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12 Abstract:

13 The effect of caseinomacropeptide (CMP) on the heat-induced denaturation and gelation of 

14 whey proteins (2.5-10%, w/v) at pH 6.4 and 7.2, at a whey protein:CMP ratio of 1:0.9 (w/w), 

15 was investigated using differential scanning calorimetry (DSC), oscillatory rheology (90°C 

16 for 20 min) and confocal microscopy. Greater frequency-dependence in the presence of CMP 

17 suggested that the repulsive interactions between CMP and the whey proteins affected the 

18 network generated by the non-heated whey protein samples. At pH 6.4 or 7.2, CMP increased 

19 the temperature of denaturation of  by up to 3°C and increased the gelation 

20 temperature by up to 7°C. The inclusion of CMP strongly affected the structure of the 

21 heat-induced whey protein gels, resulting in a finer stranded structure at pH 6.4 and 7.2. The 

22 presence of CMP combined with a lower heating rate (2°C/min) prevented the formation of a 

23 solid gel of whey proteins after heating for 20 min at 90°C and at pH 7.2. These results show 

24 the potential of CMP for control of whey protein denaturation and gelation.

25
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26 1. Introduction

27 Uncontrolled denaturation and aggregation of whey proteins can lead to undesirable 

28 precipitation during heat processing. In dairy science and technology, chaperone-like activity 

29 is defined as the ability of a molecule to protect another biomolecule against denaturation, 

30 aggregation and/or precipitation.  has been shown to form heat-induced 

31 nanoparticles with whey proteins via hydrophobic interactions and disulphide bonds, and to 

32 exert a chaperone-like activity by limiting the size of the whey protein aggregates formed 

33 (Guyomarc'h, Nono, Nicolai, & Durand, 2009; Liyanaarachchi, Ramchandran, & Vasiljevic, 

34 2015). As a result, the heat stability of dairy proteins can be enhanced as compared to non-

35 heated whey protein systems (Gaspard, Auty, Kelly, O’Mahony, & Brodkorb, 2017). 

36 However, -casein represents only 9-13% of total milk protein (Swaisgood, 2003), and 

37 isolating  at a reasonable cost and in sufficient quantity to observe a chaperone-like 

38 activity remains a challenge. 

39 During cheese manufacture, chymosin cleaves  and releases a 64-amino acid 

40 glycopeptide, caseinomacropeptide (CMP), of size 7-9 kDa (Mikkelsen et al., 2005), 

41 representing up to 20-25% (w/w) of total whey protein, depending on the source of whey 

42 proteins and the method of fractionation employed (Thomä-Worringer, Sørensen, & López-

43 Fandiño, 2006). CMP is highly hydrophilic and heat-stable, even at acidic pH, because of its 

44 disordered, random coiled structure, the negative charges carried by the glutamate, aspartic 

45 acid, carboxyl groups, phosphorylation sites and the carbohydrate chain at neutral pH (Smith, 

46 Edwards, Palmano, & Creamer, 2002). The glycosidic residues, galactose, N-acetyl 

47 galactosamine and N-acetylneuraminic acid, originate from the C-terminal part of -casein 

48 and are attached to the peptide by O-glycosylation linkages. These residues are organised in 

49 in mono- to tetrasaccharides, with N-acetylneuraminic acid generally located at the end of the 

50 carbohydrate chain (Saito & Itoh, 1992). The low pKa (2.6) of N-acetylneuraminic acid is 
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51 due to its carboxylic functional group, making the carbohydrate chain highly 

52 negatively-charged at neutral pH. 

53 Despite the cleavage of the N-terminus tail of  which contains most of the 

54 hydrophobic amino acids and all the cysteine residues, by chymosin, several studies showed 

55 that CMP can still interact with whey proteins via non-covalent interactions and affect their 

56 heat-induced gelation. For example, spherical nanoparticles of CMP and lactoferrin, an 

57 iron-binding glycoprotein, can be formed during heating, based on the electrostatic attraction 

58 of these two proteins at pH 5.0 (Bourbon et al., 2015); heating CMP or lactoferrin separately 

59 produced more branched particles rather than spherical particles. Other authors have shown 

60 that a complexation between CMP and the whey proteins occurs during heating, affecting the 

61 gelation behaviour and the strength of whey protein gels formed (Martinez, Farías, & Pilosof, 

62 2010; Svanborg, Johansen, Abrahamsen, Schüller, & Skeie, 2016). This interaction depended 

63 on the pH of heating and the ratio of CMP to whey proteins. When  -lg) was 

64 heated with CMP at pH 6.7, the rate of denaturation of -lg was accelerated by the presence 

65 of CMP (Croguennec et al., 2014); however, increasing the proportion of CMP reduced the 

66 size of the  aggregates and the turbidity of the mixture. This interaction was 

67 pH-dependent and the authors postulated that the negative charges carried by the 

68 glycopeptide prevented extensive aggregation of  On the basis of these studies, more 

69 investigations are needed to establish and elucidate the mechanism of the potential 

70 chaperone-like activity of CMP on whey protein aggregation.

71 As a bioactive peptide, CMP is already incorporated in commercial products such as sports 

72 nutrition products (Pasin & Miller, 2000), diet supplements for infants (Lacprodan® CGMP-

73 10, Arla Foods Ingredients, Viby J, Denmark), medical nutrition products (Ney et al., 2009) 

74 and products for treatment of dental caries (Neeser, 1991; Zhang & Gaffar, 2001). 

75 Modulation of the immune system response, improvement of learning abilities, promotion of 
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76 the growth of the gut microbiota and prevention of bacterial and viral adhesion to cells are 

77 some of the most cited positive effects of CMP (Brody, 2000; Thomä-Worringer et al., 2006).

78 The present study aimed to assess the chaperone-like activity of CMP on whey protein 

79 aggregation and to determine the nature of the interactions formed before, during and after 

80 heating using integrated analytical approaches (i.e., rheology, microscopy and calorimetry). 

81 The range of protein contents used for nutritional beverages was tested (2.5-10, w/w, % 

82 protein) at pH 6.4 and 7.2, in the presence of a relatively high calcium content (9-18 mM) and 

83 at two heating rates (2 and 25°C/min). 

84
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85 2. Material and Methods

86 2.1 Materials

87 The caseinomacropeptide (CMP) used in this study was supplied by Moorepark Technology 

88 Ltd. (Teagasc, Moorepark, Fermoy, Ireland). The CMP powder contained 87.4% CMP (w/w), 

89 5.4% (w/w) moisture and 4.8% (w/w) ash, of which 0.72% (w/w) was calcium. Glycosylation 

90 affects the nitrogen-to-protein conversion factor for CMP; therefore the protein content of the 

91 CMP powder in this study was measured by deducting the moisture, fat, lactose and ash 

92 content from the dry matter content. This resulted in a conversion factor of 7.29, which was 

93 close to the values of 7.34 and 7.37 for the genetic variants of caseinomacropeptide A and B, 

94 respectively, calculated by Karman and Van Boekel (1986) on the basis of the amino acid 

95 sequence and taking into account the carbohydrate content. 

96 The ratio of glycosylated to non-glycosylated CMP was analysed using anion-exchange 

97 chromatography (see section 2.3), with detection at 214 nm, following a modification of the 

98 method of Kreuß, Krause, and Kulozik (2008) and the chromatograms showed that the CMP 

99 was mostly glycosylated at pH 4.0 (Fig. 1). It is noteworthy that the degree of glycosylation 

100 of CMP is affected by the conditions of manufacture, in particular pH and intensity of 

101 pre-heat treatment (Siegert, Tolkach, and Kulozik, 2012).Whey protein isolate (WPI) was 

102 purchased from Davisco Bipro® (Davisco Food International, U.S.A.) and contained 91.9% 

103 (w/w) protein (Kjeldahl analysis, nitrogen to protein conversation factor of 6.38). The 

104 calcium content of the WPI powder was 0.11% (w/w). The denaturation level of the WPI 

105 powder was 8.5% (w/w). The mineral compositions of all dairy powders were measured by 

106 inductively coupled plasma mass spectrometry method (Reid et al., 2015). All reagents were 

107 purchased from Sigma Aldrich (St. Louis, Missouri, United States) unless stated otherwise.

108 2.2 Protein rehydration
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109 Solutions of 2.5 and 5% (w/v) whey protein, abbreviated as [WP]2.5 and [WP]5, and a mixture 

110 of whey proteins and CMP (abbreviated [WP/CMP]5) at a whey protein:CMP ratio of 1:0.9 

111 (w/w) and containing a total protein content of 5% (w/v), were reconstituted in MilliQ® 

112 Water at 40°C for 2 h and, held overnight at 4°C with 0.05% (w/v) of sodium azide to 

113 prevent microbial growth. Calcium chloride (CaCl2.2H2O) was added to achieve 9 mM of 

114 total calcium in the samples. In the same way, solutions of 5 and 10% (w/v) whey protein, 

115 abbreviated [WP]5 and [WP]10, and a mixture of whey protein and CMP (abbreviated 

116 [WP/CMP]10) at a whey protein:CMP ratio of 1:0.9 (w/w) and containing a total protein 

117 content of 10% (w/v), were reconstituted in MilliQ® Water. Calcium chloride (CaCl2.2H2O) 

118 was added to achieve 18 mM total calcium in these samples. 

119 The pH was adjusted for all samples to 6.4 or 7.2 using a large range of sodium hydroxide 

120 and hydrochloric acid concentrations (0.1 M to 8 M) to limit the dilution of proteins. The pH 

121 of the samples was readjusted after 1 h stirring at room temperature. Fig. 2 summarizes the 

122 steps of rehydration, heating and analysis carried out on the solutions of whey proteins and 

123 CMP.

124 2.3 Anion-exchange chromatography (AEC)

125 A solution of 1 ml of 0.125% (w/v) CMP was analysed by anion-exchange chromatography, 

126 using a 5 ml-sepharose Hi Trap Q FF column (GE Healthcare, Chicago, IL, USA). The 

127 equilibration buffer A was 20 mM sodium acetate at pH 4.0 and the elution buffer B was 1 M 

128 NaCl. The elution gradient was 0% buffer B for 6 column volume (30 ml) and 100% buffer B 

129 for 4 column volume (20 ml), at a flow rate of 5 ml/min.  The absorbance was monitored at 

130 220 nm by an AKTA Purifier 10 system (GE Healthcare) connected to a computer with the 

131 software Unicorn 4.10 (GE Healthcare). 

132 2.4 Oscillation rheology
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133 2.4.1 Onset of gelation

134 The onset of gelation was measured on samples containing 2.5-5% (w/v) protein and 9 mM 

135 calcium at pH 6.4 or 7.2. An aluminium plate of diameter 60 mm was used together with a 

136 Peltier plate to measure the storage modulus,  the loss modulus,  and the loss tangent, 

137  of the samples during heating and cooling. The parallel plate was covered with a solvent 

138 trap in order to prevent the evaporation during heating. The rheometer was an AR2000ex 

139 from TA Instrument (New Castle, Delaware, USA) and the results were analysed with TA 

140 Instrument Data Analysis software (New Castle, Delaware, USA). The samples were 

141 maintained at 22°C for 1 min of equilibration. Measurements were taken at 22°C for 2 min, 

142 then the samples were heated to 90°C at 2°C/min or 25°C/min and held at 90°C for 20 min. 

143 Finally, all samples were cooled down to 22°C at a rate of 10°C/min and maintained at 22°C 

144 for 1 min. The strain and frequency used were 0.02 and 1 Hz, respectively. The onset of 

145 gelation was arbitrarily determined at 0.4 Pa, where  increases steeply above the 

146 background noise, during heating for all samples. 

147 2.4.2 Temperature of gelation 

148 A multiple frequency temperature sweep was performed during the heating-up step and the 

149 holding step at 90°C, on samples containing 5 to 10% (w/v) protein and 18 mM calcium, 

150 using the same equipment as above. The samples were subjected to the same heating process 

151 as that for the onset of gelation measurement, but the holding time at 90°C was 10 min. In 

152 addition, the equipment collected the values of loss tangent  point by point at each 

153 frequency. Therefore, the heating rate to 90°C was decreased to 2°C/min to allow a higher 

154 accuracy of the temperature recording. The frequency varied from 0.1 to 10.0 Hz and the 

155 strain was maintained at 0.02. The critical transition point from liquid to solid state was 

156 established by applying Winter-Chambon criteria of a gel transition point as indicated by the 
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157 loss tangent becoming independent of frequency as a function of temperature (Winter & 

158 Chambon, 1986). 

159 2.4.3 Frequency sweep

160 Before heating and after measuring the onset of gelation and the temperature of gelation of 

161 the samples, a frequency sweep was performed from 0.1 to 4 Hz on non-heated samples, 0.1 

162 to 50 Hz on heated samples containing 2.5-5% (w/v) protein and 9 mM calcium, and 0.1 to 

163 63 Hz on heated samples containing 5-10% (w/v) and 18 mM calcium. The strain amplitude 

164 (0.02) and the temperature (22°C) were kept constant during the measurement. All 

165 experiments were conducted within the linear viscoelastic range. The storage modulus and 

166 the loss modulus were plotted (log-log plot) against the frequency and the value of the slope 

167 (n) of the storage modulus was reported as indices of the strength and nature of the molecular 

168 bonds forming the gel (Tunick, 2010). 

169 2.5 Differential scanning calorimetry

170 For calorimetric measurements, 20-30 mg of liquid sample containing 2.5-10% (w/v) protein 

171 were placed into an aluminium pan and heated in parallel with an empty reference pan to 

172 100°C at 5°C/min. Despite the starting concentration of the samples (2.5%) being relatively 

173 low, the denaturation peak for -lg could still be identified. The peak of denaturation of 

174 -lactalbumin -la) could not be identified in this study. The differential scanning 

175 calorimetry (DSC) equipment used for this experiment was a DSC Q2000 (TA Instrument, 

176 Newcastle, Delaware, USA) equipped with a refrigerator and was computer-interfaced. The 

177 thermograms were analysed by the software TA Universal Analysis (TA Instrument).

178 2.6 Confocal microscopy
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179 After heating the samples at 90°C for 20 min, at pH 6.4 or 7.2 and at a heating rate of 

180 25°C/min using an AR2000ex rheometer (TA instrument), the gels were dyed with a 0.1% 

181 (w/v) Fast Green FCF solution, designed to specifically stain proteins, after which the 

182 samples were incubated in the dark for 20 min to allow for the penetration of the dye into the 

183 gels. The samples were analysed at room temperature on a confocal microscope Leica 

184 DM6000 B (Wetzlar, Germany) with a 63× oil immersion objective (numerical aperture 1.40) 

185 at excitation wavelength of 633 nm, provided by the He/Ne633 laser. Images were captured 

186 in 1024×1024 pixels. 

187 2.7 Statistical analysis

188 All the experiments were carried out using the same batch of powder and the measurements 

189 were carried out on at least three independent replicates. The DSC and anion-exchange 

190 chromatography measurements were carried out on at least two independent replicates. 

191 Several microscopy images of one representative sample were recorded for each conditions 

192 tested. One way ANOVA, post hoc Tukey tests were used and the results are presented as the 

193 mean ± SD. The superscripts indicate the statistical significance with p < 0.05. 
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194 3. Results and discussion

195 3.1 Interactions between CMP and whey proteins before heating

196 Fig. 3 presents the frequency dependence of mixtures of whey proteins and CMP (5%, w/v 

197 protein), and the frequency dependence of the control samples containing whey proteins only 

198 (2.5-5%, w/v) before heating. The storage  and the loss modulus  describe the elastic 

199 and viscous behaviour of a material in shear, respectively, and define the ability of a material 

200 to reverse its deformation. By keeping the amplitude constant and varying the frequency of 

201 oscillation during the measurement of  and  it is possible to vary the rate of internal 

202 deformation and estimate the rigidity of the network formed by the cross-linking of the 

203 proteins, i.e., the strength of their bonds. For example, in a solution of polymers with a low 

204 degree of crosslinking, the molecules glide along each other at the lower frequencies and get 

205 entangled at the higher frequencies. Therefore,  will increase with the frequency until 

206 reaching a maximum in rigidity. In contrast, the  of a strongly cross-linked gel will be 

207 relatively constant for the whole frequency range because the interactions between the 

208 molecules make it impossible for them to glide along each other without destruction of the 

209 network (Mezger, 2006; Tunick, 2010). A power law can apply to the log-log plot of 

210 frequency vs.  whereby the slope (n) is used to describe the network of proteins, with a 

211 value close to 0 describing a very cross-linked gel, and a slope value closer to 1 being 

212 characteristic of a weak physical gel (Sharma, Munro, Dessev, & Wiles, 2016; Tunick, 2010).

213 For all non-heated samples,  was higher than  (results not shown) over most of the 

214 frequency range, which is representative of a dominant elastic behaviour and could be due to 

215 the relatively high protein content of the samples (5%, w/v) and the presence of calcium (9 

216 mM). Similar phenomena have been observed before in the same range of frequencies and 

217 whey protein concentration in whey protein concentrate solutions (Meza, Verdini, & Rubiolo, 

218 2009). Because of the dominance of the elastic behaviour in all samples, the 
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219 frequency-dependence of  only was presented in Fig. 3. At pH 6.4 or 7.2, the  values of 

220 the mixtures of CMP and whey protein were more frequency-dependent than those of the 

221 control samples containing whey protein only (Fig. 3), with n values of 0.4-0.5 and 0.2-0.3, 

222 respectively. In addition, the  value of the mixture at pH 7.2 was lower than that of the 

223 control samples containing whey protein only across the entire frequency range (Fig. 3). This 

224 suggests that whey proteins formed a network at room temperature that was disrupted by the 

225 presence of CMP. As the whey proteins and CMP are negatively charged at pH 6.4 and 7.2, 

226 additional electrostatic repulsion provided by CMP could explain this result. 

227 Interactions between -lg and CMP before heating were proposed previously, through the 

228 formation of aggregates of  and CMP, as measured by dynamic light scattering at pH 7.0 

229 (Martinez et al., 2010); the latter authors suggested that the whey proteins and CMP 

230 interacted via electrostatic interactions. It is possible that these interactions affected the 

231 formation and the final structure of the heat-induced whey protein aggregates through 

232 changes in the conformation of whey proteins. However, Croguennec et al. (2014) did not 

233 find any major change in the fluorescence of -lg in the presence of CMP or evidence of 

234 interactions, as measured by isothermal titration calorimetry (ITC), at pH 6.7; the authors 

235 concluded that CMP contributes mainly to the denaturation of whey protein when -lg is 

236 already unfolded (Croguennec et al., 2014).

237 3.2 Effect of CMP on the gelation of whey proteins

238 Fig. 4 shows a typical profile of the heat-induced changes in   and the loss tangent,  in 

239 a 5% (w/v) whey protein sample and in a mixture of whey proteins and CMP.  and  

240 values increased on heating from 22 to 90°C and reached a plateau when the temperature was 

241 maintained at 90°C for 20 min. The moduli increased further, but to a minor extent, during 

242 cooling (from around 200 to 1000 Pa in 5% (w/v) whey protein sample).  values were 
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243 higher than  before, during and after heating. The peak of the loss tangent  indicated that 

244 the gelation was heat-induced, with a reinforcement of the elastic component during cooling. 

245 This phenomenon has been observed previously and has been attributed to the strengthening 

246 of hydrogen and van der Waals interactions during cooling (Lefèvre & Subirade, 2000; 

247 Martinez et al., 2010).

248 Table 1 presents the viscoelastic properties of the mixtures of whey proteins and CMP (5%, 

249 w/v protein) and those of the control samples containing whey protein only (2.5-5%, w/v). 

250 The samples were all heated at 90°C for 20 min, at pH 6.4 or 7.2, and at a heating rate of 

251 25°C/min. At pH 7.2, the  value of the mixture of whey protein and CMP was considerably 

252 lower in the presence of CMP, compared to those of the controls, before and after cooling 

253 (Table 1 and Fig. 4). This could be due to additional electrostatic repulsion during heating 

254 provided by CMP, which could have limited the extent of whey protein aggregation. Previous 

255 authors reported that the presence of CMP affected the viscoelastic properties of gels of whey 

256 proteins, with a slower increase in the storage modulus of whey protein concentrate gels 

257 during heating at pH 7.0, and a significant reduction in gel strength (Svanborg et al., 2016; 

258 Xianghe, Pan, Peilong, Ismail, & Voorts, 2012). 

259 The onset of gelation of whey proteins was determined at 0.4 Pa, corresponding to a distinct 

260 steep increase in  At pH 7.2, the onset of gelation of the mixtures of whey proteins and 

261 CMP was delayed by one minute, compared to that of the controls containing whey protein 

262 only (Table 1 and Fig. 4). This effect of CMP on the onset of gelation was not observed at pH 

263 6.4, possibly due to a larger difference in the surface charges between the whey proteins and 

264 CMP, leading to greater attractive interactions. This may also be responsible for the higher  

265 and the lower frequency-dependence of the mixture at pH 6.4 than that at pH 7.2 (Table 1). In 

266 agreement with our findings, Croguennec et al. (2014) reported that the denaturation kinetics 
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267 and gelation of whey proteins in the presence of CMP depended partly on electrostatic 

268 interactions, which were modulated by the pH of heating.

269 To determine accurately the exact temperature of gelation of the proteins, and also due to the 

270 limited sensitivity of the equipment used in this study, the protein content of the samples and 

271 the total calcium content were increased up to 10% (w/v) and 18 mM, respectively. This was 

272 performed in a proportional manner to maintain the same calcium:protein ratio, which has 

273 been reported to be more important in influencing the heat-induced aggregation rate than the 

274 concentration of protein or calcium per se (Sherwin & Foegeding, 1997). During heating,  

275 was recorded as a function of the frequency from 0.1 to 10 Hz, with the frequencies from 5.1 

276 to 10 Hz being the most adequate for the measurement of the temperature of gelation. The 

277 temperature at which the loss tangent  was independent of the frequency, i.e., the 

278 temperature at which the proteins formed a strong network, was defined as the temperature of 

279 gelation (Fig. 5). 

280 The viscoelastic properties of these samples are reported in Table 2. Whether the controls 

281 contained 5 or 10% (w/v) whey protein, the temperatures of gelation were between 68.5 and 

282 72.1°C; thus, these temperatures may be characteristic of the whey proteins at the pH studied. 

283 At pH 6.4 or 7.2, the presence of CMP increased the temperature required for gelation of 

284 whey proteins by up to 7°C, confirming that CMP had a chaperone-like activity on the 

285 aggregation of whey proteins (Table 2). Previously, the temperature of gelation of a mixture 

286 of CMP and -lg in the same ratio (1:1) was reported to be around 75°C, at pH 7.0 (Martinez 

287 et al., 2010). This value is close to that obtained in the present study (75.7°C). However, the 

288 gelation temperature of the control sample containing -lg only (88°C) was much higher than 

289 that measured in the present study for whey protein samples; therefore, the authors concluded 

290 that  was less heat stable in the presence of CMP during heating. This can be explained 

291 by differences in heating conditions, in particular in terms of concentration and composition 
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292 of proteins and minerals between the studies (Mahmoudi, Mehalebi, Nicolai, Durand, & 

293 Riaublanc, 2007). It is noteworthy that the lower value of  of the mixtures at pH 7.2 was 

294 not observed at 10% total protein (Table 2), which could be due to a greater extent of 

295 aggregation of whey proteins at higher protein concentration (Mehalebi, Nicolai, & Durand, 

296 2008). The higher temperature of gelation of the mixtures, compared to those of the samples 

297 containing whey protein only, could be due to additional electrostatic repulsions provided by 

298 the negatively-charged CMP. Greater repulsions between proteins could hinder the 

299 intermolecular interactions necessary for the heat-induced formation of a solid network.

300 The strength and nature of the bonds between proteins after heating was determined by 

301 plotting  as a function of frequency. The n values were reported in Table 1 and 2; when the 

302 samples were heated at 25°C/min, the presence of CMP did not affect the frequency 

303 dependence of the gels. The low values of n (around 0.1) indicated that all gels, with or 

304 without CMP, were highly cross-linked. 

305 The structure of the gels formed on heating 2.5-5% (w/v) protein at a rate of 25°C/min and 

306 holding at 90°C for 20 min was also analysed using confocal microscopy, with the proteins 

307 being selectively stained using Fast Green (Fig. 6). The microscopy images revealed a 

308 fine-stranded gel structure in the samples that contained whey protein only (Fig. 6 a,c, d and 

309 f), and an even finer gel structure for the samples containing CMP (Fig. 6 b and e). A 

310 fine-stranded structure is expected at pH values greater than 6.0 for heat-induced gels of 

311 whey proteins. However, the differences in the gel networks between the samples containing 

312 whey protein only and the mixtures of CMP and whey proteins were not reflected in the 

313 frequency sweep measurement (Table 1). At pH 7.2, a finer structure of the strands could 

314 explain the lower  of the mixtures after heating (Table 1), whereas at pH 6.4, the storage 

315 modulus of the mixture was not lower than that of the control containing 2.5% (w/v) whey 

316 protein only (Table 1), despite a clear difference in gel structure (Fig. 6 b); admittedly, the 
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317 details of the fine-strands could not be captured by the confocal microscope, due to its limited 

318 resolution. For example, the structure of the strands and the interactions between the strands 

319 could be affected by the reduction in negative charges on the whey proteins when lowering 

320 the pH from 7.2 to 6.4 in the presence of CMP, and could explain a higher  at pH 6.4 than 

321 that at pH 7.2. Nevertheless, the presence of CMP modified the temperature of gelation of the 

322 whey proteins and altered the network of the whey protein gels.

323 Morand, Guyomarc'h, and Famelart (2011) reported a smaller fractal dimension (Df) of 

324 around 1.1 for the whey protein and -casein aggregates formed during aggressive heating 

325 (80°C for 24 h in 0.1 M NaCl), while the Df of those made of whey proteins only was around 

326 2, i.e., the aggregates containing  were more thread-like.  carries a pole of 

327 highly-negative charge in its C-terminus region, due to negatively charged amino acids and 

328 post-translational modification. This pole of negative charges could be responsible for the 

329 preferential strand-like orientation of the whey protein and  aggregates. Hence, those 

330 structural properties, also shared by CMP, could impact the final structure of the whey 

331 protein and CMP-based aggregates. In addition, Xianghe et al. (2012) found that CMP 

332 decreased the number of disulphide bonds formed by whey proteins during heating. Finally, 

333 the glycosylation of CMP may modify the water-holding capacity of the protein network 

334 during heating and affect the final structure of the gel (Guyomarc'h et al., 2009).

335 3.3 Effect of CMP on the denaturation of whey proteins

336 The denaturation of the whey proteins at pH 6.4 or 7.2, with or without CMP, was analysed 

337 by DSC (Fig. 7 and 8). One endothermic peak was observed, with an onset of denaturation 

338 around 60°C and a maximum at 71-79°C (Fig. 7), which corresponds to the denaturation 

339 temperature of -lg and may partly overlap with the peak of denaturation of -la, which is 
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340 reported to have a maximum around 65°C (Patel, Kilara, Huffman, Hewitt, & Houlihan, 

341 1990).

342 The temperature of denaturation for all samples decreased with increasing pH at heating (Fig. 

343 8). This can be explained by increased intramolecular repulsions when the whey proteins 

344 were heated at a pH further away from their isoelectric point, and higher thiol reactivity 

345 promoting the formation of irreversible disulphide bonds above pH 6.0 (Hoffmann & van 

346 Mil, 1997; Verheul, Roefs, & de Kruif, 1998). All mixtures containing CMP exhibited a 

347 higher temperature of denaturation than those of the controls, except for the mixtures 

348 containing the lowest protein content (5%, w/v) and heated at pH 7.2 (Fig. 8 b). This is in 

349 agreement with the report of Svanborg et al. (2016) of a higher denaturation peak at pH 7.0 

350 for the whey proteins in the presence of CMP (Svanborg et al., 2016). However, previous 

351 authors found that the temperature of denaturation of  decreased in the presence of CMP 

352 (Martinez, Sanchez, Patino, & Pilosof, 2009). In addition, the kinetics of denaturation of  

353 are accelerated in the presence of CMP at pH 6.7 (Croguennec et al., 2014). The differences 

354 from the results reported by these previous studies could be due to differences in proteins 

355 present and mineral profile between samples used in different studies. A higher temperature 

356 of denaturation could contribute to the delay in gelation observed in the mixtures of whey 

357 proteins and CMP.

358 As noted above, the increase in temperature of denaturation in the presence of CMP was not 

359 observed at pH 7.2 for the mixtures containing a lower protein content (5%, w/v), suggesting 

360 that the pH of heating and the protein content are the major factors influencing whey protein 

361 denaturation in this study (Fig. 8 b). 

362 3.4 Effect of heating rate on the interactions between CMP and whey proteins
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363 Two different heating rates (2 and 25°C/min) were applied to the samples containing 2.5-5% 

364 protein and 9 mM calcium. The samples were heated at 90°C for 20 min and cooled to 22°C, 

365 then a frequency sweep was performed (Fig. 9). 

366 As reported in the previous section, all samples showed frequency-independent behaviour 

367 (n=0.09-0.15) after heating at 25°C/min, indicative of the formation of highly cross-linked 

368 protein gel with permanent covalent bonds (Table 1). However, the mixtures of whey 

369 proteins and CMP at pH 7.2 exhibited high frequency dependency (n close to 1) after heating 

370 at a slower rate (2°C/min), whereas the control samples containing only whey proteins 

371 remained frequency-independent (n=0.1-0.2). The samples containing CMP were liquid in 

372 appearance, while the samples containing whey proteins formed a soft white gel. 

373 Previous authors have reported that decreasing the heating rate can affect the gelation of 

374 proteins. Stading and Hermansson (1990) found that the temperature of gelation of  was 

375 lower when decreasing the heating rate from 1 to 0.01°C/min, at pH 2.5, 6.5 or 7.5 and 

376 assumed that a slower heating rate gives the time necessary for the protein network to 

377 develop. Relkin, Eynard, and Launay (1992) reported that the denaturation of  at acidic 

378 pH values (3.5) was partially reversible at heating rates above 10°C/min. The authors 

379 suggested that only a slower heating rate gives enough time to the proteins to complete the 

380 formation of intermolecular disulphide bonds, leading to the irreversibility of their 

381 denaturation. Stading, Langton, and Hermansson (1992) reported that -lg gels formed at pH 

382 7.5 on heating at a rate of less than 5°C/min had a lower storage modulus than those formed 

383 at faster heating rates. In that study, the cross-links of proteins observed by electron 

384 microscopy appeared weaker and the strands of  were shorter and thicker than those 

385 formed at faster heating rates. The storage modulus of the networks formed in these 

386 conditions was frequency-dependent. In contrast, in a later study, it was reported that the gels 

387 of  formed at pH 5.3 developed a higher storage modulus when the heating rate was 
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388 slowed down, but the frequency dependence of the gels was not affected (Stading, Langton, 

389 & Hermansson, 1993). Thus, the pH-dependent nature of the whey protein interactions 

390 played a major role in controlling the interactions between the molecules of  at slower 

391 heating rates. 

392 This is in agreement with the results of the present study, as the frequency-dependence of the 

393 mixtures of whey proteins and CMP was only affected by the heating rate at pH 7.2 (Fig. 9). 

394 These results suggest that the interactions taking place between CMP and whey proteins are 

395 modified by a slower heating rate. Higher electrostatic repulsion provided by CMP could be 

396 enhanced by the changes induced by a slow heating rate around neutral pH, in particular 

397 conformational changes in whey proteins and the nature of protein-protein interactions. 

398 Croguennec et al. (2014) highlighted the role of electrostatic interactions in the denaturation 

399 and aggregation of -lg in the presence of CMP. In contrast to the results presented by 

400 Stading et al. (1992), the frequency dependence of the samples containing whey protein only 

401 was not affected by a slower heating rate in the present study (Fig. 9), likely due to the 

402 differences in protein and mineral composition and heating conditions.

403
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404 4. Conclusion

405 CMP displayed a chaperone-like activity for whey protein aggregation, giving a higher 

406 temperature of gelation of whey protein solutions at pH 6.4 and 7.2 in the presence of CMP. 

407 At pH 7.2, the presence of CMP decreased the storage modulus of the gels, and modulation 

408 of the heating rate further influenced the interactions between whey proteins and CMP, 

409 interrupting the formation of a solid gel. These modifications of the rheological properties of 

410 whey proteins, combined with the health-promoting properties of CMP, could be particularly 

411 useful for the formulation of heat stable dairy beverages, or protein gels, with tailored 

412 physicochemical, health benefiting and sensory characteristics. From that perspective, the 

413 influence of protein composition and concentration, heat-load and salt environment on the 

414 mechanism of interaction of CMP and whey proteins still need further investigation.

415
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531 Table 1

532 Viscoelastic properties of solutions containing 2.5-5% (w/v) whey protein (abbreviated 

533 [WP]5 and [WP]2.5) and a mixture of caseinomacropeptide (CMP) and whey proteins 

534 ([WP/CMP]5) at a total protein content of 5% (w/v) and a whey protein:CMP ratio of 1:0.9 

535 (w/w). All samples contained 9 mM calcium and were heated at 90°C for 20 min at a heating 

536 rate of 25°C/min. The experimental data were the average of at least three independent 

537 replicates. The superscripts indicate the statistical significance with p < 0.05.

 pH  after 90°C for 
20min (Pa)

 after cooling 
to 22°C (Pa)*

Gelation 
onset (min)** 

n value***

[WP]
5 

7.2 175 ±44 a 1117 ±137 a 4.8 ±0.1 a 0.09 ±0.01 a

[WP/CMP]
5

7.2 7 ±3 b 38 ±9 b 5.7 ±0.1 b 0.15 ±0.04 b

[WP]
2
.
5 

7.2 66 ±33 c 253 ±91 c 4.9 ±0.3 a 0.09 ±0.01 ab

[WP]
5 

6.4 339 ±113 d NA 4.5 ±0.2 a 0.10 ±0.00 ab

[WP/CMP]
5

6.4 124 ±4 e NA 4.9 ±0.1 a 0.09 ±0.01 a

[WP]
2
.
5 

6.4 22 ±8 bc NA 4.9 ±0.4 a 0.11 ±0.01 ab

538

539 *  is the storage modulus of the sample. The samples heated at pH 6.4 could not be 

540 analysed after cooling, as the geometry became embedded in the gels (NA). 

541 ** The gelation onset was determined at the point at which the storage modulus  increased 

542 sharply above the background noise and reached 0.4 Pa.

543 *** The multiple frequency measurement was taken after heating at 90°C for 20 min and 
544 cooling to 22°C, with frequency varying from 0.1 to 50 Hz. A power law can apply to the 
545 log-log plot of frequency against  and the n value corresponds to the slope of each curve.

546
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547 Table 2

548 Temperature of gelation and viscoelastic properties of heated solutions containing 5-10% 

549 (w/v) whey protein (abbreviated [WP]5 and [WP]10) or  a mixture of caseinomacropeptide 

550 (CMP) and whey proteins (abbreviated [WP/CMP]10) at 10% (w/v) total protein content. All 

551 samples contained 18 mM calcium and were heated at 90°C for 10 min at pH 6.4 or 7.2. The 

552 whey protein:CMP ratio in the mixtures was 1:0.9 (w/w). The heating rate was 2°C/min. The 

553 experimental data were the average of at least three independent replicates. The superscripts 

554 indicate the statistical significance with p < 0.05.

 pH Temperature of 
gelation (°C) 

 after 90°C for 
10min (Pa) *

Frequency 
slope of  *

[WP]
10 

7.2 71.2 ±1.8ab 1637 ±358a 0.10 ±0.00a

[WP/CMP]
10

7.2 75.7 ±0.0c 80 ±23b 0.10 ±0.01a

[WP]
5 

7.2 68.5 ±0.0a 125 ±11b 0.08 ±0.00a

[WP]
10 

6.4 69.7 ±2.1ab 1511 ±165a 0.08 ±0.01a

[WP/CMP]
10

6.4 75.7 ±0.0c 69 ±21b 0.09 ±0.01a

[WP]
5 

6.4 72.1 ±0.0b 44 ±12b 0.11 ±0.03a

555

556 *  is the storage modulus of the samples and was measured at 2.575 Hz.

557 ** The multiple frequency measurement was taken after heating at 90°C for 10 min and 

558 cooling to 22°C, with frequency varying from 0.1 to 63 Hz.

559
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560 Figure captions:

561 Fig. 1

562 Anion-exchange chromatography on a fast protein liquid chromatography system of (     ) a 

563 solution of 0.125 % (w/v) caseinomacropeptide (CMP). The peak labelled (1) corresponds to 

564 the non-glycosylated CMP and the peak labelled (2) corresponds to the glycosylated CMP. 

565 The equilibration buffer was 20 mM sodium acetate at pH 4.0, the elution buffer was 1M 

566 NaCl and ( ) the change in conductivity is also shown on the chromatogram. 

567 Fig. 2

568 Flowchart for the preparation and analysis of whey protein and caseinomacropeptide (CMP) 

569 mixtures. Solutions of 2.5, 5 or 10% (w/v) whey protein (abbreviated [WP]2.5, [WP]5 or 

570 [WP]10, respectively) and mixtures of whey proteins and CMP containing 5 or 10% (w/v) 

571 total protein (abbreviated [WP/CMP]5 or [WP/CMP]10, respectively), were reconstituted in 

572 MilliQ® water. The mixtures contained CMP and whey proteins at a whey protein:CMP ratio 

573 of 1:0.9 (w/w).

574 Fig. 3

575 Storage modulus  as a function of the frequency at (a) pH 7.2 or (b) 6.4 for non-heated 

576 samples containing ( ) 5% (w/v) whey protein, ( ) 2.5% (w/v) whey protein or ( ) a 

577 mixture of whey proteins and caseinomacropeptide (CMP) at a total protein of 5% (w/v). The 

578 whey protein:CMP ratio in the mixtures was 1:0.9 (w/w). The experiment was performed in 

579 three independent replicates.

580 Fig. 4

581 Typical profile of (a) ( ) storage modulus  and ( ) loss modulus  of a 5% (w/v) 

582 whey protein solution and ( )  and ( )  of a mixture of whey proteins and 



29

583 caseinomacropeptide (CMP) at a total protein content of 5% (w/v) during heat treatment. All 

584 samples were heated at 90°C for 20 min at pH 7.2. The whey protein:CMP ratio in the 

585 mixture was 1:0.9 (w/w). (b) Typical profile of the loss tangent  in all samples tested. The 

586 temperature was represented by a continuous line. The heating rate was 25°C/min.

587 Fig. 5

588 Typical profile of the loss tangent  of a solution of 10% (w/v) whey protein as a function 

589 of the temperature, measured at ( ) 5.1, ( ) 7.5 and ( ) 10.0 Hz. The arrow indicates the gel 

590 point of the sample, i.e., the collapse of the loss tangent values at the temperature of gelation 

591 of the sample.

592 Fig. 6

593 Confocal microscopy images of gels formed after heating (a,d) 5% whey protein solution, 

594 (b,e) a mixture of whey proteins and caseinomacropeptide (CMP) at 5% (w/v) total protein 

595 (w/v) and (c,f) 2.5% (w/v) whey protein solution at 90°C for 20 min, and at (a,b,c) pH 7.2 or 

596 (d,e,f) pH 6.4. The heating rate was 25°C/min and the proteins were selectively stained green 

597 using 0.1% (w/v) of Fast Green FCF. The whey protein:CMP ratio in the mixtures was 1:0.9 

598 (w/w).

599 Fig. 7

600 Typical thermograms of ( ) 5% (w/v) whey protein, ( ) a mixture of whey proteins 

601 and caseinomacropeptide (CMP) at 5% (w/v) total protein and ( ) 2.5% (w/v) whey 

602 protein containing 9 mM calcium at pH 6.4. The whey protein:CMP ratio in the mixtures was 

603 1:0.9 (w/w). Above the lines, the temperature of denaturation is indicated for each 

604 endothermic peak.

605 Fig. 8
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606 Temperature of denaturation of -lactoglobulin measured by differential scanning calorimetry 

607 at ( ) pH 7.2 or ( ) 6.4 in (a) solutions containing 9 mM calcium and 2.5 or 5% (w/v) whey 

608 protein (abbreviated [WP]2.5 or [WP]5, respectively) or a mixture of whey proteins and 

609 caseinomacropeptide (CMP) at 5% (w/v) total protein (abbreviated [WP/CMP]5) and (b) 

610 solutions containing 18 mM calcium and 5 or 10% (w/v) whey protein (abbreviated [WP]5 or 

611 [WP]10, respectively) or a mixture of whey proteins and CMP at 10% (w/v) total protein 

612 (abbreviated [WP/CMP]10). The whey protein:CMP ratio in the mixtures was 1:0.9 (w/w). 

613 The heating rate was 5°C/min. The experimental points were the average of at least two 

614 independent replicates.

615 Fig. 9

616 Storage modulus  as a function of frequency for samples containing ( ) 5% (w/v) whey 

617 protein, ( ) a mixture of caseinomacropeptide and whey proteins at 5% total protein (w/v) or 

618 ( ) 2.5% (w/v) whey protein, after heating at 90°C for 20 min at a heating rate of (a,b) 

619 25°C/min and (c,d) 2°C/min at pH 7.2 (a,c) or 6.4 (b,d). The whey protein:CMP ratio in the 

620 mixtures was 1:0.9 (w/w). The experiment was performed in at least three independent 

621 replicates.

622
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