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plasma potential attribute and the g2 (Awk
) is the area attribute function. Since the indi-

vidual collecting areas are equal to

lim
n→∞

n
∑

k=1

g2 (Awk
) = A, (2.7)

where A is the area of the probe projected for collection. Hence, equation (2.6) can be

written as

Ij = A lim
n→∞

n
∑

k=1

g1 (Φ = φ− φp + φwk
) . (2.8)

When a random variable has large number of trials, the outcome of the random ex-

periment is expected to tend to settle at the expectation or mean of the random variable.

Hence, the equation (2.8) on applying the law of large numbers becomes

Ij = AE [g1 (Φ = φ− φp + φw)] , (2.9)

where E [g1 (Φ = φ− φp + φw)] is the expectation or mean of the current collection function.

From equation (2.3), we know that the current collection function actually expands out into

a piecewise function of the probe to plasma potential Φ. The piecewise notation of equation

(2.9) becomes

Ij =



























IthjE
[

exp
(

qj(φ−φp+φw)
C

)]

if, qj (φ− φp + φw) < 0

IthjE

[

P1 +
(

qj(φ−φp+φw)
P2

)β
P3

]

otherwise.

(2.10)

Note that in the above equation, the Area A from equation (2.9) gets factored out

into the thermal current component Ith. We first solve the piecewise function in the

qj (φ− φp + φw) < 0 range to deduce the retardation region current, which is given by

Iretj = IthjE

[

exp

(

qj (φ− φp + φw)

C

)]

. (2.11)
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On evaluating the expectation operator on the Gaussian random variable φw, we get

Iretj = Ithj
1

σ
√
2π

∫ −φ+φp

−∞
exp

(

qj (φ− φp + φw)

C

)

exp

(−φ2w
2σ2

)

dφw. (2.12)

We can reduce the integral to an analytical formula by re-arranging the indices of the

exponential and reversing the integral limits,

Iret = Ith exp

(

qj (φ− φp)

C
+

σ2

2C2

)

[

1− 1

σ
√
2π

∫ −φ+φp

−∞
exp

(

(

qjφw + σ2/C2
)

2σ2

)

dφw

]

.

(2.13)

The integral evaluates into an Q-function variant

Iret = Ith exp

(

qj (φ− φp)

C

)[

Q

(

qj (φ− φp) + σ2/C

σ

)]

, (2.14)

where Q is the Q-function operator. On substituting the thermal characteristics KbT into

the above equation

Iretj = Ithj exp

(

qj (φ− φp)

KbT

)[

Q

(

qj (φ− φp) + σ2/KbT

σ

)]

. (2.15)

The saturation region expressions have different representations for different plasma

regime factors. We solve the generic case and substitute the appropriate scaling values

under the different plasma conditions. The saturation region expression part of the current

collection function is of the form

Isatj = IthjE

[

P1 +

(

qj (φ− φp + φw)

P2

)β

P3

]

. (2.16)

On evaluating the expectation operator on the Gaussian random variable φw, we get

Isatj = Ithj
1

σ
√
2π

∫ ∞

−φ+φp

(

P1 +

(

qj (φ− φp + φw)

P2

)β

P3

)

exp

(−φ2w
2σ2

)

dφw. (2.17)

The above expression is the generic form of the saturation region current. The integral

evaluated to a closed form solution only when the scaling factor β is 0 or 1. We get Q-
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Function representations similar to the retardation region. In all other cases, the numerical

representation with the approriate scaling factors put in to P1,P2, and P3 will represent the

current collection equation.

The electron current collection for a plasma regime defined as Maxwellian, non-drifting,

collisionless, non-magnetized, is solved for analyzing the current collection using the equa-

tion (2.17). Here the plasma regime factors are due to the applied potential and the sheath

size behavior in response to the applied bias potential. The equations for electrons are

defined in table 2.3 and table 2.4 for the ions.

Now the ion collection in the saturation region for a mesothermal condition is solved.

The plasma regime factors are dependent on the ion drift velocity vd.

The equations derived in this section described the current collected by a particular

charge species only. The total current collected by the probe is the sum of the current

collected by both the ion and electron charges.

2.3 Implications of Surface Structure Variations on Current Collection

We illustrate the I-V characteristics from the simulation of work function variation

Table 2.3: Electron collection: Work function variation theory.

Plasma Regime: Maxwellian, non-drifting, collisionless, non-magnetized

Geometry Scaling Factors Current Collection (Isate)

Flat Plate β = 0

P1 = 0 Ithe

[

1−Q
(

qe(φ−φp)
σ

)]

P2 = 0
P3 = 1

Cylindrical β = 1/2

P1 = 1 Ithe
1

σ
√
2π

∫∞
(−φ+φp)

2√
π

(

1 +
qe(φ−φp+φw)

KbT

)0.5

P2 = KbT exp
(

−φ2
w

2σ2

)

dφw

P3 =
2√
π

Spherical β = 1

P1 = 1 Ithe

[(

1 +
qe(φ−φp)

KbT

)

Q
(

qe(φ−φp)
σ

)]

+

P2 = KbT Ithe

[

qeσ
2
√
πKbT

exp−
(

(φ−φp)
2

√
2σ

)2
]

P3 = 1
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Table 2.4: Ion collection: Work function variation theory.

Plasma regime: Maxwellian, drifting, collisionless, non-magnetized

Geometry Scaling Factors Current Collection

Flat Plate β = 0

P1 = 0 ANqivd

[

1−Q
(

qi(φ−φp)
σ

)]

P2 = 0

P3 =
2
√
πvd

2vthi
Cylindrical β = 1/2

P1 = 1 + 2KbT
miv2d

ANqivd
π

1
σ
√
2π

∫∞
(−φ+φp)

2√
π

(

1 +
qi(φ−φp+φw)

miv2d
+ KbT

miv2d

)0.5

P2 =
1

2miv2d

P3 =
vd
vthi

exp
(

−φ2
w

2σ2

)

dφw

Spherical β = 1

P1 = 1 + 2KbT
miv2d

ANqivd

[(

1 +
qi(φ−φp+φw)

mv2
d
/2

+ KbT
mv2

d
/2

)

Q
(

(φ−φp)
σ

)

P2 =
1

2miv2d

P3 =
2vd
vthi

+ qσ
2
√
πmv2

d
/2

exp−
(

−φ2
w√
2σ

)2

driven current collection of a cylindrical probe in plasma in fig. 2.5. The current collection

is described by the equations for a cylindrical probe given in tables 2.3 and 2.4.

We can notice from the simulation results that the total current in the case of a vary-

ing work function is subjected to the averaging effect around the plasma potential. This

behavior has been quoted in literature as smoothening of the knee [2]. The flattening of the

probe characteristics has been explained to be due to the electron energy smearing around

the plasma potential, which is caused by different areas of the probes being charged to

different potentials. We can see from fig. 2.5 that around the transition region of electron

retardation to saturation region, some of the areas are still operating as retardation regions

while the others have achieved positive attractive voltages. This leads the overall current

across the probe to be averaged out across the lower and higher work functions leading to

the absence of a sharp inflection point as predicted by the conventional model.

The incorrect identification of the inflection point would lead to an earlier prediction

of the plasma potential which in-turn underestimates the electron density calculations. The

work function variation also distorts the slope of the electron retardation region leading to
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Fig. 2.5: Langmuir curve I-V relations.

misconstrued temperature measurements.

We compare the I-V curves generated by the work function variation model for all

the three geometries with those defined by the traditional OML theory. Choosing a suit-

able ionosphere F region parameter set, temperature=800 Kelvin; density=1.1e10; plasma

potential=0.8Volts; variance=0.2. The results are illustrated in fig. 2.6 and fig. 2.7.

As seen from the comparison figures, the deviation in the Langmuir probe I-V curve

from the traditional OML theory-based ideal case to that of a work function variation model

is pronounced for all three geometries especially in the flat plate and cylindrical collector.

Spherical collector is relatively smooth due to inherently smooth plasma potential transition

region. We use the model derived in this section to analyze the data from a sounding rocket

mission which had a contaminated probe surface necessitating the use of structural non-

uniformity factor to define the probe to plasma potential. The data quality and reliability

is examined in the next section followed by the application of model for plasma analysis in

the chapter following that.
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Fig. 2.6: Work function variation vs. ideal case: Flat plate geometry.
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Fig. 2.7: Work function variation vs. ideal case: Spherical geometry.
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Chapter 3

STORMS Mission

The scientific instruments onboard the STORMS Mission were built by University

of Texas, Dallas and Utah State University/Space Dynamics Laboratory. The daughter

payload, shown in fig. 3.1, designed by the Utah State University included a suite of

instruments to measure relative and absolute electron density, electron-neutral collision

frequency, temperature, and electric fields. The instruments were: Plasma Frequency Probe

(PFP), Swept Impedance Probe (SIP), and DC Langmuir Probe (DCP) sensors, collectively

called the Plasma Impedance probe (PIP) located on the fore direction of the rocket. The

Sweeping Langmuir Probe (SLP) sensor was located in the aft direction of the rocket and the

Floating Potential Probe (FPP) sensors are the four probes that are located perpendicular

to the rocket spin axis and separated from each other by 90◦. We present a brief overview

of the USU instruments in the remainder of this section. The design and calibration efforts

could be found in the following references: [31] and [32]. The details of the UTD payload

and the science investigations of the mission can be found in the paper by Earle et al. [29].

The Sweeping Langmuir Probe makes measurements at both fixed voltages and ocas-

sionally over a range of voltages. The probe was held constant at 3 volts and swept at

every 20 seconds after 170 seconds of flight time. The sweep was from -1 to 3 volts. Thus

periodic temperature and density measurements were made. Figure 3.2 shows the SLP raw

data and fig. 3.3 shows the rocket trajectory with SLP sweep interval points. Temperature

observations were made over the range of 270 to 390 Km. The fixed bias DC probe was

held constant at -7 volts operating in the ion saturation region providing relative ion density

measurements.

The floating potential probe implementation was a 0.1016 meters diameter, titanium

nitrite coated; conducting sphere mounted approximately 0.0762 meters from the end of
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Fig. 3.1: Daughter payload onboard STORMS.

each boom. Each boom is 1.02 meters long and when deployed, the four FPP booms are

perpendicular to the spin axis of the payload and separated by 90 degrees. This separates

each sensor by approximately 2.032 meters from the next one and by approximately 2.794

meters from the opposing one. The FPP onboard this mission was implemented with a

slightly different approach inorder to be able to measure the floating potential of the pay-

load in addition to the electric field. Instead of measuring the voltage difference between

two identical probes, the voltage difference between each probe and the payload skin is dif-

ferenced through a difference amplifier and then digitized. The digitized readings from two

oppositely placed probes could then be differenced to give the electric field measurements.

They make absolute density measurements by tracking resonance of the antenna at the

various characteristic frequencies of the plasma. This technique has a distinct advantage

of being independent of probe surface conditions, vehicle self-charging conditions, magnetic

field, electron temperature, etc., as well as providing fine resolution of density measurements.
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Fig. 3.2: Raw data of SLP sweeps.

The Plasma Frequency Probe (PFP) tracks the upper hybrid frequency, and the absolute

electron density could be derived from this measurement. In the Sweeping Impedance

Probe (SIP) technique, the instrument is swept over a range of frequencies and the antenna

impedance is measured. The electron density can be obtained by matching the measured

impedance curves against the impedance probe theories. The PFP instrument onboard

the STORMS mission did not successfully track the upper hybrid frequency, and hence no

reliable measurements were available. However the SIP, which was swept from 0.1-20 MHz,

provided valuable set of data to study the density fluctuations and structures. The SIP

antenna made 128 point measurements between the set frequency ranges of the impedance

magnitude.

3.1 PCM Telemetry Format Description

The telemetry requirements are determined by the science question that the mission is

launched to address. In the case of STORMS, the spatial resolution for making measure-

ments was determined to be between 0.1 to 100 meters depending on the instrument.
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Fig. 3.3: Rocket trajectory with SLP sweep points.

Figure 3.4 has the data sampling rate of all the instruments onboard the STORMS

daughter payload. The data from the PCM matrix is extracted and converted from counts

to the respective measurements units using the calibration constants. These measurements

are then investigated for usability in the next section. The telemetry matrix is found in

Appendix A.

3.2 Data Quality Analysis

The data from SLP for a single sweep at an altitude of 350 Km is presented in fig. 3.5.

The corresponding data from the floating potential probes and the sweeping impedance

probes is presented in the fig. 3.6. The data from all the instruments exhibit a periodic

noise in their measurements. This noise, upon investigation, was found to be correlated

with the SIP. It was observed that at low driving frequencies of the SIP instrument, the

SIP, FPP, and the SLP measurements were corrupted. The noise was correlated with

the frequency on the SIP. When the driving frequency was near or below the local plasma

frequency and the electron gyro frequency, the potential of the whole payload relative to the

plasma was affected. This case of low frequency condition of RF plasma sheaths influencing

spacecraft potential and payload measurements is often referred to as “sheath-rectification.”

Though the electrodynamics of the spacecraft charging process due to RF driven plasma
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Fig. 3.4: Sampling rate of instruments onboard STORMS daughter payload.

sheath modifications is not completely quantified, studies on the Oedipus-C mission floating

voltages and also ISIS II [33] and Cosmos 1809 observations [34] have discussed the physical

process causing the induction of harmonic components in the current collection process

defining the floating potential voltages in RF driven plasma sheaths. Further information

on the physical process of this regime of plasmas can be found in the references cited above

and the referrences within.

We can also see from the figure that the FPP measurements are being subjected to

a rise in the region corresponding to electron collection region of the SLP. The payload

charges more negative, relative to the plasma resulting in general decreased collection by

the Langmuir probe and the enhanced observations of the floating potential on the FPP

sensors. This can be clearly seen in fig. 3.6. This behavior is an indication of spacecraft
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Fig. 3.5: Data comparison of daughter payload for one SLP sweep interval.

self-charging effect. The FPP measurements are the payload potential pointers. This rise

in the electron collection dominant region is a consequence of the payload potential being

swung around by SLP due to the small surface area ratio of spacecraft to the probe. The

spacecraft, the probe, and the surrounding plasma form a closed loop system and when

the probe is drawing in electrons (fig. 3.7), the spacecraft body needs to collect ions. Ions

being massive and slower would be collected in fewer numbers and require a sufficiently

large collecting area to balance out probe electron collection. Experimentally, the ratio of

spacecraft to the probe has been established to be around 1000. But in the case of STORMS

sounding rockets, this area was found to be around 250. Inorder to maintain a balance,

the spacecraft ground shifts negative to reduce the electron collection by the SLP. It can

be seen from fig. 3.6 that the FPP readings which give the payload potential (spacecraft

ground) are rising (spacecraft reference ground becomes more negative) as the SLP sweep
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becomes more and more electron-collection-dominant.

The SLP was being swept every 20 second on reaching an altitude of 270Km up-leg and

was operated in this mode till the rocket reached 270Km on the down-leg. This provided 19

sweeps of the SLP in this interval which can be seen in fig. 3.3. The SLP data before being

subjected to data analysis needs to be filtered out to remove the SIP induced periodic noise.

This limited the number of points in each sweep available for the data analysis. It was found

that the number of points suitable for curve-fitting was half the actual measurements made.

It was also observed that some of the sweeps were affected by the SIP noise at the

transition regions leading to significant loss of useful data. This made them unsuitable for

the single-stage curve-fitting process (which will be discussed in the Chapter 4) used in the

plasma analysis. This curve fit is dependent on the transition region indicators namely the

floating potential and the plasma potential. Absence of quality data about either of these

points would render the data unsuitable for analysis. (Details of the curve fit procedure

is explained in Chapter 4). The same holds good for the multi-step procedure of iterative

curve-fitting [24], as well as the traditional method of graphical analysis [35]. Both of these

methods require the transition points to be known with great precision to deduce density

and temperature of the charge carriers.

Some of the sweeps analogous to the sweep, seen in fig. 3.8, were noisy in the area

around floating potential and post-filtering, lose the entire region making them rather dis-

continuous around floating potential, and hence not data-analysis-suitable. It was also seen

that some of the curves similar to the one seen in fig. 3.9 were subjected to additional noise

in electron saturation region. This led to the entire electron saturation region data being

noisy. Quality data points were lost on filtering and hence such sweeps were again not fit for

the plasma analysis. Hence, it was seen that only the data between 270 to 390 Km up-leg

and 390 to 320 Km down-leg was suitable for SLP based data analysis. (Appendix B has

the plots for all the 19 sweeps.)
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Fig. 3.7: SLP-spacecraft-plasma current collection dynamics.
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Chapter 4

Data Analysis

The first step in analyzing the Langmuir probe data is to define the plasma regime under

study. The ionosphere at the F region could be best described as low-pressure plasma with

a Maxwellian distribution of velocities. The Debye sphere radius would be of the order of a

few centimeters, which would not add any significant perturbations caused by the magnetic

field of the Earth. Being a night time mission, additional sources of current collection

like secondary emissions and photocurrents do not affect the current collection dynamics.

Hence, the data collected could be best summarized as non-magnetic, collision-less, and

Maxwellian under Mesothermal conditions.

4.1 Techniques of Data Analysis

On establishing the plasma regime, the data could be analyzed to infer the plasma

properties using the suitable current collection equations. The traditional approach of

extracting the plasma behavior using the current collection equations is to use the method

of graphical analysis of the I-V curve. This method involves deducing the logarithmic-slope

of the electron current vs. voltage curve to estimate the electron temperature. A straight-

line fit to the electron retardation region and electron saturation region is done. The point

of intersection of these two gives the plasma potential. The electron saturation current at

plasma potential is used to deduce the density from the already estimated temperature.

The accuracy is estimated to be within 25 mV of the plasma potential and 10 kelvin of

electron temperature. However, for some of the ionosphere studies, accuracy to the order

of 5% or more is desired for temperature and density gradient measurements. Hence, more

precise methods of data deductions are required to better estimate the plasma behavior.
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Alternative approach used to study the Langmuir probe data is to use regression analy-

sis techniques. Here suitable current models for the plasma regime under study are fit with

the collected data in a least-square-sense to estimate the plasma properties. This process

could be represented as

minfitvariables ‖F (fit variables,applied voltage)−Measured Current‖22 =

minfitvariables
∑

i

(F (fit variables,applied voltage)−Measured Current)2 .
(4.1)

The F (fitvariables, appliedvoltage) term in the equation is the current collection model

generated value of current, which will be matched with the measured current by adjusting

the fit-variables. These fit-variables are the co-efficients of the nonlinear current collection

equation. The fit variables are chosen to be the plasma properties and parameters influ-

encing the probe current collection behavior. These variables are processed through the

regression analysis techniques to minimize the difference between the model-generated data

and measured data.

In this method, a first guess of the plasma properties are made using the graphical

method of I-V curve analysis. These parameters are further refined by least square curve-fit

of the data to the current model [36]. The least square fitting is first done for the data set

around the floating potential to determine the temperature. Once the electron temperature

is determined; the data set around the plasma potential is fit in a least-square sense to

determine the plasma density. The curve-fit is done separately for the two regions because

of the difference in the magnitude of the current in the two transition regions. Being

of higher magnitude, the region around the plasma potential (density) would get more

weightage in the least square fit calculation, leading to a poor fit in the retardation region

(temperature). By fitting separately, difference in the weights of the two regions would not

hamper the accuracy of the measurement. However, due the curve being subjected to fitting

of only a selective data-set, we have to perform multiple iterations to choose the data-set

leading to the best fit.

The regression analysis technique apart from being more accurate is also useful in



37

understanding the behavior of the various parameters influencing the current collection.

Behavior of effective area of collection, velocity distribution, etc., could be studied by setting

these collection parameters as tuning variables for the regression analysis. Owing to these

advantages, we have chosen the regression analysis technique of fitting the model to the

data in order to study the plasma parameters.

The fit variables used to perform regression analysis are density, temperature, and

effective probe-to-plasma potential. The effective probe-to-plasma potential is in-turn ex-

pressed as a factor of two variables, namely, plasma potential and the geometry factor of

the probe. The geometry factor of the probe determines the effective probe area of charge

carrier interaction. The equations are formulated assuming that the area of collection is

known. But this does not hold well in the case of wake region current collection. The charge

carriers in the wake region are rarified leading to the effective area of the probe behaving

as a cylindrical collector to be undefined. Hence, the geometry factor of the probe is set as

a fitting parameter instead of being fixed at 0.5.

Also, the surface structure non-uniformity induced probe-to-plasma potential variation

is an unknown parameter for the STORMS data. Hence, we introduce a third variable,

namely the variance of the probe surface work function to deduce the effective probe to

plasma potential. The variation of the work function quantifies the measure of surface

non-uniformity. The variance of the work function is a factor influencing the entire I-V

curve behavior unlike other variables, whose influence could be isolated to specific regions

of the I-V curve. Hence, selective data-fitting would not be feasible. This means we need

to circumvent the problem of difference in weights of the different regions.

We have therefore, used the method of normalizing the measured data by the current

collection model generated data. This method of taking the ratios would lead the curve-fit

to be done with equal weights at all the regions of the I-V curve. The least square analysis

involves doing a regression analysis of the ratio vs. unit vector by finding the best value of
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the fit parameters or the variables.

minfitvariables

∥

∥

∥

∥

F (fit variables,applied voltage)

Measured Current
−Unit Vector

∥

∥

∥

∥

2

2

=

minfitvariables
∑

i

((

F (fit variables,applied voltage)

Measured Current

)

−Unit Vector

)2 (4.2)

The fit variables considered in our case are:

Density (Ne),

Temperature (Te),

Plasma Potential (φp),

Standard Deviation of the work function (σ),

Geometry Factor (β).

4.2 Data Analysis Results

We have used the “lsqcurvefit” algorithm which is an inbuilt MATLAB function. The

least square fit of data is done for all the sweeps whose data quality was established to be

good. The results are presented in logarithmic plots. The goodness of the fit for the ion

current cannot be established in a normal I-V curve due to the ion current getting masked

by the electron current magnitude. A logarithmic plot would ensure that the ion collection

regions are well defined and also the goodness of the fit can be easily established.

The equations for ions and electrons defined in Chapter 2 in table 2.3 and table 2.4

are used to describe the model current which is tuned using the five fit variables defined

in previous section to analyze the data. As described in Chapter 3, we have discarded the

noisy data points, subtracted the FPP voltages to account for surface area ratio effects

before we perform regression analysis.

We present the results of doing the curve-fit employing the work function theory by

means of altitude-density and altitude-temperature plots. The altitude plots are available

for only limited range for both the upleg and downleg of the flight due to reasons established

in Chapter 3. Before that, we present the results of the curve-fit done using the work function


