The Effect of Video Training to Improve the Accuracy of University Supervisors In-Class Observations

Julia Lyman
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/gradreports

Part of the Special Education and Teaching Commons, and the Teacher Education and Professional Development Commons

Recommended Citation
Lyman, Julia, "The Effect of Video Training to Improve the Accuracy of University Supervisors In-Class Observations" (2017). All Graduate Plan B and other Reports. 909.
https://digitalcommons.usu.edu/gradreports/909
THE EFFECT OF VIDEO TRAINING TO IMPROVE THE ACCURACY OF UNIVERSITY SUPERVISORS’ IN-CLASS OBSERVATIONS

By

Julia A. Lyman

A creative project submitted in partial fulfillment of the requirements for the degree of MASTER OF EDUCATION in Special Education

Approved:

__________________________________ __
Timothy A. Slocum, Ph.D. Robert L. Morgan, Ph.D.
Major Professor Committee Member

Nancy K. Glomb Ph.D.
Committee Member

UTAH STATE UNIVERSITY
Logan, Utah
2017
ABSTRACT

The Effect of Video Training to Improve the Accuracy of University Supervisors’ In-Class Observations

By

Julia A. Lyman, Master of Education
Utah State University

Major Professor: Dr. Timothy A. Slocum
Department: Special Education and Rehabilitation

University supervisors of student teachers are often undertrained as to how to complete in-class observations. This project examined the effects of video training to improve the accuracy of university supervisors’ in-class observations. Participants were student teacher supervisors from various locations across the state who provide supervision for a local university in the Western U.S., and the university student teachers they supervised. Target behaviors included data collection on praise rate, percentage of specific praise, and opportunities for students to respond. The findings suggest that following training the participants collected data with varying results with some areas of high accuracy and others with less accuracy. The participants rated the social validity of supervisor training high. Additionally, the effects of video training somewhat generalized to in-class observations by the university supervisor but may be improved by enhancing the video training and providing feedback following the training videos. Results of this study indicate the importance of training university supervisors to
complete in-class observations with accuracy. These results also support the use of standardized video training to train supervisors.
Introduction

Field experience for student teachers is crucial in preparing them to become special education teachers (Brimfield & Leonard, 1983; DeGraff, Schmidt, & Waddell, 2015) because it gives them an opportunity to practice the skills they have been taught through their university coursework. An important part of this experience is having a university supervisor who can observe and give feedback as it relates to the student teacher’s performance. In some cases, the supervisors are undertrained or not trained on the skills necessary to complete the observations. For example, Sahin, Cek, and Zeytin (2011) investigated education supervisors' views regarding efficiency of supervision systems and in-service training courses. They found that 87.4% of supervisors surveyed judged the training they received to be insufficient (Şahin, Çek, & Zeytin, 2011). Steadman (2006) reported that one-third of university teacher education programs studied provided no training for university supervisors and the other programs offered varied amounts of training. These data suggest a need for better trained student teaching supervisors.

Supervisor training problems are exacerbated for student teachers working in rural areas. A recent review of literature determined that retaining teachers in rural areas is a difficult task (Miles, Marshall, Rolfe & Noonan, 2004) which may be, in part, related to their early training. One part of the solution is to have better trained supervisors who will provide supervision, support and feedback that may help teachers feel more prepared to teach.
Literature Review

I searched Google Scholar, ERIC via EBSCOhost and Education Source to identify relevant studies pertaining to using video training to train student teaching supervisors. Using search terms student teacher, supervisor, rural areas, video training, and field based experiences, and combinations of these terms, the search yielded zero possible articles. The search was broadened to student teacher and supervisor. This search yielded 572 articles. Within this search, the research was limited to specific evaluation systems instead of overall importance of training student teaching supervisors and the most important skills they would need. There was also an abundance of research regarding the use of video training, but not in the context of university supervisors. Therefore, I selected articles related to the importance of university supervision, training supervisors and rural supervision. The following three studies represent the product of that search process.

Caires and Almeida (2007) explored the perceptions of student teachers in regard to their university supervisors, cooperating teachers and student teaching as a whole. The participants were 224 student teachers from the University of Minho. An evaluation instrument was used to assess the student teachers’ perceptions and was composed of 61 different items divided among five main areas related to teaching practice. Each item was organized on a scale from totally agree to totally disagree as well as some that were open to comments. Student teachers responded to each statement by reporting their level of agreement on the rating scale. The student teachers were given this evaluation twice - once at the beginning of their student teaching placement and once at the end. Data were collected for supervisors as well as cooperating teachers. However, for the purposes of
this review, I will focus only on the data that pertains to the university supervisor. Overall results indicated a generally adequate opinion of the supervisor’s performance. In all items, the student teachers rated their supervisors on approximately higher than average performance. The student teacher’s open comments were categorized as: (a) supervisor’s personal and interpersonal profile, (b) quality of the aid and support, (c) competence, (d) availability, (e) feedback, and (f) support in school adaptation. At the end of the student teaching experience, 29.4% of the comments related to the importance of the supervisor’s personal and interpersonal profile. The second highest category was competence at 21.9%. The supervisor’s experience, their expertise, and elevated professionalism were among the most frequent comment topics made by student teachers. The third highest category was quality of aid and support at 20.9%. The supervision relationship was an important source of personal and interpersonal support to student teachers (Caires & Almeida, 2007). Results also revealed the importance of supervisors who were competent and could provide quality aid and support to the student teachers. These findings substantiate the need for “good” supervisors but do not investigate the specific skills they should be trained in to become quality supervisors.

Steadman and Brown (2011) conducted a department-wide study of university supervisor's practices. They used a qualitative design to determine how university supervisors implemented supervision. The participants in the study were 14 graduate students, department and faculty members at a large, nationally ranked university. All participants had experience teaching in middle or high school before joining the university. Researchers reported that, most often, university supervisors were prior teachers who had extensive experience in the classroom and served as cooperating
teachers for student teachers in their field of study. Data were collected in four separate sets. The third set of data related to the supervisors’ practice structure and expectations of student teachers. This aspect was most relevant to my research. These data were collected through a 30-question assessment consisting of open-ended and survey questions. The answers were then compiled into three categories: (a) decisions initiated by the supervisor, (b) university paperwork, (c) requirements placed upon student teachers. According to the data collected, university supervisors were using a set of practices that were different from one supervisor to another in relation to amount of observations completed, how long the observations lasted, university forms used, etc. Researchers found that practices among supervisors varied and delivery of observations and completing paperwork was inconsistent. These inconsistencies extended to an absent or less than acceptable schedule of communication with student teacher, expectations and requirements of student teacher and clear definitions of supervisor duties. These findings support the need for more research into the training of university supervisors and the best ways to provide that training.

There is minimal available research on the best ways to provide supervisor training. The majority of research is in regard to providing supervision using technology (Gruenhagen, McCracken, & True, 1999; Jung, Galyon-Keramidas, Collins, & Ludlow, 2006; Schmidt, MacSuga Gage, Gage, Cox, & McLeskey, 2015). The existing literature that pertains to training supervisors highlights outdated technology, CD-ROM, but the idea is relevant and applies to what I am researching. Manzanares et al. (2004) examined the effects of using a CD-ROM to train supervisors. The participants were 26 site supervisors for a master’s level counselor education program at a small, rural, college in
the southwest region of the United States. Eighteen of the supervisors were women and eight were men with a mean age of 45. They all had supervision experience ranging from five to 12 years. After viewing the CD-ROM, the participants were grouped into focus groups and they participated in an hour long moderated group. Each group was asked the same nine questions but were also allowed to give open comments that stemmed from discussions. The responses of the focus groups were grouped into three categories: strengths, challenges, and recommendations. The strengths of using a CD-ROM to deliver training were identified as content was helpful, having it accessible was useful and having a concise training was appreciated. An identified strength that was unanticipated was the participants felt supported and a connection with the faculty who created the training. The main challenge identified was difficulty with the CD-ROM and the additional programs required to run the program such as Adobe Acrobat reader or QuickTime. Recommendations for improvement were to include more specific examples and suggestions for handling difficult situations. Overall the responses indicated that the use of a CD-ROM to provide supervisor training was effective and could only improve with improved technology. Technology continually changes and using a CD-ROM with today’s supervisors would be outdated. Current technologies such as internet-based recorded video or live broadcast could be predicted to produce similar results to this study.

I undertook this literature review to determine what is known about student teacher supervision and best practices to train supervisors. However, I was not able to locate substantial research on this topic. The most relevant research found that the quality of supervision and the need for training is important and is especially needed in
rural areas. There is no literature on using current technology such as video training to train supervisors.

Purpose Statement and Research Questions

Given the research reviewed above, the importance of training university supervisors of student teachers is clear. Yet, these studies did not investigate effective practices to complete this training. The purpose of this study was to determine if video training is an effective way to train university supervisors. The research questions were:

1. What were the effects of using video training to train university supervisors of student teachers in local and rural areas as measured by interobserver agreement (IOA) between the supervisor and the standard set for the video segments?
2. What were the effects of using video training to generalize effects of university supervisor performance as measured by IOA of in-class student teacher observations?
3. What was the social validity of supervisor training as measured by responses given in a pre and post training survey?

Method

Participants and Settings

In this study, eight participants were student teacher supervisors from various school districts across the state who agreed to function as supervisors for a local university or were employed by the university as supervisors of field based experiences. Some of the participants had provided supervision for this university before and some of the participants had provided supervision for other higher education institutions in the past, but not for the university requesting their involvement. The range of years the
Participants had provided supervision was from 1 to 6 years with a mean of 3 years. Each supervisor supervised a university student teacher in either a classroom for students with mild/moderate or severe disabilities. All participants had experience teaching school in a special education setting. The participants had taught school between 2 and 31 years with a mean of 14 years. Some of them were currently teaching special education in a classroom for students with severe or mild/moderate disabilities while the others were in administrative roles in their district or contracted as a university supervisor. Of the eight participants, all were female and with a broad age range of 34-60 years. Median age of the participants was 45.3 years. The participants were recommended by their district special education director to serve as student teacher supervisors or were identified and recommended by the special education department of the local university. All participants received an honorarium of approximately $250.00 upon completion of their supervision. Receiving this honorarium was not contingent upon their participation in this study.

Participants were contacted by the researcher and asked to participate in the research. The participants were either (a) recommended individuals by the district special education director, or (b) contracted university supervisors. Each participant completed an informed consent form, which was approved by the university’s Institutional Review Board.

University student teachers were also contacted by the researcher and asked to participate. These participants were previously assigned to the supervisors based on the location of their student teaching and were chosen to participate if their assigned
supervisor was also a participant. Each participant completed an informed consent form, which was also approved by the university’s Institutional Review Board.

Training sessions took place online through a designated uniform resource locator (url). Participants were provided with a link to a recording that they viewed in a setting of their choice.

Materials

Participants needed access to a desktop or laptop computer to view the video training. An internet connection was necessary to receive the video link. Observation protocol was provided for participants to refer to and to complete the data collection. Prior to and following the completion of the training, a social validity survey was administered through Qualtrics survey system. Again, an internet connection was needed to access this survey.

Dependent Variable and Response Measures

Dependent variables were agreement between expert and supervisors’ (a) overall praise rate, (b) percentage of praise statements that were specific, and (c) count of opportunities to respond (OTR). Praise rate was defined as the number of verbal or non-verbal praise statements delivered to an individual or whole group during 5 min of instruction. The total number of praise statements was divided by the number of minutes to determine praise rate per min. Specific praise statements were defined as a praise statement delivered to an individual or whole group that includes a statement that connects the praise to the behavior. The total number of specific praise statements were divided by the total number of all praise statements and multiplied by 100 to determine the percentage of specific praise statements. The definition of opportunities to respond
was a statement, instruction or signal made by the teacher that elicits a verbal or non-verbal response from the student. Opportunities to respond were measured by tallying how many opportunities to respond were given.

The study also involved a social validity assessment of the video training measured by the responses participants made to an anonymous pre and post training survey. Each survey consisted of a series of questions using a 4 or 5-point rating scale regarding the social importance of supervisor training and correct data collection. Anchors related to the rating scale varied depending on the question. See Appendix B for pre and post survey questions. Prior to receiving the video training, the participants were instructed to complete the pre training survey. When the participants notified the researcher they completed the pre training survey they received the video training. Likewise, when the researcher and participants had completed the in-class observation, the participants received the post training survey.

Interobserver Agreement

Video scenes. Participants watched video segments during the training and collected data on the three variables using the data form shown in Appendix A. The researcher also collected data on the same variables. That is, both participants and the researcher collected data on the same behaviors. Two sets of data allowed for calculation of interobserver agreement (IOA). This was done by using the data provided by each participant and the data collected by the researcher and dividing the participant’s data by the researcher’s data, and multiplying by 100% to yield the percentage agreement for each area.
In order to validate the researcher’s observations as a standard of comparison, two other expert supervisors independently view the video segments and collected data. By comparing the researcher’s data with the expert supervisor’s data of the video segments, the researcher assessed the accuracy of data used as the correct frequency count for each area of data collected. The standard that was used for comparison for the participants was the researcher’s count. The researcher understands that total count IOA has a limitation in that it is not known to the researcher if each participant is rating the same instances of occurrence as the researcher. Due to limited resources and locations of various supervisors, the researcher was unable to confirm that each participant recorded the correct instance of occurrence. However, total count IOA still provided valuable evidence that can be used to assess the adequacy of data collection.

In-class IOA of researcher and participant. IOA was also assessed during observations completed by the researcher in the classroom with all eight participants. Once the participants completed the video training and began supervision of student teachers, the researcher scheduled a reliability observation with each participant. During these observations, the researcher was able to assess if the participants were collecting data accurately and completing the observation correctly. The in-class observation was scheduled within 3-6 weeks of the beginning of the supervision. The researcher and the participant used the same observation forms and observed the same student teacher simultaneously. During the observation, the researcher and the participant were seated in locations separated by at least 3 m so that neither could see nor hear what the other was recording or what scoring they were giving (Johnston & Pennypacker, 1993). Following the observation, the researcher compared the observation forms and consulted with the
participant regarding the observation. Discussion pertained to scores on the observation and whether the researcher and participant agreed or disagreed and addressed any discrepancies between observations. The researcher collected IOA data on praise rate, specific praise, and opportunities to respond to measure generalized effects of video training.

Project Design

This project evaluated performance of participants based on agreement with expert measures of praise rate, specific praise, and opportunities to respond following training. Additionally, participants were asked to respond to a social validity rating scale. The project used a single posttest-only design (except on a few social validity ratings that will be measured with both pretests and posttests). This design supported conclusions about the sufficiency of the training, but did not support inference about whether the training was necessary to produce these results.

Independent Variable and Procedures

The independent variable for this study was the video training showing the participant how to conduct and score an observation. Each participant received a narrated, power point presentation with video segments embedded in the presentation. The researcher produced the power point presentation. See Appendix C for an outline of the power point. The participants viewed the presentation and received instruction based on the researcher’s narration on how to properly complete each section of the observation form. Definitions and criteria for each section were explained. Embedded in the presentation were two separate video segments entitled (a) overall praise rate and specific praise statements, and (b) opportunities to respond. During each segment, the
participants collected frequency data on praise rate and opportunities to respond using the observation protocol forms provided. Following each video segment, the participants were instructed how to compute praise rate, percentage of specific praise and opportunities to respond. Duration of each segment were approximately 4-5 min.

Following completion of the training, participants were instructed to email the researcher the data counts and confirmation that they had finished the training. When the researcher and participants had completed the in-class observation, the participants received the post training survey. The responses to the survey were automatically and anonymously collected through the Qualtrics system.

Data Analysis

The researcher analyzed the data collected for each video segment and for each participant by dividing the participant’s data by the established standard (data collected by the researcher), and multiplying by 100% to yield the percentage agreement for each area. This same procedure was applied to the data collected from the in-class observation after the training. The researcher also analyzed data collected through the Qualtrics survey system and presented the results of the social validity surveys in multiple tables. Data were grouped in tables based on questions asked in both the pre and post survey as well as post survey responses only. Data were displayed using percentage of total response. Open-ended answers were compiled and listed in general order. No specific themes were identified.
Results

Figure 1 displays the data for opportunities to respond. Three current supervisors watched the training videos and collected data in all three areas to establish a standard and assess the degree to which experienced observers agreed on these observations. The first panel displays the count recorded by the three expert supervisors (orange dots) and each participant (blue dots) on the training video. The expert supervisors’ data varied slightly from each other ranging from 31 to 35 OTRs. The participants’ results had a larger range from 21 to 33 OTRs. Two of the participants were within the same range as the expert supervisors and the others were below 29. Four participants were substantially lower than the experts – 24 or lower.

The second panel displays percentage of agreement with the key observer (the author - 33 OTRs) on these same observations of the video. Results show that the participants had 64% to 100% accuracy when compared to the key observer’s data. Half of the participants were 85% accurate or higher and the other half identified fewer than 75% of the OTRs.

The third panel displays percentage of agreement with the key observer during the live observations in classrooms. Four participants were within 16% of the expert observer. One participant was reasonably close with 110%, one participant was considerably higher than the key observer with 140% and two other participants were considerably lower with 31% and 50%.

Figure 2 displays the data for praise rate computed from the training video and live observations. The first panel shows that two of the expert supervisors were 100% in agreement with a rate of 7.9/min while the third was higher by 1.5 praise statements/min.
Seven out of eight participants’ praise rate was in the range of 7/min to 8.63/min with one participant significantly lower at 4.2/min. The difference between the two expert supervisors and seven out of eight participants was -.91 to +.72 praise statements/min.

The second panel presents the percentage of agreement between the key observer and participants from the training video. When compared with the key observer, four participants were somewhat above the key observer with a range of 101%-109% accuracy, three were somewhat below with a range of 89%-96%, and one participant was at 53% accuracy.

The third panel presents the percentage of agreement during the live observation between the key observer and each participant. Two of the participants were in 100% agreement with the key observer and another two were higher by only 3%-9%. The other four were either considerably higher or lower than the key observer – two of them were very far from the expert counts (160% and 240%)

Figure 3 displays the data for percentage of specific praise (i.e., specific praise divided by total praise). The first panel displays data from the training videos. Two of the expert supervisors computed almost the exact same percentage of specific praise, 59% and 61%, while the other expert supervisor was considerably higher at 90% specific praise. The majority of the participants were closer to the expert with the higher percentage. Participants ranged from 75% to 100% specific praise.

The second panel presents the percentage of agreement between the key observer and participants on specific praise from the training video. When compared with the key observer, 100% of the participants were considerably higher with a range of 125% to 164%.
The third panel displays the percentage of agreement on specific praise in the live observations between the participants and the key observer. Again, most of the participants were at or above the key observer. One participant was able to match the key observer with 100% accuracy and two other participants were within 12% (one below the expert at 88% and one above at 112%). Three of the participants were well above the key observer with a range of 144% to 187%.

Pre and Post Survey

The social validity of this training was assessed through the pre and post survey. Six of the participants responded to the pre survey and all eight participants responded to the post survey. The survey was completed anonymously, but the researcher was able to match pre surveys with post surveys (based on age) without revealing their identity.

Four of the survey questions were asked both pre and post survey. For these items, I analyzed results for the six participants who responded to both surveys. The first question was “How confident are you in providing student teacher supervision?” Results are shown in table 1. In the pre-survey 83.33% of the participants reported they were moderately confident while 16.67% reported they were slightly nervous. When the participants completed the post survey 33.33% of the respondents reported they were now very confident and the other 66.67% were moderately confident. These data indicate that one participant who initially reported feeling slightly nervous about providing supervision now feels either moderately or very confident following the video training, and the other five participants feel moderately or very confident as well. Thirty-three percent of the participants felt very confident in the post survey where 0% reported feeling very confident prior to the training.
Table 1

Confidence in providing supervision pre and post survey

<table>
<thead>
<tr>
<th></th>
<th>Pre-Survey</th>
<th>Post-Survey</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Confident</td>
<td>0.00%</td>
<td>33.33%</td>
<td>+33.33</td>
</tr>
<tr>
<td>Moderately Confident</td>
<td>83.33%</td>
<td>66.67%</td>
<td>-16.67</td>
</tr>
<tr>
<td>Neutral</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00</td>
</tr>
<tr>
<td>Slightly Nervous</td>
<td>16.67%</td>
<td>0.00%</td>
<td>-16.67</td>
</tr>
<tr>
<td>Very Nervous</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00</td>
</tr>
</tbody>
</table>

The second survey question was “How confident are you that you can accurately count (a) opportunities to respond, (b) praise rate and (c) percentage of specific praise?”.

In the pre survey for opportunities to respond 16.67% of participants responded they were neutral, 33.33% felt moderately confident and 50% felt very confident (See Table 2).

Following the training and live observation, 50% of the participants reported feeling very confident and 50% indicated that they were moderately confident. One participant who previously had reported feeling neutral increased to either moderately or very confident after the training. All (100%) of the participants reporting feeling moderately or very confident to accurately count opportunities to respond following the video training.

Table 2

Confidence in accurately counting opportunities to respond

<table>
<thead>
<tr>
<th></th>
<th>Pre-Survey</th>
<th>Post-Survey</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Confident</td>
<td>50.00%</td>
<td>50.00%</td>
<td>0.00</td>
</tr>
<tr>
<td>Moderately Confident</td>
<td>33.33%</td>
<td>50.00%</td>
<td>+16.67</td>
</tr>
<tr>
<td>Neutral</td>
<td>16.67%</td>
<td>0.00%</td>
<td>-16.67</td>
</tr>
<tr>
<td>Slightly Nervous</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00</td>
</tr>
<tr>
<td>Very Nervous</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00</td>
</tr>
</tbody>
</table>

In the pre survey question regarding confidence in accurately counting praise rate, 66.67% of the participants reported they were moderately confident they could accurately...
compute praise rate while 33.33% felt very confident they could accurately count praise rate (see Table 3). This increased at the post survey to 66.67% felt very confident and 33.33% felt moderately confident to accurately count praise rate. All six of the participants who responded felt moderately or very confident in computing praise rate both before the training and following the training but the majority of them, 67%, felt very confident after the training was given.

Table 3

Confidence in accurately computing praise rate

<table>
<thead>
<tr>
<th></th>
<th>Pre-Survey</th>
<th>Post-Survey</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Confident</td>
<td>33.33%</td>
<td>66.67%</td>
<td>+33.33</td>
</tr>
<tr>
<td>Moderately Confident</td>
<td>66.67%</td>
<td>33.33%</td>
<td>-33.33</td>
</tr>
<tr>
<td>Neutral</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00</td>
</tr>
<tr>
<td>Slightly Nervous</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00</td>
</tr>
<tr>
<td>Very Nervous</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00</td>
</tr>
</tbody>
</table>

In the pre survey question concerning confidence on computing percentage of specific praise, prior to the training 33.33% of participants reported they were very confident and 66.67% reported they were moderately confident (see Table 4). This confidence level stayed the same with 33.33% of the participants reporting they felt very confident and 66.67% indicating that they felt moderately confident. These results suggest the confidence level stayed the same before and after the video training.

Table 4

Confidence in accurately computing percentage of specific praise

<table>
<thead>
<tr>
<th></th>
<th>Pre-Survey</th>
<th>Post-Survey</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Confident</td>
<td>33.33%</td>
<td>33.33%</td>
<td>0.00</td>
</tr>
<tr>
<td>Moderately Confident</td>
<td>66.67%</td>
<td>66.67%</td>
<td>0.00</td>
</tr>
<tr>
<td>Neutral</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00</td>
</tr>
<tr>
<td>Slightly Nervous</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00</td>
</tr>
<tr>
<td>Very Nervous</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Six questions were asked in the post survey only. For these questions, we analyzed data from all eight participants. Two of these questions addressed participants’ perception of change in their confidence and preparation as a result of the training. The first question was “Are you confident that you are more accurate now in collecting data than you were before the training?” and the second question was “Do you feel better prepared to provide supervision following the training?”. Responses were identical on these two questions. Seventy-five percent of the participants strongly agreed that they were more confident and felt better prepared while only 25% somewhat agreed with those statements (See Table 5).

Table 5
Confidence in being more accurate and better prepared

<table>
<thead>
<tr>
<th></th>
<th>More Accurate</th>
<th>Better Prepared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly Agree</td>
<td>75.00%</td>
<td>75.00%</td>
</tr>
<tr>
<td>Somewhat Agree</td>
<td>25.00%</td>
<td>25.00%</td>
</tr>
<tr>
<td>Neutral</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Somewhat Disagree</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Strongly Disagree</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

The third and fourth question were related to time efficiency and accessibility. Question three asked “Do you feel the training was time efficient?” and question four asked “Was the training easily accessible?”. All (100%) of the participants responded that they felt the training was time efficient and that it was accessible.

The final two questions were open ended questions asked only in the post survey. One question was “What aspects of the training did you like?”. The responses are listed
in Table 6. Participants reported the training was easy to access, they liked practicing and collecting the data and being able to replay the training for more clarification.

Table 6

What aspects of the training did you like?

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seeing Julia on the screen:) Well it was good for me to practice and refresh my skills.</td>
<td></td>
</tr>
<tr>
<td>I like the recorded training. It was easy to access and it was nice to go back to it and replay parts for further clarification.</td>
<td></td>
</tr>
<tr>
<td>Loved the online accessibility.</td>
<td></td>
</tr>
<tr>
<td>I liked collecting data and receiving feedback on how accurately the counts were</td>
<td></td>
</tr>
<tr>
<td>The opportunity to learn from others.</td>
<td></td>
</tr>
<tr>
<td>Practicing with the video</td>
<td></td>
</tr>
<tr>
<td>The videos were very helpful and then walking through the results afterward with Julia was awesome!</td>
<td></td>
</tr>
<tr>
<td>The training was comprehensive and answered my questions.</td>
<td></td>
</tr>
</tbody>
</table>

The final question asked in the post survey was “What recommendations would you make to improve this training?”. The responses are listed in Table 7. Participant comments included suggestions such as more training in other areas such as correction feedback, scanning, etc., more video examples of varied classroom settings, and more video examples to practice with.

Table 7

What recommendations would you make to improve this training?

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>I thought overall it was great. It was a little slow for me but I have done this a few times so I would have wanted it to speed up a bit.</td>
<td></td>
</tr>
<tr>
<td>I would love to see additional recorded training on the other data areas of correction feedback, scanning, etc.</td>
<td></td>
</tr>
<tr>
<td>It would be nice to have videos of both a severe and resource setting to track data that more closely matches the area in which you do supervision in.</td>
<td></td>
</tr>
<tr>
<td>I can't think of any improvements!</td>
<td></td>
</tr>
</tbody>
</table>
• I realize that this was just a "trial run" to see how effective video training is however, I would like to see that it would be sent out before the semester starts. I would also like a couple more video examples to try our skill at marking OTR's and praise rates.

• Maybe have one where you tally on the screen first and then move to doing it on our own.

Discussion

This study sought to determine the effects of a video training program to produce acceptably accurate in-class observations by university supervisors. The findings revealed that after watching the video training, participants showed variable agreement with an expert supervisor, but agreement decreased when they collected data during live observations. On all three targets, the range of participant agreement (as a percentage of expert observations) was substantially larger in live observations than in video observations. During the live observations, the participants tended to over-identify praise rate and percentage of specific praise but under-identified opportunities to respond.

Seven participants under-identified opportunities to respond in the training video and six did so in the live observation. In discussing these data with each participant at the in-class live observation, I discovered that when the participants watched the training video and collected data, many of them did not count an opportunity given by the teacher when she instructed the student to “watch me”. Some participants were able to count opportunities to respond with better accuracy in the live observation. This may be due to the opportunity to discuss the training video results with the key observer and to then apply their skills in the live observation. Three participants were very far from the standard on the live observation which suggests a need to clarify the instructions and to provide more opportunities to practice data collection with feedback.
Participants were able to record praise rate with higher accuracy than the other two areas. It is important to note that one of the expert supervisors was substantially higher than the others (at 9.4 praise statements/min) while the other two expert supervisors were exactly the same (at 7.9 praise statements/min) on the video. Seven of the participants were closer to the two expert supervisors with one participant notably lower on the video training. During the live observations, five participants over-identified praise statements. When discussing the data for praise rate following the live observation, some of the participants over-counted praise when several statements were strung together; for example, “good job, great answer on that” would be counted as two praise statements. Clarification on what is considered a praise statement was helpful, but came after the observation was completed. Again, clarifying instructions given in the video and providing varied video examples would be recommended to address these misinterpretations.

The results for percentage of specific praise were similar to that of praise rate. Once again, one expert supervisor had a higher percentage of specific praise (90%) than the other two (59% and 61%). Just as they did in calculating praise rate, most of the participants over-identified specific praise statements in both the training video and the live observation. It is evident that a more precise definition of specific praise is necessary as is providing more examples and non-examples of varying types of specific praise.

These data would indicate that the training videos may have been helpful in providing examples to participants and opportunities to practice data collection in the three areas but did not enable them to achieve a level that would be considered highly accurate. The videos would appear to be an improvement on the previous system of only
providing oral instruction but did not include enough examples, sufficient practice, and adequate feedback for the supervisors to become highly accurate. Even though the participants were not highly accurate in any area after viewing the training videos, the training still provided an opportunity to practice data collection in a controlled setting and assisted the supervisor in preparing for a live observation. The supervisors self-reported an overall increase in confidence in their ability to provide supervision and indicated that the video training was both efficient and accessible. Multiple participants commented in the post survey that they liked having the videos so that they could practice their skills in data collection. These comments imply that having videos of teachers demonstrating teaching techniques was an effective way for supervisors to practice data collection skills before completing an in-class observation. One supervisor commented that they were able to repeatedly review the training if they were desirous of further clarification in one area or another.

It is recommended that the training videos be refined to improve future supervisor performance. Some of the recommendations would be to provide better definitions of opportunities to respond, praise rate and percentage of specific praise. These definitions should include examples and non-examples to assist the supervisors in differentiating instances of OTR and praise statements. The video training could also include other video examples from varied classroom settings such as life skills, mild/moderate and early childhood.

Another recommendation to further improve the video training would be to model accurate data collection on the video clips. One way to accomplish this would be to have a split screen where on one side the video is playing and on the other side a picture of the
data sheet is present with the narrator of the video taking data while the video is playing. This way the supervisors would be able to see the narrator taking data while they are watching the video and would be able to see under what circumstances data were collected and when it was not. It would also be helpful in the training video to do an oral review of the videos after the supervisor viewed it to bring attention to the key points in the video.

Future trainings would be more beneficial if the trainer were able to analyze the data submitted by the supervisors following the training videos and then give feedback and further instruction before the live observation. This feedback could be given using video conferencing technology to lessen the amount of travel the trainer is required to do. The feedback and discussion that occurred at the live observations seemed to be most beneficial in addressing supervisor’s questions and clarifying expectations.

A final recommendation would be to increase the number of live observations an expert supervisor attends. The purpose of this would be to increase the amount of corrective feedback given to the supervisor and to address errors or inaccuracies as they are happening. This could be done by using video conferencing or other technology to have the expert and the current supervisor observing the same student teacher at the same time. The benefit of using video conferencing would be the expert supervisor would not have to spend hours of travel to reach a supervisor and student teacher in a rural area for an observation that would take approximately one hour. By reducing the amount of traveling time to an observation the expert supervisor would be available to perform more co-observations.
As the video training is continually improved to address more potential misunderstandings the supervisor’s accuracy should improve. Future research could examine the use of video training for supervisors in other teacher education programs as well as the possibility of adding video based reliability observations to increase the accuracy of observations.

A possible limitation of this study is the accuracy of the data collected by the participants. The researcher understands that total count IOA has a limitation in that it is not known to the researcher if each participant is rating the same instances of occurrence as the researcher. It is also difficult to obtain high levels of reliability in a live observation based on factors that occur in a live setting such as distraction, behavior of the students in the group or classroom, or the volume of the student teacher giving instruction. Due to limited resources and locations of various supervisors, the researcher is unable to confirm that each participant is recording the correct instance of occurrence. However, the data collected was still a relevant indicator of accuracy and should be considered. It is the overall counts that will affect student scores and serve as the basis for feedback to students. Those are the scores that are functional. So, although this type of reliability is limited for analytical purposes (determining exactly where disagreements took place and reasons for that disagreement), it speaks directly to the question of whether the level of agreement is satisfactory for practical purposes. The key practical question for student teaching supervision is whether overall counts agree and the same feedback and grade would be given to the student teachers. Therefore, overall agreement is sufficient for the specific purposes of this research. Future research could use
electronic devices to obtain exact count-per-interval IOA to confirm that the observers were counting the same occurrences.

The findings of this study indicate that the participants valued a comprehensive, time efficient, recorded training. However, the recorded training must provide specific definitions and instructions as well as provide many examples and non-examples for the participants to view. This project has been an initial step toward producing a training system that is sufficiently thorough and complete to produce highly accurate in-class student teaching observations.
References

Figure 1.

Total opportunities to respond and percent of target from video training and percent of target from live observation.
Figure 2.

Praise Rate per minute and percent of target from video training and percent of target from live observation.
Figure 3.

Percentage of specific praise and percent of target from video training and percent of target from live observation.
APPENDIX A

Student Teaching in-class observation form

Student Teaching Observation Form

<table>
<thead>
<tr>
<th>Student Teacher</th>
<th>Observer</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting</td>
<td>Current Focus</td>
<td></td>
</tr>
</tbody>
</table>

Feedback - Strengths and Suggestions:

Next Focus:

<table>
<thead>
<tr>
<th>Cases/Directions/Opp. to Respond</th>
<th>Academic Praise</th>
<th>Behavior Praise</th>
<th>General Praise</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corrections</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No Corrective Feedback</td>
<td>Correct Corrective Feedback</td>
<td>Incorrect Corrective Feedback</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Momentary Time Sample/Child Engagement</th>
<th>Number of Transitions</th>
<th>Occurrences of Scanning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX B

Pre-Survey

Q1 What is your gender?
☑ Male (1)
☑ Female (2)

Q2 What is your age?

Q3 How many years’ experience do you have teaching school?

Q4 How many years have you provided student teacher supervision?

Q5 How confident are you in providing student teacher supervision?
☑ Very confident (1)
☑ Moderately confident (2)
☑ Neutral (3)
☑ Slightly Nervous (4)
☑ Very Nervous (5)

Q6 How confident are you that you can accurately count...

<table>
<thead>
<tr>
<th>Level of Confidence</th>
<th>Very Confident (1)</th>
<th>Moderately Confident (2)</th>
<th>Neutral (3)</th>
<th>Slightly Nervous (4)</th>
<th>Very Nervous (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praise rate? (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific Praise? (2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opportunities to respond? (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Post-Survey

Q2 What is your gender?
☑ Male (1)
☑ Female (2)

Q3 What is your age?
Q4 How confident are you in providing student teacher supervision?
- Very confident (1)
- Moderately confident (2)
- Neutral (3)
- Slightly Nervous (4)
- Very Nervous (5)

Q5 How confident are you that you can accurately count...

<table>
<thead>
<tr>
<th>Praise rate? (1)</th>
<th>Specific Praise? (2)</th>
<th>Opportunities to respond? (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Confident (1)</td>
<td>Moderately Confident (2)</td>
<td>Neutral (3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slightly Nervous (4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Very Nervous (5)</td>
</tr>
</tbody>
</table>

Q6 Are you confident that you are more accurate now in collecting data than you were before the training?
- Strongly agree (1)
- Somewhat agree (2)
- Neutral (3)
- Somewhat disagree (4)
- Strongly disagree (5)

Q7 Do you feel better prepared to provide supervision following the training?
- Strongly agree (1)
- Somewhat agree (2)
- Neutral (3)
- Somewhat disagree (4)
- Strongly disagree (5)

Q8 Do you feel the training was time efficient?
- Definitely yes (1)
- Probably yes (2)
- Probably not (3)
- Definitely not (4)
Q9 Was the training easily accessible?
- Definitely yes (1)
- Probably yes (2)
- Probably not (3)
- Definitely not (4)

Q10 What aspect(s) of the training did you like?

Q11 What recommendations would you make to improve this training?
APPENDIX C

Power point training (outline)

• Student Teaching
 Supervisor Training
 Part 1 - Observation
Utah State University
Department of Special Education and Rehabilitation
• The Important Stuff First
• Pay
• W-9
• Forms – Payment & Mileage
• Syllabus
• Canvas – look for email invite once an A# is created
• Student Teacher Workshop – February 24
• Notebook or Google Docs of all lesson plans
• Lesson plan format
 • Effective Teaching Cycle
• Attendance
• Substitute Policy
• Cell Phone Policy
• Portfolio Due Dates - April 7, Final PDF April 24

Student Teaching Grading
• Pass/Fail
• Three Parts
 • Observations
 • Portfolios
 • Final Evaluations
• Scenarios
 • Teaching & Evaluations Great/Portfolio Poor
 • Teaching Poor/Portfolio Great
 • Other Combinations
• Communication
• Triad Conference
• Portfolio Progress
• At-Risk Policy
• Professional Guidelines
• In-class Observations
• 3-5 in class observations
• 5 pages – data is designed for all settings
• Scheduling Observations
• Reliability Observation
• Cover Page
• Scoring Page 1
• Scoring Page 2
• Scoring Page 3
• Cooperating Teacher Checklist
• Scoring Pages
• 6 main sections
• Follows the typical pattern of a lesson
• Each line has assigned points - please stay within these points - only use values listed
• Total each section as a sub score
• II. Presentation: Delivery, Feedback and Monitoring
• III. Behavior Management
• IV. Data Collection
• V. Cooperating Teacher Checklist Score
• VI. Professionalism
• Performance Summary
 • Preparation and Planning ________/13
 • Presentation ________/39
 • Behavior Management ________/28
 • Data Collection ________/10
 • Cooperating Teacher Score ________/10
 • Professionalism ________
 • Observation Percentage ________
• If any sections were not observable, remove those points from the total possible
• Compute a percentage
 • If 65% or lower return the following week. If 2nd observation is lower than 75% consult at-risk policy
• Opportunities to Respond
• Opportunities to Respond defined: a statement, instruction or signal made by the teacher that elicits a verbal or non-verbal response from the student.
• Examples
 • What word? Everyone what is the answer?
 • Give me thumbs up if you agree or thumbs down if you disagree.
 • Show me quiet hands.
• Non-Examples
 • Student calls out answer without teacher requesting response
 • “Everyone should know this answer”
 • Practice Opportunity to Respond
 • VIEW EMBEDDED VIDEO
• General & Specific Praise
• Examples
 • General
 • Good Job, Excellent, Way to go
 • Giving a “high-five” or “thumbs up”
 • Specific
• Academic: Good job reading that line; Yes, that word is cat
• Behavior: Excellent eyes on me; Jill you followed the directions great

• Non-Examples
 • During instruction, one student is poking and attempting to talk with another student. The teacher stops and waits and for the student to stop and about 1 min later, the teacher looks, smiles, and says “good job.”
 • Any "negative" praise. For example – “glad everyone decided to stop talking and pay attention”.

• Practice Collecting Praise Data
• VIEW EMBEDDED VIDEO

• Computing Praise Rate
• Praise rate defined:
 • Number of praise statements delivered per minute during your 5-min observation. It includes verbal and non-verbal, group and individual praise.

• Computing praise rate:
 • Total Praise Rate = total number of praise statements divided by the number of minutes
 • 40 praises/5 minutes = 8 praises/minute

• Computing Specific Praise Percentage
• Specific Praise Percentage Defined
 • Percentage of praise that is specific.

• Computing Specific Praise Percentage:
 • Specific praise percent = number of specific praise statements divided by the number of all praise statements
 • 25 Specific Praises/40 Total Praises = 62.5% specific praise

• Final Evaluations
• Aligns with Effective Teaching Standards
• Will be completed on-line at end of placement– if in an internship, after the 2nd semester
• A Qualtrics link will be sent to you with instructions
• Place to include a letter of reference
• Goes into Placement File
• Wrapping up
• Email me the data counts for opportunities to respond, praise rate, and specific praise percentage
• Send in W-9
• Track observations & mileage on forms provided
• Email me with any concerns or questions
• I will be contacting you to set up a reliability observation
• Email address: julia.lyman@usu.edu
• THANK YOU!

Contact Information for Julia Lyman
Department of Special Education
and Rehabilitation