Characterization of the Complex Sulfide Ore of Sotiel (Spain) by Scanning Electron Microscopy and Electron Microprobe Analysis

Giuseppe Bonifazi
Università' degli Studi di Roma "LA SAPIENZA"

Roberto Gorga
C.N.R.

Follow this and additional works at: https://digitalcommons.usu.edu/microscopy

Part of the Biology Commons

Recommended Citation

Available at: https://digitalcommons.usu.edu/microscopy/vol7/iss4/7
CHARACTERIZATION OF THE COMPLEX SULFIDE ORE OF SOTIEL (SPAIN) BY SCANNING ELECTRON MICROSCOPY AND ELECTRON MICROPROBE ANALYSIS

Giuseppe Bonifazi*, Roberto Gorga

Dipartimento di Ingegneria Chimica, dei Materiali, delle Materie Prime e Metallurgia
Università degli Studi di Roma "LA SAPIENZA", Via Eudossiana 18, 00184 Roma, Italy
1Istituto per il Trattamento dei Minerali, C.N.R., Via Bolognola 7, 00138 Roma, Italy

(Received for publication February 2, 1993, and in revised form August 20, 1993)

Abstract

This study complements a more exhaustive examination on the complex sulfide mineralization of Sotiel, (Spain), by optical microscopy and multispectral digital analysis of images. Electron microscopy analyses were carried out to document specific associations which are difficult to detect with conventional optical microscopy. This study utilizes the application of digital techniques to image processing, in an attempt to define microstructural and microtextural characteristics of the ore, since they play an important role in the subsequent beneficiation operations (i.e., flotation).

Scientific and economic information bound to complex metallogenic phenomenology and referred to particular paragenetic scenes was acquired by the study in detail of inclusions of main mineralogical species such as pyrite, sphalerite, galena, chalcopyrite combined with quartzose-carbonate-micaceous gangues and a particular silico-marly "slate".

Scanning electron microscopy and optical microscopy observations and image analysis were used to characterize species of metallic and non-metallic submicroscopic inclusions.

Key words: Scanning electron microscopy, complex sulfide ore, texture, structure, beneficiation.

Introduction

The lead and zinc mixed sulfide mineralizations are of great industrial interest since most lead and zinc are derived from this kind of deposits. This abundance of ores is not matched by their quality after industrial separation of sphalerite (ZnS) and galena (PbS) from gangue (Gorga, 1989). These mineral associations show textural and structural characteristics which make use of beneficiation techniques, based on traditional procedures (comminution, gravimetric separation and flotation), very difficult. For these reasons adequate research techniques aimed at detecting microinclusions and/or replacements inside or on the surface of species considered pure are necessary. This information can only be detected at micrometer scale by means of scanning electron microscopy (SEM) and X-ray microanalysis (XRMA) techniques (Bonifazi and Massacci, 1986; Bonifazi and Gorga, 1993, submitted for publication; Petruk, 1990).

This present work is the result of a study carried out to make a complete characterization from the mineral-petrographic and mineral-chemical point of view of Sotiel (Spain) mineralization. Therefore, this information is an essential premise to a rational assessment to improve the recovery and grades of monomineral concentrates of pyrite (FeS₂), sphalerite (ZnS), galena (PbS), chalcopyrite (CuFeS₂) together with other possible metallic elements which are interesting from the economic point of view, such as silver, or harmful elements, such as arsenic and/or antimony.

The results obtained from a parallel study (Bonifazi and Gorga, 1993, submitted) of the ore showed great variability in chemical and textural parameters. Those results pointed to a need for a more exhaustive study utilizing different analytical techniques:

- mineralogical study through optical microscope with natural and polarized reflected light;
- elementary chemical analysis;
- microstructural and microanalytical study through SEM for backscattered and secondary electrons, and electron probe microanalyzer;
- image analysis.

*Address for correspondence:
Giuseppe Bonifazi
Dipartimento di Ingegneria Chimica, dei Materiali, delle Materie Prime e Metallurgia
Via Eudossiana 18, 00184 Roma, Italy
Phone: (39.6) 44585-925
FAX: (39.6) 44585-618
Table 1. Chemical analyses of elements and silver in trace, carried out by atomic absorption (Perkin Elmer ICP 6000) on five samples representative of the mineral coming from the Sotiel Ore.

<table>
<thead>
<tr>
<th>Element (Element)</th>
<th>Ore Samples (SLF1)</th>
<th>SLF2</th>
<th>SLF3</th>
<th>SLF4</th>
<th>SLF5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn (%)</td>
<td>5.06</td>
<td>4.24</td>
<td>4.55</td>
<td>4.60</td>
<td>4.80</td>
</tr>
<tr>
<td>Pb (%)</td>
<td>2.10</td>
<td>1.99</td>
<td>2.02</td>
<td>2.04</td>
<td>1.91</td>
</tr>
<tr>
<td>Cu (%)</td>
<td>0.76</td>
<td>0.67</td>
<td>0.68</td>
<td>0.66</td>
<td>0.80</td>
</tr>
<tr>
<td>Total (ppm)</td>
<td>7.92</td>
<td>6.90</td>
<td>6.45</td>
<td>6.30</td>
<td>7.51</td>
</tr>
<tr>
<td>Ag (ppm)</td>
<td>34.99</td>
<td>46.89</td>
<td>44.66</td>
<td>45.00</td>
<td>46.00</td>
</tr>
</tbody>
</table>

The complex of these procedures, with their analogical and digital integration, allowed us to make a precise assessment of the balance and degree of liberation of mineral phases containing those metallic elements which are useful or harmful from the economic point of view (Bonifazi and Massacci, 1988, 1989; Petruk, 1986, 1988). The digital information allowed us to create data bases of great historical interest and baseline information.

Materials and Methods

Materials

The pyrite-cupriferous deposit of Sotiel is a few kilometers from Calanas in the minerogenetic subprovince of Huelva (Spain); it is characterized northwards by the spurs of Western reliefs of Sierra Morena and southwards from Spanish Atlantic coasts (Fernandez, 1975). The metallogenic province was already known at the time of Phoenicians while the deposit of Sotiel supposedly was the object of mining during the Roman dominion.

The structural aspect of "Faja Piritica lberica" is characterized by a slight metamorphism with at least four folded episodes. These correspond to a geological period included between the Devonian and the beginning of Carboniferous of contemporaneous or previous grounds to the principal phase of the Hercinian orogeny (Apps, 1961; Bard, 1965; Delcey, 1970; Febrel, 1967; Febrel-Moliner, 1966; Garcia-Palomero, 1974; Lecolle, 1970, 1971, 1972; Lecolle and Roger, 1973; Rambaud, 1969; Schermerhorn, 1971; Soler, 1971).

The deposit of Sotiel is made up of a single principal ore body with foliated-lenticular geometry, with an average thickness of around 50 meters. The metalliferous horizon presumably developed in a volcanic-sedimentary complex in a metamorphosed environment made up of wall-black slates and pyroclastic products showing interposed roof to a powerful formation of vulcanite (Arnold and Soler, 1973). The present theories (Apps, 1961; Kinkel, 1962) suggest that the structure was involved by high extrusive-sedimentary activity in a submarine floor similar to that observed in the recent submarine geothermal fields located in numerous points adjoining those countries which face the Mediterranean Sea.

Table 2. Chemical analyses (% content as elements), carried out by electron microscopy/microprobe analysis (JEOL JSM-50A) on the main minerals in the Sotiel ore. The values represent means relative to numerous analyses performed on five samples of the same ore.

<table>
<thead>
<tr>
<th>Element</th>
<th>Massive</th>
<th>Schistose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe (%)</td>
<td>44.12</td>
<td>46.46</td>
</tr>
<tr>
<td>Zn (%)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pb (%)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cu (%)</td>
<td>0.16</td>
<td>-</td>
</tr>
<tr>
<td>Ag (%)</td>
<td>-</td>
<td>0.04</td>
</tr>
<tr>
<td>Au (%)</td>
<td>0.09</td>
<td>-</td>
</tr>
<tr>
<td>As (%)</td>
<td>0.46</td>
<td>0.25</td>
</tr>
<tr>
<td>Cd (%)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Co (%)</td>
<td>0.23</td>
<td>-</td>
</tr>
<tr>
<td>Sb (%)</td>
<td>-</td>
<td>0.07</td>
</tr>
<tr>
<td>Mn (%)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bi (%)</td>
<td>-</td>
<td>0.17</td>
</tr>
<tr>
<td>Total</td>
<td>98.44</td>
<td>99.27</td>
</tr>
</tbody>
</table>

Table 2A. Pyrite Species.

<table>
<thead>
<tr>
<th>Mineral Species</th>
<th>sp</th>
<th>gn</th>
<th>ccp</th>
<th>apy</th>
<th>gdm</th>
<th>ttr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe (%)</td>
<td>4.22</td>
<td>-</td>
<td>29.51</td>
<td>33.65</td>
<td>22.99</td>
<td>2.21</td>
</tr>
<tr>
<td>Zn (%)</td>
<td>67.55</td>
<td>-</td>
<td>0.41</td>
<td>0.55</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pb (%)</td>
<td>-</td>
<td>86.01</td>
<td>3.83</td>
<td>1.21</td>
<td>0.05</td>
<td>1.02</td>
</tr>
<tr>
<td>Cu (%)</td>
<td>0.16</td>
<td>-</td>
<td>31.88</td>
<td>0.23</td>
<td>0.07</td>
<td>41.22</td>
</tr>
<tr>
<td>Ag (%)</td>
<td>-</td>
<td>0.17</td>
<td>-</td>
<td>0.10</td>
<td>0.15</td>
<td>0.56</td>
</tr>
<tr>
<td>Au (%)</td>
<td>-</td>
<td>0.09</td>
<td>-</td>
<td>0.07</td>
<td>0.06</td>
<td>-</td>
</tr>
<tr>
<td>As (%)</td>
<td>28.04</td>
<td>11.58</td>
<td>33.78</td>
<td>18.36</td>
<td>21.53</td>
<td>24.38</td>
</tr>
<tr>
<td>Cd (%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>46.83</td>
<td>1.03</td>
<td>-</td>
</tr>
<tr>
<td>Co (%)</td>
<td>0.07</td>
<td>-</td>
<td>0.02</td>
<td>0.25</td>
<td>-</td>
<td>4.03</td>
</tr>
<tr>
<td>Sb (%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>52.75</td>
<td>26.51</td>
</tr>
<tr>
<td>Mn (%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bi (%)</td>
<td>-</td>
<td>-</td>
<td>0.25</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>100.04</td>
<td>98.65</td>
<td>101.67</td>
<td>98.88</td>
<td>99.93</td>
<td></td>
</tr>
</tbody>
</table>

sp: sphalerite; gn: galena; ccp: chalcopyrite; apy: arsenopyrite; gdm: gudmundite; ttr: tetrahedrite.

The metalliferous body, 950 meters long, has a reserves estimated around 59 x 10^6 tons of crude containing 4.2% Zn, 1.6% Pb, 0.6% Cu and 30 grams/ton of Ag.

The experimental work was carried out on a material taken from a 120 kg sample coming from the deposit. This sample, provided by the agency "Minas de Almagrera", was subjected to a crushing process resulting in a product with sizes lower than 10 mm. A sampling was carried out on this material which gave an average
grain weight of about 250 grams. It was washed with distilled water and dried in the furnace at 50°C.

Optical microscopy

The sample was placed in a special holder containing an epoxy resin ("Castolite") with a catalytic agent (in the proportions four to one) and was left to harden at 50°C. The sample was then cut, and also thin sections (3-4 mm) were prepared; these samples and sections were polished using standard petrographic procedures. The final polishing was carried out using ultrafine alumina particles of 5 µm.

The preliminary study on specimens was carried out using a JENAPOL-U optical microscope for primary characterization and structural, textural and morphological characteristics of the minerals. This study was insufficient for some samples, because it gave very little useful information for the definition and setting up of research strategies for SEM and XRMA. In some case, even high magnification (using special oil dipping objectives) was insufficient to interpret some submicroscopic inclusions.

Characterization

The detailed morphological study of the crude ore was carried out through optical reflected light microscopy, SEM and digital image analysis. In addition, XRMA was performed on the points and areas of interest which were recognized by optical and/or electron microscopy. An home made modular system, created by assembling different specific hardware, was employed to acquire, handle and process digital image data from optical microscope and SEM.

This investigation started with research aimed at defining mineral-petrographic and chemical characteristics of the ore; this information is an important prerequisite to study the concentration of pyrite (FeS₂), sphalerite (ZnS), galena (PbS), chalcopyrite (CuFeS₂) with other economically important metallic elements. Since the great abundance of minerals present are opaque, this study was carried out mainly under reflected light (Figures 1-5). In some case, observations of thin sections were useful in determining the presence of gangue minerals with carbonate-quartzose composition.

Chemical analyses

Prior to the studies aimed at defining the textural, structural, and compositional characteristics between the different phases, chemical analyses were performed to assess the elementary composition of the ore. Only analyses of Pb, Zn, Cu and Ag were carried out, since these elements are sufficient to define a subsequent optimization strategy of recovery of these metals in the beneficiation studies. Chemical analysis was performed on five samples, designated SLF1, ..., SLF5. The results of chemical analysis are presented in Table 1. From these chemical analysis, we conclude:

a) There are no significant differences in the analytical data of the five samples with regards to Zn, Pb, Cu, and Ag. These can be considered equivalent.

b) Apart from the large amount of Fe (not analyzed in pyrite (FeS₂), chalcopyrite (CuFeS₂), and other accessory minerals such as marcasite (FeS₂), melnikovite (crystallized FeS₂ gel) and magnetite (FeFe₂O₄), Zn present in sphalerite (ZnS) is the principal constituent.

c) The amount of sphalerite (ZnS) in five samples was: SLF1 = 7.54%; SLF2 = 6.76%; SLF3 = 6.78%; SLF4 = 6.85%; and SLF5 = 7.15%. Galena (PbS) varied from 2.42% to 2.21%; while chalcopyrite (CuFeS₂) ranged from 2.30% to 1.90%.

d) Silver in moderate amounts (~ 45 ppm) was present in all samples. However, the contents of Ag can be considerable when compared to the percentages of galena or some accessory minerals. In fact, in addition to galena, minerals containing Ag, as shown in the following analysis through XRMA, are tetrahedrite (Cu₄Sb₅S₈), gudmundite (FeSb₅), arsenopyrite (FeAsS).

Scanning electron microscopic examinations

The specimens for SEM investigation were the same as those used for with optical microscopy; identical areas were studied by optical microscopy, SEM and XRMA. SEM examinations were carried out using a DSM-960 Zeiss SEM which was also equipped for energy dispersive X-ray microanalysis. Qualitative X-ray analyses were performed on SEM only to obtain morphological and morphometrical characteristics of microinclusions which were difficult to recognize by optical microscopy. In some cases, mineral phases constituting microinclusions were determined.

Table 3. Main microscopic and submicroscopic inclusions of minerals (useful elements to be recovered and harmful elements to be separated) detected in the Sotiel ore. The study has been carried out by optical reflected light microscopy (JENAPOL-U), scanning electron microscopy (Zeiss DSM-960), electron microprobe (JEOL JSM-50A), and systems of multispectral image analysis.

<table>
<thead>
<tr>
<th>Host minerals</th>
<th>Useful elements</th>
<th>Included minerals</th>
<th>Harmful elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrite</td>
<td>S, Co, Ag, Au</td>
<td>marcasite, melnikovite, magnetite</td>
<td>Zn, Pb, As, Sb</td>
</tr>
<tr>
<td>Sphalerite</td>
<td>Zn</td>
<td>galena, calchopirite, arsenopyrite</td>
<td>Fe, Cu, Sb</td>
</tr>
<tr>
<td>Galena</td>
<td>Pb, Ag</td>
<td>tetrahedrite</td>
<td>As, Sb</td>
</tr>
<tr>
<td>Chalcopyrite</td>
<td>Cu</td>
<td>sphalerite, galena</td>
<td>Zn, Pb, Fe, As</td>
</tr>
<tr>
<td>Arsenopyrite</td>
<td>Ag</td>
<td>sphalerite, galena, calchopirite</td>
<td>As</td>
</tr>
<tr>
<td>Tetrahedrite</td>
<td>Ag</td>
<td></td>
<td>Sb, As</td>
</tr>
<tr>
<td>Gudmundite</td>
<td>Ag</td>
<td></td>
<td>As, Bi</td>
</tr>
</tbody>
</table>

Table 1. Chemical elements to be separated (useful) and to be avoided (harmful) identified in ore samples Sotiel.

<table>
<thead>
<tr>
<th>Host minerals</th>
<th>Useful elements</th>
<th>Included minerals</th>
<th>Harmful elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrite</td>
<td>S, Co, Ag, Au</td>
<td>marcasite, melnikovite, magnetite</td>
<td>Zn, Pb, As, Sb</td>
</tr>
<tr>
<td>Sphalerite</td>
<td>Zn</td>
<td>galena, calchopirite, arsenopyrite</td>
<td>Fe, Cu, Sb</td>
</tr>
<tr>
<td>Galena</td>
<td>Pb, Ag</td>
<td>tetrahedrite</td>
<td>As, Sb</td>
</tr>
<tr>
<td>Chalcopyrite</td>
<td>Cu</td>
<td>sphalerite, galena</td>
<td>Zn, Pb, Fe, As</td>
</tr>
<tr>
<td>Arsenopyrite</td>
<td>Ag</td>
<td></td>
<td>As</td>
</tr>
<tr>
<td>Tetrahedrite</td>
<td>Ag</td>
<td></td>
<td>Sb, As</td>
</tr>
<tr>
<td>Gudmundite</td>
<td>Ag</td>
<td></td>
<td>As, Bi</td>
</tr>
</tbody>
</table>
The atomic number contrast in backscattered electron (BSE) images on SEM permitted qualitative mineorchemical composition determination. Using the BSE images, following minerals could be recognized: pyrite (FeS₂), sphalerite (ZnS), argentite galena (PbS), chalcopyrite (CuFeS₂), arsenopyrite (FeAsS), argentite gudmundite (FeSbS₃), magnetite (Fe₃O₄), carbonate and/or quartzose gangue (Figures 6-11).

The presence of magnetite (FeFe₂O₄) and carbonate gangue.

The different regions constituted by sphalerite are "labeled" according to the recognition sequence followed by the algorithm. Only regions presenting an area constituted of more than 10 pixels are displayed. (Polished section).

Number of sphalerite (ZnS) domains recognized and identified inside the arsenopyrite (FeAsS) crystal (number of domains = 16).

The Area and the Perimeter are expressed in pixels (1 pixel = 1.05 μm). S.D. = Standard deviation.

Number of pyrite (FeS₂) domains recognized and identified (number of Domains = 101).

The Area and the Perimeter are expressed in pixels (1 pixel = 1.05 μm). S.D. = Standard deviation.

The atomic number contrast in backscattered electron (BSE) images on SEM permitted qualitative mineorchemical composition determination. Using the BSE images, following minerals could be recognized: pyrite (FeS₂), sphalerite (ZnS), argentite galena (PbS), chalcopyrite (CuFeS₂), arsenopyrite (FeAsS), argentite gudmundite (FeSbS₃), magnetite (Fe₃O₄), carbonate and/or quartzose gangue (Figures 6-11).

The presence of magnetite (FeFe₂O₄) and carbonate gangue.

The different regions constituted by sphalerite are "labeled" according to the recognition sequence followed by the algorithm. Only regions presenting an area constituted of more than 10 pixels are displayed. (Polished section).

Number of sphalerite (ZnS) domains recognized and identified inside the arsenopyrite (FeAsS) crystal (number of domains = 16).

The Area and the Perimeter are expressed in pixels (1 pixel = 1.05 μm). S.D. = Standard deviation.

Number of pyrite (FeS₂) domains recognized and identified (number of Domains = 101).

The Area and the Perimeter are expressed in pixels (1 pixel = 1.05 μm). S.D. = Standard deviation.
Table 4. Experimental conditions for XRMA (using EDS Link System AN 10000-85S at 15 kV and a beam current of 2×10^{-9} A; number of analyzed points = 60).

<table>
<thead>
<tr>
<th>Element</th>
<th>Wavelength</th>
<th>Reference Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>K(\alpha)</td>
<td>pyrite</td>
</tr>
<tr>
<td>Zn</td>
<td>K(\alpha)</td>
<td>element</td>
</tr>
<tr>
<td>Pb</td>
<td>K(\alpha)</td>
<td>Pb metal</td>
</tr>
<tr>
<td>Cu</td>
<td>K(\alpha)</td>
<td>element</td>
</tr>
<tr>
<td>Ag</td>
<td>L(\alpha)</td>
<td>element</td>
</tr>
<tr>
<td>Au</td>
<td>M(\alpha)</td>
<td>element</td>
</tr>
<tr>
<td>S</td>
<td>K(\alpha)</td>
<td>pyrite</td>
</tr>
<tr>
<td>As</td>
<td>L(\alpha)</td>
<td>element</td>
</tr>
<tr>
<td>Cd</td>
<td>L(\alpha)</td>
<td>element</td>
</tr>
<tr>
<td>Co</td>
<td>K(\alpha)</td>
<td>element</td>
</tr>
<tr>
<td>Sb</td>
<td>L(\alpha)</td>
<td>element</td>
</tr>
<tr>
<td>Mn</td>
<td>K(\alpha)</td>
<td>element</td>
</tr>
<tr>
<td>Bi</td>
<td>M(\alpha)</td>
<td>element</td>
</tr>
</tbody>
</table>
X-ray microanalyses. Electron probe X-ray microanalysis was essential in determining the quantitative composition of various minerals and microinclusions present in the ore samples. Table 2 presents results for elements occurring in the "as mined" ores in the Sotiel deposit. XRMA allowed us to detect microelements present in pure mineralogical phases and microstructural interpretation of the same species. The XRMA results, relating to microtextures present in zones of intergranular contact, proved very important to the setting up of the subsequent beneficiation process (Table 3).

The XRMA and mineralogical results are summarized below (Tables 2 and 3): a) Pyrite (FeS₂) is present in all lithologic types examined but it has different structures: in samples characterized by massive clastic rock (Fig. 1) pyrite appears as idiomorphic crystals (Fig. 2) and grains in sphalerite (Fig. 4); in the schistose lithologic types, it is possible to recognize iso-oriented spheroidal forms floating in a microcrystalline matrix characteristics of a quartzose slate.
b) Iron (average content typically more than 4%) is homogeneously distributed in sphalerite (ZnS).
c) The amount of silver present within galena (PbS), arsenopyrite (FeAsS), gudmundite (FeSbS), tetrahedrite (Cu₅Sb₃S₄) ranged from 0.17 to 0.56%.
d) The mineralogical phases containing As and Sb are pyrite (FeS₂), arsenopyrite, gudmundite and tetrahedrite, while Bi is distinguishable only in pyrite and tetrahedrite.

A JEOL JXA GSM 50A was used to perform the X-ray microanalyses. Table 4 lists the experimental conditions.

Results

These studies show that the ore is composed of two structural types:
- The first structure has black color, schistose characteristics, and occurs without vacuolar micro-blowholes possessing good mechanical strength. It shows highly anisotropic texture with ultratine grain-size with framboïd, spheroidal structure made up of pyrite and other microinclusions (Fig. 1). Rock seems weakly metamorphosed with silico-marly composition and carbon-ochraceous matter. On the basis of textural evidence and XRMA results, it is possible to state that the this structure has the same chemical composition as the semimetamorphic arenaceous-pelitic derivatives of silttic schists, typical of some "slates" (Table 2).
- The second structure (Figures 2 and 3), gray in color, is lithified with micro-blow-holes ranging from few µm to ten µm, and has lower mechanical strength in comparison with the previous lithologic type. It shows subautomorphic heterogranular clastic structure, anisotropic texture with fine grain-size characterized by sulfuric compounds of Fe, Zn, Pb, Cu with submicroscopic and/or microscopic inclusions of the pyrite (FeS₂), sphalerite (ZnS), Ag-galena (PbS) and, subordinately, species such as arsenopyrite (FeAsS), Ag-Au associations.

Legends for Figures 6a, 7a, 8a, 9a, 10a, and 11a on facing page 1187 (the corresponding Figures 6b, 7b, 8b, 9b, 10b, and 11b are on color plate at page 1188, with their legends on its facing page 1189; and the corresponding Figures 7c, 8c, 9c and 9d are on page 1190).

Figure 6a. Sotiel complex sulfide ore, as mined (back-scattered electron image, BEI). At center: automorphic crystal of gudmundite.

Figure 7a. Sotiel complex sulfide ore, as mined (BEI); magnified view of area W1 in Figure 6b. Granular aggregates of sphalerite (ZnS) (sp) (gray) separated by two aggregates of magnetite (FeFe₂O₄) (mag) (black) rich in blowholes often filled with magnetite and carbonate gangue (dolomite-ankerite). Sphalerite shows a variety with inner dark reflexes with grains and granular large-size aggregates (up to 100 µm) and rich in inclusions of arsenopyrite (FeAsS) (apy) with idiomorphic behavior. Sometimes, it is possible to detect interstitial aggregates of argentic galena (PbS) (gn) (white). At center: an idiomorphic crystal of argentic gudmundite (FeSbS) (gdm) (see Fig. 7b).

Figure 8a. Sotiel complex sulfide ore, as mined (BEI). Note the submicroscopic inclusions of arsenopyrite (FeAsS) (apy) in idiomorphic or subautomorphic crystals with submicroscopic interstitial aggregates of argentic galena (PbS) (gn) (see Fig. 8b).

Figure 9a. Sotiel complex sulfide ore, as mined (BEI), magnified view of area W2 in Figure 6b. It is possible to see automorphic crystals of arsenopyrite (FeAsS) (apy) grown together in the base on sphalerite (ZnS) (sp) (gray) and included in magnetite (FeFe₂O₄) (magn) (black). The white fringes associated with the crystal of gudmundite (at center) are of argentic galena (PbS) (gn) (white). The inclusions in sphalerite (light gray) are of arsenopyrite (see Fig. 9b).

Figure 10a. Sotiel complex sulfide ore, as mined (BEI). Magnified view of area W3 in Figure 9a. Detail of the fringes of argentic galena (PbS) (gn) (white) associated to arsenopyrite (FeAsS) (apy) and tetrahedrite (Cu₅Sb₃S₄) (ttr). Arsenopyrite shows submicroscopic inclusions of argentic galena, while galena is associated with aggregates of argentic tetrahedrite. The area with geometrical contour included in galena is composed of magnetite (FeFe₂O₄) (mag).

Figure 11a. Sotiel complex sulfide ore, as mined (BEI), magnified view of area W4 in Figure 10b. Details of previous image, where it is possible to see white submicroscopic aggregates to the boundaries of galena (PbS) (gn) of uncertain definition and galena-tetrahedrite (Cu₅Sb₃S₄) (ttr) associations.
Characterization of Complex Sulfide Ores
Figure 6b. Sotiel complex sulfide ore, as mined (digital topologic map, DTM). Note the different mineralogical species constituting the sample data detected in Figure 6a. The complex texture of the associations is evident. Microinclusions of aggregates of galena (PbS) (gn) can be detected. The sample is characterized by porosity and intergranular blowholes filled with magnetite (FeFe₂O₄) (mag) and gangue minerals (gng) (carbonate-quartz). The two windows are plotted representative of two different areas further magnified: W1 in Fig. 7; and W2 in Fig. 9.

Figure 7b. Sotiel complex sulfide ore, as mined (DTM). Note the different mineralogical species constituting the sample area described in Figure 7a. The different regions identified and labeled are representative of arsenopyrite (FeAsS) (apy). Some of the morphological and morphometrical aspects derived from the analyses are reported in the below.

Number of arsenopyrite (FeAsS) domains recognized and identified inside the sphalerite (ZnS) (number of Domains = 180).

<table>
<thead>
<tr>
<th>Measure</th>
<th>Min</th>
<th>Max</th>
<th>Range</th>
<th>Sum</th>
<th>Mean</th>
<th>S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>10</td>
<td>5015</td>
<td>5005</td>
<td>22529</td>
<td>125.2</td>
<td>438.9</td>
</tr>
<tr>
<td>Perimeter</td>
<td>10</td>
<td>952</td>
<td>942</td>
<td>8953</td>
<td>49.7</td>
<td>94.6</td>
</tr>
<tr>
<td>Roundness</td>
<td>1</td>
<td>14</td>
<td>13</td>
<td>414</td>
<td>2.3</td>
<td>2.1</td>
</tr>
<tr>
<td>Maj. Ax.</td>
<td>5</td>
<td>169</td>
<td>164</td>
<td>2578</td>
<td>14.3</td>
<td>16.9</td>
</tr>
<tr>
<td>Min. Ax.</td>
<td>2</td>
<td>42</td>
<td>40</td>
<td>1080</td>
<td>6.0</td>
<td>6.8</td>
</tr>
</tbody>
</table>

The Area and the Perimeter are expressed in pixels (1 pixel = 0.125 µm). S.D. = Standard deviation.

Microanalyses of the gudmundite crystal (FeSbS) (white) reveal the composition of this phase (see Fig. 7c).

gudmundite (FeSbS), Ag-tetrahedrite (Cu₃Sb₃S₄), magnetite (FeFe₂O₄), marcasite (FeS₂) melnikovite, antimonite (Sb₃S₄), cassiterite (SnO₂), and native bismuth. Rock seems to have a bright yellow color which contrasts with the dark-gray color of the background for the presence of massive pyrite.

Pyrite (FeS₂) is the most representative mineral occurring in granular, subautomorphic forms with regular crystals characterized by isodiametric "habit" and with framboid or spheroidal structure or in former zone-concentric colloform growths. It has the highest inclusion content in association with sphalerite, galena, and chalcopyrite which cause very solid aggregate formation with very few vacuum micro-blow-holes and total absence of microfracture systems or discontinuities (Fig. 2). The XRMA data on different areas of subautomorphic or relict or relict-fragmentary phases of pyrite show traces of As, Co, Cu (Table 2). In the elastic lithologic type, the XRMA data on different areas of subautomorphic or relict-fragmentary phases, neither showed appreciable amounts of nickel, cobalt or other elements, nor the presence of colloform or metacolloidal growth textures.

Sphalerite (ZnS) is detectable only through optical microscope reconnaissance because of its inner reddish-brown reflexes which are very marked especially at the edges of vacuum micro-blow-holes which often characterize this mineral (Fig. 1). It shows heterogrannular structure, irregular contour, and in some places either intertwined or in very small aggregates as substitution product. The marmatitic variety rich in Fe (ZnS), always present in this mineral, seems to be bound to...
complex formation including those of substitutions in gangue minerals such as quartz and carbonate (Fig. 5). Sphalerite occurs as host mineral inside chalcopyrite (Fig. 4); chalcopyrite occurs either by itself or is observed in the shape of cord(bead) exsolutions, often broken by magnetite. Sphalerite is widespread as inclusions in galena (PbS), arsenopyrite (FeAsS) and tetrahedrite.

Galena (PbS) is found mainly in small aggregates and similar to sulfide of hypogenic formation, it tends to replace and include the metallic minerals of ancient formation such as sphalerite (ZnS), pyrite (FeS₂), and those of gangue, such as, quartz (SiO₂) and carbonate (Fig. 3). Chalcopyrite (CuFeS₂) is similar in behavior to galena (PbS); it is found by itself or in the shape of cord(bead) exsolutions in sphalerite, galena, marcasite (FeS₂) and tetrahedrite (Cu₃Sb₃S₄) (Figs. 3 and 4).

Arsenopyrite (FeAsS) is the most widespread of the inferior mineralogical species. Under the microscope, it is characterized by a high reflectance and bright white color when it grows together with pyrite, while granular or subautomorphic intergrowth in sphalerite is easily detected by its yellow-pink colors and evident anisotropic characteristics (Fig. 3). Submicroscopic inclusions in pyrite and sphalerite are very clear under the electron microscope (Figs. 7 and 8). XRMA permits a better characterization of arsenopyrite both from a textural and morphological point of view (Figs. 6, 9 and 10), showing the strong intergrowth of this specie with others (as tetrahedrite and galena) (Fig. 11) not recognizable by optical microscopy.

Tetrahedrite (Cu₃Sb₃S₄) is present with tennantite (analyzed through XRMA) and is of argentite type with arsenic content below the detectability limit (Table 2). It always occurs in combination with galena and gudmundite. It grows together with other sulfides and primary oxides such as pyrite, sphalerite and magnetite (Fig. 11). Under the microscope, it has the typical olive-gray color with a lower reflectance than galena and higher reflectance than sphalerite. At crossed nicols, it shows perfect isotropy with complete extinction.

Gudmundite (FeSbS) under the microscope, shows clear diagnostic character despite its reflectance being very similar to that of arsenopyrite. Its white
color, with a trace of pink, is particularly clear in oil
dipping. Its anisotropy, with more colored tones, and
weak development towards idiomorphism, are the char-
acters that distinguish it from arsenopyrite.

Quartz (SiO₂) is one of the most widespread con-
stituents of gangue in the mineral of Sotiel. It is found
in massive granular aggregates, of precocious genera-
tion, often replaced with metallic minerals or carbonate
(Ankeritic Dolomite). Under the microscope, it shows
common optical characters: its lower reflectance than
sphalerite is a good discriminant criterion during image
analysis. Its morphological relationships with metallic
minerals are different, but in general, quartz grains are
cemented to each other as well as with other minerals.

Carbonate is composed of ankeritic dolomite
[CaMg(CO₃)₂ · CaFe(CO₃)₂] and like quartz, it is a well
represented gangue mineral. It shows granular structure
with pigmentation areas of brown and ochraceous tones,
probably due to the presence of variable iron hydroxide
concentrations (more than 10%).

Chlorite, a gangue mineral with secondary gene-
sis, is found very frequently and exclusively combined
with quartz, carbonate, magnesite, and oxides of Fe,
especially in vacuolar micro-blow-holes which charac-
terize the massive lithologic type. In thin section, it is
green, and in some places reddish-brown. Its identifica-
tion through the optical microscope, is very difficult be-
cause of its small crystal size. Yet, its typical structure
is veriform, and from the XRMA data for its Fe con-
tent, chlorite is rich in Fe (more than 30%).

Discussion

The morphological aspects, correlated with
XRMA data, lead to the following:

In the ore, pyrite (FeS₂) is the most widespread phase present as microscopic (15-50 µm) and sub-micro-
scopic inclusions (< 15 µm) in sphalerite (ZnS), galena
(PbS), and chalcopyrite (CuFeS₂). In its granular or
subautomorphic state, As, Co, and Cu are present, while
Ni, Ag, and Au are below the detectability limit; in the
schistose lithologic type, the framboidal-spheroïdal pyrite
shows a regular chemical behavior. As and Bi are pre-
sent in variable proportions, while Sb and Au are below
the detectability limit.

Sphalerite is made up of crystalline microgranular
aggregates with heterodiometric contour. Basic charac-
teristic of this sulfide, apart from the abundance of
residual pyrite, is the abundance of inclusions or ex-
solutions of galena, chalcopyrite, and arsenopyrite
(FeAsS). The data in the Table 2, show a high Fe con-
tent (> 4%) for sphalerite, thus it can be considered a
iron-rich sulfide (marmatite).

Galena, never idiomorphic, similar to minerals of
late hypogenic formation, fills the corrosion pockets of
pyrite, sphalerite, and gangues with very ancient forma-
tion. It shows a normal chemical behavior with silver
content recoverable from the economic point of view.

Chalcopyrite shows a behavior similar to that of
galena, it is found by itself or as exsolution in sphalerite.

Tetrahedrite (Cu₃Sb₃S₄) and gudmundite (FeSbS) are argentiferous; despite the fact they belong to the inferior
species, these are present in all samples examined, ex-
cept for those belonging to schistose lithologic type.
They occur in small amounts.

Conclusions

Different minerals and/or their associations have
been investigated in Sotiel ore. The experimental results
and their interpretation can be summarized as follows:

Residual pyrite (FeS₂) with microscopic inclusions
in very fine intergrowth of galena (PbS), chalcopyrite
(CuFeS₂) or relict forms of marmatitic sphalerite (ZnS)
(< 15 µm) have been detected.

Microcrystalline sphalerite in small patches or
substitution zones in the granular and automorphic pyri-
te, granulations or cryocrystalline expressions in arse-
nopyrite (FeAsS), and in chalcopyrite has also been
pointed out, together with exsolutions of chalcopyrite,
galena and arsenopyrite in sphalerite.

Microassociations of chalcopyrite-sphalerite in
marcasite (FeS₂) and submicroscopic inclusions of Ag-
galena in arsenopyrite and associations with Ag-tetra-
hedrite (Cu₃Sb₃S₄) and Ag-gudmundite (FeSbS) have
been revealed.

Associations of marcasite-melnikovite-antimonite
and magnetite-mineral of gangue (quartz-ankeritic dolo-
mite, chlorite) together with associations of cassiterite-
galena-sphalerite and native bismuth in the residual
pyrite have also been recognized.

On the basis of these results, the mineralization
shows genetically a very complex nature, in relation of
a sulfide mineralization.

The microstructural characterization realized by
SEM techniques and image analyses enabled to realize a
complete topological assessment of the different
mineralogical species constituting the ore. This
information is of particular interest to define and set up
suitable models of liberation for the species of interest
in order to operate a preliminary selection on the process
(i.e., comminution circuit) and the parameters (i.e., size
class ranges) to realize the maximum recovery. Further-
more, the proposed approach enables us to reach an
other very important goal, strictly linked with the use
and the process of digital information: the construction
of data-bases to consult, as an historical memory, during
any further characterization of the same or other ores
presenting similar characteristics.

Acknowledgments

The authors wish to thank Dr. Eng. G. Belardi
and Dr. P. Plescia of Istituto per il Trattamento dei
Minerali, C.N.R. for their cooperation during some of
the analytical studies.
G. Bonifazi and R. Gorga

References

Febrel-Molinero DT (1966). Notice explicative de la carte géologique au 1/50.000x de Calanas (Huelva), Espagne {Explicative notes of the geological map (1: 50.000) of the Calanas (Huelva) area}. Copy available from Minas de Almagrera, Grupo Minero Sotiel-Calanas, Huelva, Spain.

Kinkel AR Jr (1962). Observation on the pyrite deposits of Huelva (Spain) and their relations with volcanism. Econ. Geol. 57: 1071-1080.

Characterization of Complex Sulfide Ores

Discussion with Reviewers

N.K. Tovey: You indicate that you lapped the surfaces with increasingly fine powders down to 5 µm. Many other laboratories use even finer paste. Did you try this, and if so, does this give a better final surface?

Authors: During sample preparation different polishing strategies were adopted, and also fine powders smaller than 5 µm were used. The results obtained in terms of the quality of resulting surfaces compared with the results of SEM analyses did not justify, in our opinion, the amount of time and cost to obtain an "high quality" polished section, taking into consideration the mechanical characteristics of the ore under study.

N.K. Tovey: You say that you used a home-made digitizing facility; could you please briefly say what this consisted of? I presume that the optical microscope images were digitized using a camera: was this a CCD? For the SEM images, did you digitize the signal directly, or obtain the digital images from photographs? What pixel array did you use (i.e., 512 x 512 or another) and were these rectangular or square? Finally, what intensity resolution did you use (8 bit, 16 bit)?

Authors: The system utilized to acquire, handle, and process images consists of a simple "frame grabber" able to freeze a pixel array of 512 x 512 pixels (from 8 to 24 bits per pixel). The optical microscope images were digitized using a CCD color camera (i2s 800CC). For SEM images, we acquired them from photographs or better negatives (Polaroid film) using a 5000°K source light and a CCD black and white camera (Sony AVC-D5CE). The SEM images, starting from negatives, were acquired using a 512 x 512 rectangular pixel array (4:3 ratio), the intensity resolution was 8 bit.

N.K. Tovey: It is not entirely clear, but I presume that you overlaid optical images with those from SEM, and/or microprobe. You indicate that you used multi-correlation techniques: I presume that here you refer to the correlation between one spectral layer and another? However, if this is the case, then precise spatial correlation between the images from the different instruments is necessary. How did you achieve this? There seem to be two possibilities: first, by manual location of 3+ control points in all images, and second, by some form of spatial cross-correlation. Which did you use?

Authors: We overlaid optical, SEM, and microprobe images. Of course, such a procedure was not applied on the entire set of images analyzed during the study but only on a limited number in order to verify the possibility offered by such an approach. We applied multi-correlation techniques among the different spectral layers constituting the image samples, different well known strategies can be adopted and the results obtainable are strictly a function of the procedure utilized. The real problem in such a study, as well recognized in the question, is to find a suitable strategy for spatial correlation for images coming from different instruments, acquired for different periods of time and with different resolution characteristics. At this stage of the study, we adopted a combined system based on linear interpolation and a manual location utilizing different control points to realize a "perfect" overlay of the images. At the moment we do not think that a "direct" form of a spatial cross-correlation could be applied on images, due to the very marked differences between images coming from the different analytical systems previously mentioned.

N.K. Tovey: What do the numbers on Figures 2, 3 and 4 refer to?

Authors: The "numbers" on Figures 2, 3 and 4, are the "labels" associated with different regions constituted by sphalerite (ZnS) (sp) for Figures 2 and 3, and pyrite (FeS$_2$) (py) for Figure 4. The identification of such a region is based on their spectral characteristics (RGB components). The procedure consists in evaluating such characteristics, to distinguish them from those of the other regions (mineral species) present in the same image, and to append to each pixel of the recognized domain a label number. This way further morphological and morphometrical evaluation is much simplified.

Editor: Please give details on the paper by Bonifazi and Gorga (submitted for publication).

Authors: Bonifazi G, Gorga R (1993). Structural and textural characterization of Sotiel complex sulphide ore (South of Sierra Aracena, Spain) by optical and digital analysis. Submitted for publication to: Economic Geology.