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Abstract: Autism is a challenging brain disorder affecting children at global and national scales.
Applied behavior analysis is commonly conducted as an efficient medical therapy for children. This
paper focused on one paradigm of applied behavior analysis, imitation, where children mimic certain
lessons to enhance children’s social behavior and play skills. This paper introduces IMITASD, a prac-
tical monitoring assessment model designed to evaluate autistic children’s behaviors efficiently. The
proposed model provides an efficient solution for clinics and homes equipped with mid-specification
computers attached to webcams. IMITASD automates the scoring of autistic children’s videos while
they imitate a series of lessons. The model integrates two core modules: attention estimation and
imitation assessment. The attention module monitors the child’s position by tracking the child’s
face and determining the head pose. The imitation module extracts a set of crucial key points from
both the child’s head and arms to measure the similarity with a reference imitation lesson using
dynamic time warping. The model was validated using a refined dataset of 268 videos collected from
11 Egyptian autistic children during conducting six imitation lessons. The analysis demonstrated that
IMITASD provides fast scoring, takes less than three seconds, and shows a robust measure as it has a
high correlation with scores given by medical therapists, about 0.9, highlighting its effectiveness for
children’s training applications.

Keywords: autism; imitation; attention; MediaPipe; dynamic time warping; human pose estimation

MSC: 68T05

1. Introduction

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition char-
acterized by difficulties in communication and repetitive behaviors. These challenges
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significantly impact the daily lives of individuals with ASD and their families, specifically
in developing and acquiring social and cognitive skills. According to the Centers for Disease
Control and Prevention (CDC) statement in 2023, the rate of autistic children has risen from
1 in 44 to 1 in 36. According to their statistics, that covered eleven states in the USA, boys
are four times more likely to be autistic than girls, while children are commonly diagnosed
with autism at the age of four years [1,2]. Globally, there are about 75 million people who
have an autism disorder [3]. According to the autism rate by country, Egypt ranks twentieth
on the list of countries suffering from the spread of autism, where the prevalence per ten
thousand children is 89.40 [3]. Imitation, joint attention, and turn-taking are used in the
context of applied behavior analysis (ABA) [4,5], which provides one of the most effective
therapies for children in clinical settings, along with other recent studies such as deep
pressure therapy that provides interesting intervention to reduce anxiety by measuring
electroencephalograms for participants while wearing inflatable vests. Winarni et al. [6–8]
proposed sensory integration therapists who focused on improving the behavioral re-
sponses of autistic children using their sensory inputs such as touch and body movement.
Particularly, they studied the effect of deep pressure on children, using the portable hug
machine. They confirmed that this type of deep pressure minimizes the children’s stress
response during children’s travels. These studies provide interesting directions to tackle
children’s stress, where ABA seeks to enhance children’s skills by deploying various inter-
ventions to ease children’s coping with their communities. Imitation is mimicking behaviors
which are crucial for social interaction and learning; it is an essential component for chil-
dren with ASD, who often struggle with learning and developing social engagement [9–11].
It allows the autistic child to acquire new skills and interact meaningfully with their envi-
ronment [12]. Joint attention fosters shared focus, it reflects the child’s ability to focus on
other activities, supporting cognitive development [9,13,14]. Lastly, turn-taking promotes
social interaction, it supports an advanced social skill that helps children conduct normal
interactions and relationships with their surroundings [15–17].

Autism is a natural learning disorder that is usually identified within the first two
years of autistic children’s lives [10,18]. Children with autism lack learning capabilities
for behavioral patterns that non-disorder learning children usually acquire. Imitation is
categorized into motor, sound, and verbal imitation. One of the major benefits of imitation
is improving social functionality for autistic children, which can improve children’s integra-
tion in the surrounding society [18]. Although normal imitation sessions in clinics provide
a suitable environment for health therapy, they raise significant challenges, especially in
developing countries. First, the autistic child tends to feel bored when the clinic is filled
with children with autism. This increases the difficulty of guiding the child during the
session therapy. Regular therapy typically requires two sessions per week to be aligned
with a typical therapy plan. This demands great effort, especially for families who live
in distant areas. The ultimate goal of this research is to enable an efficient framework to
conduct imitation remotely that does not require on-site sessions. Proposing a model that
provides a score for the children’s imitation is necessary to develop such a framework.

This study utilized imitation as a foundational component of ABA therapy. It plays
a fundamental role in acquiring new skills and fostering social connections. However,
children with autism may exhibit difficulties in imitating actions, which impacts their
ability to learn and engage with their surroundings. Advancements in technology have
sparked a surge in innovative approaches for training and assessment of autistic patients.
From primitive methods to advanced methods represented in machine learning and deep
learning, these methodologies have exhibited promise in aiding the assessment of children
with ASD. However, a critical evaluation of these studies reveals a common limitation that
hinders their widespread applicability in real-world scenarios. Previous investigations in
this domain have often relied on sophisticated equipment such as high-end cameras or
specialized devices like Kinect for data collection and analysis. While these tools yield
valuable insights, their practicality in everyday environments remains restricted, thereby
limiting their utility in routine assessments [19–21].
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This paper proposes Imitation Assessment for Children with Autism Spectrum Disor-
der (IMITASD). It emphasizes seamless integration of the used modules and prioritizes
practical techniques applicable in everyday settings such as mid-specification computers
with a webcam. Central to our approach is the utilization of human pose estimation with
an efficient time-series measure. Accordingly, the proposed method relies on deploying
MediaPipe and dynamic time warping (DTW) [22,23] as key elements for IMITASD. There-
fore, it extends the scope beyond gait behavior assessment to encompass a comprehensive
evaluation of imitation movements crucial for ABA in children with ASD. Our proposed
tool not only facilitates practical assessments but also endeavors to pave the way for more
comprehensive and practical therapeutic strategies for children diagnosed with ASD.

In this study, we present IMITASD, a novel tool designed to assess the behaviors of
children with autism spectrum disorder (ASD) through imitation interventions. IMITASD
is specifically developed to provide accurate scoring that closely aligns with therapist
evaluations, enhancing the assessment process. The dataset for this tool is gathered from
Egyptian autistic children, fulfilling the need for culturally sensitive and contextually
relevant tools for the region. Furthermore, IMITASD addresses key limitations of prior
research, which often relied on expensive equipment such as high-end cameras, Kinect de-
vices, and specialized setups. By offering a practical, low-cost, and fast solution, IMITASD
ensures high-validity assessments, making it an invaluable resource for both clinical and
educational settings.

This article is organized as follows. The literature survey is presented in Section 2,
followed by Section 3, which provides a brief description of the set of algorithms and tools
used in this study. After that, the methodology and the IMITASD system architecture are
demonstrated in Sections 4 and 5, respectively. Lastly, the results, followed by a detailed
discussion, are articulated in Section 6. Conclusions drawn from the findings are presented
in Section 7, and potential directions for future work are discussed in Section 8.

2. Related Works

Artificial intelligence’s (AI) application reshapes different fields, such as health moni-
toring, energy optimization, and machining. In health [24], AI assists in predictive diagnos-
tics and personalized treatment plans. In energy [25], it optimizes resource consumption
and improves system reliability, while in machining [26], AI automates processes and en-
hances precision. These advancements demonstrate AI’s capacity to revolutionize various
sectors by improving efficiency and decision-making capabilities.

Regarding ASD detection, AI tools have investigated various novel techniques for
estimating ASD scores. The authors in [19] explored the potential of digital biomark-
ers, such as eye gaze, tracked through wearable devices like smartphones, in aiding the
early diagnosis and intervention of ASD in preschool children. The study’s limitations
include the absence of information about monitoring activities, potentially hindering un-
derstanding of children’s attention prompts, and the challenge of losing temporal behavior
nuances. In [27], Farooq, M.s. et al. focus on utilizing federated learning as a promising
approach for ASD detection. The study employed support vector machine (SVM) [28]
and logistic regression (LR) [29] models, showing their effectiveness in detecting ASD in
diverse age groups. The authors acknowledge limitations, including constrained model
complexity due to decentralized training on devices with limited resources. In [30], Suman
R. and Sarfaraz M. used SVM, naïve Bayes [31], k-nearest neighbor [32], artificial neural
networks, and convolutional neural networks (CNNs) [33] to identify ASD across diverse
age demographics. The evaluation metrics reveal that the performance of CNNs achieves
accuracy levels ranging from 95.75% to 99.53% for the UCI Repository datasets. While the
study achieved notable accuracy in ASD detection, limitations include reliance on publicly
available datasets and the absence of a standardized medical test for ASD.

The following studies present various techniques for the estimation of ASD scores
and the classification of children as either neurotypical or on the autism spectrum. M.
Wang and, N. Yang have proposed a model named Observational Therapy-Assistance
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Neural Network (OTA-NN) [34]. It is based on two components: the first is based on a
spatial–temporal Transformer and the second consists of multiple-instance learning (MIL).
The two components are responsible for extracting the 3D skeleton and deploying a set of
multiple learners that can score a child’s training state during a medical treatment session.
They proposed another study that replaced their spatial–temporal Transformer with a
graph convolutional network (GCN) with MIL [35,36]. Their model is tested using videos
available in the Dream dataset collected by five cameras, and it obtains an area under the
curve (AUC) score of 0.824. The main restriction of the studies is the setting requirements,
which means it cannot be deployed with only a single camera. S. Zahan et al. [37] proposed
a model based on gesture analysis with movement patterns for normal and autistic children.
Their model predicts the ASD severity score using the Autism Diagnostic Observation
Schedule (ADOS) [38], where they developed a model based on a hypothesis that refers
to disparity gesture patterns: asymmetric movement and gait. The model uses a graph
convolution network (GCN) to extract gait posture, while the Vision Transformer is used
to process skeleton frames in terms of patches from various perspectives. Although the
authors proved a strong potential factor in differentiating normal from autistic children,
they relied on using a camera with Kinect v2, which is crucial for their model to capture
the human skeleton from different angles.

Varun G. et al. [39] developed three models that assess ABA that focus on activity
comprehension, joint attention, and emotion from facial expression. They deployed a
spatiotemporal Transformer to assess interaction between children and their therapist.
They compiled about 51 K images to train the emotion and facial expression model using
the ResNet-34 deep learning model. For joint attention, they implemented R-CNN with
ResNet-50 (v1) to assess the children’s performance while interacting with therapists to look
or point in a certain direction. Their results indicate acceptable performance for activity
comprehension, while high scores are obtained for joint attention and facial expression
modules. Their study has several limitations. First, they used an adjusted camera on a
stable tripod to fit the clinic area. Their model did not extend to integrating these modules
into a single pipeline. Second, since they focused on activity comprehension, they did not
focus on assessing the imitation, as the covered actions were running, sitting, and walking.
Ahmed A et al., in [20], provided a study that classified children according to the level of
autism severity. They used Samsung Note 9 and Kinect v2 to record videos of children
while they walked for 1.5 m in front of the camera. They used seven Transformers for data
augmentation while computing a set of distances between different joints. A multi-layer
perceptron (MLP) network was used during the model training, resulting in an accuracy of
95%. Although their study provides a practical approach to classify children into normal
or autistic, they cover only gait behavior, which does not align with imitation, especially
when the target is to enhance primary children’s behavior for ABA. Furthermore, they used
Kinect v2, which might not be available at the patient’s home.

Table 1 summarizes the previous studies. The limitations across these studies include
challenges in real-world applicability due to reliance on high-end cameras, Kinect devices,
or specialized setups. Further work should address the integration of modules, focusing on
practical techniques applicable in everyday settings. Additionally, advancements should
extend beyond gait behavior to encompass comprehensive imitation movements for ABA.
It is crucial to tackle these challenges to provide a low-cost, fast, and practical solution.
This tool would provide a high-validity assessment for movement when applied to ASD
children, where the results should have a significant degree of correlation with a medical
expert’s evaluation.
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Table 1. Summary of studies on ASD diagnosis and treatment.

# Study Models/Techniques Contributions Limitations

1 Sandhu, G et al.,
2022 [19]

Eye gaze tracked through
wearable devices like
smartphones for aiding in
the early diagnosis of ASD
children

Use digital biomarkers to
monitor ASD children’s
performance

Absence of information
about training activities

2 Ahmed A et al., 2020 [20]
Principal component
analysis; multi-layer
perceptron network

Model’s accuracy is 95% in
classifying videos of children
according to the level
of autism

Covers only gait behavior,
which does not align with
imitation

3 Farooq, M. S. et al.,
2023 [27]

Support vector machine and
logistic regression models

Federated learning model
shows its effectiveness in
detecting ASD

Certain measures must be
fed manually into the system,
e.g., sensory processing,
repetitive behavior, and
other parameters

4 Suman Raj and Sarfaraz
Masood, 2020 [30]

Support vector machine,
naive Bayes, k-nearest
neighbor, artificial neural
network, and convolutional
neural network

Obtained high performance,
with accuracy levels ranging
from 95.75% to 99.53%

Absence of a standardized
medical test for ASD

5 M. Wang and N. Yang,
2023 [34,35]

Spatial–temporal
Transformer;
multiple-instance learning;
graph convolutional
networks

Potential tool could predict
child’s training state
during therapy

Framework is not suitable to
be deployed with a
single-camera system

6 S. Zahan et al., 2023 [37]
Graph convolutional
networks and Vision
Transformer

Model predicts ADOS for
children with ASD, having
high correlation with the true
ADOS

Relies on camera with Kinect
v2 to capture human skeleton

7 Varun G. et al., 2023 [39]

Spatiotemporal Transformer;
ResNet-34 deep learning
model; R-convolutional
network with ResNet-50

Results indicate acceptable
performance for activity
comprehension

Did not focus on acting as a
stand-alone model that could
interact with children

Human pose estimation is a critical factor for the proposed model. It has been inte-
grated into several ASD studies: Kojovic N. et al. have integrated human pose estimation
into ASD prediction [40]. They used OpenPose technology to extract a child skeleton with
a total of 18 key points and deployed an integration of a CNN network using VGG16
in conjunction with LSTM networks. They recorded about 68 videos for children while
playing with their parents and their framework was able to predict ASD children with
80.9% accuracy. Song C. et al. proposed an interesting method for automatic name detec-
tion, where ASD children usually have a lack of response to their name in early screening
for ASD [41]. They collected a dataset named Response to Name from 30 children. They
focused on face detection and head pose estimation in conjunction with computer vision
techniques. Sternum J. et al. presented a survey for the applications of pose estimation in
various human health aspects [42]. One of these domains is the usage of human pose in
clinical diagnosis for children with neurodevelopmental and movement-based disorders.
One part of this study were cerebral palsy diagnosis using magnetic resonance imaging
and diagnosing autistic children by monitoring their gait patterns during their walking
activity. Prakash V. G. et al. integrated three deep neural network models to learn activity
recognition and estimate joint attention based on pose estimation for head and hands, and
recognize emotion and facial expressions for ASD children [39]. Based on their collected
300-video dataset, their models achieved about 72%, 95%, and 95%, respectively. Vallee L.



Mathematics 2024, 12, 3438 6 of 25

N. et al. developed an imitation game for autistic children based on OpenPose to extract
key points [43]. The Gaussian mixture model is used to compare the child-imitated video
with 14 key points in the target video. Although previous studies have focused on various
scenarios of children doing relatively complex tasks, they have not targeted children with
autism while conducting a set of primitive imitation tasks.

3. The Techniques Employed in Implementing IMITASD

This section presents gross motor imitation, a basis behind autism spectrum disorder
training. The second subsection outlines measures for time-series data that comply with
the nature of the data processed in this research. Lastly, human pose estimation is briefly
outlined where the MediaPipe library is highlighted.

3.1. Gross Motor Imitation

This research accentuates the critical significance of gross motor imitation abilities in
the developmental trajectory of children diagnosed with ASD and intellectual disabilities.
Emphasizing the pivotal role of these skills in daily functioning, social integration, and
physical coordination, the study specifically employs the Verbal Behavior Milestones As-
sessment and Placement Program (VB-MAPP) at level 1 [44,45]. Within this assessment
framework, six distinct gross motor imitation tasks have been carefully selected for evalua-
tion among participating children. These tasks encompass actions such as “wave by hand,
side by side”, “arm up”, “hands fold together”, “thumbs up”, “fold hands together over head”, and
“arms up”. These tasks serve as benchmarks to address the developmental progression of
gross motor imitation abilities of children with ASD and intellectual disability, aiming to
improve overall functional capabilities in everyday life, as shown in Figure 1.

Figure 1. List of imitation tasks.
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The six imitation tasks were chosen to assess fundamental gross motor imitation skills,
which are crucial for physical coordination, social interaction, and overall functioning in
children with ASD. Medical therapists validated these tasks to ensure their appropriateness
for assessing children with moderate ASD, providing a reliable evaluation of gross motor
imitation abilities. Therapist ratings were used as a benchmark to score imitation behaviors
in the IMITASD. Each child’s imitation video was evaluated by expert medical therapists,
who provided scores based on their assessment of the child’s performance using a four-level
rating scale: poor, good, very good, and excellent. While these ratings serve as a critical
validation mechanism, we acknowledge the potential for subjective bias inherent in human
assessments. Therefore, multiple therapists assessed each video, and their combined ratings
were averaged to provide a more reliable score.

3.2. Time-Series Measures

Time series contain a set of points that are taken over an equal space–time period. There
are well-defined measures that can compute the distance or similarity between two time-
series sequences. These include Euclidean distance, cosine similarity, Pearson correlation
coefficient, and dynamic time warping (DTW) [46–48]. These time-series measures have
been deployed as typical metrics in recent studies for finding the (dis)similarity among
time-series data, especially for data augmentation [49–52]. A recent survey evaluated
different metrics when assessing the quality of synthetic time series [53].

Euclidean distance [54–56] is the most common way to obtain the shortest distance
between two sequences. It finds the straight line between two points for 2D or higher-
dimensional space [57]. Equation (1) depicts the Euclidean distance formula, where n is
number of dimensions [58]:

distance =

√
n

∑
i=0

(xi − yi)2 (1)

Cosine similarity [59] measures the angle between two non-zero vectors, often used
for high-dimensional data. It focuses on measuring the similarity orientation rather than
its magnitude. The angle is computed through Equation (2), where θ is the angle between
two vectors, A and B:

cos(θ) =
A · B

∥A∥2∥B∥2
(2)

The Pearson correlation quantifies the linear relationship between two sequences [57–60].
It measures the closeness between two sequences by finding the ratio between the covari-
ance of two variables X and Y with the product of their standard deviations. The Pearson
correlation coefficient, r, is computed by the following formula, Equation (3) [61]. It reflects
a strong correlation between sequences X and Y when its value is higher than 0.8, while a
low correlation is indicated through an r value less than 0.2.

r =
n ∑ xy − (∑ x)(∑ y)√

[n ∑ x2 − (∑ x)2][n ∑ y2 − (∑ y)2]
(3)

Dynamic time warping is a powerful technique in time-series analysis, particularly
when dealing with sequences that exhibit variations in timing [62]. It measures the similarity
between two sequences by allowing for flexible alignments and accommodating temporal
distortions between sequences X and Y. Let X = {x1, x2, . . . , xN} and Y = {y1, y2, . . . , yM}
be sequences of lengths N and M, respectively. DTW involves the computation of a cost
matrix C, where each element C(i, j) represents the cumulative distance of aligning xi with
yj [63]. This is formulated by the following recurrence Equation (4):

C(i, j) = d(xi, yi) + min{C(i − 1, j), C(i, j − 1), C(i − 1, j − 1)} (4)
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where d(xi, yj) is a local distance measure, often the Euclidean distance between xj and
yj. The dynamic programming approach efficiently computes C, minimizing the overall
alignment cost. The DTW distance, is then obtained as the minimum cumulative cost in the
last row of the matrix according to Equation (5):

DTW = min{C(N, j)} (5)

This distance represents the minimum cost of aligning sequence X with sequence Y. To
delve into the specifics, the optimal alignment path is determined by backtracking from C(N, M)
to C(1, 1) based on certain rules: diagonal movement signifies a match, upward movement
implies an insertion, and leftward movement corresponds to a deletion. This path delineates
the optimal alignment between the sequences and effectively minimizes the cumulative cost.

3.3. Human Pose Estimation

Human pose estimation (HPE) [64] seeks to find all human parts relevant to the video.
The output is a structure of edges that connects key points (such as ball–socket joint, hinge
joint, gliding joint, etc.). HPE is vital to the computer vision discipline, where the rapid
development of deep learning encourages researchers to develop efficient HPE open libraries.
This explains the recent studies based on HPE in surveillance, medical supportive applications,
and sport-related research. Recent surveys provide great sources for demonstrating the basic
concepts behind HPE [65]. A recent study presented a taxonomy for key point extraction [65].
It classifies these libraries into top-down, and bottom-up approaches. The former locates a
person in different frames in the video, and then, seeks to estimate the locations for key points,
while the latter applies the opposite approach. CNN and its related models (R-CNN and fast
R-CNN) are deployed as two-stage detectors [65,66].

A comparative survey has compared four state-of-the-art HPE libraries. These libraries
are OpenPose, PoseNet, MoveNet, and MediaPipe [67]. These libraries have been deployed
in several medical assistance studies. PoseNet and MoveNet extract 17 key points while
OpenPose, and MediaPipe extract 135 and 33 points, respectively. According to the study
results by Jen-Li C. and Meng-Chew L., on a benchmark with different action datasets,
MediaPipe shows a superior percentage of detected joints (PDJ), 71.4%, compared to other
libraries [67]. Self-occlusion and inaccurate camera positions are usually the main factors
that decrease the accuracy of PDJ for these HPE libraries.

Google’s MediaPipe excels in intricately tracing the positions of hands, facial land-
marks, and the overall body pose, as shown in Figure 2 [68]. The MediaPipe module
stands out for its robust and efficient estimation of both hand and body poses, allowing for
monitoring of real-time movements [69]. Through hand tracking, a comprehensive set of
21 landmarks for each hand can be extracted, while body tracking allows the extraction
of up to 33 landmarks [70]. MediaPipe is sensitive to pose identification failures. The
child’s chair position is fixed at a convenient position toward the display while recording
the child’s imitation. This increases the potential of successfully extracting the landmark.
While recording the child’s imitation, a fallback mechanism is implemented to skip any
frame whose landmarks are not detected and consider the following frames instead. This is
essential during occlusions that can happen during hand and arm movements.

Figure 2. Landmarks from MediaPipe Hand and Body Pose Tracking module [69,70].
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4. Methodology

This section describes the collected dataset. After that, the experimental setup is
presented, and then, a graphical user interface is illustrated, that is designed specifically to
facilitate recording the videos of the children.

4.1. Dataset Description

The imitation training in this study is provided by a PC attached to a webcam.
To the best of the authors’ knowledge, no public dataset is available to match the re-
search requirements. Therefore, a set of autistic children’s videos is recorded as test data
to evaluate the performance of the proposed method. As mentioned earlier, six imita-
tion movements are considered, as shown in Table 2. These movements were identified
through several imitation lessons designed especially for training autistic children [44].
The movements are validated by a children’s medical therapist, before conducting the
video collection with children.

The proposed method assesses the video of a child by estimating the matching degree
with the imitation lesson. Patients with high levels of autism may face challenges in engag-
ing with the study experiment’s setup. Their unique needs may require more specialized
interventions tailored to their profiles. Conversely, individuals with lower levels of autism
may already possess higher levels of skills, necessitating a different intervention approach
that is not covered in this study. Therefore, the research has been directed towards children
with a moderate degree of autism, specifically targeting those with autism scores ranging
from 30 to 36 according to the Childhood Autism Rating Scale (CARS) [71].

The dataset originally had 302 videos, collected from 11 Egyptian children during two
intervention sessions. Initially, data collection was planned to include 15 instead of 11 chil-
dren. Three out of the fifteen autistic children suffered from attention-deficit/hyperactivity
disorder (ADHD); so, they had difficulty sitting appropriately in front of the computer desk,
while one child was tired and unable to continue when initiating the imitation session; thus,
leaving eleven children. The children had ages ranging from 3 to 15 years; the number
of boys was 9 (82%), with 2 girls (18%). During the data cleaning process, thirty-four
videos were excluded due to anomalies such as the child’s seat position in front of the
camera being incorrect. As a result, the dataset was refined to consist of 268 videos. This
dataset formed the basis for the evaluation and analysis of imitation behaviors in children
with autism.

Table 2. List of imitation movements.

No. Imitation Behavior Number of Videos Amount (%)

1 Wave by hand 49 18.3%
2 Arm up 43 16.0%
3 Hands fold together 55 20.5%
4 Thumbs up 41 15.3%
5 Fold hands together over head 38 14.2%
6 Arms up 42 15.7%

4.2. Experimental Setup

The videos of the children were recorded in a clinic where two adjacent rooms were
used during the imitation sessions. Figure 3 illustrates the arrangement in the two rooms.
The primary room, left figure, was equipped with a desk, a 21-inch LCD, and a 720 p
webcam; mounted above the display, the LCD showed imitation lesson videos acted by
the person of trust. This person may be a family member, teacher, or therapist, while the
connected webcam records the child’s actions during the mimicking process. Simulta-
neously, a technician (an engineering expert) was stationed in the secondary room, out
of sight of the child. The technician ensured the smooth flow of playback and recording
during imitation sessions, and additionally, initiated the lesson playback upon receiving
notification from the system indicating that the child was fully attentive (this is discussed
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in the next section, attention module). As shown in Figure 3, two-room separation was
implemented to minimize potential distractions for the child during the imitation sessions.

Children were accompanied by their parents, who were briefed on the video collection
procedure by the medical therapist. Before conducting the experiments, relevant data on
the child were stored in a log file containing the child’s name, age, and degree of autism.
Furthermore, the child’s position and orientation were appropriately adjusted relative to
the camera’s location before initiating the imitation session.

During the imitation procedure, a medical therapist and a person of trust accompanied
the child in the primary room. The medical therapist acted as an observer, ensuring the
experiment progressed smoothly by preventing unexpected occurrences, such as the child
suddenly leaving the room or interfering with the screen. The children were then guided
through the imitation lessons to perform the specified movements.

Figure 3. Room setting inside medical clinic.

4.3. Graphical User Interface Tool

There are two graphical user interfaces (GUIs), and both are designed to fulfill several
functionalities needed by the research’s requirements. Both are displayed on two monitors,
connected to the technician’s computer, which is located in room 2. The first GUI, Video
Player Controls, is displayed on the primary monitor, located in room 2, as shown in
Figure 4; while the second GUI, Child App, is displayed across two monitors, positioned in
rooms 1 and 2, as depicted in Figure 5.

Figure 4. GUI control available for the admin.

The Video Player Controls GUI provides the technician with the typical video controls.
It allows for managing all operations related to the imitation lesson including playing,
stopping, and restarting the lesson. Additionally, other GUI controls support the medical
therapist in rating the video of the child after completing the imitation session. The score has
4 levels; poor, good, very good, and excellent. Finally, the label “status” shown at the bottom
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of Figure 4 clarifies the imitation lesson state. For instance, when it indicates “idle”, the
lesson has not been started yet.

Figure 5. GUI interface, where the left part (child preview) is visible on the child’s screen.

The Child App GUI (left pane area) is displayed on the secondary monitor in room
1, where the child is sitting. It is the interface that shows the imitation lesson to the child.
The GUI’s right pane is displayed on the primary monitor in room 2, as it contains a set
of controls. It allows the technician to enter the child’s name and monitor the child’s
attention by displaying the child’s estimated concentration. The latter is essential to
support the technician in selecting a suitable time to play the imitation lesson, where the
child’s concentration ranges from 0 (no attention) to 100 (high attention level). A high
concentration level indicates the trigger time to initiate the imitation lesson. Furthermore,
the technician adjusts horizontal and vertical thresholds, which regulate the child’s head
movement direction and eye pose. The attention module uses these adjustments to find the
child’s gaze direction, which is discussed in the following subsection.

The Child App GUI includes other features such as “show face tags”, which displays
the detected facial landmarks. Additionally, the GUI has “show 3D model” that visualizes
the child’s perspective. The remaining controls, the “start” and “save/monitor” buttons,
allow the technician to activate the camera and initiate recording of the video of the child
or save the video of the child, respectively.

4.4. Subjective Assessment by Psychiatric Doctors

The subjective assessments were conducted under the direct supervision of psychi-
atric doctors, who have extensive experience in working with autistic children. Several
pre-experiment meetings were held to standardize the criteria for evaluating imitation
performance. During these discussions, they reached a consensus on how to categorize and
distinguish the four levels of performance: “bad”, “good”, “very good”, and “exceptional”.
It was determined that hand positioning and fine arm movements would be the primary
factors in assessing quality, contrary to factors such as speed and facial expressions, that
would not be considered in the evaluation. Multiple doctors independently assessed each
child’s performance, and the final grade was determined by averaging their scores to ensure
evaluation consistency.

4.5. Parental Engagement and Bias Control

Parents were informed about their role during the video gathering sessions, and strict
guidelines were implemented to control their engagement. Parents were instructed to
observe without interacting with or guiding the child and were seated away from the
immediate task area. A trained observer monitored all sessions to ensure compliance.
Additionally, a behavioral calibration phase was included to help the child acclimate to the
task environment, ensuring natural and unbiased responses.
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4.6. Hardware Requirements

The IMITASD tool is based on deploying Yin Guobing’s Facial Landmark Detector and
fast dynamic time warping, which is designed to run efficiently on mid-range computers
with standard webcams, ensuring accessibility in both clinical and home environments.
The minimum technical requirements for consistent performance include an Intel i5 (4th
generation or newer) or equivalent processor, 8 GB of RAM, and a 720 p or higher resolution
webcam. While systems with higher-end configurations may deliver faster processing
times, the accuracy of the tool’s imitation assessments remains unaffected, as long as the
minimum hardware specifications are met.

5. System Architecture Overview

The proposed method has three steps: imitation lesson preparation, checking the
child’s attention, and imitation assessment. The first step deploys activities related to
imitation video lessons, extracting landmarks from the ground truth videos. The second
step employs various metrics to gauge attention, encompassing gaze direction, head
movements, and estimating concentration levels. This stage provides automatic insights
into the child’s engagement during the learning process, which is crucial to ensure the
child’s visual attention towards the LCD before displaying the imitation video. The final
step measures the alignment between the recorded video of the child and the ground truth
video. This comparison is essential for assessing how closely the child’s actions replicate
the behaviors demonstrated in the ground truth videos.

Imitation lesson preparation is the first step in the proposed method. Once the child is
set in front of the monitor, an imitation lesson is selected, where the corresponding features
related to the selected video are fetched to be used later during stage three, as detailed in
Algorithm 1. These features are the head and hand landmarks extracted by MediaPipe that
are tracked across the lesson’s frames.

Step 2—Checking the child’s attention: This focuses on measuring the child’s attention
by analyzing the facial features and head movements. Attention is a complex cognitive
process that involves various visual and spatial cues. Attention is a complex cognitive state
that is simplified in this study by checking whether the child’s head is directed toward the
display. Although it is a high level of approximation, it allows the development of a model
that approaches real time. Attention estimation is linked to frequency and magnitude.
Both combinations provide an attention estimation. The frequency reflects the child’s head
movements while magnitude extends head movements by measuring head movement
distance over time. The weighted integration provides a means to prioritize movement
frequency over magnitude as the head movement frequency is correlated more with the
child’s engagement during imitation sessions. In future studies, we will consider more
robust measures such as eye and gaze tracking to estimate the child’s attention during
imitation sessions. The following procedure summarizes the steps to quantify the attention
levels, as shown in Figure 6.

Figure 6. Child attention module.
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Algorithm 1 Imitation Lesson Preparation

1: Input: Set of lesson videos V = {v1, v2, . . . , vn}, Child C
2: Output: Corresponding features F related to selected video
3: Place the child C in front of the LCD
4: A lesson video vi is selected from the set V (vi ∈ V)
5: Fetch the corresponding features Fi related to the selected video vi

Fi = fetch_features(vi)
6: Store these features Fi to be used in stage three for similarity assessment

• Face detection: A frontal face detector is deployed to identify and locate faces within
an input image.

• Facial landmark detection: This is responsible for extracting spatial information about
key facial points through applying Yin Guobing’s Facial Landmark Detector [72,73].
It goes beyond simple face detection, capturing the nuances of facial expressions
and features. The Facial Landmark Detector model operates on square boxes of size
128 × 128, each containing a face. Upon analysis, it returns 68 facial landmarks,
with the resulting landmarks serving as a critical input for subsequent phases. Yin
Guobing’s Facial Landmark Detector was employed for tracking children’s attention
based on facial orientation and head pose estimation. While this detector is accurate
under normal conditions, autistic children may exhibit atypical facial expressions and
frequent gaze aversion, which could impact the precision of attention tracking. To
mitigate these limitations, the IMITASD tool includes a calibration step to ensure the
child’s face is properly aligned with the camera, reducing the likelihood of tracking
errors during the task.

• Head pose estimation: This obtains the head’s pose relative to the camera. Both the
rotation and translation vectors are computed to provide a robust representation of
the head’s spatial orientation and position.

• Head pose angle calculation: This calculates specific head angles: yaw, pitch, and
roll. These angles depict the head’s orientation in three-dimensional space, capturing
horizontal and vertical rotations and tilt motion. These angles are crucial for under-
standing the user’s head position. Thirty-four videos were excluded due to anomalies
such as incorrect child’s seat position in front of the camera.

• Head movement tracking: To assess continual attention levels, the script simulates
the head angle over time. The aim is to capture the changes in head orientation over
time. The frequency and magnitude of head movements are quantified based on the
differences between consecutive head angles.

• Attention measurement: This uses facial analysis and head movements to measure
a child’s attention. The frequency of head movements represents changes over time,
while the magnitude of head movements indicates the angular displacement. These
metrics feed into the computation of the concentration level, a weighted combination
of frequency and magnitude, as detailed in Algorithm 2.

Step 3—Imitation assessment: This step deploys a low-complexity method to mea-
sure the similarity between the child’s behavior and the ground truth video (imitation
lesson), as shown in Algorithm 3. As soon as the child looks toward the display screen,
the procedures depicted in Figure 7 are conducted. The following elaborates on the main
process in detail.
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Figure 7. Imitation Assessment Block module.

Algorithm 2 Checking Child Attention

1: Input: Video stream Vs, Child C
2: Output: Attention level A
3: Face Detection:
4: Deploy Frontal Face Detector to identify and locate faces within input image I
5: D = FaceDetector(I)
6: return {d1, d2, . . . , dm} where di is a detected face
7: Facial Landmark Detection:
8: Extract detailed spatial information about key facial points using Yin Guobing’s Facial

Landmark Detector
9: L = FacialLandmarkDetector(di)

10: return {l1, l2, . . . , l68} where li are the 68 facial landmarks
11: Head Pose Estimation:
12: Estimate head’s pose to the camera by computing rotation and translation vectors
13: (R, t) = HeadPoseEstimator(L)
14: Head Pose Angles Calculation:
15: Calculate specific head angles: yaw (θy), pitch (θp), and roll (θr)
16: θy, θp, θr = HeadPoseAngles(R, t)
17: return θy, θp, θr
18: Head Movements Tracking:
19: Track head movements over time to assess attention levels
20: Compute differences between consecutive head angles ∆θt = θt − θt−1
21: Calculate frequency and magnitude of head movements F, M
22: Attention Measurement:
23: Measure attention using facial analysis and head movements
24: Calculate concentration level C as a weighted combination of frequency and magnitude
25: A = w f · F + wm · M
26: return A

• Display the lesson video: After selecting the imitation lesson and ensuring the appro-
priate attention for the child toward the display screen (steps 1 and 2), the selected
video is played through the LCD in front of the child.

• Record the child’s movement: While playing the lesson video, the child instantly
begins imitating the lesson. Therefore, the recording is started once the child begins
the imitation. It stops the recording once the child finishes performing the imitation.

• Feature extraction: Features for imitation lessons and the videos of the child are ob-
tained. The features from the former are extracted offline while their data are stored in
a pickle data format. For the latter videos, the features are extracted while assessing
the imitation behavior of autistic children. Features are based on pose and hand land-
marks as predicted by MediaPipe. The connections between MediaPipe landmarks,
articulated as pairs of indices, are transformed to vectors. These vectors serve as the
foundation for subsequent angle calculations. The angles, meticulously computed
using the dot product and vector norms, collectively contribute to the feature vectors.
These vectors represent the trace and hand, where the former corresponds to the
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child’s arm and head positions. The latter supports hand tracking, where fine details
are considered during the child’s imitation. Both vectors are extracted from pose and
hand landmarks, respectively. Note that color conversion is necessary as distinct color
representation exists between OpenCV (BGR) and MediaPipe (RGB). After that, the
system leverages the angles between hand parts, referred to as connections, incorpo-
rating all 21 connections intrinsic to MediaPipe’s Hand Model. Given vi is the video
of the child, the detailed processes are depicted in Figure 8.

Algorithm 3 Imitation Assessment

1: Input: Child video vi, Ground truth video vg
2: Output: Similarity measure S
3: Display the Lesson Video:
4: Play the selected lesson video vg.
5: Record the Child Movement:
6: Begin recording the child’s movement as soon as imitation starts.
7: Stop recording when the child finishes the imitation.
8: Feature Extraction:
9: Extract features for both the ground truth lesson video vg (prerecorded) and the child’s

video vi.
10: for each frame in vi do
11: Extract pose and hand landmarks using MediaPipe.
12: Convert color format from BGR to RGB if necessary.
13: Initialize feature vectors for trace and hand vectors.
14: for each frame f j in vi do
15: Extract pose landmarks {p13, p17, p14, p18} for trace vector.
16: Extract all 21 hand landmarks for hand vector.
17: Normalize the trace data by the maximum x and y coordinates.
18: Update and store the trace and hand vectors for further processing.
19: end for
20: end for
21: Dynamic Time Warping (DTW):
22: Apply DTW for the child’s trace vector and the ground truth trace vector.
23: Apply DTW for the child’s hand vector and the ground truth hand vector.
24: Compute the average distance D:
25:

D =
Dtrace + Dhand

2
26: Similarity Measure Output:
27: Map the distance D to a similarity measure S in the range of 0 to 10.
28: The similarity measure S is defined as
29:

S = 10
(

1 − D
Dmax

)
where Dmax is the maximum possible distance.

30: return Similarity measure S

– The feature vectors, hand and trace vectors, are initialized for the given video,
where the first frame that belongs to the video of the child is prepared for pro-
cessing.

– It applies an iterative process over vi’s frames, where pose and hand landmarks
for each frame are predicted. These landmarks are used to obtain trace and hand
vectors for the current frame. These vectors are appended to the corresponding
vectors representing the video of the child. Once, the video’s vectors are updated,
the next frame is fetched to be processed. The hand and pose landmarks predicted
by MediaPipe are a set of 3D points, as depicted in Figure 2, where each point is
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characterized by an (x, y, z) coordinate. For each frame, the trace vector focuses
on four points extracted from the pose landmarks, they are points number 13
and 17 for the child’s left arm and points 14 and 18 for the child’s right arm.
The hand vector uses all 21 points for each hand. Based on pose landmarks, the
extraction of trace_left and trace_right unfolds as a process governed by precision
and meticulousness. The initiation of these variables as lists of coordinate points
paves the way for detailed scrutiny of detected landmarks.

– The normalization procedure focuses on normalizing the trace data. Identifying
both maximum x and y coordinates for the trace and reference sets the stage for
normalization. This process normalizes the trace coordinates through division by
the respective maximum values, thereby laying the groundwork for meaningful
distance calculations between traces.

– Saving trace and hand vectors: Both vectors are stored for further processing.

Figure 8. Feature extraction flowchart.

• Dynamic time warping algorithm (DTW): This measures the distance between features
extracted from both the imitation lesson and the video of the child. Based on the videos’
trace and hand vectors, DTW calculates the distances between these vectors. The
output from both distances is averaged to obtain the final distance for the child’s
behavior to the given lesson. There are challenges when dealing with autistic children.
The spectrum of variability when handling children’s videos is large. They tend to
begin the imitation process instantly when they begin watching the lessons and the
children’s imitation speed is varied. Here, IMITASD relies on the attention module
and the DTW features. The former estimates the child’s focus, therefore displaying
the lesson and recording the child’s imitation at convenient times. It supports DTW
for better similarity estimation between the lesson and the child’s imitation videos.
Furthermore, the proposed model deploys fast DTW that features fast computation
through processing the given inputs using their down-sampled sets to accelerate
measuring the similarity between the given sets. DTW by default supports temporal
alignment, as it can measure the similarity between sets with non-equal length.

• Similarity measure output: The resulting distance is mapped into a similarity measure
in the range of 0 to 10. Therefore, the assessment module output does not require
further processing. It should output 10 when the child’s behavior matches the given
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imitation lesson, while it obtains zero when the child’s imitation does not match the
lesson video.

6. Results and Discussion

Considering the nature of providing the imitation training program through a PC
instead of physical training in the clinic, it is vital to predict the child’s performance accu-
rately and in a reasonable time. This will enable the development of a training program so
that the autistic child interacts with a full imitation session provided by a mid-specification
computer with a webcam. Therefore, this section presents an evaluation of IMITASD and
answers the following questions.

• Is the proposed method suitable for scoring the children’s performance, given the
six imitation training lessons?

• What is the IMITASD performance when using different time-series measures?
• How long does the proposed method take to rate the child’s performance?
• What are the limitations of IMITASD?

Regarding the first research question, the following Figure 9a–c reveal the answer
for how the IMITASD prediction is relevant to therapist scoring. Figure 9a demonstrates
how the IMITASD provides on average a close estimation of the autistic child’s imitation
video. It is on average 1 point lower than the medical therapist’s assessment. Figure 9b,c
further illustrate this estimation across all imitation tasks. The proposed assessment method
provides close approximation with the therapist scoring, where imitation movements such
as wave by hand and folding hand over head have very close matches, while movements
such as single and both arms up are not perfectly aligned. Therefore, the IMITASD is an
appropriate method for scoring the child’s video for the given imitation lessons.

A comparative study of the proposed method using various time-series measures
is conducted for the second research question. The children’s videos have been used to
measure the IMITASD prediction using the measures mentioned in Section 3.2. These
measures are Euclidean distance, cosine similarity, Pearson Correlation, and dynamic
time warping. Figure 10 shows the average scoring of these dis(similarity) measures for
the collected dataset. Additionally, Figure 11 delves into a more detailed presentation,
showing the scores for each imitation task individually. Together, these figures present
a comprehensive overview of the comparative performance of the techniques across the
entire spectrum of imitation tasks.

In Table 3, the correlation analysis across different metrics for specific imitation tasks
reveals distinctive patterns in the model’s performance. Notably, the IMITASD score
computed based on DTW consistently exhibits high positive correlations, showcasing its
proficiency in capturing temporal dynamics during imitation tasks. Particularly, there are
exceptional correlations for imitation tasks like “thumbs up” (0.9912), and “hands fold
together” (0.9689). In contrast, traditional metrics such as Euclidean distance, cosine simi-
larity, and Pearson correlation obtain varied correlations across these imitation tasks. Upon
scrutinizing the results, it is evident that DTW exhibits exceptional efficacy in capturing the
children’s behavior patterns.

Table 3. Comparative assessment scores for IMITASD using DTW with Pearson correlation, Euclidean
distance, and cosine similarity metrics across imitation tasks using correlation coefficient.

Wave by Arm Up Hands Fold Thumbs Up Fold Hands Arms Up Overall
Hand Together Together Correlation

Euclidean distance 0.01 0.55 0.06 −0.05 0.22 −0.20 −0.04
Cosine similarity 0.09 −0.45 −0.08 −0.14 −0.03 −0.11 −0.10
Pearson correlation −0.15 0.17 −0.17 0.09 0.01 −0.02 0.05
IMITASD score (DTW) 0.94 0.64 0.97 0.99 0.87 0.86 0.94
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(a) Bar plotting considering all imitation tasks (b) Bar plotting per each imitation task

(c) Scatter plotting per each imitation task

Figure 9. Comparison between IMITASD score and medical evaluation.

Figure 10. Detailed comparison of distance metrics and expert evaluation scores.
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Figure 11. Comparison of distance metrics and expert evaluation scores for each imitation task.

To investigate the required average time for IMITASD to score a video of a child, the
running time is measured across the children’s videos considering all imitation lessons.
Based on the measurements, a single frame is on average processed in 0.1 s, while it takes
on average less than 3 s to rate a single video. Considering the lessons “hands fold together”,

“fold hands together over head”, “arm up”, and “arms up” have 20, 18, 17, and 13 frames, their
running times are 2.24, 1.62, 1.49, and 1.6 s, respectively. Figure 12 shows the running time
to score a video containing 25 frames. Since the IMITASD has a relatively fast response
when scoring a video, it could be integrated into an efficient training program suitable for
imitation lessons.



Mathematics 2024, 12, 3438 20 of 25

Figure 12. Running time to process a video segment.

Regarding the fourth research question, which investigates the limitations of IMITASD,
several observations have been obtained from conducting the experiments. The main
constraint of IMITASD is that is uses a simple experimental setup (relying on a single
camera). The MediaPipe, in some scenarios, is unable to extract the key points for the
child’s body. This is the result of not including multiple cameras or using an additional
Kinect camera in the experiment setup. This limitation is particularly evident in scenarios
involving occlusion and complex poses. In these scenarios, MediaPipe may struggle to
accurately detect and track skeletal key points, leading to incorrect representations of
a child’s body movements. About 11% of the children’s videos belong to this type of
limitation; it occurs frequently for three participants (numbers 3, 7, and 10). The remaining
children’s videos barely suffered from this limitation, as depicted in Figure 13. Looking
closely at the three children’s videos, there are 28 videos out of 33 videos suffer from this
limitation. The common imitation tasks affected by this limitations were “arm up” and
“arms up” (both account for 20 videos among all the 33 videos), as depicted in Figure 14.
The overall statistics for undetected movement is depicted in Figure 15, where “arm up”,
and “arms up” account for about 66.7% of the entire undetected movements.

Based on investigating the four research questions mentioned earlier in this section,
the significant remarks are summarized as follows:

• The proposed method rates the children’s imitation videos very similar to the thera-
pist’s score. The closest match occurred in “wave by hand”, while the worst match was
for the “arms up” task.

• The IMITASD results using different time-series measures highlight the superior
performance of the IMITASD score based on dynamic time warping compared to
Euclidean distance, cosine similarity, and Pearson correlation. Both the tasks “thumbs
up”, and “hands fold together” attain high correlations of 0.9912 and 0.9689, respectively.
These results confirm the IMITASD score’s precision in aligning temporal dynamics
during imitation, outshining traditional metrics.

• The proposed method’s running time is on average less than three seconds to score
a single video of a child. Therefore, the proposed method could be embedded in a
training program that should be fast enough during the child imitation session.

• IMITASD faces challenges due to relying on a single camera. The landmarks based
on a single camera are sensitive to occlusion. This affects IMITASD’s capability to
estimate the similarity accurately for the child imitation video.

• It is important to note that during the data cleaning, thirty-four videos were excluded
due to anomalies. The exclusion of these videos ensured the integrity of the remaining
dataset and prevented the introduction of bias due to sub-optimal video quality. To
address challenges related to improper seat posture in future studies, measures such
as seat markers, adjustable seating, or real-time posture feedback systems could be
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implemented to ensure that participants are consistently positioned correctly in front
of the camera. These measures would help reduce the number of unusable videos and
enhance the overall quality of data collection.

Figure 13. Number of videos that were unable to be processed by MediaPipe grouped by participant.

Figure 14. Number of videos that were unable to be processed by MediaPipe grouped by participant
and task.

Figure 15. Number of videos that were unable to be processed by MediaPipe grouped by task.
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7. Conclusions

In conclusion, this research proposes IMITASD, a novel tool designed for assessing
children with autism spectrum disorder (ASD) behaviors using a set of imitation inter-
ventions. This is part of applied behavior analysis (ABA) therapy. The dataset used is
collected from Egyptian autistic children. A graphical user interface is designed specifically
to enable easy data collection. IMITASD addressed the challenges identified in previous
studies, recognizing the limitations associated with high-end cameras, Kinect devices, and
specialized setups. The proposed methodology aims to overcome these challenges, aiming
for real-world applicability by employing available equipment based on a mid-specification
PC with a webcam.

The experimental results demonstrate the tool’s relevance to medical therapy assess-
ments and its suitability across children with a mid-level degree of autism. Additionally,
it provides an accurate score, closely aligned with therapist scoring. The dynamic time
warping method used in IMITASD consistently outperforms traditional metrics such as
Euclidean distance, cosine similarity, and Pearson correlation. IMITASD proves to be a
practical solution for providing low-cost, fast, and high-validity assessments of imitation
behaviors in children with ASD.

8. Future Work

Future works in this domain could involve extensions in various directions. First,
more complex imitation interventions need to be examined. Secondly, other human pose
estimation libraries could be investigated as potential alternatives to MediaPipa for extract-
ing facial and body landmarks, such as OpenPose, PoseNet, and MoveNet. Third, research
should refine the capabilities of machine learning and deep learning models in scoring
the children’s imitation videos efficiently. Fourth, IMITASD could be integrated with a
blockchain-based platform to ensure data security and privacy. This would secure the
children’s video. Finally, the role of deep fakes on a child’s behavior could be investigated,
when a child watches lessons performed by persons of trust. This involves developing deep
fake models within this framework to generate personalized scripts for patients, facilitating
interactive therapeutic sessions. Fifth, future versions of the IMITASD tool may include
additional imitation tasks to improve the comprehensiveness of the gross motor imitation
assessment, allowing for a broader evaluation of motor abilities in children with ASD. Fi-
nally, to improve scalability in diverse clinical or therapeutic settings, the IMITASD system
can be enhanced in several ways. Imitation lesson preparation can be automated through
machine learning algorithms for personalized lesson selection. Multi-modal sensory inputs
such as eye tracking and body posture analysis could integrate additional attentiveness
parameters for a more comprehensive evaluation.
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