

1997]. Subsequently, Kelley et al. [2002] deployed two airglow imagers on the summit of 

Haleakala Volcano, Maui, Hawaii [20.7°N, 156.2°W] for long-term measurements of the 

low-altitude thermosphere. Simultaneous observations of equatorial depletions were 

made using an all-sky (180˚) CCD imager and a co-located narrow field [47°] imager 

pointing southward along the magnetic meridian [e.g., Kelley et al., 2003; Makela et al., 

2004]. In particular, they mapped depletions to apex heights of ~1500 km extending close 

to Christmas Island, which is at the same geographic longitude, but about 2000 km due 

south of Hawaii. Using these instruments, Yao and Makela [2007] presented further 

equatorial plasma bubble zonal drift velocity measurements during 2002-2005 from 

Hawaii, while Makela et al. [2009] recently reported on low-latitude ionospheric events 

observed from Hawaii in coordination with the 50 MHz coherent scatter radar 

measurements from Christmas Island.  

In this study, we report on detailed observations of airglow depletions in the 

equatorial F-region ionosphere from Christmas Island in the central Pacific Ocean. The 

measurements were made during the autumnal equinox period (September 1995) using an 

all-sky CCD imager filtered to observe the thermospheric OI (630.0 nm) airglow 

emission, as well as several mesospheric emissions. In Section 4.2, we present the basic 

observations and analysis of the bubble developments and their nighttime propagation. 
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Section 4.3 presents the derived zonal velocity from Christmas Island, which was found 

to be unusually high during the post-midnight period (~80 m/s) as compared with 

previous results from established sites, mainly at different geographic longitudes. The 

results are discussed in section 4.4 and the effects of background thermospheric winds on 

zonal drift velocities are also examined using the simple electric field model of Eccles 

[1998] in this section. Summary of the results are presented in Section 4.5.  

 

4.2. Observations and Data Analysis 

As part of a collaborative program with the Naval Postgraduate School, 

Monterey, CA, a Utah State University (USU) all-sky CCD airglow imager was set up 

and operated at Christmas Island, Republic of Kiritimati (2.1°N, 157.4°W, dip latitude 

2.8°N) for exploratory optical measurements of plasma bubbles in the central Pacific 

sector. The measurements were made during a limited one-month period in September-

October 1995. The imager is a well-proven field instrument fitted with a sensitive back-

thinned solid state 1024×1024 pixels CCD array and data were 2×2 binned on chip 

resulting in a zenith spatial resolution of 0.5 km. During the campaign, sequential 

observations of the thermospheric OI (630.0 nm) airglow emission, as well as the 

mesospheric near infrared (NIR) hydroxyl (OH) Meinel broadband emissions (710-930 

nm) and the OI (557.7 nm) green line emission were made using exposure times of 120 

sec, 15 sec and 90 sec, respectively. A background sky measurement was also recorded to 

discriminate between mesospheric and thermospheric structures and meteorological 

clouds. Further details of the all-sky instrument and its operational system are given in 

Taylor et al. [1995]. The main purpose of this campaign was to study the occurrence, 
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spatial characteristics, and dynamics of the ionospheric plasma bubbles and mesospheric 

gravity waves at equatorial latitudes.  

Figure 4.1 is a map of the Pacific region showing the central location of 

Christmas Island, about 2000 km due south of Hawaii. The open circle centered on 

Christmas Island represents the geographic field of view (FOV) of the all-sky imager 

(~1500 km diameter) for F-region measurements assuming a reference altitude of airglow 

emissions at 280 km appropriate for this latitude and solar minimum conditions (at 

average solar flux index F10.7 ~73). The enlarged airglow image below illustrates the 

orientation and typical structure in the F-region data recorded during this campaign. The 

dashed lines show the dip latitudes at the magnetic equator, 10°S, and 10°N. The dark 

Figure 4.1. Map showing the central Pacific location of Christmas Island (2.1°N, 

157°W), the field of view covered by the all-sky imager (circle), and an example of OI 

(630.0 nm) airglow image. The dashed lines represent the dip latitudes at the magnetic 

equator, 10°S, and 10°N.  
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bands in the image depict magnetic north-south aligned plasma bubbles appearing as a 

series of depletions in the 630.0 nm airglow emission. These data have been used to study 

morphology and dynamics of equatorial plasma depletions over Christmas Island. 

During the campaign (September 15-October 3, 1995) image measurements were 

made from dusk to dawn throughout the moon down period. OI (630.0 nm) image data 

were obtained using alternating time intervals of ~5 and ~11 minutes resulting in 

typically 34–76 images per night. The observing conditions were generally good during 

this period and plasma depletions were observed on all 18 nights, with high contrast EPB 

displays imaged on 15 of these nights. Although localized, intermittent clouds 

occasionally interfered with the time series measurements, but they did not limit our 

ability to measure the motion of the bubbles and their horizontal scale-sizes during the 

course of each night 

This data analysis method is well developed and is similar to that used by Pimenta 

et al. [2001] and is described further by Pautet et al. [2009]. This technique has been 

used on several prior occasions to investigate plasma depletions properties [e.g., Pautet, 

et al., 2009]. The images were first calibrated using the known star field to determine the 

parameters of the imager, such as its orientation and pixel scale-size. The stars were 

removed from the image sequences, which were then unwarped (to correct for the all-sky 

lens format) [e.g., Garcia et al., 1997; Pautet and Moreels, 2002], and projected onto a 

1500×1500 km uniformly spaced  geographic grid, as shown in Figure 4.2 (assuming an 

emission altitude of 280 km). The field of view of the unwarped image extends from 

about 5˚S to 9˚N latitude and 150˚-164˚W longitude. The zenith spatial resolution  was ~ 
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3 km per pixel. The horizontal scale-sizes of the structures were computed using a 

standard 2-D Fourier spectral analysis [e.g., Taylor and Garcia, 1995; Garcia et al., 

1997]. Drift speeds of individual bubbles were then determined by selecting two 

sequential images with time steps of ~16 min. Motion was measured at various positions 

along a given bubble to determine its average velocity. This procedure was repeated for 

subsequent image pairs during the course of the night to determine the mean zonal drift 

speed of the depletions as a function of local solar time. (Note, the time difference 

between Local Solar Time (LST) at Christmas Island and Universal Time (UT) is 10.5 

hours).  

Figure 4.2. An example of an unwarped OI(630.0 nm) image from Christmas Island 

projected onto a 1500×1500 km uniform geographic grid assuming altitude of airglow 

emissions at 280 km. 
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Figure 4.3 shows a time series of unwarped images of prominent F-region 

structures recorded during the night of September 28-29. The left side axis plots the 

magnetic latitude (0° and 10°N) indicated by dash-dotted lines, while the right side 

indicates geographic latitude. On this occasion, a faint broad depletion was first detected 

at 19:57 LST and over the next hour the display evolved into several magnetic north-

south aligned dark bands extending across the camera‟s FOV. Multiple bubbles were 

observed for the next ~4 hours moving eastward, as indicated by the white arrows. On 

this occasion, the early evening structures comprised new bubbles evolving in the vicinity 

of Christmas Island, as well as fully developed airglow depletions moving into the 

camera‟s FOV from the west. By 02:00 LST most of the bubbles had exited the field of 

view to the east. Thereafter, a single fossilized bubble was observed (as seen in figure at 

03:01 LST) drifting steadily eastward. Moreover, multi bubbles again enter into the field 

of view of the camera near the dawn, as shown in the last image of Figure 4.3 (at 04:41 

LST). After local midnight, the F-region structures were dominated by fossilized bubbles 

progressing steadily eastward across the camera‟s FOV. 

Figure 4.4 contains data from several nights (in all-sky format) measured during 

the campaign at the premidnight period. Nine nights of data are shown in Figure. Each 

image was taken at approximately the same time at ~23:30 LST (~10:00 UT) to compare 

bubble activity and their spatial characteristics. Although some night-to-night variability 

is evident in the number of depletions and their spatial separations, all of the images 

contain well-developed, extensive plasma bubbles aligned along the magnetic field lines 

by this time.  This situation  prevailed for  15 nights.  The  bubbles were  numerous  and  
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Figure 4.3. Sequence of unwarped all-sky OI (630.0 nm) airglow images showing 

the spatial characteristics and time evolution of ionospheric airglow structures 

associated with plasma depletion (dark bands) imaged from Christmas Island during 

the night of September 28-29, 1995, from 19:57 to 04:41 LST (07:30-15:11 UT). 

The dashed lines are magnetic latitudes at 0° and 10°N. 
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Figure 4.4. EPBs imaged over Christmas Island at the pre-midnight around 

23:30 LST (10:00 UT). Strong EPBs structures were observed on all clear sky 

nights prior to midnight. 
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exhibited the highest eastward drift speed during this period (discussed further in section 

4.3.3).  

In comparison, Figure 4.5 shows nine examples of the post-midnight EPBs 

activities imaged between 01:00 and 04:44 LST. These data contained mainly fossilized 

EPBs that appeared fully developed when they entered into the camera‟s FOV. They 

exhibited little change in their east-west dimensions as they drifted eastward and often 

persisted until dawn, which were aligned along the magnetic field lines. Together, these 

data illustrate the strong and persistent F-region activity recorded during this equinox 

period.  

 

4.3.  Results  

These high-quality image data have been used to investigate several key 

characteristics of the plasma depletions observed from Christmas Island.  

 

4.3.1. Depletion Occurrence, Onset, and  

 Duration  

Figure 4.6 top panel plots the number of plasma bubbles observed on each night 

during the campaign. A large day-to-day variation in their total number was observed 

which ranged from 1 to 14 per night. As mentioned earlier, some of the nights were 

intermittently cloudy, but this did not restrict our ability to determine the number, and 

duration of the depletions. For example, their low occurrence on UT days 262-263 and 

266 (indicated by the dashed-dotted lines) was not due to limited sky conditions.  

The middle panel presents the initial onset times of EPBs that were observed to 

grow inside the FOV of the camera (mainly to the west of Christmas Island). During most  
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Figure 4.5. EPBs imaged over Christmas Island for the post-midnight periods 

during the nine nights of the campaign. The fossilized bubble structures were 

occasionally observed until the dawn. 



63 
 

 

 

 

 

 

Figure 4.6. Top panel shows the total number of EPBs observed each night, the 

middle panel plots the onset time of the bubbles over Christmas Island, while 

the lower panel indicates their nocturnal duration. 
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of the nights, the onset time of these EPBs occurred in the early evening hour around 

19:30 to 20:30 LST, which is consistent with previous climatological results obtained 

from radar observations of ESF from Jicamarca, Peru recently reported by Chapagain et 

al. [see Chapter 7]. Note, for the first two nights and towards the end of the campaign, it 

was not possible to estimate the onset time of bubble growth due to the presence of pre-

existing bubbles drifting in from the west. For comparison, the lower panel plots the 

estimated duration of the EPB display for each night. Taken together these three plots 

show the number of bubbles observed was strongly influenced by their initial onset time 

and their persistence. The figure clearly illustrates the number of plasma bubbles was 

maximum when the EPB onset was early and their persistence period was long (~9-10 

hours). For example, on UT day 269 (September 26-27) the onset time was ~19:30 LST 

and 14 bubbles were observed during the course of the night (indicated by the solid 

vertical line). In contrast, on UT days 262-263 and 266 (indicated by the dashed-dotted 

lines), a few bubbles were observed, their onset time was ~1 hour later, and the bubbles 

persisted for a relatively short period of time, ~2-5 hours. 

 

4.3.2. Horizontal Scale-Size of the EPBs 

The magnetic field aligned bubble structures observed over Christmas Island 

(e.g., Figure 4.3) exhibited a range of zonal separations that differed during the course of 

a night, and from night-to-night. Similar morphology structures were observed by the 

USU camera a year earlier from Alcantara, Brazil (2.3°S, 44.4°W, and dip latitude 6.7°S) 

during the NASA-INPE Guara Campaign [Taylor et al., 1997]. Figure 4.7 plots the 

distribution of the zonal distance between adjacent EPBs observed during the campaign. 
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The separations ranged from as little as several km up to 550 km, but were most 

frequently spaced 100-250 km apart. (Note, the minimum separation between the bubble 

structures reported in this plot was 25 km.) For comparison, the results from Alcantara, 

Brazil (October 1994) under similar solar minimum conditions were also plotted. The 

Brazilian observations were more limited by clouds, but both data sets revealed similar 

dominant scale-sizes for their zonal separations, ranging from ~150-250 km over 

Christmas Island (42% of events), and ~100-200 km over Alcantara (~52% of events). 

The Christmas Island results are closely consistent with the distances between two 

consecutive bubble structures observed under similar solar flux conditions from Brazil. 

The detail observations from the Brazilian site will be discussed in Chapter 6. This 

Figure 4.7. Histogram plots of the distance between two consecutive plasma 

bubbles observed over Christmas Island and Alcantara, Brazil. 
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spacing between the consecutive bubbles is a long observed feature of large plasma 

bubble development [Whitehead, 1971; Kelley et al., 1981] and is evidence of the 

suggested required structuring of the sunset F-region for Rayleigh-Taylor  instability for 

plasma bubble to develop [Tsunoda, 2008].   

 

4.3.3. Overview of Bubble Evolution  

 and Propagation  

Figure 4.8 shows two keogram plots summarizing the evolution, development, 

and propagation of EPBs observed on two nights (18-19 and 28-29 September) during the 

campaign. In each plot, the curved band in the bottom left is due to the passage of Milky 

Way (which was not fully removed during the image processing), while the horizontal 

dashed line indicates the zenith. The plots were made by taking a horizontal (west-east) 

slice passing through the zenith of each unwarped image. The data were then spliced 

together to create a time series showing the zonal development of the depletions observed 

on both of these nights. Although keogram plots lose much of the two-dimensional 

spatial information present in the original images, they provide an important overview of 

depletion activity during the night. The dark bands progressing in time from the bottom 

left to the top right (i.e. from west to east) show the onset and subsequent motion of 

several depletions, as indicated by the arrows. The near-linear slopes of these bands, 

which give the depletion zonal drift velocity in the geographic frame, indicate that they 

were moving with almost constant, but different magnitude of velocities, on these two 

occasions. 
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On September 18-19, the first two bubbles appeared to develop within the 

camera‟s FOV prior to ~20:30 LST; subsequently, other already well-developed bubbles 

entered into the FOV. The slopes of all of the bubble paths are linear indicating almost 

constant zonal velocity of ~70-80 m/s throughout the night. Around local solar midnight, 

the leading bubble exited the camera‟s FOV, while subsequent bubbles began to fade. On 

September 28-29, a similar situation occurred, and multiple structures were observed to 

evolve inside the FOV, but somewhat later, around 22:00 LST. These depletions then 

moved steadily eastward with a higher constant velocity (~90-110 m/s), and persisted 

longer, at least until ~02:00 LST when they exited the camera‟s FOV to the east. A single 

isolated bubble was also observed during the post-midnight period until dawn, again 

moving steadily eastward but with a slightly lower velocity (~60 m/s). Similar trends for 

Figure 4.8.  Example of keogram plots summarizing the west-east (zonal) evolution 

of depletions observed on two occasions from Christmas Island. The arrows show the 

direction of motion of the plasma bubbles (dark bands), while their slopes indicate 

almost constant zonal velocities during the nights.  
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the bubble motions were observed during most of the nights from Christmas Island, as 

described below.  

 

4.3.4. EPB Zonal Velocity  

The zonal velocities of the individual plasma bubble as a function of LST were 

measured on 17 near-consecutive nights. As described in Section 4.2, the unwarped 

images were used to determine an average drift velocity for each depletion structure. To 

calculate the bubble velocity, the displacement of an individual structure was measured 

from two consecutive images. The speeds were then estimated by dividing the average 

distance between the structures by the corresponding time interval. The drift velocities 

were usually calculated from bubbles as they moved through the zenith sky. However, 

these data were often supplemented by measurements of bubbles closer to the edges of 

the camera‟s FOV and were adjusted to the same LST. 

Figure 4.9 plots the derived zonal velocity of several consecutive EPBs as a 

function of local solar time for the night of September 28-29. The OI image at 23:51 LST 

shows example of bubble structures (numbered 1-7), but several other bubbles were also 

measured during the night to determine the EPB motion. The drift velocity of each 

bubble overlaps very well. The average velocity indicated by the bold line peaked at 

~115 m/s around 23:00 LST and then decreases over the next ~2 hours down to ~60 m/s, 

and thereafter remained approximately constant until at dawn ~04:45 LST. 

Using the above procedure, Figure 4.10 shows the average EPB zonal velocities 

as a function of LST for 16 nights during the campaign. Due to limitations in the camera 

operation caused by moonlight, the measurements were restricted to evening time during 
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the first part of the campaign and the post-midnight during the latter part on the 

campaign. However, it is clear from this figure that good measurements were obtained 

during most of the campaign period. The gaps in the drift velocity data on September 15-

16, 18-19, 20-21 and 24-25 were due to clouds, while on September 21-22, 29-30 and 

September 30-October 1, they were caused by strong fading of the bubbles. The vertical 

bars on each plot represent one standard deviation in the measurement uncertainty at that 

time.  

To examine the influence of the magnetic activity on zonal drift velocity during 

the campaign, we checked the average  values of three hourly geomagnetic indexes <Kp>  

Figure 4.9. EPBs drift velocities for several consecutive bubbles during the night 

of September 28-29. Examples of bubble numbers (1, 2, 3, 4, 5…. etc.) are also 

shown in the OI image at 23:51 LST. The bold line represents the averaged 

velocity of all bubbles.  
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over a nine-hour period (13:30-22:30 LST) and are given in each plot. This interval 

includes six hours prior to local sunset during which ESF onset may be influenced by 

geomagnetic storms. However, the geomagnetic activity was quiet with minor activity (< 

3) except September 15 and 28 when <Kp> was slightly larger than 3 and no significant 

difference in EPB activity was evident. This result was to be expected as geomagnetic 

storms during solar minimum condition, are known not to significantly affect zonal drift 

velocities; however, the storms prior to sunset may still inhibit the onset of ESF [e.g. 

Fejer et al., 2005].  

Figure 4.10 reveals a significant night-to-night variability in the derived EPB drift 

velocities. On several nights, they generally increase in early evening hours, peaking 

around 22:00-23:00 LST (velocities >100 m/s). The velocities then decrease to a 

minimum around local solar midnight and then increase slightly in magnitude in the early 

morning hours. On the other hand, some nights (e.g., September 22-23) exhibit very little 

change in the magnitude of the velocity, which remains relatively high throughout the 

night. Figure 4.10 also shows low eastward velocity of ~7 m/s, and westward motion of 

~20 m/s in the early evening hours on September 26-27, and September 24-25, 

respectively.  

 Figure 4.11 summarizes the average bubble zonal velocities (during 17 nights) as 

a function of LST. While the individual plots show significant night-to-night variability 

in the derived depletion drift velocities, the data ensemble show good temporal coverage 

(from ~19:00 to 05:00 LST) during the campaign, with a clear nocturnal signature. This 

is indicated by the bold curve, which plots the average velocity of all measurements,  
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Figure 4.10. The average EPBs velocities calculated from two successive images 

for time binned at ~16 minutes during 16 nights, assuming a reference altitude of 

airglow emissions at 280 km. Kp index represents average geomagnetic activity 

during nine-hour period.  
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 while the vertical bars indicate their standard deviations from this mean. Limited 

observations (only for two nights) shortly after dusk (~19:00 LST) revealed very low 

drifts reversing from west to eastward. By 20:30 LST, multiple observations show that 

the average zonal velocity then increased rapidly during the early evening hours and 

peaked around 21:30-23:00 LST with a mean value ~90 m/s (with individual velocities 

up to 125 m/s). The average drift velocity then decreased slightly to ~80 m/s by midnight 

LST and thereafter remained approximately constant over the next ~5 hours until dawn. 

In general, the average premidnight velocity results agree well with previous ground-

based measurements in equatorial regions under similar solar minimum conditions [e.g., 

Figure 4.11. Superposition of EPB velocities for all 17 nights of campaign. Bold data 

points represent averaged velocity, and the vertical bars are the standard deviations 

from the mean.  
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Fejer et al., 1991; Taylor et al., 1997; Valladares et al., 2002; de Paula et al., 2002; 

Martinis et al., 2003]; however, the post-midnight velocities were significantly higher. 

Figure 4.12 divides the data of Figure 4.11 into two different groups based on the 

nocturnal evolution of the bubble velocities. The top panel (a) comprises nine nights of 

data sets that exhibited a premidnight peak in velocity, while the bottom panel (b) 

Figure 4.12. (a) Combined EPB velocity plots exhibiting a premidnight peak, and 

(b) superposition of velocity plots that remained nearly constant throughout the 

night. The bold lines represent the average velocity. 
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contains six nights of data where no peak was detected and instead the drift velocity 

remained almost constant throughout the night (from 20:30 to 04:30 LST) with a high 

mean value of ~90 m/s indicated by the bold line that illustrate the unusual nature of the 

post-midnight drift velocity. (Note, the two nights of anomalously low and westward 

motion in early evening are not included in these plots.)  In Figure 4.12a the velocity 

variations were large, ranging from ~40 to 125 m/s, while in Figure 4.12b there were 

more restricted to ~75-110 m/s.  

 

4.4. Discussion 

 

4.4.1. Characteristics in the Christmas  

 Island Airglow Structures 

The depletions observed from Christmas Island are clearly similar to OI (630.0 

nm) thermospheric observations from other sites at equatorial and low latitudes. Their 

magnetic meridian alignment, sharp east-west gradients in the airglow structure and 

spacing of the dark bands strongly suggest they are the airglow signature of the medium-

scale field-aligned plasma bubbles generated by the R-T instability. Studies of ESF 

irregularities using Atmospheric Explorer E (AE-E) plasma density measurements 

reported the irregularities have the form of sharp quasi-periodic depletions [e.g., Tsunoda 

et al., 1982; Hysell and Kelley, 1997]. Abalde et al. [2001] presented the fine structure of 

the quasi field aligned ionospheric plasma bubbles using the OI 777.4 nm emission image 

measurements. Since the Christmas Island observations were from close to the dip 

equator, the results only show the airglow structure of the bottomside F-region 

modulations in the plasma depletions. Therefore, these data cannot demonstrate these F-
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region plasma bubble structures penetrated to the topside ionosphere, though they likely 

did. Particularly in the early evening, some structures may only have been bottomside 

modulations, yet to grow into topside bubbles.  

Most of the nights, the depletions were developed inside the FOV of the camera 

during early evening and then drifted eastward. They were seen close to 19:30 LST (one 

hour after ground level local sunset) to 04:00 LST (9:30 hours after local sunset). Thus, 

these early evening plasma depletions and possible plasma bubbles have their initial 

development near Christmas Island longitude. Later in the evening airglow signatures of 

depletions forming at other longitudes drifted into the FOV as fossil depletions just as 

observed by Makela et al. [2004]. The airglow signatures of the fossil structures 

sometimes will remain until local sunrise when the sun reionizes the ionosphere. 

 

4.4.2. Longitudinal and Latitudinal  

 Characteristics of the Zonal Drifts 

 

In Figure 4.13 we compared the average depletion zonal velocities from 

Christmas Island with previous optical observations from Haleakala, Hawaii (20.7°N, 

157.2°W, dip latitude 21°N) [Yao and Makela, 2007], and Alcantara, Brazil (2.3°S, 

44.5°W, dip latitude 6.7°S) [Taylor et al., 1997], all of which were obtained under similar 

low solar flux conditions. The smooth curve plots the empirical model results derived 

from radar measurements during 1970-2003 from Jicamarca, Peru (12°S, 76.9°W, dip 

latitude 1°N), for low solar flux conditions (average F10.7 = 90) [Fejer et al., 2005]. 

Figure 4.13 shows the local time dependence of the depletion zonal velocities prior to 

midnight LST were quite similar from Christmas Island and Haleakala, which are almost 
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at the same longitude, but separated in latitude by ~20°. Furthermore, the premidnight 

Christmas Island drift velocities are consistent with the measurements from Alcantara, 

Brazil (obtained a year earlier), and the Jicamarca climatological model results with drift 

velocities peaked at ~110 m/s within the observed range of measurements reported herein 

(see Figure 4.11). However, it is clear the Christmas Island post-midnight velocities 

remained elevated in magnitude over the post-midnight drifts of the previous studies. 

The depletion zonal drift observations at Christmas Island and Alcantara, Brazil 

Figure 4.13. Comparison of the average airglow depletion zonal velocities from 

Christmas Island with previous observations (replotted) from Haleakala-Hawaii [Yao 

and Makela, 2007], Alcantara in Brazil [Taylor et al., 1997], and empirical model of 

the plasma drift velocities derived from the radar measurement (replotted) from 

Jicamarca, Peru [Fejer et al., 2005]. 
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(Figure 4.13) are both near the dip equator, but exhibited very different zonal drifts 

throughout the night. Similarly, the plasma zonal drift model from Jicamarca Radar 

observations are also at the dip equator in the American longitude sector. Alcantara and 

Jicamarca lines in Figure 4.13 show strong deceleration of the zonal drifts around local 

midnight. The differences in average zonal plasma drift of Christmas Island and the 

results from the South American sector suggest significant differences between their 

longitude sectors such as dip equator offset, declination, and neutral winds. Satellite 

studies have also reported a longitudinal dependence of zonal drifts velocities [e.g., 

Immel et al., 2004; Jensen and Fejer, 2007]. Fejer et al. [2005] also argued that 

longitudinal variations of the zonal drifts also point to a strong dependence of the evening 

vertical drift velocities with longitudes. 

 Figure 4.13 also shows the airglow depletion zonal drift velocities from 

Christmas Island were larger throughout the night than drift observed from Haleakala in 

the same longitude sector. The apex altitudes corresponding to the FOV of the imager at 

Christmas Island cover approximately from 280 to 450 km, whereas at Haleakala 

corresponds to at higher altitudes (up to ~950 km) [Yao and Makela, 2007]. The zonal 

plasma drift does vary with altitude in the early evening hours in particular, and also 

throughout the night [Eccles, 1998; Fejer et al., 2005]. Christmas Island and Haleakala 

observations may also demonstrate this latitudinal (or altitudinal) variation of the zonal 

drift velocity. Martinis et al. [2003] and Pimenta et al. [2003a] use airglow observations 

to show ion drag from equatorial ionosphere anomaly cause thermospheric neutral wind 

and therefore plasma drift velocities to have latitudinal dependence in which velocities 
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decrease with increasing latitude. This is supported by the average zonal drifts of 

Christmas Island and Haleakala, Hawaii plotted in Figure 4.13. 

However, there are several possible reasons for the differing magnitudes of the 

bubble drifts between our results and those presented in the airglow studies at other 

longitudes. For example, we have calculated the velocities at an assumed emission 

altitude of 280 km for the OI (630.0 nm) airglow images. It has been shown the velocities 

calculated at an assumed emission height of 300 km are up to 20% higher than that of 

250 km [Pimenta et al., 2003b]. This also will cause the differences in the magnitude of 

the drift velocities from other locations, but does not alter the time history during the 

course of the night. The Christmas Island result of a nearly constant elevated zonal drift 

history is strong evidence of longitudinal differences in the winds or electrodynamics 

resulting in different nighttime zonal drifts.  

 

4.4.3. Early Evening Drifts 

In the early evening, the average zonal drifts prior to 20:30 LST were 

substantially lower in magnitude from the average plasma drifts of those seen by Fejer et 

al. [2005]. These early evening drifts are from the two nights of observations (on 

September 24 and 26 in Figure 4.10). The Haleakala observations similarly show a late 

acceleration after sunset (in Figure 4.13). The zonal drift model of Fejer et al. [2005] is 

based on Jicamarca Radar drift observations of the F peak plasma. Airglow depletion 

zonal drifts are indicators of F- region bottomside drifts. The observed airglow depletion 

drifts prior to 20:30 LST might be associated with the post-sunset plasma flow vortex 

below the F-layer peak [Haerendel et al., 1992; Eccles et al., 1999; Kudeki and 
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Bhattacharyya, 1999]. The vertical rise and fall of the ionosphere near local sunset is 

accompanied by westward flow in the lower altitudes and eastward flow above. The null 

velocity of the zonal flow shear rises with the F-region [Haerendel et al., 1992]. The 

vortex flow has been reported in satellite observations [Eccles et al., 1999] and in radar 

backscatter observations [Kudeki and Bhattacharyya, 1999]. The backscatter figures in 

Kudeki and Bhattacharyya [1999] indicate the bottomside irregularities after sunset are 

embedded in the bottom of the F-region where the flow is westward (altitude <300 km). 

The early evening plasma plume signatures in the OI (630.0 nm) airglow from these two 

days of observations may have been embedded in the F-region, near the null of the shear 

in the zonal plasma flow. The altitude of the drift shear began to descend with the 

ionosphere around 19:30 LST. This descent of the F-region, the shear, and the embedded 

plasma structures is seen in Plate 2 of Kudeki and Bhattacharyya [1999]. The descent of 

the shear should eventually embed the airglow structures in the eastward drifting plasma.  

Martinis et al. [2003] investigated the dependence of the zonal airglow depletion 

drifts with latitude and found the early post-sunset zonal drifts near the magnetic equator 

are influenced by the E-layer dynamo, while the equatorial anomaly region zonal drifts 

are dominated by the F-layer dynamo. These results agree with our interpretation of the 

early evening drift discrepancy of the Christmas Island observations and the Fejer et al. 

[1991] F-region zonal drifts.  

 

4.4.4. Plasma Drift Modeling 

These results are now compared with a physics-based model of low-latitude drifts 

using field-line-integrated electrodynamics. The zonal drift of F-region plasma during 
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magnetically quiet periods is nearly equal to the conductivity-weighted neutral wind 

integrated along the magnetic field line   

   



V U

P 
PusAdl
PBdl   

where V is the zonal plasma drift, U
P
 is the field-line-integrated conductivity-weighted 

neutral wind, σP is the local Pedersen conductivity, us is the local zonal neutral wind, A 

and B are geometry factors, and dl is the differential along the field line [Haerendel et al., 

1992; Eccles, 1998]. 

The Eccles Simple Electric Field model [Eccles, 1998] (hereafter referred to as 

ESEF) is a simplified electric field model that combines a specification of the ionosphere, 

thermosphere density, and thermospheric winds in a single magnetic meridian to produce 

the low-latitude F-region electric fields using field-line-integrated quantities [Haerendel 

et al., 1992; Eccles, 1998]. The ESEF model provides field-line-integrated conductivities 

and plasma drifts for apex altitudes from 200 to ~1000 km, based on underlying 

empirical models. The ESEF results have been tested against the fully global electric field 

model with nearly identical results for F-region plasma drifts. This simple model can be 

run in minutes on a single CPU computer by focusing on a single sector rather than 

solving the entire globe. This allows us to investigate the effects of F-region winds on the 

observed electric fields. 

For this study we have used the International Reference Ionosphere (IRI) [Bilitza 

and Reinisch, 2008], the MSIS-90 model atmosphere [Hedin, 1991], and several 

Horizontal Wind Model (HWM) versions. The neutral wind model is of key importance 

(4.1) , 
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to the electric field calculation. The HWM90 [Hedin et al., 1991] and HWM93 [Hedin et 

al., 1996] versions were both used for the zonal drift calculations, but they proved to give 

nearly identical results. Only the HWM93 results are presented here. The new HWM 

2007 version [Drob et al., 2008] was also used in this study. Figure 4.14 presents the 

model results for the prevailing conditions of the Christmas Island observations (solid 

line with symbols). The two dashed lines show the computed zonal plasma drifts from the 

ESEF model using the HWM models without modification. The HWM93 data (long 

dash) provides neutral winds that drive strong eastward (positive) plasma drift early in 

the evening, but the rapid drop to very low drift values around midnight LST is not 

representative of our measurements. In contrast, the HWM07 data (short dash) maintains 

an eastward drift throughout the night, but the magnitude of the drift velocities is much 

smaller than observed.  

The HWM07 winds should be appropriate for the solar minimum conditions of 

observations, but this study suggests that the magnitude of the zonal neutral winds are too 

small by half when the ESEF model drifts are compared to the Christmas Island plasma 

drift observations. As a simple experiment we have modified the HWM07 winds using a 

least-square minimization between the model and the averaged drift velocity data. It was 

assumed the form of the HWM07 winds in local, altitude, and latitude remained the 

same. The zonal winds (us) and northward wind (un) were multiplied by a factor and a 

constant offset was added to the scaled zonal component so 

    



us
*ausb‟                                                                                           (4.2) 

          



un
*
 aun  ,

                     (4.3) 
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where us and un are the winds provided directly from the HWM07 model and us* and un* 

are the modified winds. The coefficients, a and b, are constants. Only the eastward wind 

was given an offset as an average super rotation adjustment to the zonal wind. The solid 

line in Figure 4.14 plots the results of the zonal plasma drifts derived from the ESEF 

using the optimally modified HWM07. A reasonable choice for the values of the 

coefficients were a = 1.5 and b = 10 m/s so the model results derived with change in 

magnitude of the zonal wind of the HWM07 now show good overall agreement with the 

Christmas Island observations except on the evening and morning reversal drifts. The 

values were determined by running various values for a and b, then calculating the 

Figure 4.14.  Average zonal drifts at 280 km above Christmas Island for equinox 

of 1995 comparing average observations with the ESEF model results using 

various wind models. 
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electric fields.  The values above provided the smallest RMS error for modeled values of 

the zonal drifts compared to the Christmas Island nighttime drifts and the Fejer zonal 

drifts in the daytime. Wind motion from HWM07 does not give the accurate value on the 

time of the evening and morning reversal times. The magnitude of the wind motion is 

typically small and so we amplify its magnitude to match the drift model drift velocity. 

 Figure 4.15 investigates the effects of longitudinal variations in the HWM07 

equatorial winds and the IGRF magnetic field on the resulting zonal plasma drifts. We 

model three longitude sectors: Christmas Island (200˚E), Peru (285˚E), and Brazil 

(320˚E). The resulting zonal drifts demonstrate that the HWM07 winds provide a basic 

nighttime trend similar to Christmas Island, but other longitude results do not differ 

significantly from the Christmas Island results even though the magnetic field declination 

Figure 4.15. Plot of the ESEF results for three longitude sectors at Christmas Island 

(200˚E), Peru (285˚E), and Brazil (320˚E). 
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and dip equator latitude have large differences between these longitude sectors. At all 

longitudes the HWM07 does provide for an eastward plasma drift throughout most of the 

night; however, all ESEF model results indicated an earlier evening reversal in the zonal 

drift from westward to eastward than observed in the data from Christmas Island in the 

early evening. This early evening reversal is also true of the zonal drift averages of Fejer 

et al. [2005] (see Figure 4.13). The late evening reversal at Christmas Island is a puzzle, 

though there are only two night observations data of zonal drift velocities in the early 

evening local time averages. The discrepancy is most likely caused by the plasma vortex 

motion of the bottomside F-region plasma just after sunset [Haerendel et al., 1992; 

Eccles et al., 1999; Kudeki and Bhattacharyya, 1999] as discussed in section 4.4.3. 

 

 4.5. Summary 

 We have presented the observations of airglow depletions from Christmas Island 

using all-sky images of the thermospheric OI (630.0 nm) airglow emissions. The 

magnetic field-aligned depletions were most likely associated with the development of 

EPBs and were observed on every night of the campaign. The depletions mostly 

developed during ~19:30-20:00 LST over Christmas Island closely consistent with 

previous climatological results from Jicamarca radar observations of ESF recently 

reported by Chapagain et al. [see Chapter 7]. It illustrates the active growth region of 

depletion was close to the west edge of the camera‟s FOV suggesting they were seeded to 

the west of Christmas Island. On several occasions, magnetic field aligned post-midnight 

fossilized bubble structures were seen. The number of depletions was well correlated 

with their initial onset times and their persistence. The spacing between structures ranged 
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mostly from ~150 to 250 km, which is similar to the equatorial observation from other 

longitudes.  

Measurements of EPBs drift velocities from Christmas Island were eastward and 

exhibited significant day-to-day variations in their magnitudes. The average velocity 

peaked around 90-100 m/s approximately two hours after local sunset and remained at a 

nearly constant high value ~80 m/s during the post-midnight period until dawn. This 

post-midnight elevated eastward drift differs significantly from prior observations at 

other longitudes.  

The ESEF drift model was used to investigate the zonal plasma drifts over 

Christmas Island using wind fields from existing empirical models (HWM-93 and HWM-

07). The model results from the HWM07 wind model produced an eastward drift 

throughout the night, but their post-midnight magnitudes were much smaller than 

observed from Christmas Island. Using a modified HWM-07 wind field, a basic night- 

time trend similar to the Christmas Island was successfully obtained.  

The apparent longitudinal dependence of equatorial depletions drift velocities is 

clearly of interest. Future studies using multiple stations at closely spaced longitudes (as 

recently conducted from equatorial Brazil) together with satellite observations such as 

those of currently being made by the US Air Force Communication/Navigation Outage 

Forecasting System (C/NOFS) satellite will provide crucial data for understanding the 

longitudinal variability.   
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CHAPTER 5 

EQUATORIAL PLASMA BUBBLE ZONAL VELOCITY  

FROM ASCENSION ISLAND  

 

Abstract 

We use OI (630.0 nm) airglow images data from Ascension Island (7.9°S, 

14.4°W, dip latitude 16°S) in the South Atlantic Ocean measured by the USU all-sky 

CCD camera during March 20-April 7, 1997. Airglow depletions are observed only 7 out 

of 17 nights of measurements due to the intermittently cloudy sky during the campaign. 

The bubbles onsets occur in early evening hours and propagate eastward as night 

progresses. We examine the EPB zonal drift velocity characteristics. They exhibit 

noticeable day-to-day variations with the average of ~90-120 m/s eastward prior to local 

midnight and then they decrease around midnight and post-midnight period in good 

accord with previous observations from other near-equatorial sites. However, around 

local midnight on April 4-5, an unusual shear motion (up to 55 m/s) of the plasma bubble 

is seen with a reversal to westward at low latitude and eastward at higher ones. 

Consequently, the bubble rotates counterclockwise and tilts eastward significantly out of 

the magnetic field lines. The westward reversal of the drift motion probably results from 

a reversal in the F-region dynamo or from a large increase in the altitude of the shear in 

the nighttime F-region plasma drift.  

5.1. Introduction 

The basic characteristics of zonal plasma drift at the equatorial F-region have 

been presented by Woodman [1972] and Fejer et al. [1985, 1991] using Jicamarca radar 
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observations. They reported a typical diurnal cycle of zonal drifts of plasma that consists 

of westward drifts of as much as 50 m/s during the day and eastward drifts up to 120 m/s 

at night near solar minimum conditions resulting in a net super rotation. Coley and Heelis 

[1989] noted the average ion super-rotation velocity is greater than that for the neutral 

wind due to the difference between the ion and neutral wind velocities during the 

daytime. They further showed the local time variation of the altitude profile of the zonal 

drift indicates the E-region dynamo dominates the topside ion drift during the daytime, 

while the F-region dynamo dominates during the nighttime ion drifts and acts as the 

source of the electric fields driving the ion drift at low latitudes. 

The post-sunset bottomside equatorial ionosphere is known to exhibit strong 

vertical shear in the horizontal flow at all longitudes, with plasma near the F-peak drifting 

rapidly eastward, while plasma at lower altitudes drifts slowly westward [e.g., Kudeki et 

al., 1981; Eccles et al., 1999]. Shear flow precedes sunset and can persist for hours 

afterwards [e.g., Kudeki and Bhattacharyya, 1999; Hysell et al., 2005]. Electric field 

studies show the drift is usually eastward throughout the night at 200-600 km, reversing 

to westward near 06:00 LT [e.g., Fejer et al., 1991], although reversing time depend on 

seasons, geomagnetic activity, and solar flux conditions. However, we observe latitudinal 

(or apex altitudinal) shear velocity of the bubble structures around midnight and post-

midnight period from Ascension Island in the South Atlantic Ocean measured by the 

USU all-sky CCD camera during geomagnetic quiet and solar minimum conditions.  

Mendillo and Baumgardner [1982] presented the optical image results of zonal 

drift velocities from Ascension Island during January-February 1981 at high solar flux 
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conditions. They reported airglow depletions occurred most often during 20:30-23:30 LT 

and drifted to the east with speeds that decreased from about 190 m/s at 21:00 LT to 80 

m/s at 01:00 LT. They further noted several cases of apparently twisting, overlapping, 

and bifurcating depletions structures. Basu et al. [1999] studied a comparison of total 

electron content (TEC) fluctuations and scintillations at Ascension Island using GPS 

satellites during February-April, 1998. However, ground-based measurement of plasma 

depletions has not been reported in the Atlantic region during solar minimum condition. 

In this Chapter, we present the plasma bubble optical signatures and the nocturnal 

zonal drift velocity from Ascension Island (7.9°S, 14.4°W, dip latitude 16°S) using USU 

OI (630.0 nm) airglow emissions measurements near solar minimum conditions. The 

Ascension results are compared with similar observations from Christmas Island at a 

longitudinal separation of ~143° to illustrate the longitudinal variations of the bubble 

development and propagation. In addition, we report unusual shear motion of the bubble 

structure observed during night of April 4-5, 1997. The bubble velocities are also 

compared with neutral wind velocities computed from the Horizontal Wind Model 1993 

(HWM93). 

 

5.2. Observations  

The USU all-sky CCD camera was operated at Ascension Island during 17 nights 

from March 20 to April 7, 1997 for the optical measurements of the ionospheric plasma 

depletions in the South Atlantic region. The measurement periods were often restricted 

during the nighttime due to the variable weather conditions and also the moon rising in 

the early morning hours. Therefore, the camera was often operated from early evening to 
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~02:00 LST. The time intervals between consecutive images were ~4-7 minutes typically 

resulting in 14-73 images per night. The measurements showed the plasma depletion 

structures were observed only on 7 out of 17 nights of the campaign due to interference 

of the intermittent cloud with the time series of the measurements. In several cases, the 

bubble structures were observed to be overlapped and bifurcated similar to the previous 

study reported by Mendillo and Baumgardner [1982] from Ascension Island.  

Figure 5.1 shows a map of the location of Ascension Island in the South Atlantic 

Ocean, between South America and Africa. The dashed lines represent the dip latitudes at 

10°S, 20°S, and 30°S. The open circle around Ascension Island represents the geographic 

FOV covered by the all-sky imager at assumed emission altitude of 250 km that covers 

the region around 10°S-24°S magnetic latitudes. An example of enlarged all-sky airglow 

image recorded from Ascension Island on March 27, 1997 shows the orientation of the 

plasma bubbles and typical structures observed in the airglow measurements. The wide 

dark band in the image depict the magnetic north-south aligned plasma bubble seen as the 

plasma depletion in the OI (630.0 nm) airglow emissions.  

The all-sky images were preprocessed as explained in a previous section before 

they were analyzed. Each image was unwarped onto a 1500x1500 km uniform spaced 

geographic grid assuming an airglow emission altitude at 250 km. Depletion velocity was 

estimated by employing 2-D Fourier transform techniques [Taylor and Garcia, 1995;  

Garcia et al., 1997] selecting pairs of consecutive images for the time binned of ~12 

minutes. The motion of each bubble was measured along the various positions of its 
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structure. This procedure was repeated for subsequent image pairs to determine the 

average drift velocity of the bubble during the course of each night as a function of local 

solar time (LST). The difference between LST at Ascension Island and Universal Time 

(UT) is 56 minutes. 

 

 5.3. Results  

 The image data from the selective days of the campaign from Ascension Island 

have been used to investigate the key characteristics of the ionospheric plasma 

depletions. 

Figure 5.1. Map showing the location of Ascension Island, the field of view covered 

by the imager represented by the open circle assuming an emission height at 250 km, 

and an example of an enlarged OI (630.0 nm) airglow image. 
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5.3.1. Onset, Evolution, and Propagation  

 of Plasma Bubbles 

  Figure 5.2 shows the initial onset times of EPBs observed inside the FOV of the 

camera measured by the airglow depletion signatures from Ascension Island. Since most 

of the nights were cloudy, we were able to calculate the onset times only 7 nights of the 

campaign. During most of the nights the depletions onset occurred in the early evening 

hour at ~19:15-20:00 LST to the west region of FOV of the camera. This result is nearly 

consistent with the observations from Christmas Island (as discussed in Chapter 4) and 

onset times of initial ESF obtained from climatological study of Jicamarca radar 

observations reported and discussed by Chapagain et al. [see Chapter 7].  

 Figure 5.3 shows the sequence of unwarped OI (630.0 nm) airglow images 

measured from Ascension Island during the night of April 4-5 from 20:00 to 02:00 LST. 

The figure clearly illustrates the spatial characteristics and the time evolution of the 

bubble structures. The left side y-axis plots the magnetic latitudes at 10˚S and 20˚S while 
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Figure 5.2.  Onset times of ESF (plasma bubbles) above Ascension Island 

obtained from optical images from different days during the campaign. 
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the right side represents geographic latitude. The depletion structure initially appeared at 

the north-west region of the image at ~20:00 LST and then developed into a strong and 

matured structure over the next hour (after ~21:26 LST). They were aligned along the 

magnetic field lines (almost perpendicular to the magnetic latitude) and propagated 

eastward, as shown by the white arrows. During the post-midnight period, the bubble 

extended to the higher latitude beyond 20˚S dip latitude. However, the motion of the top 

part of the bubble structures reversed in a westward direction while the middle and 

bottom parts were continuously moving eastward after ~00:17 LST. Consequently, the 

bubbles rotated counterclockwise exhibiting the eastward tilt contrary to the westward tilt 

as is well-known in the literature. Regrettably, no observations data were available after 

02:00 LST. 

 Figure 5.4 shows the keogram plot of the OI (630.0 nm) airglow emissions in 

west-east direction (positive eastward) from Ascension Island (top) on April 4-5, 1997, 

and compared with Christmas Island result (bottom) on September 28-29, 1995. Both 

measurements were carried  out under  similar low solar  flux conditions  using  the same 

USU CCD camera. These plots compare the equatorial spread F activity observed in the 

OI (630.0 nm) airglow emissions from Ascension Island and Christmas Island. The 

dashed lines in the plots demarcate the central rows and columns used for creating the 

keogram. The figures illustrate that several bubbles (represented by dark bands) were 

evolved inside the FOV of the camera and propagated eastward as indicated by arrows 

with different magnitudes of the velocities as shown by the slopes. The slopes of the 

bubble paths from Ascension Island around midnight and the post midnight period show 



93 
 

 

 

 

  

Figure 5.3. Sequences of all-sky unwarped OI (630.0 nm) airglow images showing 

spatial characteristics and the time evolution of ionospheric plasma bubbles over 

Ascension Island during 20:00- 02:00 LST on April 4-5, 1997. The images have been 

projected onto 1500×1500 km geographic grid at an assumed altitude of 250 km.  
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Figure 5.4. Keogram plots of the nighttime OI (630.0 nm) airglow emissions in 

west-east (positive eastward) direction from Ascension Island (top) and 

Christmas Island (bottom). The dark bands represent plasma bubbles and arrows 

indicate their direction of motions. 
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they were moving with smaller drift velocities, while the bubble paths from Christmas 

Island were nearly linear with large slope values, which illustrates they were moving with 

high and steady velocities during the course of the night. 

 

5.3.2. Plasma Bubble Zonal Velocity  

 The nocturnal plasma bubble zonal velocities were calculated using the embedded 

depletion structures (bubbles) visible in OI (630.0 nm) airglow images. The method used 

to estimate the velocity was discussed in detail in Chapter 4. Figure 5.5 displays the 

average plasma bubble velocities as a function of local solar time during six nights of 

campaign, considering a reference altitude of airglow emissions at 250 km. The 

measurements were restricted from early evening to prior to 02:00 LST due to the 

limitation in the camera operations caused by moonlight in the early morning hours (after 

~02:00 LST). In Figure 5.5, the vertical bars on each plot are the standard deviation in the 

measurement uncertainty from the mean. The missing data points in the figure are mainly 

due to the interference from clouds. The average solar flux index (F10.7 cm) during the 

measurements periods was 75. The average value of <Kp> in each plot represents the 

three hourly geomagnetic activity index averaged over 9-hour period (13:30-22:30 LST) 

prior to about six hours of the local sunset during which ESF onset may be affected by 

the geomagnetic activity. However, all days were magnetically quiet with minor activity 

(Kp  < 3 except on March 29-30). 

Figure 5.5 illustrates the significant day-to-day variability in the bubble zonal drift 

velocities. The velocities generally increased during the early evening periods, peaked at 

~21:00-22:00 LST, and decreased around and after the local midnight (except on March 
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27-28, where, the velocity decreased steadily). However, on March 20-21, 29-30, and 

March 30-April 1, the data were limited due to a cloudy sky during the campaigns. On 

April 4-5, the average velocity decreased to a very small value (~8 m/s) during post-

midnight with large variations in the bubble velocities, as shown by the plots of the 

standard deviations. On April 5-6, the bubble velocity rapidly decreased to ~10 m/s prior 

to 22:45 LST and then the bubble faded out. 

Figure 5.6 summarizes the plasma bubble zonal velocities during seven nights of 

the campaign. The line plots the average velocity of all data sets as a function of local 

solar time and the vertical bars are the standard deviation from the mean. The scattered 

data (also from large values of standard deviations) particularly during the pre-midnight 

period indicate large day-to-day variations in the magnitude of the bubble velocities in 

the range of ~10-125 m/s. The average velocity peaked to ~100 m/s at around 22:15 LST, 

decreased as the night progressed, and became minimum to ~10 m/s at ~02:00 LST. 

To put our results into context with other measurements under similar low solar 

flux conditions, Figure 5.7 compares the average EPBs zonal velocities from Ascension 

Island with other results from Christmas Island, previous optical observations from 

Alcantara, Brazil (2.3°S, 44.5°W, dip latitude 1.3°S) [Taylor et al., 1997], and average 

zonal wind velocity obtained from Horizontal Wind Model-93 (HWM-93) at 250 km 

altitude over Ascension Island. The wind model velocities were calculated during the 

same time periods and days as those of the plasma bubble velocities measurements from 

Ascension Island. The Ascension result is nearly consistent with the result from 

Christmas Island during early evening hours (prior to ~22:15 LST), but largely deviated 
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  Figure 5.5. The average plasma bubble zonal velocities calculated from two 

successive images during six nights of the campaign considering a reference 

altitude of airglow emissions at 250 km.  
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Figure 5.6. Scatter plot of the plasma bubble zonal velocities over Ascension Island 

during seven nights of campaign. The solid line represents the average velocity and 

vertical bars are the standard deviation from the mean. 

 

Figure 5.7.  Comparison of the average airglow depletion zonal velocities from 

Ascension Island with Christmas Island, previous results from Alcantara, Brazil 

(re-plotted) [Taylor et al., 1997], and zonal wind velocity from HWM-93 over 

Ascension Island. 
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(5.1) 

during the post midnight period. Moreover, the Ascension result is closely consistent with 

the Alcantara result while the data during post-midnight period from Ascension Island 

were insufficient for the comparison. The observed bubble motion and wind motion from 

HWM93 have similar trends of the local time variations but the magnitude of the bubble 

drift is smaller than that of the wind velocity.  

 

5.3.3. Shear Velocity of Plasma Bubble 

 The apex altitude (Hapex) of the dipole field line that passes through the airglow 

emission layer is calculated by using the following equation [Sobral et al., 2009]: 

 

E
EE

apex R
HR

H 



2cos   

 

where RE (= 6370 km) is the radius of the Earth, HE is the airglow emissions altitude 

(~250 km), and λ is the dip latitude of the place.  

The range of apex altitudes mapped above the magnetic equator estimated using 

the above equation varies from ~500 to 1600 km within the geographic latitude (~0°S-

15°S) and longitudes (7°W-22°W) around Ascension Island. Figure 5.8 shows the apex 

altitude mapping over Ascension Island for corresponding geographic latitudes and 

longitudes covered by the FOV of the camera at 250 km altitude.  

Figure 5.9 presents the plasma bubble zonal velocity as a function of local solar 

time during the night of April 4-5, 1997. The velocities v1, v2, and v3 were estimated from 

top (~0˚S-5˚S), middle (~5˚S-10˚S), and the bottom (~10˚S-14˚S) parts of the bubble 

structure from unwarped images that correspond to the apex altitudes ~500-800 km, ~800 

, 
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-1100 km, and ~1100-1400 km, respectively. Prior to ~23:30 LST, the bubble propagated 

almost with the same velocities across its latitudes, while around and after local midnight 

(~23:30-02:00 LST) they exhibited significant shear motions with velocities v1, v2, and v3 

with latitude variations (or apex altitudes) as shown in  Figure 5.9. Here velocities, v1 

corresponds to westward motion with magnitude up to 20 m/s, v2 and v3 indicate 

eastward motion of magnitudes ~10-20 m/s and ~40-50 m/s, respectively. Due to this 

shear motion, the bubble titled eastward contrary to the previous result of westward tilt 

commonly reported in the literatures [e.g., Zalesak et al., 1982; Makela, 2006]. On the 

other hand, the wind motion during the same night derived from HWM93 is eastward 

throughout the night. 

Figure 5.8. Apex mapping over Ascension Island for corresponding latitudes and 

longitudes covered by the FOV of the all-sky imager. 
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 In order to understand the difference in the behavior of bubble propagation with 

wind motion, we present a contour plot of the zonal neutral wind motion as a function of 

local solar time and latitudes within the region covered by the FOV of the camera over 

Ascension Island at 250 km altitude (see in Figure 5.10). The data were computed from 

the HWM93 on April 4-5, 1997. Figure 5.10 shows the velocity is larger during pre-

midnight, peaks at ~22:00 LST, and then decreases during the post-midnight period. The 

latitudinal gradient in the neutral winds is clearly seen, but reverses during premidnight 

and post-midnight periods. The wind exhibits eastward motion in the range of ~60-160 

m/s with a decrease from low to higher latitude, while the post-midnight wind motion 

have smaller values of about 10-60 m/s with  increasing from low to higher  latitude. Our  

Figure 5.9.  Plasma bubble shear velocity over Ascension Island on April 4-5 

illustrating latitudinal shear velocity. 
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observations during the post-midnight period also show the bubble drifts eastward at 

higher latitudes while it reverses westward at lower latitude.  

 

5.4. Discussion 

The plasma bubble zonal drift velocities from Ascension Island increase during 

early evening and peak to ~90-110 m/s at around 21:00-22:00 LST. The velocity then 

decreases around the local midnight and post midnight period in a similar trend to 

previous studies reported from a number of sites near the equatorial regions [e.g., Fejer et 

al., 1991; Taylor et al., 1997; de Paula et al., 2002; Martinis et al., 2003; Pautet et al., 

2009]. The local time dependence of the average velocities from Ascension Island and 

Figure 5.10.  Contour plot of eastward wind velocity as a function of local solar time 

and latitudes covered by the FOV of camera over Ascension Island at 250 km altitude. 

The data were derived from Horizontal Wind Model (HWM-93). 



103 
 

 

 

 

Alcantara, Brazil, are similar and follow the same trend of average wind velocity as 

shown in Figure 5.7. However, the differences in post-midnight results between 

Ascension Island and Christmas Island (see Figure 5.7) are possibly due to the latitudinal 

and longitudinal variations of the zonal drift velocities as reported by previous studies 

[e.g., Martinis et al., 2003; Immel et al., 2004; Jensen and Fejer, 2007; Pautet et al., 

2009; see also Chapter 4]. The velocity measurements from these two stations correspond 

to the different latitudes (or apex altitudes). Martinis et al. [2003] and Pimenta et al. 

[2003b] also showed ion drag from equatorial ionosphere anomaly cause thermospheric 

neutral wind and therefore, plasma drift velocities decrease with latitudes. This may be 

one of the possible reasons that cause smaller post-midnight zonal drift velocities over 

Ascension Island than from Christmas Island. 

The unusual shear motion of the plasma bubble, westward at low latitudes and 

eastward at higher latitudes, exhibits the eastward tilt of the structure as shown in Figure 

5.3, contrary to the trend of westward tilts commonly referred to the literature (e.g., 

Woodman and LaHoz, 1976; Zalesak et al., 1982; Makela, 2006). The westward reversal 

of the plasma bubble velocity at low latitude (i.e., low apex altitude) during quiet 

geomagnetic conditions probably resulted from a reversal in the F-region dynamo or from 

a large increase in the altitude of the shear in the nighttime F-region plasma drift, which 

would be caused by varying factors coupled into the equatorial F-region from the low-

latitude ionosphere. Taylor et al. [1997] have also reported the westward motion of the 

plasma bubbles from Alcantara Brazil, during the magnetically moderate condition. They 

argued the drift reversal at the lower altitude is possibly due to the altitude profile of the 
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zonal drift with a strong eastward flow at F-region altitudes and weaker westward flow 

below the F-ledge. The competing E- and F- region dynamo create the shear winds, 

which are directed oppositely near sunset [Haerendel et al., 1992]. At altitudes above F-

peak, the field-line-integrated Pedersen conductivity is dominated by F-region, so the F-

region dynamo controls the drifts. On the other hand, E-region dynamo dominates below 

the F-peak. The altitude of shear rises and falls with F-region ionosphere.  

The OI (630.0 nm) airglow layer of 250-300 km might generally lie above the 

shear so the depletions drift eastward. One might suggest the shear may have moved 

above the airglow region causing depletion to move westward during the anomalous 

westward drifts near midnight. The Ascension Island lies on the region of equatorial 

anomaly and airglow layer located in the altitude region of the west-east shear drifts, 

which probably would be the reason for the westward bubble motion. Valladares et al. 

[2002] have also reported latitudinal gradients in neutral winds could be responsible for 

the effects observed in their comparisons of equatorial zonal winds and scintillations 

drifts. Winds do indeed have latitude dependence due to ion drag forces imposed by the 

latitude structure of the equatorial ionospheric anomaly.  

Heelis et al. [1974] also modeled the height variation of the east-west drifts. Their 

results show large shears in the zonal drifts at 23:00 and 24:00 LT, with the eastward 

drifts decreasing slowly with altitude above the F-region peak, and westward drifts at the 

lower altitudes. Fejer et al. [1985] reported the average drifts decrease slightly with 

altitude above 600 km, and there is a noticeable decrease of the eastward drifts at lower 

altitudes. Huba et al. [2009] examined the effect of zonal neutral winds on the dynamics 
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and morphology of ESF using HWM93 and HWM07. They reported the dynamics and 

morphology of ESF bubbles depend strongly on the zonal neutral wind. From the 

simulation result, they showed the plasma bubble is distorted in the west-east direction 

because of the neutral wind and Pedersen conductance. For the constant neutral wind 

case, the bubble is vertical up to 600 km and then has a westward tilt. For the HWM07 

case, the bubble has an eastward tilt at low altitude (below ~500 km) and then displays a 

weak tilt to the west.  

 

5.5. Summary  

Airglow depletions from Ascension Island were observed only 7 out of 17 nights 

of the campaign due to interference of the intermittently cloudy sky during the 

measurement periods. Initially the plasma bubble onsets occurred inside the FOV of 

camera at ~19:15-20:00 LST over Ascension Island, which is close consistent with 

results from Christmas Island and Jicamarca radar observations of ESF.  

The average eastward plasma bubble velocities from Ascension Island were 

typically 90-110 m/s during premidnight and they decreased in the post-midnight period 

to ~10 m/s in good accord with observations from other near equatorial sites. However, 

on April 4-5, the latitudinal shear drift velocity was observed up to ~55 m/s after local 

midnight while exhibiting westward motion at lower latitudes (i.e., at apex altitudes 

~500-800 km) and eastward at higher latitudes (i.e. at apex altitudes ~800-1400 km). 

Consequently, the bubble rotated counterclockwise and aligned significantly off the 

magnetic meridian and tilted to the east. On the other hand, the neutral wind motion 

computed from HWM-93 were eastward throughout the night.  
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Optical data from multi-stations with overlapping FOV are needed to corroborate 

the latitudinal dependence of the plasma depletions. Simultaneous measurements of 

plasma bubble drifts and wind motions under magnetically quiet and disturbed conditions 

will lead to a better understanding of the shear velocity. As explained by Huba et al. 

[2009], the correlative study between observational data, numerical simulation and 

effects of the zonal wind would provide a more comprehensive picture of the morphology 

and dynamics of the EPBs.   
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CHAPTER 6 

SIMULTANEOUS OBSERVATIONS OF IONOSPHERIC PLASMA 

DEPLETION OVER BRAZIL DURING THE  

SPREAD F EXPERIMENT
2
 

 

Abstract  

The Spread F Experiment (SpreadFEx) campaign was conducted at several sites 

in Brazil using a variety of instruments during the moon down period from September to 

November, 2005 in support of the NASA Living with a Star program. The campaign was 

divided into two phases for two consecutive moon down periods from September 22-

October 9 (17 nights), and October 28-November 9, 2005 (18 nights). During the 

campaign, a USU all-sky CCD camera deployed at São João d‟Aliança (14.8˚S, 47.6˚W, 

dip latitude ~10.5˚S), near Brasilia, and the Brazilian all-sky CCD camera at Cariri 

(7.4˚S, 36˚W, dip latitude ~9.6˚S) simultaneously observed the evolution of the 

ionospheric plasma bubbles in the OI (630.0 nm) airglow emission and the mesospheric 

gravity wave field. The two sites were approximately the same magnetic latitude, but 

were separated in longitude by ~1500 km. Plasma bubbles were observed on almost 

every clear sky night during the campaign. The combined datasets from two sites 

provided important information for characterizing the ionospheric depletions during the 

campaign. Measurements of the drift velocities at both sites are in good agreement with 

                                                 
2
This chapter was previously published: Pautet, P.-D., M. J. Taylor, N. P. Chapagain, H. Takahashi, A. F. 

Medeiros, F. T. Sao Sabbas, and D. C. Fritts (2009), Simultaneous observations of equatorial F-region 

plasma depletions over Brazil during the spread F Experiment (SpreadFEx), Ann. Geophys., 27, 2371–

2381. Reproduced with permission from Authors (see Appendix B). 
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previous studies; however, the overlapping fields of view revealed significant differences 

in the occurrence and structure of the plasma bubbles, providing new evidence for 

localized generation. Moreover, the airglow depletion velocity is compared with 

coincidence measurements of the GPS scintillation drift on a typical day from Brasilia. 

Both airglow images and GPS scintillation measurements give consistent estimates of the 

eastward drift over the same time period.  

 

6.1. Introduction  

ESF irregularities are generated at the bottomside of the F-layer by the post-sunset 

enhancement of the electric field (PRE) caused by the influence from the F-region 

dynamo in conjunction with the conductivity gradient across the solar terminator 

[Rishbeth, 1971; Heelis et al., 1974; Batista et al., 1986; Fejer et al., 1999; Abdu, 2001]. 

It is believed ESF development depends mainly on the linear growth rate for generalized 

Rayleigh-Taylor instability process [Dungey, 1956], the flux tube integrated Pedersen 

conductivity that controls the nonlinear development, and density perturbations that are 

needed to act as a seed to trigger the instability growth. These density perturbations may 

be produced by different seeding sources such a local variations in the vertical winds, 

electric fields, and gravity waves propagating upward from the troposphere [Singh et al., 

1997; Abdu, 2001]. Kudeki et al. [2008] have also suggested the F-region zonal wind just 

after sunset plays a crucial role in controlling the structuring of bottomside F-region 

plasma and subsequent EPB development. However, the seeding sources of ESF are the 

least understood and observational evidence is limited yet.  
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The main goal of the SpreadFEx campaign was to investigate the properties of 

gravity waves at ionospheric heights and their potential role in seeding Rayleigh-Taylor 

instabilities, strong equatorial spread F, and plasma bubble development. The campaign 

was conducted in Brazil during the equinox period (September–November 2005). Several 

Brazilian and US institutes utilized a broad range of instruments, including all-sky 

imagers, digisondes, photometers, meteor/VHF radars, and GPS receivers to cover a large 

area of eastern Brazil where ESF is a common occurrence. A detailed overview of the 

SpreadFEx campaign goals and measurements is given by Fritts et al. [2009].  

 This Chapter summarizes the optical image measurements of EPBs from 

SpreadFEx campaign from two neighboring sites at Brasilia and Cariri with overlapping 

field of view. We present the plasma bubble drift velocities from Brasilia and the 

coincidence measurements from Cariri. The drift velocities of the bubble structures 

corresponding to different apex altitudes are calculated for a typical day to ensure the 

shear drift velocity with altitudes. The campaign also provided co-located GPS 

observations from Brasilia deployed by Purdue University, Indiana, to study the onset of 

plasma depletions and their evolution as they traversed the sky during the night. 

Comparisons between the OI (630.0 nm) airglow data and GPS data demonstrated the 

ability of the compact dual frequency GPS array to detect the plasma bubbles and retrieve 

reliable propagation characteristics of the depletions [Haase et al., 2011].  

 

6.2. Data Analysis 

 In this study, all-sky images of the OI (630.0 nm) airglow from a CCD camera 

were obtained at Brasilia and Cariri, Brazil, from September 22 to November 7, 2005 for 
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24 nights. Out of 24 nights, the depletions were observed during 17 nights from Brasilia 

and 19 nights from Cariri whereas other nights were cloudy and rainy. Due to local 

weather conditions, only eight of these nights were common to both sites‟ observations 

and occurred on September 24-25, 28-29, 29-30, September 30-October 1, October 1-2, 

26-27, 27-28, and November 6-7. However, good quality data sets of the depletions were 

observed only during five common nights from both stations. These data sets were used 

for comparative study between the two stations and provided important information for 

characterizing the depletions and provided the opportunity to study a unique longitudinal 

variation [Pautet et al., 2009]. For a detailed comparison of depletions visible from two 

stations, two common night observations during September 30-October 1 and October 1-

2 were analyzed. 

Figure 6.1 shows a map of Brazil with the locations of the two observation sites at 

Brasilia and Cariri in Brazil. The OI (630.0 nm) airglow unwarped images from two sites 

show the field of view covered by the two airglow imagers (1500×1500 km) assuming an 

emission height of 250 km. The dark bands on the images are the bubble structures 

aligned along the magnetic field lines. The two sites are ~1500 km apart in approximately 

the same magnetic latitude. The dashed lines in the map represent dip equator, dip 

latitudes at 10°S, and 20°S. The field of view covered by the two imagers overlapped 

each other so the plasma bubbles generated over one site can be tracked on the other site 

by the next imager continuously. This configuration was helpful for novel comparison of 

the longitudinal difference in generation, characteristics, and the evolution of the plasma 

bubbles during the nighttime. 
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The OI (630.0 nm) images have been analyzed to determine the evolution, 

structure, and propagation of the plasma bubbles and their variability during the course of 

the night. Before measuring the characteristics of plasma bubbles, the raw images were 

first preprocessed. The method of the image processing similar to the methods employed 

from other measurements as discussed in a previous chapter. The drift motions of the 

depletions were measured by selecting four consecutive images for individual bubbles 

around the zenith center of the images and then estimated the averaged velocity for the 

Figure 6.1. Map of Brazil and the all-sky imagers locations during the SpreadFEx 

campaign. The OI (630.0 nm) airglow unwarped images from Brasilia and Cariri 

represent the field of view covered by the imagers of area 1500×1500 km assuming 

an airglow emissions altitude of 250 km.  
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corresponding times. The time difference between Local Solar Time (LST) and Universal 

Time (UT) from Brasilia is 03:10 hours and from Cariri is 02:26 hours. 

 

6.3. Results and Discussion 

 The images data obtained from simultaneous measurements from two neighboring 

stations have been used to investigate the longitudinal variations of the evolution, 

development and propagation of equatorial plasma bubbles, and their zonal drift 

velocities. 

 

6.3.1. Overview of EPB Evolution, 

 Development, and Propagation 

The configuration of two cameras along the same magnetic latitudes with 

overlapped field of view allowed the comparison of the longitudinal variability of the 

plasma bubble generation, characteristics and evolution. For detail analysis, two common 

night (September 30-October 1 and October 1-2) observations from two stations were 

considered. On these nights, the all-sky image camera from Brasilia was operated in a 

higher temporal mode where sequential images of the OI (630.0 nm) structure were 

obtained every 2-4 minutes, while from Cariri, measurements were made every 4-7 

minutes. The sequential images during these common night observations from two sites 

show the following different characteristics of the plasma bubble evolution and 

development.  

 Figure 6.2 shows the sequence of the OI (630.0 nm) airglow image data collected 

half an hour from Brasilia and Cariri during the nights of September 30-October 1, 2005. 

This night was typical of the several nights of coincident image measurements. The 
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figure presents the depletion structures from two sites corresponding to the same local 

solar time. The dashed lines in the figure represent the magnetic latitudes drawn at 0˚, 

and 10˚S, as shown in the left side of the y-axis. (Note, the right y-axis represent 

geographic latitudes.) In the images, the dark bands are the plasma bubbles. The white 

arrows represent the direction of the propagation of the plasma bubbles. The 

measurements were made from early evening to early morning up to ~10 hours during 

18:52-04:36 LST (22:02-07:46 UT) from Brasilia and during 18:45-04:37 LST (21:11-

07:03 UT) from Cariri. However, the plasma depletions were observed during a couple of 

hours in the post-sunset period. A weak depletion structure first appeared at ~20:00  LST 

from Brasilia, as shown in the figure near the top region of the image and then started to 

develop the strong multi-bubble structures after ~21:00 LST. On the other hand, the 

depletion from Cariri was initially observed at ~21:00 LST, about an hour later than from 

Brasilia, and then developed into multi-structured bubbles as time progresses. The 

bubbles grew in size and numbers over the next couple of hours from initial depletion 

occurrence, which displays a broad set of bubble structures across both images. 

  The depletion structures were exhibiting extensive magnetic north-south 

alignment with similar structure pattern from both stations. They were seen to move from 

the Brasilian field of view into the Cariri one in a coherent manner. This reveals the 

bubbles generated in Brasilia, or from its west side, can propagate eastward and cross into 

the Cariri region. The direction of the propagation of the bubbles is shown by the white 

arrows in the figure. Some of the bubbles were decayed between the region of Brasilia 

and Cariri.  From both sites, the depletion  structures  started to  fade out after local mid- 
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Figure 6.2. The sequences OI (630.0 nm) airglow images from simultaneous 

measurements from Brasilia and Cariri on intervals of every half hour during 

September 30-October 1, 2005. The dashed lines represent magnetic latitudes at 0˚ 

and 10˚S (left axis) and the geographic latitudes are denoted on the right axes. 
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night and then disappeared after ~01:30 LST.  

 Figure 6.3 shows the bubble displays for the sequences of OI (630.0 nm) airglow 

images on the following night (October 1-2) at an interval of every half hour from 

Brasilia and Cariri. The image data were obtained during 19:02-05:00 LST from Brasilia 

and 19:04-04:44 LST from Cariri. The figure presents the depletion structures from two 

sites corresponding to the same local solar time. During this night, the bubbles evolutions 

were quite different from one site to the other.  

 The depletion structure was first detected from Cariri at ~19:30 LST and from 

Brasilia at ~21:00 LST, one and one-half hour later than from Cariri. When the bubbles 

were in a mature phase from Cariri (20:30 LST), no evidence of depletion was observed 

from Brasilia. At ~21:30 LST, the sky was dominated by a single bubble that appeared 

over Brasilia and evolved into the double structures that passed over the observation site 

and eventually exited the camera‟s field of view, approximately two hours later. The 

main depletion grew significantly as it moved into the field of view from west to east. At 

about 23:00 LST, the depletion was visible from both sites, and had started to slow down. 

Shortly thereafter (after about midnight), the depletion over Brasilia was fading out while 

the depletion to the east over Cariri remained evident until dawn (~04:00 LST). However, 

later at ~01:00 LST, a pair of fossilized bubbles entered the Brasílian field of view from 

the west and remained till the dawn (~05:00 LST) showing the evidence of the post-

midnight depletion structures. During this night, the initial depletion onset occurred at 

different times from these two stations. In addition, the depletion from Cariri were multi-  
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Figure 6.3. The sequences OI (630.0 nm) airglow images from simultaneous 

measurements from Brasilia and Cariri on intervals of every half hour during October 

1-2, 2005. The dashed lines represent magnetic latitudes at 0˚ and 10˚S (left axis) and 

the geographic latitudes are denoted on the right axes. 
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structures that were stronger than those from Brasilia, which illustrate the variability of 

the EPBs onset and their morphology from these neighboring stations. 

Figure 6.4 shows the keogram plot in the west–east direction representing an 

overview of the spread F activity observed during the nighttime OI (630.0 nm) emission 

from Brasilia (top) and Cariri (bottom) during the two consecutive nights of September 

30-October 1 (left) and October 1-2 (right), respectively. Here, the intensity from an east-

west cross-section through the airglow images is plotted as a function of local solar time. 

Figure 6.4. Keogram plots of the nighttime OI (630.0 nm) airglow emissions in west-

east (positive eastward) direction from Brasilia (top) and Cariri (bottom) during the 

nights of September 30-October 1 (left) and October 1-2 (right), respectively. The 

dark bands are the plasma bubbles and their slopes give the depletion velocities 

[Pautet et al., 2009, Figure 8]. 
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In this plot, a coherent structure with dark linear features in the keogram representing 

plasma bubbles travels nearly from west to east. Their slopes correspond to the bubble 

velocities. The curved bands after about local midnight indicate a decrease in the velocity 

as the depletion moves to the east. 

Figure 6.4 also illustrates the difference in depletion features from two 

consecutive nights from Brasilia and Cariri. The depletions were initially seen at ~20:00 

LST and 21:00 LST on September 30-October 1, and at ~21:00 LST and ~19:30 LST on 

October 1-2 from Brasilia and Cariri, respectively. Over Brasilia, several bubbles were 

observed during the night of September 30–October 1, while just a single bubble 

occurred during the following night (October 1-2). The keogram summarizing the Cariri 

data shows the multi-bubble structures on two consecutive nights, but with different 

patterns. The plots illustrate similar patterns of the bubble structures on September 30- 

October 1 from two sites, while on the following night (October 1-2), the different pattern 

of the structures was seen from these stations. On September 30-October 1, their speed 

decreased as they propagated towards the post-midnight period and then disappeared 

after ~02:00 LST from both stations. From Cariri, the band structures have the negative 

slopes shortly after the local midnight illustrating the westward motion of the bubbles. On 

October 1-2, the post-midnight depletions were seen as a pair of dark bands in the bottom 

right corner of the keogram from Brasilia till the dawn, end of the measurement period (at 

~05:00 LST), while from Cariri, depletion was observed continuously from premidnight 

to the dawn (~04:00 LST).    
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To further investigate the influence of gravity waves on the EPB generation, we 

have also determined the horizontal scale sizes of the structures observed in the 

ionospheric irregularities during this campaign. These bubble irregularities growing 

under Rayleigh-Taylor instability mechanism spread into a wide spectrum of scale sizes 

[Haerendel, 1973] from a few tens of meters to hundreds of kilometers. Figure 6.5 is a 

histogram plot showing the distribution of the separations between adjacent depletion 

structures observed from Brasilia and Cariri. Although significant fine scale structures are 

evident in the image data due to often rapid evolution of the smaller features, they were 

not always easy to track, and we have limited the horizontal scale sizes in the histogram 
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Figure 6.5. The distribution of the average separations between two consecutive 

plasma bubble structures observed from Brasilia and Cariri [Pautet et al., 2009 

Figure 10]. 
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plot to greater than 50 km in this measurement. The majority of the bubbles exhibited 

separation of 100 to 200 km. Takahashi et al. [2009] studied the possible correlation 

between horizontal wavelength of the gravity waves observed while they were 

propagating through the MLT layer and the size of the structures of the plasma 

irregularities. Their results suggest a significant correlation between the observed 

ionospheric bubble scales and the mesospheric gravity wave horizontal wavelengths. 

  

6.3.2. Plasma Bubble Zonal Velocity  

 The plasma bubble zonal velocity as a function of local solar time was measured 

using the embedded depletion structure visible in OI (630.0 nm) airglow images. Figure 

6.6 shows the plasma bubble zonal velocities for several consecutive bubble structures 

during the night of September 30-October 1 over Brasilia (top panel) and Cariri (bottom 

panel). The bold lines represent the averaged velocity of the bubbles in the corresponding 

times. The example of airglow image is also shown in the upper panel from Brasilia 

where B1, B2, B3, B4, etc., are bubble numbers. The bubble velocity overlaps well, which 

gives the trend of change in velocity with local solar time. The bubble velocities increase 

during the pre-midnight period from ~21:00 to 22:00 LST up to 150 m/s from both sites 

and then decreases around midnight and the post-midnight period as the time progresses. 

The velocity decreases to ~10 m/s from Brasilia while from Cariri it decreases to a 

relatively lower value with a reversing to the westward direction to ~9 m/s at  ~24:30 

LST.  

 The same procedure was used to determine the average bubble velocities during 

all other nights of the campaign. Figure 6.7 shows the local time dependence of the 
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average plasma bubble zonal velocities calculated from four successive images for time 

binned to ~16 minutes during 12 nights of campaign from Brasilia considering a 

reference altitude of airglow emissions at 250 km. The vertical bars are the standard 

deviations from the mean. Bubble velocities from Cariri are also plotted (as represented 

by the lines without symbols) during the five common night observations on September 

29-30, September 30-October 1, October 1-2, October 26-27, and October 27-28. The 

missing data points in the plots are either due to interference from clouds or due to the 

Figure 6.6. The zonal velocities of individual bubbles during the night of September 

30-October 1 from Brasilia (top) and Cariri (bottom). The bold lines represent the 

average velocity of the bubbles. B1, B2, B3, … etc. are bubble numbers on the airglow 

image. 
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fading out of the depletions. Kp represents the average of the three hourly geomagnetic 

index over a nine-hour period (13:30-22:30 LST) prior to six hours to local sunset as 

explained in the previous chapter. All days are geomagnetically quiet in the period prior 

to midnight with minor activity (Kp< 3). The average solar flux value (F10.7 cm) during 

the campaign days is 75. 

  Figure 6.7 also illustrates the day-to-day variations of plasma bubble zonal 

velocities. The velocities generally increased in early evening from ~19:00 to 22:00 LST,   

and peaked around 21:00 LST during most of the nights. The velocities decreased as the 

time progresses toward the post-midnight period. The velocities obtained during the 

common nights of observations from the two sites are in good agreement except on 

October 27-28. The data during this night from Cariri were for a short period of time, 

which is insufficient to generate conclusive results. Moreover, the post-midnight 

enhancements of the zonal velocities of EPB were observed on October 1-2 from both 

sites, while on September 30-October 1, the enhancement was seen only from Cariri.  

 In general, the results from the two sites are in good agreement with zonal plasma 

drifts from previous ground-based measurements in equatorial regions during solar 

minimum conditions [e.g., Fejer et al., 1991; Taylor et al., 1997; Valladares et al., 1996, 

2002]. In most cases, the post-midnight depletions were probably due to the fossilized 

bubbles that exhibited no growth, moving through the FOV (e.g., Basu et al., 1978). The 

post-midnight enhancement events are more frequent during solar minimum condition 

[Fejer et al., 1991]. However, we do not have sufficient data during the post-midnight 

time to analyze in detail and make conclusive results. 
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Figure 6.7. Average plasma bubble zonal velocities calculated from four 

successive images for time binned ~16 minutes during 12 nights of campaign from 

Brasilia and simultaneous measurements of five nights from Cariri. <Kp> index 

represents geomagnetic activity averaged over nine-hour period. 
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 Figure 6.8 shows the superposition of average bubble zonal velocities over 

Brasilia (top-panel) and Cariri (lower-panel) during five common nights of simultaneous 

depletion observations. Most of the nights, the velocities at both sites were similar with a 

maximum of ~75-130 m/s around 21:00 LST, followed by a steady decrease over the 

next 2-3 hours. The post-midnight bubbles were weak, drifting to the east with a 

maximum up to 50-60 m/s around 03:00-04:00 LST, and slowed down and faded out just 

before sunrise. Moreover, the zonal velocities during the later phase of the campaign 

(October 26-27 and October 27-28) were initially significantly lower than in the first 

phase with a maximum of ~75 m/s and they also moved eastward and faded out later in 

the time period between about 02:00-03:00 LST. It is interesting to notice that the zonal 

velocity from Cariri on September 30-October 1 was westward (~9 m/s) shortly after 

local midnight and then it immediately disappeared. A similar westward motion of the 

plasma depletion has been reported by Taylor et al. [1997] using data from Alcantara, 

Brazil. They argued this westward motion possibly may be due to a temporary reversal of 

the nocturnal F-layer dynamo electric field.    

 Figure 6.9 shows the correlation between the airglow depletion zonal velocities  

observed  over Brasilia and Cariri at the same local time during the nights of September 

30-October 1 (top panel) and October 1-2 (lower panel). The results show very good 

agreement between these two measurements on each night with correlation coefficient of 

0.95 and 0.90, respectively. The velocities during the night of September 30-October 1 

are very similar with more consistency at higher values (greater than ~100 m/s). During 

the following night (October 1-2), pre-midnight bubble velocities are slightly larger from 
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Brasilia (~125-150 m/s) than from Cariri (~100-125 m/s), while the post-midnight 

velocities from Brasilia are much smaller than from Cariri. 

 Figure 6.10 shows the scatter plot of the plasma bubble zonal velocities during 12 

nights of campaign from Brasilia. This plot illustrates large day-to-day variability in the 

bubble velocities ranging from ~65 to 140 m/s, (as indicated by standard deviation with 

vertical bars) during the pre-midnight period whereas the post-midnight velocities were 

much more consistent. The trends of velocity changes with local solar time were similar  
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Figure 6.8. The plasma bubble zonal velocities during the common nights from 

Brasilia (top) and Cariri (bottom). The bold lines represent the average velocity of 

the bubbles.  
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during all nights. They decreased as local solar time progressed toward the midnight and 

post-midnight periods. The curve plot is the average velocity of all data sets on the 

corresponding times. 

For comparison, the averaged plasma bubble zonal velocities from Brasilia and 

Cariri are plotted in Figure 6.11 with the previous observations from the NASA, Guara 

campaign at Alcantara, Brazil (2.3˚S, 44.5˚W) [Taylor et al., 1997] and an empirical model 

Figure 6.9. The correlation between the plasma bubble velocities from Brasilia and 

Cariri during the nights of September 30-October 1(top panel) and October 1-2 

(lower panel) [Pautet et al., 2009, Figure 9]. 
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derived from incoherent scatter radar measurements from 1968 to 2003 during solar 

minimum condition from Jicamarca (12˚S, 76.9˚W), Peru [Fejer et al., 2005]. The local 

time dependence of the zonal velocities from Brasilia and Cariri are similar with a 

previous campaign from Alcantara, Brazil, and also with Jicamarca model results. The 

results are very consistent, particularly, during the pre-midnight period, and show similar 

magnitude and temporal variation. The average peak velocity during pre-midnight period 

from Brasilia and Cariri is about 110 m/s, and which is consistent with other previous 

results [e.g., de Paula et al., 2002; Pimenta et al., 2003a].  However, the occasional post 

midnight fossilized plasma bubbles observed causes our results to deviate (by about 10- 

Figure 6.10. The superposition of plasma bubble zonal velocities from Brasilia 

during all nights of the campaign. Curve plot represents the averaged velocity 

derived from all nights, and vertical bars are the standard deviation from the mean. 
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20 m/s) as compared with the Alcantara observations and Jicamarca model result. This 

small difference may be due to the latitudinal and longitudinal variations on the 

nocturnal zonal plasma drift as discussed in the previous chapter. 

 

6.3.3. EPB Velocity Corresponding to 

  Different Apex Altitudes 

 The field of view covered by the airglow images (geographical width) is ~1500 

km×1500 km at 250 km altitude with latitude ranges of ~8˚S to 22˚S from Brasilia and 

~0˚ to 14˚S from Cariiri. The bubble velocities were estimated within three geographical 

Figure 6.11.  Comparison of the average plasma bubble zonal velocities from 

Brasilia and Cariri obtained from the SpreadFEx campaign with previous 

observations from Alcantara, Brazil by Taylor et al. [1997] and an empirical model 

derived from the Jicamarca radar observations by Fejer et al. [2005]. 
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latitude ranges of about 8˚-13˚S, 13˚-17˚S, and 17˚-22˚S from Brasilia, and about 1˚-5˚S, 

5˚-10˚S, and 10˚-14˚S from Cariri during the night of October 1-2, 2005. We estimated 

the apex altitudes (using equation 5.1 from section 5.3.3), which ranged about 400-700 

km, 700-1000 km, and 1000-1300 km, respectively. 

Figure 6.12 shows the local time variations of the ionospheric plasma bubble  

zonal velocities at apex altitudes of ranges ~400-700 km (asterisk symbols), ~700-1000 

km (solid circles), and ~1000-1300 km (triangles) over Brasilia and Cariri during the 

night of October 1-2, 2005. The velocities corresponding to lower apex altitudes (400-

700 km) were slightly greater than those from higher altitudes during the pre-midnight 

period from both stations, while during the post-midnight period, bubble structures were 
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Figure 6.12. Plasma bubble velocities as a function of local solar time 

corresponding to different apex altitudes from Brasilia and Cariri during the night of 

October 1-2. 
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not extended to higher latitudes from Brasilia, and no significant differences were 

observed from Cariri. Moreover, the changes in velocities with local solar time are 

similar corresponding to all apex altitudes. 

 

 6.3.4. Airglow and GPS Velocity  

 Comparison
3
 

 The airglow depletion velocities were compared with GPS estimated velocity 

from TEC data from Brasilia during the night of October 1-2, 2005. These GPS data were 

obtained from the Department of Earth and Atmospheric Science, Purdue University, 

Indiana. The temporary GPS stations were set up in a small network surrounding the all-

sky imager with an approximate spacing of 100 km between sites. The data were 

obtained from three temporary sites at Fazenda Isabel near Brasilia, Saõ Juaõ de Alianca 

(FAZ1), Parco Nacional, Alto Paraiso (ALPA), and Teresina de Goias (TERE). The dual 

frequency GPS receivers recorded phase and signal-to-noise ratio at a 30 sec sampling 

interval.  

 The GPS receiver locations superimposed on airglow images where velocities 

were estimated is shown in Figure 6.13. The GPS satellite tracks are represented by 

PRN4, PRN8, and PRN28 on different sites ALPA, FAZI, and TERE [Haase et al., 

2011]. The airglow depletion signals have been observed in the past with GPS. In this 

case, the plasma depletion was  developed  early in the evening  of  October 1-2. The drift 

                                                 
 
3
This section is coauthored by Chapagain, N. P. on paper, Haase J. S., T. Dautermann, M. J. Taylor, N. P. 

Chapagain, E. Calais, and P.-D. Pautet (2011),
 
Propagation of Plasma Bubbles Observed in Brazil from 

GPS and Airglow Data, Adv. Space Res., doi:10.1016/j.asr.2010.09.025. Copyright 2011 ELSEVIER. 

Reproduced with the permission from ELSEVIER (see Appendix B). 
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velocity was estimated from PRN4 at the bottom part of the field of view, while the 

airglow depletion was in its development stage and confined spatially to the northwestern 

part of the image. After about an hour, the depletion was mature and the southernmost 

extent of the depletion in the airglow image increased in agreement with the general 

understanding of the increase in latitudinal extent along the magnetic field lines with time 

as the depletion increases in height at the magnetic equator. Similarly, the drift velocities 

were estimated from PRN8 and PRN28 at the middle and top region of the field of view 

of the camera, respectively. 

Figure 6.13. GPS receiver locations superimposed on airglow images from 

coincidence measurements using all-sky imager and GPS systems. 
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 Table 6.1 summarizes the satellite tracks, sites of the GPS receivers, and the 

velocity comparisons around the same time (Universal Time) from airglow depletions 

and TEC measurements. Using PRN4, the depletion velocity estimated is 119  7 m/s at 

an azimuth of 161.7°, which is the farthest west trace as shown in Figure 6.13. The other 

velocities calculated are 101±3 m/s at azimuth 161.1° using PRN8 at the center traces, 

and 0  3 m/s at 163.6° using PRN28 in the far eastern traces. The propagation speed 

decreased as the disturbance propagates to the east. West of the observation site, the 

velocity of the plasma bubble retrieved from the airglow imager was estimated 112  6 

m/s, which was consistent with the value of 119  7 m/s based on the GPS IEC array 

data. The velocity decreased as the depletion moved to the east, to 72-85  5 m/s based 

on the airglow data and of 80  3 m/s estimated from GPS. Both the airglow and GPS 

were able to discern the slowing of the depletion as it crossed the observation site. 

 

 

Table 6.1. Velocity of depletions measured with airglow and GPS. 

Satellite Site 

Airglow TEC 

Velocity (m/s) 
Depletion 

Time 

Velocity 

(m/s) 

Depletion 

Time 

PRN 4 

ALPA 

 FAZ1 
112±6 0:14:57 

119±7 
0:15:00 

TERE 111±5 0:29:06 0:19:48 

PRN8 

ALPA 

FAZ1 
105±6 0:57:26 

101±3 
0:57:00 

TERE 99±5 01:11:35 1:06:18 

PRN28 
ALPA  

FAZ1 
85±5 01:23:27 80±3 1:23:24 

 TERE 72±4 01:40:01  1:35:24 
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Figure 6.14 displays the comparison of airglow depletion velocities with 

calculated velocities from GPS IEC measurements from Brasilia during the night of 

October 1-2. The airglow measurement data were available throughout the night, while 

the IEC velocities were estimated for limited range of times at 21:11, 21:54, and 22:21 

LST. Airglow depletion velocities are very consistent with the GPS IEC velocity despite 

the fact they are made at different latitudes where the magnetic field lines may be at 

higher altitudes. The plot shows airglow depletion velocity decreased from ~120 m/s at 

21:15 LST to ~20 m/s at around midnight and the post-midnight period (during ~24:00-

02:30 LST). Further, the post-midnight velocity enhancement was observed up to ~50 

m/s at ~03:00 LST and then decreased to ~2 m/s at dawn (at ~05:00 LST). 
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Figure 6.14. Comparison of plasma bubble zonal velocities from airglow 

observations and estimated GPS measurements. 
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6.3.5. EPB Longitudinal Comparison 

  We analyzed observation images from two closely spaced stations during two 

consecutive nights on September 30-October1 and October 1-2 as explained above 

(Figure 6.2-6.4). These nights were typical of the several nights of coincident image 

measurements. The measurements with this configuration have revealed interesting 

results, different in both morphology and the dynamics, of the bubble structures imaged 

at the same time from two adjacent sites. The comparative studies between two 

consecutive nights from two close sites, as presented above, further illustrates the 

potential for different bubble development on a night-to-night and site-to-site basis. There 

are several factors that may account for such longitudinal differences. First, there may be 

differences in the density gradient and the thermospheric zonal wind, which control the 

intensity of the PRE through the E-regions electrodynamical coupling process. 

Subsequently, the intensity of the PRE may have been different from one longitude to the 

other, including a modification in the plasma bubble generation. The second possibility is 

that the vertical drift and the post-sunset F-layer height control the growth rate of 

Rayleigh-Taylor instability. Since these two stations are located close to each other, it is 

unlikely that these factors are significantly different so that they can influence the 

longitudinal variations. Finally, there are the regional variation in the local density 

perturbation acting as a seeding source due to upward propagations of the tides and other 

waves from lower atmosphere [e.g., Walker et al., 1981; Immel et al., 2006]. In 

particular, the differences in the gravity waves propagating upward from the troposphere 

act as perturbation sources triggering the RTI process [e.g., Vadas et al., 2009].   
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 Longitudinal variability of the equatorial bubbles has been studied in the past 

using several techniques. Maruyama and Matuura [1984] used the topside soundings by 

the Ionospheric Sounding Satellite b (ISS-b) to determine a global distribution map of the 

ESF activity, while Tsunoda [1985] compared the seasonal scintillation activity using 

previously obtained datasets from several sites spread around the globe. Furthermore, 

Immel et al. [2004] utilized the FUV image data from the NASA IMAGE satellite to 

study the longitudinal variability of the zonal plasma drift speeds and their relation with 

the Dst index, during a limited three-month period (March-May 2002). Makela et al. 

[2004] compared the ionospheric airglow and GPS scintillation data acquired from 

Haleakala, Hawaii, with several previous studies carried out from the Pacific sector. They 

also investigated the occurrence of the plasma bubbles and the possible location of their 

source region as a function of the time of the year. Moreover, Henderson et al. [2005] 

used the GUVI imager data on board the NASA TIMED satellite to study the 

characteristics of the equatorial anomaly (EA) and the detection of the EPBs as a function 

of the longitudinal sector and season.  

 

6.4. Summary 

All-sky images of the OI (630.0 nm) airglow emissions show that EPB structure 

occurred on every clear sky night during the campaign from both stations, Brasilia and 

Cariri. The measurements from these two neighboring stations (at ~1500 km apart) have 

revealed surprising day-to-day and regional variations in the generation and spatial 

characteristics of the plasma bubbles. They also exhibited the same general evolution 

phenomena as previously reported, that is generation after sunset followed by poleward 
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expansion, corresponding to the upward instability growth over the magnetic equator. 

The different evolution in the observed plasma bubbles from two stations possibly may 

be due to the differences in the (a) height of the F-layer, (b) zonal thermospheric wind, 

(c) longitudinal gradient in the flux tube integrated conductivity, and (d) seeding sources.  

The growth of the bubbles occurred almost simultaneously on several nights of the 

common observations from two stations. However, on the night of September 30-October 

1, depletion onset from Brasilia was observed one hour earlier than from Cariri, while 

during the night of October 1-2, depletion occurred from Brasilia about one and one half 

hour later than from Cariri. The exact cause of the longitudinal difference in the evolution 

and development of plasma bubbles is difficult to explain. Nevertheless, the data are 

consistent with a more localized origin for the seeding/growth of the plasma bubbles 

observed in the night, possibly associated with tropospheric convection [e.g., McClure et 

al., 1998; Fritts et al., 2008]. Furthermore, a correlation between tropospheric convective 

activities, gravity waves propagating through the MLT layer, and the generation of 

plasma bubbles in the ionosphere has been shown in associated studies using these data 

from the SpreadFEx campaign [Fritts et al., 2008; Pautet et al., 2009; Takahashi et al., 

2009]. 

 The depletion zonal velocities obtained from both Brasilia and Cariri agreed well 

and were eastward, changing systematically with local solar time. The averaged 

velocities peaked around 125 m/s, a couple of hours after sunset (at ~21:00 LST), and 

decreased until local midnight, thereafter the depletions faded out with time. This 

downward trend of velocity with local time is mainly due to the decreasing vertical 
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component of the ambient electric field. The post-midnight fossilized bubbles were also 

observed on several nights until dawn with smaller eastward drift velocities (maximum 

up to ~50 m/s). These results are in good quantitative agreement with previous 

measurements from the same longitudinal sector under similar geomagnetic and solar 

conditions [e.g., Taylor et al., 1997; Sobral et al., 2002; Martinis et al., 2003]. 

Occasionally, a short-time westward motion of the depletion was also observed, which 

may be due to a reversal of the nocturnal F-layer dynamo electric field as discussed in the 

previous chapter.  

 The estimated drift velocity corresponding to different apex altitudes illustrates 

small shear velocities during the pre-midnight, but no distinct shear velocity was 

observed around midnight and in the post-midnight period. The case study of coincidence 

GPS and airglow depletion measurements indicates the plasma bubble velocities were 

very consistent with the GPS IEC velocity despite the fact they are made at different 

latitudes where the magnetic field lines may be at higher altitudes. 
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CHAPTER 7 

CLIMATOLOGY OF POST-SUNSET EQUATORIAL SPREAD F 

OVER JICAMARCA
4
 

 

Abstract 

 We use radar observations from 1996 to 2006 to study the climatology of post-

sunset equatorial 3-m spread F irregularities over Jicamarca during all seasons. We show 

the spread F onset times do not change with solar flux, and their onset heights, which 

occur near the altitude of the evening F region velocity vortex, increase linearly from 

about 260 to 400 km from solar minimum to solar maximum. Higher onset heights 

generally lead to stronger radar echoes. During the equinox, spread F onset occurs near 

vertical drift evening reversal times, while during the December solstice, they occur near 

the drift reversal times close to solar minimum, and near the time of the prereversal 

velocity peak for high solar flux conditions. On average, radar plume onset occurs earlier 

with increasing solar flux in all seasons. Plume onset and peak altitudes increase with 

solar activity, and the peak heights are generally highest during the equinox. The F region 

upward drift velocities that precede spread F onset increase from solar minimum to solar 

maximum, and are approximately proportional to the maximum prereversal drift peak 

velocities. 

                                                 
4
This chapter is a published paper: Chapagain, N. P., B. G. Fejer, and J. L. Chau (2009), Climatology of 

post-sunset equatorial spread F over Jicamarca, J. Geophys. Res., 114, A07307, doi:10.1029/2008JA- 

013911. Copyright 2009 American Geophysical Union. Reproduced with the permission from AGU (see 

Appendix B). 
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7.1. Introduction 

F-region plasma irregularities in the nighttime equatorial ionosphere are 

commonly referred to as equatorial spread F (ESF). The occurrence of these 

irregularities, which have scale sizes from a few centimeters to hundreds of kilometers, 

varies with longitude, local time, season, and solar and geomagnetic activity. Extensive 

studies over the last several decades have determined the main characteristics of 

equatorial spread F [e.g., Farley et al., 1970; Woodman and LaHoz, 1976; Fejer and 

Kelley, 1980; Hysell, 2000].  

It has been established that the height of the postsunset F layer is the most 

important parameter controlling the generation of equatorial spread F [e.g., Farley et al., 

1970; Abdu et al., 1983; Jayachandran et al., 1993; Fejer et al., 1999]. This height is 

determined mainly by the equatorial vertical plasma drift velocity, which is driven by 

evening prereversal enhancement (PRE) of the eastward electric field. The characteristics 

and generation mechanisms of equatorial vertical plasma drifts have been reviewed in 

numerous publications [e.g., Kelley, 1989, Fejer, 1991, 1997]. The generalized Rayleigh-

Taylor instability (RTI) is believed to be the mechanism responsible for the initiation of 

an instability at the bottomside F layer that develops into flux-tube-aligned plasma 

depletions rising to the topside [e.g., Kudeki and Bhattacharya, 1999; Huba and Joyce, 

2007; Kudeki et al., 2008].  

Extensive studies of 3-m spread F irregularities have been carried out since 1970 

using radar observations at the Jicamarca Radio Observatory, Peru (12°S, 76.9°W, and 

dip latitude 1°N). Woodman and LaHoz [1976] presented the first detailed description of 
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the characteristics of spread F scattering layers observed with the Jicamarca radar. Hysell 

and Burcham [1998] and Hysell [2000] studied in detail the properties of bottom-type, 

bottomside, and topside spread F observed with the 50 MHz Jicamarca JULIA 

(Jicamarca Unattended Long-term investigations of the Ionosphere and Atmosphere) 

system. Bottom-type spread F events occur in relatively weak and narrow scattering 

layers (less than about 50 km thick) in the lower F region. Bottomside spread F events 

correspond to broad (about 50-100 km wide), more structured, and stronger scattering 

layers at relatively higher altitudes that last for a few hours. Topside layers or radar 

plumes represent larger-scale elongated structures originating from bottomside layers and 

extending to the topside ionosphere.  

Kudeki and Bhattacharyya [1999] have shown that post-sunset bottomside spread 

F events commence in the interior of the F region evening plasma drift vortex. Hysell and 

Burcham [2002] presented a statistical study of the 3-m plasma irregularities measured by 

JULIA between August 1996 and April 2000 and discussed the relationship of these 

irregularities to the equatorial ionospheric electric fields during quiet and disturbed times. 

More recently, coherent scatter radar measurement over Brazil, Asia, and Micronesia 

have also been used to study the variability of spread F and its relationship to the post 

sunset rise of the equatorial F layer [e.g., de Paula and Hysell, 2004; Yokoyama et al., 

2004; Patra et al., 2005; Tsunoda, 2005; Tsunoda and Ecklund, 2007]. 

In this study, we use detailed coherent and incoherent radar observations to 

examine the climatological behavior of post-sunset spread F over Jicamarca. This work 

follows up the statistical study of Hysell and Burcham [2002]. In the following sections, 
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we first briefly describe our measurements and data analysis; then we will discuss the 

onset heights, times of initial spread F radar echoes and plumes, and the peak altitudes of 

radar plumes, as well. Finally, we will highlight the relationships of spread F and radar 

plume onset times with the characteristics of the evening equatorial vertical drifts.  

 

7.2. Measurements and Data Analysis  

 We have used F region JULIA and incoherent scatter radar measurements over 

Jicamarca during 1371 evening and early night periods primarily from August 1996 to 

December 2006. For the June solstice, when spread F is less common over Jicamarca, we 

have also included data from 2007 and 2008.  We have binned these measurements in 

three seasons representing equinox (March-April and September-October), December 

solstice (November-February), and June solstice (May-August).  For each season, we 

classified the spread F structures on the basis of their thickness and range of altitudes as 

weak spread F (WSpF), plumes, and broad spread F (BSpF). These radar signatures are 

illustrated in Figure 7.1. WSpF is characterized by weak and narrow irregularity 

structures (smaller than about 150 km) with a typical value of 60 km, which corresponds 

mostly to the bottom-type and bottomside layers of Hysell and Burcham [1998].  We 

define radar plumes as large-scale plasma structures that break through to the topside and 

rapidly ascend to higher altitudes (an altitude range greater than about 200 km), and 

broad spread F as wide, structured layers (thickness greater than about 200 km) with 

temporal scales longer than about two hours. These broad structures sometimes extend to 

higher altitudes and occasionally produce radar plumes. The average thickness of the 



142 
 

 

 

 

Figure 7.1. Range-time-intensity (RTI) plots of weak spread F (left panel) on 

November 3, 1999, plume (middle panel) on September 9, 1996, and broad spread F 

(right panel) on September 12, 1996, measured by the JULIA. 

 

broad spread F structure is about 350 km. We define both radar plumes and broad spread 

F as strong spread F (SSpF). 

Over Jicamarca, post-sunset spread F is most common during the equinox and 

December solstice, but only occasional during the June solstice, as illustrated in Table 7.1 

(see Appendix A, Figure A.1). During the equinox and December solstice most strong 

spread F events occurred during geomagnetic quiet times; during the June solstice strong 

spread F events were observed during 33 and 18 quiet and disturbed nights, respectively. 

Hysell and Burcham [2002] pointed out the statistics of spread F occurrence over 

Jicamarca do not have significant solar cycle dependence except for a small increase in 

the frequency of radar plumes near solar minimum.  

Figure 7.2 highlights the main spread F parameters we used in the present study. 

These are the onset time (TI) and height (HI) of the initial spread F, and the onset time  
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Table 7.1. Spread F occurrence over Jicamarca. 

Radar 

Signature 

Mar-Apr 

Sep-Oct 

Nov-Feb May-Aug 

Number % Number % Number % 

No SpF 107 20 53 12 264 68 

Weak SpF 166 31 194 43 73 19 

Plumes 232 44 145 32 44 11 

Broad SpF 25 5 61 13 7 2 

 

 
(TP), height (HP) and peak height (HPK) of radar plumes. The plume peak heights could 

only be determined when the measurements covered their full altitude profiles in the RTI 

(Range-Time-Intensity) plots. For solar flux indices generally higher than 160 units, radar 

plumes often extended above the standard highest height sampled (900 km), which 

resulted in a smaller database. In the present study, we will consider the characteristics of 

the initial radar plumes only. When multiplumes are present, their average periods are on 

the order of 1-1.5 h. Woodman and LaHoz [1976] pointed out the narrow beam (about 1°) 

of the Jicamarca radar gives only a slit camera view of the irregularities. Therefore, the 

observed times and heights to be discussed below correspond to the values inside the 

radar beam only. 

 

7.3. Results  

In this section, we will describe the season- and solar flux dependent onset times 

and heights of early night spread F and radar plumes over Jicamarca, along with their 

relationships to the evening F region vertical drifts.  
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Figure 7.2. Typical JULIA radar plume over Jicamarca on November 1, 2002, 

illustrating the spread F parameters considered in this study. TI and HI correspond to 

spread F onset time and height, and TP, HP, and HPK, the plume onset time and height and 

peak height, respectively.  

 

 

7.3.1. Spread F Onset Times and Heights 

We have initially binned the data on the basis of geomagnetic activity, as 

indicated by the Kp indices, following the criteria of Fejer et al. [1999]. Although spread 

F occurrence is clearly affected by geomagnetic activity, our results indicate the average 

characteristic times and heights of spread F events are essentially magnetic activity 

independent. Therefore, the results below were obtained by including all available 

observations, since those improve their statistical significance. 

Figure 7.3 shows the seasonal and solar cycle dependence of the onset heights of 

weak and strong spread F (i.e., broad structures and plumes) obtained by binning the data 



145 
 

 

 

 

in groups of 20 solar flux (F10.7 cm) units. The linear fits for the average onset heights 

(HI) are HI (km) = 239 + 0.7 for the equinox, HI (km) = 226 + 0.7 for the December 

solstice, and HI (km) = 203 + 0.8 for the June solstice, where  is the decimetric solar 

flux index. These results illustrate the strong increase of the onset heights with solar flux.  

The average heights vary from about 280 to 420 km in equinox, 270 to 410 km during the 

December solstice, and 250 to 400 km during the June solstice, as the solar flux index 

increases from 60 to 250. Near solar minimum, the average onset heights of both weak 

and strong spread F are nearly the same, but for higher solar conditions, the onset heights 

of strong spread F events are generally higher by about 20 km.  

 Jicamarca ionosonde data (see Appendix, Figure A.2) show that during spread F 

events, the base of the F-layer (h‟F) increases from about 290 to 410 km in the equinox, 

and from 290 to 430 km during the December solstice. These results indicate, as expected 

[e.g., Hysell and Burcham, 1998; Kudeki and Bhattacharyya, 1999], spread F occurs 

initially in the bottomside of the F-layer. 

 Figures 7.4 and 7.5 present the solar flux variations of spread F onset times and 

heights and resulting radar plumes during the equinox and December solstice. The scatter 

bars illustrate the large variability of the data. The onset times do not change much with 

solar flux and have values of about 19:20 LT and 19:45 LT during the equinox and 

December solstice, respectively. For moderate and higher solar flux conditions, these 

onset altitudes are higher than shown in Figure 7.3, which also include results from weak 

spread F. We do not show the data for the June solstice, when, except for solar minimum, 

spread F events are much less frequent over Jicamarca. During the June solstice, spread F 
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Figure 7.3. Onset altitudes of weak and strong spread F as a function of solar 

flux index. The number of samples and the standard deviations are also shown. 

The straight lines denote the least squares fit to the combined weak and strong 

spread F data. 
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onset occurs at about 19:30 LT, and plume onset times shift from about 22:00 to 20:30 

LT from solar minimum to solar maximum. 

 Figures 7.4 and 7.5 show plume onset heights over Jicamarca increase from about 

330 to 500 km during the equinox and 360 to 500 km during the December solstice from 

low to moderate solar flux conditions (solar flux index smaller than 180), and then 

remain nearly unchanged at about 500 km for higher levels of solar activity. Near solar 

maximum, spread F onset times remain nearly unchanged at about 20:30 LT in the 

equinox and 21:00 LT during the December solstice. As solar flux increases from low to 

moderate values, plume onset times shift from about 21:15 to 20:25 LT in the equinox 

and from 21:20 to 20:30 LT during the December solstice. They occur later during 

January and December than during February and November. This behavior is consistent 

with the solar cycle dependence of the evening vertical drift velocities [e.g., Fejer et al., 

1991]. 

 The average plume onset heights are higher than the corresponding spread F onset 

heights by about 50 to 100 km during the equinox, about 80 to 150 km during the 

December solstice, and about 30 to 90 km during the June solstice. Near solar minimum, 

the average time periods from spread F onset to plume onset are about 1 h and 45 min in 

the equinox and about 2 h during the December solstice. For moderate and maximum 

solar  conditions, these  periods  decrease  to about 1 h during the  equinox and 1 h and 30 

min during the December solstice. Very small numbers of plumes were observed during 

the June solstice for moderate and high solar flux conditions. 
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Figure 7.4. The variations of onset altitudes and times of equatorial spread F and 

resulting radar plumes with solar flux during the equinox. The solid lines denote fits 

to the data. 
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Figure 7.5. The variations of onset altitudes and times of equatorial spread F and 

radar plumes with solar flux during the December solstice. The solid lines denote 

fits to the data. 
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7.3.2. Plume Peak Heights  

Figure 7.6 shows the scatter plots of the onset and peak heights of the spread F 

plumes over Jicamarca as a function of the solar flux. In this case, the database during 

moderate and high solar flux conditions is much smaller than used in Figures 7.4 and 7.5. 

The onset height, Hp, can be interpreted as corresponding to the altitude the plume breaks 

through the top of the F layer. Peak height data were not available during January-

February at high solar flux conditions because the peak altitudes cross their full altitude 

profiles in the RTI plots. Therefore, the December solstice data shown in Figure 7.6 are 

mainly from November and December.  

 Figure 7.6 illustrates the peak heights are highly variable, but increase 

significantly from solar minimum to solar maximum.  The average plume onset heights 

increase from about 310 to 500 km as the solar flux index increases from 70 to 200. The 

peak heights have much larger scatter than the spread F onset heights (see Appendix, 

Figure A.3). The equations for the average peak heights are HPK(km) =472+4.3 for the 

equinox, HPK(km) = 604 +2.6  for the December solstice, and HPK(km) = 443 +3.8 for 

the June solstice. The peak values are about 700 and 1400 km during solar minimum and 

maximum, respectively. The maximum plume altitude recorded at Jicamarca was about 

1800 km during the equinox. The percentages of plumes above 900 km during equinox 

and December solstice are about 15%, 60%, and 75% for low, moderate, and high solar 

activity, respectively (see Appendix, Figure A.4). During the June solstice, this 

percentage is about 25% for both low and high solar flux conditions. 
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Figure 7.6. Scatter plots of radar plume onset (HP) and peak (HPK) heights as a 

function of solar flux. The straight lines indicate least squares fits to the peak 

altitude data. 
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7.3.3. Relationships to the Vertical Drift  

 Velocity 

 Figure 7.7 illustrates the solar flux dependence of the times of evening drift peak 

and drift reversal, and spread F and plume onset times. As shown in the earlier studies 

[e.g., Fejer, 1991; Scherliess and Fejer, 1999], the evening vertical drift peaks and drift 

reversals occur later in the December solstice than during the equinox, and are latest in 

January. Since spread F onset does not change with solar flux, but the times of drift peak 

and reversal occur earlier at solar minimum than at solar maximum, the onset times 

change from near the reversal times to closer to the drift peak times with increasing solar 

flux.  Figure 7.7 shows plume onsets over Jicamarca occur about 2 h after the drift 

reversal during solar minimum, and after about 30 min near solar maximum. Figure 7.8 

shows the seasonal and solar cycle dependence of the prereversal vertical drift peaks and 

of the drift velocities preceding the onset of weak spread F, and also of spread F with 

subsequent development of radar plumes. The drift velocities were obtained using 

incoherent scatter radar measurements within ±5 min of spread F onset and at the onset 

height. We should point out these onset velocities are not necessarily directly related to 

the observed spread F events, since these irregularities could have been generated outside 

the radar beam. Figure 7.8 illustrates the large variability of these velocities, particularly 

during the equinox. Early night downward drifts do not lead to the development of radar 

plumes during the equinox and inhibit the development of spread F during the December 

solstice. Weak spread F can occur even when the local drift velocities near dusk are 

downward provided the prereversal peak velocities are positive, which is in good 

agreement with the results of Fejer et al. [1999].  
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Figure 7.7. Times of average vertical prereversal drift peaks (solid lines), drift 

reversals (dashed lines), and spread F (TI) and corresponding radar plume onset times 

(TP) as a function of solar flux index. 
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 The onset drifts and the corresponding prereversal velocity peaks are generally 

higher on nights of spread F plumes. The variability of the onset drifts and prereversal 

velocity peaks generally decrease with increasing solar activity. We do not present the 

results for the June solstice when strong spread F echoes are rarely seen; only very few of 

them have been observed with incoherent scatter radar measurements.  

  

7.4. Discussion 

 The main results of our observations are: 

1.  The spread F average onset heights over Jicamarca strongly increase from solar 

minimum to solar maximum, but their onset times are essentially solar flux independent.  

2.  Strong spread F events have generally higher onset heights than weak spread F for all 

seasons.  

3.  The onset heights of the radar plumes increase with solar flux, but the onset times 

become earlier from low to moderate solar flux conditions, and remain nearly constant 

for higher flux values. 

4.  The average peak heights of radar plumes increase from about 700 to 1400 km from 

solar minimum to solar maximum.  

5.  Over Jicamarca, spread F onsets occur close to the evening drift reversal times during 

the equinox for all solar flux values. During the December solstice, they occur near drift 

reversal time near solar minimum, and, for higher solar flux conditions, closer to the time 

of the prereversal velocity peak.  

6.  The spread F onset velocities and the prereversal drift peaks are highly variable; these 

velocities generally determine the equatorial spread F signature and echo strength. 
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 The effects of the PRE on the height of the F layer and spread F onset have been 

discussed by several authors [e.g., Farley et al., 1970; Abdu et al., 1983; Sultan, 1996; 

Fejer et al., 1999]. Hysell and Burcham [2002] used JULIA radar data to show the height 

of bottomtype layers typically increase from about 200 to 400 km for an increase in solar 

flux index from 70 to 200. Jyoti et al. [2004] used ground-based ionospheric data from 

Trivandrum (8.5ºN, 76.5ºE) and Sriharikota (13.7ºN, 80.2ºE), India, to show the average 

base heights of the bottomside of the F region (h‟F) at the time of triggering equatorial 

spread F during the equinox increase from about 225 to 350 km with the increase in the 

solar flux index from about 70 to 120.  

 Kudeki and Bhattacharyya [1999] have shown that bottomside spread F 

commences near the post-sunset velocity vortex, which is characterized by upward and 

downward flows to the west and to the east and eastward and westward flows on the top 

and the bottom, respectively. They also reported near solar minimum, this vortex is 

centered at an altitude of about 250 km. The evening upward drift velocities increase with 

solar flux moving the base of the equatorial F layer and the velocity vortex to higher 

altitudes. Our spread F onset height data suggest the altitude of the evening vortex 

reaches up to about 400 km near solar maximum.  

 We have seen as solar flux increases, the onset heights of spread F and plumes 

occur at higher altitudes, and radar plumes penetrate to higher topside altitudes. 

Valladares et al. [2004] showed a radar plume detected by JULIA extending to a peak 

height of about 1600 km, and that the corresponding larger-scale scintillations extended 

up to magnetic latitudes of about 22°. Tsunoda and Ecklund [2007] examined the post-
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sunset rise of the equatorial F layer and the development of equatorial spread F using 50 

MHz back-scatter radar observations from Pohnpei, Micronesia (7°N, 158.2°E).  They 

reported radar plumes rising to an altitude of about 1400 km. These earlier results are in 

good agreement with our climatological heights. 

 Apex height mapping of airglow depletions have shown altitudes above 2000 km 

can be reached [e.g., Kelley et al., 2002; Otsuka et al., 2002; Mendillo et al., 2005; 

Martinis and Mendillo, 2007; Makela and Miller, 2008]. Recently, Huba et al. [2008] 

reported 3D simulations showing the bubbles rise from about 400 to 1000 km altitude in 

roughly one hour, and then to about 1600 km in the next half hour during moderate solar 

conditions. Our results indicate the characteristic heights of the 50 MHz scattering layers 

over Jicamarca are consistent with those from larger-scale spread F plasma structures.  

 We have pointed out that spread F onset heights do not change much with 

geomagnetic activity and the onset drifts and prereversal velocity enhancements are 

generally higher on nights of radar plumes. These results further suggest the major role of 

geomagnetic activity on equatorial spread F results from its effect on the vertical drift 

velocity, which is consistent with the results of Fejer et al. [1999].  

 

7.5. Summary 

 This Chapter presents a climatological study of post-sunset equatorial spread F 

over Jicamarca using an extensive data set of coherent and incoherent radar observations. 

We showed the onset heights of equatorial spread F related to the evening velocity vortex 

over Jicamarca strongly increase from solar minimum to solar maximum, but the onset 

times remain nearly unchanged. The onset heights prior to strong spread F are generally 
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larger than those of weak spread F during moderate and maximum solar conditions. 

Radar plumes onset shift to earlier local times from solar minimum to solar moderate 

conditions and remain constant for high flux values. Plume onset heights increase with 

solar flux. The peak heights of the radar plumes inside the Jicamarca radar beam are 

highly variable, but on average, they increase by about 500 km from solar minimum to 

solar maximum. 

  The spread F onsets during the equinox generally occur close to the reversal times 

of the vertical drift velocity, when the F layer reaches its highest altitude. During the 

December solstice, these radar echoes first occur near the drift reversal time near solar 

minimum and closer to the time of the prereversal drift peak velocity for high solar flux 

values. The prereversal vertical drift peaks and spread F onset drifts are highly variable, 

and the characteristics of the scattering layer and echo strength are strongly dependent on 

the values of these velocities. 
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CHAPTER 8 

SUMMARY AND FUTURE RESEARCH 

 

8.1. Result Overview  

We have used ground-based optical measurements and radar observations to 

investigate the development and dynamics of equatorial spread F. Campaign optical 

observations have been made at equatorial regions from different longitudinal sectors 

from Christmas Island in the Central Pacific Ocean and Ascension Island in South 

Atlantic Ocean with long term observations from Brasilia and Cariri in Brazil. Using 

these airglow image measurements under nearly similar solar conditions from these three 

regions, we have analyzed the evolution, development and dynamics of equatorial plasma 

bubbles. Moreover, the long-term radar observations have been used to study the 

climatology of the post-sunset equatorial spread F parameters including the onset times 

and heights of initial spread F and radar plumes, and the relationships between spread F 

onset velocities and prereversal drift peak velocities.  

  

8.1.1. Onset, Evolution, and Structures  

 of EPBs 

OI (630.0 nm) airglow images measurements from Christmas Island, Brasilia, and 

Cariri from Brazil reveal the airglow depletion structures associated with ionospheric 

plasma bubbles were observed on every clear sky night in pre-midnight period during the 

campaigns. The depletion structures from all stations exhibited similar features as 

previously reported in the literature, i.e., generation after sunset followed by poleward 

expansion corresponding to the upward instability growth over the equator. However, the 
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optical signatures obtained from different longitudinal sectors clearly illustrate strong 

variability in the bubble structures and their development. Marked fossilized bubble 

structures were also seen during the post-midnight period on several nights from 

Christmas Island, which were significantly weaker from Brasilia and Cariri. The 

structures were aligned along the magnetic field lines throughout the nights. However, 

the bubble propagation on April 4-5, from Ascension Island displayed an unusual 

counterclockwise rotation resulting in non-field aligned structures. Furthermore, the 

bubbles from Ascension Island were often bifurcated, similar to a previous study from 

Ascension Island reported by Mendillo and Baumgardner [1982], but during high solar 

flux condition.  

Most of the nights the ESF onset occurred shortly after the local sunset outside the  

western edge of the camera‟s field of view and then they drifted eastward. However, on 

several nights EPBs onset was clearly observed inside the FOV of the camera in the early 

evening hours around 19:30-20:30 LST from Christmas Island and Ascension Island. 

Similar trends of onset times were also seen from both Brasilia and Cariri. These results 

are consistent with the climatological results obtained from radar observations of ESF 

from Jicamarca, Peru. The Christmas Island result also illustrates the number of plasma 

bubbles occurrences during each night is well correlated with initial onset times of EPBs 

and their persistence period during each night.  

The bubbles often revealed smooth elongated magnetic field aligned structures 

exhibiting a range of zonal separations that differed during the course of night and also 

from night-to-night. Measurements of the separations between individual bubble 
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structures (from all stations) revealed similar scale-sizes predominantly ranging from 

100-250 km [Pautet et al., 2009; Chapagain et al., 2011].  

To study local variability of the EPBs evolution, structures and propagation, data 

from two sites in Brasilia and Cariri were used, each with approximately the same 

magnetic latitude and separated by ~1500 km with overlapping FOV‟s. These 

measurements have revealed surprising day-to-day and longitudinal variations in the 

onset of EPBs and their spatial characteristics. The exact cause of longitudinal 

differences in the evolution and development of plasma bubbles is difficult to explain 

[Pautet et al., 2009]. Nevertheless, the data are consistent with a more localized origin for 

the seeding/growth of the plasma bubbles, possibly associated with tropospheric 

convection [e.g., McClure et al., 1998; Vadas et al., 2009]. Furthermore, a correlation 

between tropospheric convective activities, gravity waves propagating through the MLT 

layer, and the generation of plasma bubbles in the ionosphere has recently been reported 

by several authors in associated studies using these data from the SpreadFEx campaign 

[Fritts et al., 2008; Pautet et al., 2009; Takahashi et al., 2009; Vadas and Fritts, 2009].  

 

8.1.2. EPB Zonal Velocity 

The plasma bubble zonal velocities from all three regions show similar trend 

during the pre-midnight period with eastward propagation. The average velocities peaked 

around ~90-100 m/s for Christmas Island, ~90-110 m/s for Ascension Island, ~100-125 

m/s for Brasilia and Cariri at a couple of hours after sunset (~21:00-22:30 LST) and then 

they decreased around midnight and the post-midnight periods. This downward trend of 

the velocities with local time is mainly due to the decreasing vertical component of the 
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ambient electric field. These results are in good quantitative agreement with previous 

measurements from the same longitudinal sector under similar geomagnetic and solar 

conditions [e.g., Taylor et al., 1997; Sobral et al., 2002; Martinis et al., 2003; Yao and 

Makela, 2007]. 

The velocities exhibited significant day-to-day variabilities in their magnitudes 

from all sites with more pronounced variability at Christmas Island. The average pre-

midnight velocities from Christmas Island were consistent with the results from other 

sites, but the post-midnight period remained nearly constant at an unusually higher value, 

~80 m/s, significantly deviating from results of other optical measurements near the dip 

equator from different longitudinal sectors. This result demonstrates that there can be 

significant longitudinal variability in the electrodynamics conditions. We have examined 

the plasma drift model calculated from the simple electric field model of Eccles using 

Horizontal Wind Model (HWM-93 and HWM-07). The modeled post-midnight 

magnitudes were much smaller than observed. However, when the HWWM-07 model 

field was modified by a factor ~1.5, a more consistent agreement with the observed EPB 

velocities was obtained [refer to Chapter 4].  

The velocity measurements from Ascension Island although typical on most 

nights also revealed an unusual shear (up to ~55 m/s) with latitude (or apex altitude) on 

April 4-5 around local midnight. In contrast, latitudinal shear velocities of the bubble 

from Brasilia and Cariri were relatively very small. From Ascension Island, the bubble 

exhibited westward motion at lower latitudes (apex altitudes ~500-800 km) and eastward 

at higher latitudes (apex altitudes ~800-1400 km). Consequently, the bubbles aligned 
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significantly off the magnetic meridian and tilted to the east, contrary to the trend for 

westward tilts commonly referred to in the literature (e.g., Makela, 2006, and references 

therein). The neutral wind motion for this location computed from Horizontal Wind 

Model (HWM-93) was eastward throughout the night and did not reproduce the observed 

shear. Westward motion of a bubble structure of ~10 m/s was seen from Cariri after 

midnight (~02:00 LT) on October 1-2 and also been reported from Alcantara [Taylor et 

al., 1997]. On these occasions the westward drifts were temporary and probably resulted 

from a reversal in the night time F-region dynamo or from a large increase in the altitude 

of the shear in the nighttime F-region plasma drift. A similar mechanism may also have 

been responsible for the strong westward shear observed from Ascension Island.  

 

8.1.3. Jicamarca Radar Measurements of ESF  

We have presented a climatological study of post-sunset equatorial spread F over 

Jicamarca, Peru using an extensive data set of coherent and incoherent scatter radar 

observations during 1996-2006. We showed the onset heights of ESF related to the 

evening velocity vortex over Jicamarca strongly increase from solar minimum to solar 

maximum, but the average onset times remain nearly unchanged. The effect of increasing 

solar flux is to cause irregularities to occur at higher altitudes on average. This is 

consistent with increase in both amplitude of the prereversal enhancement and the time of 

the evening reversal of the zonal electric field associated with increasing solar flux. The 

onset heights prior to strong spread F were generally larger than those of weak spread F 

during moderate and maximum solar conditions. Radar plumes onset shifted to earlier 

local times from solar minimum to solar moderate conditions and remained constant for 
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high flux values. Plume onset heights increased with solar flux. The peak heights of the 

radar plumes inside the Jicamarca radar beam were highly variable, but on average, they 

increased by about 500 km from solar minimum to solar maximum. 

The ESF onsets during the equinox generally occurred close to the reversal times 

of the vertical drift velocity, when the F layer reached its highest altitude. During the 

December solstice, these radar echoes first occurred near the drift reversal time near solar 

minimum and closer to the time of the prereversal drift peak velocity for high solar flux 

values. The prereversal vertical drift peaks and ESF onset drifts were highly variable, and 

the characteristics of the scattering layer and echo strength were strongly dependent on 

the values of these velocities. 

 

8.2. Future Research  

Imaging studies of low-latitude ionospheric irregularities have made significant 

progress over the past three decades. New insights continue to be made into the cause of 

irregularities when optical instruments are combined with other observing techniques 

such as radio and satellite data. However, there is still much to be learned about the post-

sunset equatorial ionospheric phenomenon. Some of the outstanding issues that need to 

be studied in the near future are outlined below.  

 

 Multi-instruments arranged in closely spaced longitude to study the longitudinal 

variation of EPB development and to investigate the seeding questions. 

 

The exact source of the seeding mechanism for the RTI process is still the cause 

of much debate. Although imaging techniques are used more as a monitoring tool for 

developing and fully developed bubbles (or plumes), they can provide additional 
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information on the seeding process. Optical imagers arranged in arrays at closely spaced 

longitudes (as initially performed during the SpreadFEx-1 campaign) would be very 

useful to corroborate the longitudinal variations of the plasma depletion development and 

contribute to detail investigation of the seeding question. Although imaging may not be 

able to actually observe the seeding mechanism, observations of their development and 

developed bubbles provide useful information on their occurrence and morphology. For 

example, by studying the distance between bubble structures, several studies have 

concluded that gravity waves are responsible for the seeding mechanism of RTI [e.g., 

Fagundes et al., 1999; Sinha and Raizada, 2000; Makela and Kelley, 2003; Takahashi et 

al., 2009]. More detailed studies could investigate gravity waves using new ray tracing 

techniques to determine their penetration into the thermosphere [Vadas and Fritts, 2009].  

 

 Conjugate studies of  magnetic storm-time phenomena. 

Image data also show interesting effects during magnetic storms [e.g., Taylor et 

al., 1997; Pimenta et al., 2007]. The storms can affect the dynamo fields causing a 

reversal of the nocturnal zonal drift direction from eastward to westward. This can also 

cause secondary instabilities to develop on the eastern wall of the depletions [Makela, 

2006]. Additionally, Pimenta et al. [2007] have reported the plasma blobs (localized 

plasma density enhancements) associated with large-scale plasma density depletions in 

the OI (630.0 nm) airglow emissions observed at low-latitude F-region during a major 

geomagnetic disturbance. It would be very important to distinguish which of these effects 

are local and which of these affect the entire flux-tube geometry. A conjugate study 

would lead to better understanding of these storm-time phenomena. Furthermore, 



166 
 

 

 

 

simultaneous measurements of plasma bubble drifts and wind motions under 

magnetically quiet and disturbed conditions will give new information on the conditions 

leading to the development of unusual shear velocities evident in some depletion 

structures.  

 

 Coordinated ground and space-based tomographic measurements of depletion 

structures. 

  

The OI (630.0 nm) airglow structures seen with all-sky cameras is a two-

dimensional image of a three-dimensional phenomenon. An even more informative 

technique for the investigation of the vertical extent of the plasma structures would be to 

use multiple imagers with overlapping FOV‟s from ground (and space), to make 

tomographic measurements of the structures (e.g., 3D characteristics of EPBs) 

[Kamalabadi et al., 2009]. For example, the continued analysis of data obtained from 

equatorial Brazil using ground-based instruments in the coordination with the C/NOFS 

satellite, as a part of equatorial SpreadFEx-2 campaign during 2009/2010, will provide 

important information for the investigation of bubble dynamics and associated 

thermospheric conditions.  

 

 Comparative study between optical and radar measurements.   

Coincident optical and radar measurements will give important information for 

the determination of the ESF parameters, such as onset times and heights of initial spread 

F and radar plumes (bubbles). The comparative study of apex heights from optical 

measurements and peak altitudes from radar observations will provide an important 

capability for the investigation of the morphology of the depletion structures. 
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 Possible coupling relationships between EPBs and Medium-Scale Traveling 

Ionospheric Disturbances (MSTIDs). 

 

Previous studies of coincidence observations of MSTIDs and EPBs argued the 

MSTIDs may play an important role for the generation of low-latitude irregularities [e.g., 

Miller et al., 2009]. The study of the EPBs with coincident observations of MSTIDs is 

important to investigate possible coupling between the low- and mid-latitude 

ionospheres.  Using multi-instrument observations from different locations, we will be 

able to search for influences of MSTIDs on both the development and decay of EPBs. 
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APPENDIX A 

 PLOTS OF JICAMARCA RADAR MEASUREMENTS OF ESF 
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Figure A.1.  Percentages of radar echoes occurrences for  nonspread F (NSpF), weak 

spread F (WSpF), radar plume, and broad spread F (BSpF) from Jicamarca radar 

observations on equinox, December and June solstices during 1996-2006. 
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Figure A.2.  Onset altitudes of ESF (HI) and virtual heights of F-peak layer (h'F) from 

Jicamarca coherent and incoherent scatter radar observations and digisonde data, 

respectively, during 1996-2006. 
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Figure A.3. Average peak and base altitudes of radar plumes as a function of solar flux 

index from Jicamarca radar observations during equinox and December solstice from 

1996 to 2006. 
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Figure A.4.  Percentage of radar plume occurrences with peak altitudes below and above 

900 km as a function of solar flux during equinox and December solstice from 1996 to 

2006. 

 

 

 

 

 

 

 

 

 

 

0

30

60

90

 

 BELOW 900 km

 ABOVE 900 km

 
 P

E
R

C
E

N
T

A
G

E
 O

F
 S

A
M

P
L
E

 (
D

A
Y

S
)

EQUINOX

JICAMARCA

80 120 160 200 240

0

30

60

90

  

SOLAR FLUX INDEX

DECEMBER SOLSTICE



185 
 

 

 

 

APPENDIX B 

COPYRIGHT INFORMATION 

 

Appendix B.1.  AGU Permissions and Copyright Information 

 

We are pleased to grant permission for the use of the material requested for inclusion in 

your thesis.  The following non-exclusive rights are granted to AGU authors: 

 

•   All proprietary rights other than copyright (such as patent rights). 

• The right to present the material orally. 

•   The right to reproduce figures, tables, and extracts, appropriately cited. 

•   The right to make hard paper copies of all or part of the paper for classroom use. 

•   The right to deny subsequent commercial use of the paper.  

 

Further reproduction or distribution is not permitted beyond that stipulated. The copyright 

credit line should appear on the first page of the article or book chapter.  The following 

must also be included,   “Reproduced by permission of American Geophysical 

Union.”  To ensure that credit is given to the original source(s) and that authors receive 

full credit through appropriate citation to their papers,      

We recommend that the full bibliographic reference be cited in the reference list.  The 

standard credit line for journal articles is: "Author(s), title of work, publication title, 

volume number, issue number, citation number (or page number(s) prior to 2002), 

year.  Copyright [year] American Geophysical Union."  

 If an article was placed in the public domain, in which case the words “Not subject to 

U.S. copyright” appear on the bottom of the first page or screen of the article, please 

substitute “published” for the word “copyright” in the credit line mentioned above.     

Copyright information is provided on the inside cover of our journals.  For permission for 

any other use, please contact the AGU Publications Office at AGU, 2000 Florida Ave., 

N.W., Washington, DC 20009. 

Michael Connolly 

American Geophysical Union 

2000 Florida Avenue, NW 

Washington, DC 20009 

202-777-7365 

mconnolly@agu.org 

 
 

mailto:mconnolly@agu.org


186 
 

 

 

 

Appendix B.2.  Copyright permission request to the American Geophysical Union 

 

10
th

 February, 2011 
 

Narayan P. Chapagain 

CASS, Utah State University 

4405 Oldmain Hill 

Logan, UT, 84322-4405 

(435) 797-3519 

n.chapagain@aggiemail.usu.edu 

 

American Geophysical Union 

2000 Florida Avenue N. W.  

Washington, DC 20009-1277 

 

Dear Permissions Editor, 
 

I am in the process of preparing my Ph.D. dissertation in Department of Physics, Utah 

State University. I hope to complete by March 2011.  
 

I am requesting your permission to include the manuscripts of my papers in its entirety in 

my dissertation.  I will include acknowledgements and appropriate citations and 

copyright and reprint rights information in an appendix. The papers published on JGR are 

following: 

1. Chapagain, N. P., B. G. Fejer, and J. L. Chau (2009), Climatology of Post-Sunset 

Equatorial Spread F Over Jicamarca, J. Geophys. Res., 114, A07307 

doi:10.1029/2008JA013911.  

2.  Chapagain, N. P., M. J. Taylor, and J. V. Eccles (2011), Airglow observations and 

modeling of F region depletion zonal velocities over Christmas Island, J. Geophys. 

Res., 116, A02301, doi:10.1029/2010JA015958. 

 

I hope you will reply immediately. If you are not copyright holder, please forward my 

request to the appropriate person or institution.  

Thank you for your cooperation, 

Narayan P. Chapagain 

 

 

 

 

mailto:n.chapagain@aggiemail.usu.edu


187 
 

 

 

 

Appendix B.3.  Permission and copyright information from ELSEVIER 
 

Dear Narayan P. Chapagain, 

As an author, you retain rights for a large number of author uses, including use by your 

employing institute or company. These rights are retained and permitted without the need 

to obtain specific permission from Elsevier. These include: 

 the right to make copies of the article for your own personal use, including for 

your own classroom teaching use;  

 the right to post a pre-print version of the article on Internet web sites including 

electronic pre-print servers, and to retain indefinitely such version on such servers 

or sites (see also our information on electronic preprints for a more detailed 

discussion on these points.);  

 the right to present the article at a meeting or conference and to distribute copies 

of such paper or article to the delegates attending the meeting;  

 for  the author‟s employer, if the article is a „work for hire‟, made within the 

scope of the author‟s employment, the right to use all or part of the information in 

(any version of) the article for other intra-company use (e.g. training);  

 the right to include the article in full or in part in a thesis or dissertation 

(provided that this is not to be published commercially); 

the right to use the article or any part there of in a printed compilation of works of 

the author, such as collected writings or lecture notes (subsequent to publication 

of the article in the journal); and the right to prepare other derivative works, to 

extend the article into book-length form, or to otherwise re-use portions or 

excerpts in other works, with full acknowledgement of its original publication in 

the journal. 

Other uses by authors should be authorized by Elsevier through the Global Rights 

Department (for addresses see Obtaining Permissions), and authors are encouraged to let 

Elsevier know of any particular needs or requirements. 

I hope that you find the above information useful. If you feel that further permissions are 

required apart from the above, please contact our Global Rights Department who will 

arrange alternative license for you. 

My best regards, 

Heather 

-------------------------------------------------------- 

Heather Pitt 

Journal Manager | Elsevier Ireland Ltd. 

 

 

 

http://www.elsevier.com/wps/find/supportfaq.cws_home/electronicpreprints
http://www.elsevier.com/wps/find/supportfaq.cws_home/permissionusematerial


188 
 

 

 

 

Appendix B.4.  Reprint Permission 

 

 

 



189 
 

 

 

 

Appendix B.5.  Reprint Permission 

 

 



190 
 

 

 

 

Appendix B.6.  Reprint Permission 

 

24 February 2011 

Narayan P. Chapagain 

CASS, Utah State University 

4405 Oldmain Hill 

Logan, UT, 84322-4405 

(435) 797-3519 

n.chapagain@aggiemail.usu.edu 
 

Dear Dr. Vince Eccles, 

I am in the process of preparing my Ph.D. dissertation in Department of Physics, Utah 

State University. I am planning to submit it by March, 2011.  
 

You were a co-author of my paper “Airglow Observations and Modeling of F-region 

Depletion Zonal Velocities over Christmas Island, J. Geophys. Res., 116, A02301, 

doi:10.1029/2010JA015958.  I am requesting your permission to include the manuscript 

in its entirety in my dissertation.  I will include acknowledgements of your contributions 

as an author to this manuscript as part of a footnote on the page of that chapter. In 

addition, a copy of this letter will be printed in an Appendix to my dissertation. 
 

Please indicate your approval of this request by signing in the endorsement below. I will 

be happy to answer any question or special request regarding this letter.  
 

Thank you for your time and consideration. 

 

Narayan P. Chapagain 

 
 

I hereby give my permission to Narayan P. Chapagain to reprint the following manuscript 

in his dissertation.  
 

Chapagain, N. P., M. J. Taylor, and J. V. Eccles (2011), Airglow observations and 

modeling of F region depletion zonal velocities over Christmas Island, J. Geophys. Res., 

116, A02301, doi:10.1029/2010JA015958. 

Signed    Date : Feb 25, 2011  

        

       Dr. J. Vincent Eccles 

      Space Environment Corporation 

      Providence, Utah, USA. 
 

 

 

 

mailto:n.chapagain@aggiemail.usu.edu


191 
 

 

 

 

Appendix B.7.  Reprint Permission 

 

Narayan P. Chapagain 

CASS, Utah State University 

4405 Oldmain Hill 

Logan, UT, 84322-4405 

n.chapagain@aggiemail.usu.edu 
 

Dear Dr. P-Dominique Pautet, 
 

I am in the process of preparing my Ph.D. dissertation in Department of Physics, Utah 

State University. I am planning to submit it by March, 2011.  
 

I am co-author of papers (1) Simultaneous observations of equatorial F-region plasma 

depletions over Brazil during the spread F Experiment (SpreadFEx), Ann. Geophys., 27, 

2371–2381. 2009, and (2) Propagation of Plasma Bubbles Observed in Brazil from GPS 

and Airglow Data, Adv. Space Res., doi:10.1016/j.asr.2010.09.025. I am requesting your 

permission to include the materials from these manuscripts in my dissertation. I will 

include acknowledgements of your contributions as an author to this manuscript as part 

of a footnote on the pages of the chapters. In addition, a copy of this letter will be printed 

in an Appendix to my dissertation. 
 

Please indicate your approval of this request by signing in the endorsement below. I will 

be happy to answer any question or special request regarding this letter.  
 

Thank you for your cooperation, 
 

Narayan P. Chapagain 

_____________________________________________________________________ 
 

I hereby give permission to Narayan P. Chapagain to reprint the following material in his 

dissertation.  
 

Pautet, P.-D., M. J. Taylor, N. P. Chapagain, H. Takahashi, A. F. Medeiros, F. T. Sao 

Sabbas, and D. C. Fritts,( 2009), Simultaneous  observations of equatorial F-region 

plasma depletions over Brazil during the spread F Experiment (SpreadFEx), Ann. 

Geophys., 27, 2371–2381. 

Haase, J. S., T. Dautermann, M.J. Taylor, N. P. Chapagain, E. Calais, and P.-D. Pautet
 

(2011), Propagation of Plasma Bubbles Observed in Brazil from GPS and Airglow Data, 

Adv. Space Res., doi:10.1016/j.asr.2010.09.025. 

 

Signed      Date 24
th

 February, 2011 

Dr. P-Dominique Pautet 

CASS, Utah State University, Logan, UT. 

 

mailto:n.chapagain@aggiemail.usu.edu
http://dx.doi.org/10.1016/j.asr.2010.09.025
http://dx.doi.org/10.1016/j.asr.2010.09.025


192 
 

 

 

 

Appendix B.8.  Reprint Permission 

 

February 21
st
, 2011 

Dr. Jennifer Haase      Narayan P. Chapagain 

 Purdue University      CASS, Utah State University  

Department of Earth and Atmospheric Sciences   4405 Oldmain Hill 

West Lafayette, Indiana, USA     Logan, UT, 84322-4405 

       n.chapagain@aggiemail.usu.edu 

Dear Dr. Jennifer Haase, 

I am in the process of preparing my Ph.D. dissertation in Physics Department, Utah State 

University. I am planning to submit it on March, 2011.  
 

I am co-author of your paper “Propagation of Plasma Bubbles Observed in Brazil from 

GPS and Airglow Data”, Adv. Space Res., doi:10.1016/j.asr.2010.09.025. I am requesting 

your permission to include the materials (Figure 14 and table 2) in my dissertation. I will 

include acknowledgements of your contributions as an author to this manuscript as part 

of a footnote on the page of that chapter. In addition, a copy of this letter will be printed 

in an Appendix to my dissertation. 
 

Please indicate your approval of this request by signing in the endorsement below. I will 

be happy to answer any question or special request regarding this letter.  

 

Thank you for your time and consideration. 

 

Narayan P. Chapagain 

_______________________________________________________________________ 

I hereby give my permission to Narayan P. Chapagain to reprint the following material in 

his dissertation.  

Haase, J. S., T. Dautermann, M.J. Taylor, N. P. Chapagain, E. Calais, and P.-D. Pautet
 

(2011), Propagation of Plasma Bubbles Observed in Brazil from GPS and Airglow Data, 

Adv. Space Res., doi:10.1016/j.asr.2010.09.025., 

Signed  …      Date……2/21/2011.. 

Dr. Jennifer Haase 

Purdue University 

Department of Earth and Atmospheric Sciences 

West Lafayette, Indiana, USA 

 

mailto:n.chapagain@aggiemail.usu.edu
http://dx.doi.org/10.1016/j.asr.2010.09.025
http://dx.doi.org/10.1016/j.asr.2010.09.025


193 
 

 

 

 

      Appendix B.9.  Reprint Permission 

 



194 
 

 

 

 

Appendix B.10.  Reprint Permission 

 

 



195 
 

 

 

 

Appendix B.11.  Reprint Permission 

 

from:                Dave Fritts dave@cora.nwra.com 

to:                    “N.P. Chapagain” npchapagain@gmail.com  

date:                 Wed, Feb 23, 2011 at 6:26 AM 

sub:                   Re. Permission for reprint 

mailed-by:        cora.nwra.com 

signed-by:        cora.nwra.com 

      

 

Hi Narayan, 

 

I hereby give my permission to Narayan P. Chapagain to reprint the following materials 

in his dissertation. “Pautet, P.-D., M. J. Taylor, N. P. Chapagain, H. Takahashi, A. F. 

Medeiros, F. T. Sao Sabbas, and D. C. Fritts,( 2009), Simultaneous  observations of 

equatorial F-region plasma depletions over Brazil during the spread F Experiment 

(SpreadFEx), Ann. Geophys., 27, 2371–2381”. 

 

Good luck with your defense. 

 

Cheers,  

Dave 

 

------------------------------------------- 

North West Research Associates  

CoRA Division 

 Boulder, CO, USA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:dave@cora.nwra.com
mailto:npchapagain@gmail.com


196 
 

 

 

 

Appendix B.12.  Reprint Permission 

 

from:                Amauri afragoso@df.ufcg.edu.br 

to:                    “N.P. Chapagain” npchapagain@gmail.com  

date:                 Wed, Feb 23, 2011 at 9:27 AM 

sub:                   Re. Permission for reprint the manuscript 

mailed-by:        df.ufcg.edu.br 

 

Dear Narayan, 

I hereby give my permission to Narayan P. Chapagain to reprint the following materials 

in his dissertation. “Pautet, P.-D., M. J. Taylor, N. P. Chapagain, H. Takahashi, A. F. 

Medeiros, F. T. Sao Sabbas, and D. C. Fritts,( 2009), Simultaneous  observations of 

equatorial F-region plasma depletions over Brazil during the spread F Experiment 

(SpreadFEx), Ann. Geophys., 27, 2371–2381”. 

 

Amauri 

 

-------------------------------------------------------------- 

Prof. Amauri Fragoso de Medeiros 

Unidade Acadêmica de Física - UFCG  

Av. Aprígio Veloso, 882 - Bloco CY - Bodocongó 

CEP: 58.109-970 Campina Grande -Paraíba  

Office : +55 (83) 2101-1196 

Home: +55 (83) 3321-4569 

Cel. 83-8858-4963, 83-8113-5679 

E-mail: afragoso@df.ufcg.edu.br  

---------------------------------------------------------------- 

 

 

 

 

 

 

 

 

 

 

 

  

mailto:afragoso@df.ufcg.edu.br
mailto:npchapagain@gmail.com
mailto:afragoso@df.ufcg.edu.br


197 
 

 

 

 

Appendix B.13.  Reprint Permission 

 

from:                Thomas.Dautermann@dlr.de 

to:                    “N.P. Chapagain” npchapagain@gmail.com  

date:                 Tue, Feb 22, 2011 at 12:47 AM 

sub:                   Re. Permission for reprint the manuscript 

mailed-by:        dlr.de 

 

 

Hello Narayan, 

 

I hereby give my permission to Narayan P. Chapagain to reprint the following materials 

in his dissertation. “Haase, J. S., T. Dautermann, M.J. Taylor, N. P. Chapagain, E. Calais, 

and P.-D. Pautet
 
(2011), Propagation of Plasma Bubbles Observed in Brazil from GPS 

and Airglow Data, Adv. Space Res., doi:10.1016/j.asr.2010.09.025. 

 

Cheers, 

Thomas Dauterman 

------------------------------------------- 

German Aerospace Center (DLR) 

Department of Communication and Navigation 

Oberpfaffenhofen, 82253  

Wessling, Germany 

 

 

 

 

 

 

 

  

mailto:npchapagain@gmail.com
http://dx.doi.org/10.1016/j.asr.2010.09.025


198 
 

 

 

 

CURRICULUM VITAE 

 

NARAYAN  P.  CHAPAGAIN 

Center for Atmospheric and Space Sciences 

Physics Department 

Utah State University 

Logan, UT 84322 

(435) 797-3519 

n.chapagain@aggiemail.usu.edu 

________________________________________________________________________ 

 

EDUCATION  

 Ph.D.   April 2011  Utah State University, Logan, UT, USA 

      Area of study: Space and Ionospheric Physics 

Dissertation: Dynamics of Equatorial Spread F using 

Ground-based Optical and Radar Measurements 

   

 M.Tech.   August 2003 Andhra University, Andhra Pradesh, India 

    Area of study: Atmospheric and Space Sciences 

Thesis: Total Ozone Measurements over Kathmandu Using 

Brewer Spectrophotometer      

 

 

M.S.     March 1992 Tribhuvan University, Kathmandu, Nepal 

      Major: Physics 

    Thesis: The Study on Preheat in D-D and D-T as a Fusion 

Fuel in Inertial Confinement Fusion Plasma 

      

 B.S.  September 1988 Tribhuvan University, Kathmandu, Nepal  

     Major: Physics and Mathematics 

 

SCHOLARSHIPS AND AWARDS 
 

 Claude E. ZoBell Scholarship (2009-2010), College of Science, Utah State 

University (USU), UT, USA. 

 2009 Graduate Student Senate (GSS) Enhancement Award, USU, USA. 

 First prize in oral presentation from College of Science, „2009 Intermountain 

Graduate Research Symposium‟, USU, USA. 

 2008 Howard L. Blood Endowed Scholarship, Physics Department, USU, USA. 

 2007 Laboratory Teaching Assistant of the Year, Physics Department, USU, USA. 

 2006 Gene Adam Award, Outstanding Academic Performance, Physics 

Department, USU, USA. 



199 
 

 

 

 

 Scholarship for Post Graduate Course in Space and Atmospheric Sciences - 

Conducted by Centre for Space Science and Technical Education in Asia and the 

Pacific (CSSTE-AP) affiliated to the United Nations, 1999-2000. 

 

PROFESSIONAL EXPERIENCE 

 Graduate Teaching Assistant, 2005-2011, Physics Department, Utah State 

University, UT, USA. 

 Graduate Research Assistant, 2006-2009, Center for Atmospheric and Space 

Sciences, Utah State University, UT, USA. 

  Reviewer, Journal of Geophysical Research (JGR) - Space Physics. 

 Lecturer, 1995-2005, Tribhuvan University, Kathmandu, Nepal. 

 Assistant Lecturer, 1992-1995, Tribhuvan University, Kathmandu, Nepal. 

 Academic Director, 2000-2005, Kathmandu Bernhardt College, Kathmandu, Nepal. 

 Head, Department of Physics, 1998-2000, Patan M. Campus, Tribhuvan University, 

Lalitpur, Nepal.  

 Head, Department of Physics, 1997-2000, Kathmandu, Donbosco College, Nepal. 

 

SELECTED MEMBERSHIPS AND SERVICES 

 American Geophysical Union (AGU). 

 American Physical Society (APS). 

 Life Member, Nepal Physical Society (NPS), Nepal. 

 University Teacher Association, Tribhuvan University, Nepal (1992-2005). 

 Member of Board of Director, Kathmandu Bernhardt College, Nepal (2000-2005). 

 Subject Committee Member in Physics, Mahendra Sanskrit University, Kathmandu, 

Nepal (2002-2004). 

 Joint Secretary, Nepal Physical Society (NPS), Nepal (1999–2001). 

 Treasurer, University Teacher Association, Patan M. Campus, Nepal (1993-1995). 

 

PUBLICATIONS 

   Main Publications 

Chapagain, N. P., B. G. Fejer, and J. L. Chau (2009), Climatology of post-sunset 

equatorial spread F over Jicamarca, J. Geophys. Res., 114, A07307 

doi:10.1029/2008JA013911. 

Chapagain, N. P., M. J. Taylor, and J. V. Eccles (2011), Airglow observations and 

modeling of F region depletion zonal velocities over Christmas Island, J. Geophys. 

Res., 116, A02301, doi:10.1029/2010JA015958. 

Chapagain, N. P., and M. J. Taylor, OI (630.0 nm) Airglow depletion zonal velocity 

measurements over Ascension Island (Manuscript ready to submit on JGR). 



200 
 

 

 

 

Pautet, P.-D., M. J. Taylor, N. P. Chapagain, H. Takahashi, A. F. Medeiros, F. T. Sao 

Sabbas, and D. C. Fritts ( 2009), Simultaneous  observations of equatorial F-region 

plasma depletions over Brazil during the spread F Experiment (SpreadFEx), Ann. 

Geophys., 27, 2371–2381. 

Haase, J. S., T. Dautermann, M. J. Taylor, N. P. Chapagain, E. Calais, and P.-D.  Pautet
 

(2011), Propagation of plasma bubbles observed in brazil from GPS and airglow 

data, Adv. Space Res., doi:10.1016/j.asr.2010.09.025. 

 

   Other Publications 

Chapagain, N. P. and L. N. Jha (1996), Preheat in D-D and D-T as a fusion fuel in 

inertial confinement fusion plasma, Proceedings paper of 21
st 

International College 

on Physics and Contemporary Needs, Nathiagali, Pakistan. 

Chapagain, N. P., S. Lal, and S. Gurung (2002), The relation between total ozone and 

UV irradiation over Ahmedabad and comparison of total ozone over Ahmedabad 

and Kathmandu, Proceedings paper of the Nepal Physical Society, 18
th

 Annual 

Convention, Kathmandu, Nepal. 

Chapagain, N. P. (2003), The diurnal variation of total ozone over Kathmandu 

measured with Brewer Spectrophotometer, Proceeding paper of The Nepal Physical 

Society, 19th Annual Convention, Kathmandu, Nepal.  

Chapagain, N. P. (2003), The variability in atmospheric ozone over Kathmandu 

measured with a Brewer Spectrophotometer, Journal of Royal Nepal Academy of 

Science and Technology (RONAST). 

Dhakal, B., S. Gurung, and N. P. Chapagain (2003), An attempt towards the calculation 

of half life period of ozone, Proceedings paper of The Nepal Physical Society, 19
th

 

Annual Convention, Kathmandu, Nepal.  

 

Co-author of Books Publications 

B. Gautam, S. K. Neupane, and N. P. Chapagain (2001), Textbook of Physics for 

Proficiency Certificate Level First Year, Kala Publication, Nepal. 

B. Gautam, S. K. Neupane, and N. P. Chapagain (2001), Textbook of Physics for 

Proficiency Certificate Level Second Year, Kala Publication, Nepal. 

B. Gautam, S. K. Neupane, and N. P. Chapagain (2000), Textbook of Physics for Class 

XI, Kala Publication, Nepal. 

B. Gautam, S. K. Neupane, and N. P. Chapagain (1999), Textbook of Physics for Class 

XII, Kala Publication, Nepal.  

 

CONFERENCE PRESENTATIONS 

Chapagain, N. P. and M. J. Taylor, Dynamics of ionospheric plasma depletion 

measured by airglow emissions, American Physical Society Four Corners Fall 

Meeting, Weber State University, Ogden, Utah, October 15-16, 2010. 

http://dx.doi.org/10.1016/j.asr.2010.09.025


201 
 

 

 

 

P.-D. Pautet, N. P. Chapagain, M. J. Taylor, A. F. Medeiros, J. J. Makela, H. 

Takahashi, and D. C. Fritts: Investigating the ionospheric bubble structures 

observed from Northeastern Brazil, AGU Spring Meeting, Foz do Iguassu, Brazil, 

August 8-12, 2010. 

Chapagain, N. P., and M. J. Taylor, Dynamics of equatorial spread F from optical 

measurements, 2010 Intermountain Graduate Research Symposium, Utah State 

University, Logan, UT, April 2010. 

Chapagain, N. P., and M. J. Taylor, Airglow depletion zonal velocities over Ascension 

Island, poster presentation, AGU Fall Meeting, San Francisco, CA, December 2009. 

Chapagain, N. P., and M. J. Taylor, Ionospheric OI 630 nm airglow depletion zonal 

velocities over Ascension Island, poster presentation, CEDAR-DASI Workshop, 

Santa Fe, NM, June 2009. 

Chapagain, N. P., M. J. Taylor, and V.J. Eccles, Ionospheric plasma bubble zonal 

velocities from Christmas Island Using airglow emissions, poster presentation, 

Space Weather Workshop, Boulder, CO, April 2009. 

Chapagain, N. P., and M. J. Taylor, Optical measurements of ionospheric plasma 

bubbles from Christmas Island, 2009 Intermountain Graduate Research 

Symposium, Utah State University, Logan, UT, April 2009. 

Chapagain, N. P., and M. J. Taylor, Optical measurements of equatorial plasma 

depletions from Christmas Island, poster presentation, AGU Fall Meeting, San 

Francisco, CA, December 2008. 

Chapagain, N.  P., M.  J. Taylor, and B. G. Fejer, Equatorial spread F and plasma 

bubble, Physics colloquium, Utah State University, UT, September 2008.   

Chapagain, N. P., M. J. Taylor, P.-D Pautet, H. Takahashi, and D. C. Fritts, 

Simultaneous observations of equatorial ionospheric plasma bubbles from two sites 

during the SpreadFEx campaign, poster presentation, CEDAR-DASI Workshop, 

Midway, UT, June 2008. 

Chapagain, N. P., M. J. Taylor, T. Dautermann, and J. S. Haase, Properties and 

propagation of plasma bubbles observed over Brazil during the SpreadFEx 

campaign, 2005, poster presentation, Space Weather Workshop, Boulder, CO, April 

2008. 

Chapagain, N. P., and M. J. Taylor, Propagation of plasma bubble in Brazil observed 

with GPS and airglow, Graduate Research Symposium, Utah State University, UT, 

April 2008. 

Chapagain, N. P., and B. G. Fejer, Study of early night equatorial spread F over 

Jicamarca, poster presentation, CEDAR-DASI Workshop, Santa Fe, NM, June 2007. 

Chapagain, N. P., The variability in the atmospheric total ozone over Kathmandu 

measured with Brewer Spectrophotometer, 20
th 

Annual convention of Nepal 

Physical Society, Kathmandu, Nepal, June 2003. 



202 
 

 

 

 

Chapagain, N. P., The variability in the atmospheric total ozone over Kathmandu from 

TOMS satellite data, 4
th

 National convention, Royal Nepal Academy of Science and 

Technology (RONAST), April 2002. 

Chapagain, N. P., S. Lal, and S. Gurung, The relation between total ozone and UV 

irradiation over Ahmedabad, India and comparison of total ozone over Ahmedabad 

and Kathmandu, 18
th

 Annual convention of Nepal Physical Society, Kathmandu, 

Nepal, June 2001. 

Chapagain, N. P., and L. N. Jha, Preheat in D-D and D-T as a fusion fuel in inertial 

confinement fusion plasma, poster presentation, 21
st 

International Summer College 

on Physics and Contemporary Needs, Nathiagali, Pakistan, June-July 1996. 

Chapagain, N. P. and L. N. Jha, Self heating in inertial confinement fusion plasma, 

RONAST Second National Conference on Science and Technology, Kathmandu, 

Nepal, June 1994. 

Chapagain, N. P. and L. N. Jha, Self Heating in inertial confinement fusion plasma, 

SAHA Centenary Symposium on Plasma Science and Technology, University of 

Allahabad, Allahabad, India, October 1993. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


	Dynamics of Equatorial Spread F Using Ground-Based Optical and Radar Measurements
	Recommended Citation

	tmp.1305144156.pdf.WKpDw

