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Abstract. We present a methodology to account for the stochastic nature of hydraulic
conductivity during the design of pump-and-treat systems for aquifer cleanup. The
methodology (1) uses a genetic algorithm to find the global optimal solution and (2)
incorporates a neural network to model the response surface within the genetic algorithm.
We apply the methodology for a real example and ditferent optimization seenarios. The
employed optimization formulation requires few hydraulic conductivity realizations. The
presented approach produces a trade-off curve between reliability and treatment facility size.

I. Introduction

A major objective of many groundwater remediation sys-
tems is to reduce contaminant concentrations (o below certain
levels. This is often accomplished by extracting contaniinated
groundwater and treating it at the surface. Then treated water
can be injected ro the aquifer via injection (recharge) wells.
This is the pump-and-treat approach to groundwater remedia-
tion. Determining well-locations and their pumping rates is
most important for designing pump-and-treat systems.

Numerous simulationfoptimization (3/0) models that com-
bine groundwater flow and transport models with operations
research methods have been developed 1o help design ground-
water remediation systems [c.g., Gorelick er al., 1984; Ahlfeld,
1900, Whiffen and Shoemaker, 1993; Rogers and Dowla, 1994;
Hegazy and Peralta, 1997]. Reviews by Gorelick [1983] and
Wagner [1995] describe S/0 models developed for groundwater
management.

Two approaches have been used for representing simulation
constraints within optimization modets. In the first approach,
simulation eqguations are used as constraints inside the optimi-
zation model |e.g.. sguado and Remson, 1980 McKinney and
Lin, 1993: Gharhi and Peralia, 1994; Takahashi and Peralia, 1993,

In the second approach, simple expressions are used to de-
scribe state variables (e.g., contaminant concentrations) as
functions of pumping rates. These simple expressions can be

“obtained using Taylor series or curve-fitling methods [Alev,

£086; Lefkoff and Gorelick, 1990; Sawver et-al., 1995, Ejaz and
Peralia, 19935, Cooper ét ol., 1998]. In this study we use a neural
network e represent the simulation constraints inside the opti-
mization madel. Neurad networks are deseribed in a later section.

Several researchers applied nonlinear optimization to agui-
fer cleanup problems [Gorelick ef al., 1984; Ahlfeld, 1990;
Gharbi and Peralta, 1994, Peralta et al.. 1995; Peralta and Aly,
1996]. Nonlinear programming techniques cannot guarantee
global optimality when applied to large nonconvex problems.
For real problems, where the time required to simulate the
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groundwater system is significant, nonlinear programming
methods may need prohibitive amounts of CPU time.

The limitations of mathematical programming have moti-
vated researchers fo usc alternative optimization techniques
such as simulated annealing [Rizzo and Dougherry, 1996] and
genetic atgorithms (GAs) [McKinney and Lin, 1993; Rirzel er al., -
1994; Rogers and Dowla, 1994). Ritzel er al. [1994] found that a
GA performed better than mathematical programming for
nonlinear and mixed-integer nonlinear problems. McKinney et
al. [1994} found that using a GA to compute the starting point
for a nonlinear gradient-based optimization algorithm pro-
vided stgnificant advantages and allowed them to locare solu-
tions that are approximately globally optimal.

A combination of neural networks and a GA was used by
Rogers and Dowla [1994]. They found that this combination
invoived less computational burden and more-flexibility than
mathematical programming methods. However, Rogers and
Dowda [1994] used a discrete representation of pumping rates.
Wells were either pumping at their maximum capacity or not
pumping. In the present study pumping rates are allowed to
range between the upper and lower limits in prescribed small
increments. Afy and Peralta [1997} used neural networks and a
genetic algorithm in the design of an aquifer cleanup system to
reduce the concentrations of two contaminants simultaneously.
Dowla and Rogers [1995] provide a summary of neural net-
works’ applications in hydrogeology.

Optimization methods rely on the prediciion accuracy of
flow and transport models used to represent the aquifer. Since
accurate modeling of any aquifer can be very difficult, devel-
oped optimal strategies may not be optimal for the real aguifer
system. There is a growing attention to considering the sto-
chastic nature of aquifer parameters while designing remedia-
tion strategies. Gorefick [1990] discusses some techniques used
to account for uncertainty in designing groundwater manage-
ment systems. In the following section we describe the most
significant proposed approaches and discuss their applicability.

Design of pump-and-treat systems is often complicated by
the random nature of aquifer parameters. Three general tech-
niques have been used for solving sroundwater management
problems under vncertainty. In the first the sources of uncer-
tainty are not defined, but it is assumed that optimal pumping
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rates can be modiied after @ period of implementation and
monitoring [fones et ul., 1987. Whiffen and Shoemaker, 1993).
In this technigue the differences hetween varlable values pre-
dicted via optimization and the measured vuariable values (ob-
tained from the ficld after the oplimat strategy is implemented}
are used to guide subsequent modification of the optimal strat-
egy. The relation used to modify the computed optimal strat-
egics is termed a feedback law. The process is continucd as the
modified optimal strategy is implemented. '

In the second technique a probability distribution is either
derived or assumed for the variables of interest. Then analyt-
ical relations are developed 1o relate the quantiles of this
distribution to the decision variables. These analytical refations
are used as constraints in the optimization problem. These
constraints are termed chance constraints, and the resulting
optimization model is known as the chance-constrained model
[Caneiller und Peralta. LURY; Peralia and Ward, 1991 ]

[n the third stochastic groundwater management techaique
a group of constraints is formulated, cach for a different real-
ization of the uncertain aquiter parameters [Wagner and
Gorelick, 1987]. A realization is a set of the uncertain param-
eters’ values. Typically, each realization is generuted from the
probabilistic model of the wncertain parameters. The resulting
optintal strategy must satisfy all {or some) of the realizations
simubtancously. The tdea is w find optimal strategies that are
robust (satisty all management constraints) for a range of the
uncertain parameters. Several studies tried 10 estimate the
reliabitity of optimal strategies camputed using the mulriple-
realization technique [Morgan et al., 1993; Chan, 1993, 1994].

All cited studies concluded that in order to assure a design
that has a high level of reliability, at least 30 to 100 realizations
are needed [Chaer, 1993, 19940 Morgan et al., 1993]. For large
problems, where the time required to simulate the system is
~significant, the time required to generate all the constraint
cquations can be prohibitive. However. since the response sur-
fuces for different realizations can be evaluated simulta-
neously, one can greatly speed the process by computing them
in parallel. Another possible remedy is to determine whether
some realizations can be dropped without having to carry out
the optimization [Gomez-Hemandez and Carrera, 1994, Ran-
Jithan et al., 1993]. Karatzas |1997] used a robust optimization
approach and tried to develop an effective methodology for
selecting critical realizations.

In this study we present and apply an approximation method
that develops the trade-off curve between system size (total
flow) and estimated reliability. The rest of the manuscript is
organized as tollows. I section 2 we deseribe the problem and
outline the proposed methodology. In section 3 we provide an
overview of neural networks and describe the neural network
used in this study. In section 4 we introduce the genetic algo-
rithm and its implementation. In sections 3 and 6 we show an
application ol the proposed approach and our conclusions.

2, . Problem Statement and Solution
Methodology

Consider an aquifer having a dissolved contaminant plume
to be addressed via a pump-and-treat (P&T) system. The P&T
system will use a combination of extraction and injection wells
along with a treatment facility. It is desirable 1o determine the
size of the treatment facility. well locations, and pumping
schedules, The design must assure with {1-a) rediabikity that

concentrations at the end of the planning period are below a
prescribed value, where a'is a prescribed probability of failure.

We approximate the well-location-determination problem
by selecting a number of potential Jocations for pumping wells,
The optimization model will compute a pumping rate for each
of these well locations. This pumping rate can be zero, indi-
cating that no well is needed at this location. This common
approximation greatly simplifies the analysis. Few studies have
attempted to use well [ocations as decision variables [ Wang and
Ahlfeld, 1994; Huang and Mayer, 1997).

2.1, QOptintization Problem Formulation and Process
Overview

Assume M possible extraction and injection wells and a
trcatment facility of size PM**, Maximum total extraction rate
equals treatment facility size. For a particular pumping strat-
epy (sct of pumping rates) define CMAX; as the maximum
concentration remaining in the aquifer al the end of the plan-
ning period for the ith realization. A solution of the formulaed
optimization problem is a pumping strategy that achieves ac-
ceptable aquifer cleanup by the end of the planning period
with probability {1-a). The solution process overview. is as
follows:

1. Sclect a treatment facility size (PMA%),

2. For the selected size, compute the optimal pumping
rates that minimize CMAX, g, (detined betow in (1)), This
step is detailed in section 2.2

3. Use Monte-Carlo simulation to determine the reliability
of the pumping strategy (devcioped in step 2). Reliability is
approximated as the fraction of simutations for which CMAX;
does not exceed a target concentration value (usually the max-
tmum contamination limit, MCL): '

Steps 1 othrough 3 are repeated for different sclections of
PMA% The results can be represented as a curve that shows
reliability versus PP The appropriate value for PN is
then sclected from the curve 1o achicve the desired reliability,

In step 2 we define CMAX, ., as the L, norm of concen-
trations resulting from a single pumping strategy applicd to
NR realizations.

CMAX iy = max (CMAX,, CMAX,, - - CMAXw) ()

The process is repeated for each set of evaluated pumping
rates. This approach results in a single concentration constraint
within the optimization model while assuring cleanup for all
considered realizations simultaneously. In step 2, CMAX g,
minimization s motivated by the idea that once the treatment
facility size is selected, it is desirable to use the available system
to reduce contaminant concentrations as much as possible.

If NR is large (e.g., greater than 100) in step 2, there would
be no need for step 3. However, for real problems, large NR
villues usualtly require prohibitive amounts of CPU time. [n this
study we used 230300 simulations for cach realization. 1 cach
flow and transpart simulation requires 10 min of CPU time,
then each realization requires more than 41 hours. Simulations
for 100 realizations require more than 170 days of CPU time.
Maaoy real problems require more than 10 min of CPU time to
simulate flow and transport. This discussion ignores the fact
that these simulations can be run in parallel fo reduce time
requirements. We are merely trying to fllustrate the size of the
problem at hand.

Here we proposc a new approximation approach to reduce
the number of realizations wsed in step 2 (e.g., 5=20 instead of
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hundreds). According 1o the results of Chan [1994], if NR
realizations are used and the pumping strategy developed in
step 2 achieves a CMAX g, value equal to target concentra-
tion value, then the reliability of this pumping strategy is ap-
proximately NRANR + 1), However, when the treatment fa-
cility size is large enough and a large number of potential wells
is used, the resulting pumping strategies will usually achieve
CMAX ., values that are less than the target concentration,
Theretore cach pumping strategy is expected to have a greater
reliability than NRANR + 1), If NR is 5, each pumping strat-
epy is expected to have a reliubility greater than 83%. How-
ever, the simulations in step 3 are needed to determine the
actual reliability. This approach reduces the number of real-
izations by about 80% while assuring that developed pumping
strategies achieve the desired reliability. In a later section we
show how the chowee of NR affects the design.

2.2. Optimization Problem tor Each PM*Y Value

In the described formulation, the objective function is to
minimize CMAX, y,- One constraint limits total pumping
from exceeding the maximum flow rate that the ireatment
facitity can handle {P***). Another constraint forces total
extraction 1o equal total injection.

Minimize CMAX g, subject to

phiéy=pie) = pthié) é=1,2,- -, M (2)

s
2 lpte)| = prax (3)
e=1
At A
dopEr= 3 plé) 4)
¢l t"<{f"*|r
CMAX = Fd pt 1, p(2), - - -, p(MA] (5)

where A< is number of extraction wells; p*(é) and p¥(8) are
lower and upper bounds. respectively, for the pumping rate at
location & {17 T ']; and M is maximum allowed pumping
from all extraction wells [LY T7'). Here PMAY is the flow
capacity of the reatment facility.

We use a response-surface approach to define the function
f¢- within the optimization model. Few forms have been sug-
gested in the literature for represeniing contaminant concen-
trations relutions 1o pumping rates. Alley [1986] found that
simple linear regression provided enooph accuracy Tor predict-
ing sofute concentrations. However, in our study simple Hinear
regression was not adequate to represent CMAX ., 45 a

“function of pumping rates,

Lefkoff and Goreliek [1990] used regression to approximate
transport of sult mass and found that this simplitied the anal-
vsis. However, they did not show the employed functional
form. Ejaz and Peraita [19495] used moltiple linear regression to
{it approximating expressions as surrogates for solute transport
equations to solve a stream wastewater loading problem. Coo-
per et al. {1998 used a polynomial function to describe light
nonagueous phase liquid transient removal via an extraction
well.

fn this study, owing to the complex nature of the CMAX g,
surface as a function of pumping rates, we were unable to
approximate the response surface using a polynomial equation
with a reasonable number of terms. Instead. we used a neural
network (NN) to represent CMAX iy

input layer ﬂi@&l@xer Qutput layer
.
R 70\
P(3) : ey
o
b//
2
L
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Figure 1. Neural nctwork architecture for five wells,

3. Neural Networks

Neural networks (NNs) have received much attention in
many disciplines. Their use has grown owing to their wide-
spread acceptance as powerful and flexible forecasting tools as
well as to their applicability to almost any problem. Initially,
neural networks were developed as an attempt to emulate the
parallel processing nature of the human brain. Biophysics sug-
gests that man’s cognizant power can be atiributed to our own
hiological neural networks. Billions of nevrons, making thou-
sands ol chemical and clectrical conneetions, endow us with
sensory pereeption, rationalization, and adaption skills. An NN
attempts to perform the same functions, although not nearly as
efficiently. Much the same way that humans learn by pattern
recognition, synaptic training, and experience, an NN is trained
to rationalize through repetitive learning and generalization,

In this study we use a multitayer, feed-forward, error back-
propagation neural network (Figure 1). The network is com-
posed of multiple processing elements organized in a series of
two or more mutually exclusive layers [Herz et al., 1991}

The first layer is called the input layer and s used to receive
the stimuli {(pumping rates). Pumping rares are scaled before
they are used as inputs to the first layer. The scaling is linear
and is used to make any individual pumping rate gencrate a
value that is smaller {in magnitude} than 0.9 when used as
input to the sigmotid (unction described below. The last layer
{output layer) is used to receive the responses of the network
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and produce a value between -1 and 1. This value is then
linearly scaled to compute CMAX ;. Input CMAX g, val-
ues are linearly scaled to be between —0.9 and 0.9.

There is one hidden Jayer between the input and output
layers, Each node in the hidden layer receives input from two
nodes in the input layer. That is, if there are M nodes in the

i
mput layer (M* wells), there are (A; ) {M*” choose 2) nodes in
the hidden layer. There is only one node in the output layer.
This node receives input from all nodes in the hidden laver and
produces a single value.

Mure hidden layers can increase the predictive capability of
the network, especially to classify patterns that are not linearly
separable [Zurada, 1992], but one hidden layer is sufficient for
maost applications [Cybenko, 1988)]. Poggio [1983] showed that a
neural network with two hidden layers can represent any con-
tinwous function. However, designing the structure of a neural
network for a specific application is best decided by the prob-
lene at handd. In this study a single hidden layer provided a good
approximation of the predicted variable (CMAX ) for all
tested scenarios.

In any layer, all nodes work independently and concurrently.
All nodes in the network (except those in the input layer)
perform two kinds of computations: determining the net-input '
valuc to the node and computing the output value. The net-
input value to the ith node is '

net, = 2 plj) ¥, + 8, (6)

1

where § represents all input connections to the node, W is the
weight of input pumping rate pr, and # is the bias. In this study,
only the output node has a bias weight. Each node converts the
net input to an activation value

a, = Finet) (7
Then the output value is computed by the output fenction
Q; = fla) . (8)
Usually a, = ﬁc'tj and the output value is
0, = finet) (9)

The output function is usually a sigmoid function. A function
is sigmoid if it is bounded, monotonic, continuous, and smooth
[Swnithr, 1993]. In this study we selected a sigmoid function that
is bounded between —1 and 1. Our selected function is

O, = finet) = -1 (10)

!-T‘:';Tnc"l,'
. Each time O; ts computed (from the output layer}), it is
compared with the desired response (supervised learning). A
learning algorithm is wsed to adjust the weights of the inter-
connections according to the error obtained from the compar-
ison. A training sample set 13 applied to the network repeatedly
unti) an cyuilibrium state is reached or a predefined training
periad expires, The valucs of the weights are saved and can be
later used 1o simulate response to any set of pumping rates.

We used backpropagation [Rumelhart et af., 1986] with a
supervised learning algorithm. The learning algorithm uses
gradient descent to achieve tratning {or learning) by adjusting
the weights to minimize the error measured by the difference
between the desired and actual network outputs.

OPTIMAL DESIGN
E, =3 (CMAX, - 0, (11)
E=YE, {(12)
P .

where p is an index for a training sample. The Weights are then
adjusted by a rule of the form

Wir) = Wit — 1) — Adi(#) (3
5E
dit) = W =T (14)

where A; is the learning rate for weight i and r is an iteration
counter. This rule, the steepest-descent method, has two lm-
itations. First, there are no guidelines for selecting a learning
rate(s). Second, the method can easily converge to a local
minimum. ' ’
To avoid the first limitation, we used the delta-bar-delta

“adaptive learning rule (Jacebs, 1988]. This method yields faster

convergence than steepest descent and avoids the learning rate
selection dilemma. It is not unusual to achieve a target crror
levet in one tenth the number of iterations that would be
required using steepest descent and an optimal learning rate
[Smith, 1993].

The concept of the delta-bar-delta rule is simple. There is a
learning rate for each weight in the network. If the direction in
which the error decreases as this weight changes is the same as
the direction it has been decreasing receatly, increase the
learning rate. If the direction is opposite of the recent direc-
tion, decrease the learning rate.

The direction in which the error decreases is determined by
the sign of d,. If d; is positive, the error decreases as the weight
goes down; if 4; is negative, the error decreases as the weight
goes up. The direction of weight change is defined as the
average of current and past derivatives. This average change ¢
at iteration f s

c{t) = 6c(r — 1) + {1 ~ 8)d{1) - (15)
0=h< i B (16)

where 8 is a parameter ihat controls bow long “recently”
means. '
The learning rate for a weight is

Ay =A{r — 1)+«
Alry = A0t — 1)

where « and ¢ are parameters. Once A is selected, the actoal
weight update rule is

d(e) >0
de() =0

(17}

W, (1) = w,ir — 1) — A, (Nd, (1) {(18)

In practice, the NN performance is not highly sensitive to the
choice of values for k, ¢, and 8 [Smith, 1993]. For the training
sessions discussed in this paper, actual values that worked well
across a variety of problems are x = 0.1, ¢ = 0.5, and 8 = (.7,

The second problem of gradient-based learning is conver-
gence 1o local minima. A possible remedy to this problem is to
start the training algorithm from different starting points {ini-
tial guess values for the weights). However, this subsiantially
increases the learning time because one learning session will be
required for each initial guess.

Another remedy is to break the data set into batches of
similar or different sizes, Batches are used in cycles to compute
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the weight updates in each iteration. For example, if the train-
ing set contains 100 observations, one can break the observa-
tions into 5 batches of 20. In the training session the first
iteration uses the gradient of the error computed only for
observations in the first batch. The second iteration uses the
gradient of the error for observations in the second batch, and
so forth. The 11th iteration uses the first batch again to find the
error derivative, The error is computed for all sets of pumping
rates cach iteration, and the weights that score the lowest error
are retained. Weight updates are computed for different
batches until many iterations fail to find weight values that
have a lower error than the hest weights.

We used 80-85% of total simulations for training and re-
tained the rest for testing. Each training set was separated into
L} equal-size batches. For testing, the test data was introduced
into the network and its mean squared error was computed.
Then we computed the ratio of this mean squared crror to the
training set’s mean squared error. For all tested problems this
ratio was less than 1.45 {for most tested problems this ratio was
less than 1.05). This indicate’s that the NN has been adequately
trained and it can he used for simulating the system. A large
ratio indicates tack of training or, worse, overtraining. Qver-
training is unlikely in our case. When the number of wells is s,

the largest number of weights is 31 and the size of the training

set is greater than 250. When the number of wells is 10, the
largest number of weights is 46 and the size of the learning set
is greater than 350. Overtraining means that the network has
memorized the training data set. This problem is unlikely in a
network where the number of weights is small compared to the
size of the training set.

4. The Genetic Algorithm

Genetic algorithms (GAs) are heuristic rules for scarching a
sulution space to identify the best solution. The use of GAs was
first suggested by Holland 11975], who based his search on a
survival-of-the-fittest rule, Since then, GAs have béen used in
many disciplines. Davis [1991] reviews many impottant appli-
cations of GAs, and Goldberg [1989) presents a comprehensive
introduction 1o GAs. In groundwater management, GAs have
been used by McKinney and Lin [1993), Riszel er al. [1994],
Rogers and Dowia [1994), Cieniawski er af. [1995], and others.
In this manuscript we focus on how the GA is implemented to

. address the subject problem.

The major advantage of GAs is that they are independent of
the particular problem being analyzed. A GA requires only an
objective (fitness) function that can be evaluated for any set of
the control variables. This function can be nondinear, nondif-
ferentiable, or d'iscnntime_ous. GAs require only that system
performance can be evaluated for any set of the decision vari-
ables. In this study the fitness value is the reciprocal of
CMAX niey Therefore the GA tries to find the pumping rates
that wiil result in the smallest CMAX R,

We used a GA with the basic reproduction, crossover, and
mutation operators, The GA we used is similar to the simple
genetic algorithm {(SGA) of Goldberg [1989]. However, instead
of the roulette-wheel selection in the SGA, we use tournament
selection [Goldberg, 1990].

For the presented problem, one problem with GAs is that
they do not provide an explicit method to handle constraints.
Instead of explicitly considering constraints, penalty terms are
added to the objective {fitness) function. In our formulation,
une constrium limits total pumping. An efficient method ta

handle such a constraint in a GA is to assign a very low fitness
value for any set of pumping rates whose sum exceeds the
upper bound on total pumping. After a few generations the
GA hardly tries to evaluaie the fitness value for any set of
pumping rates whose sum exceeds PMAX,

We used binary coding where the pumping rate from each
well 1s represented by L digits of the chromosome. For exam-
ple, when we tried to optimize the pumping rates from five
extraction wells, the chromoseme length was 5L. The chromo-
some length, L, is determined from the desired representation
accuracy. For example, if the pumping rate from one well can
range between P~ and PY and the desired accuracy is e, then

U_ pLjs
L=[log(l+u)]/{log2) (19)

&

where the logarithm is taken to any base. For example, when
PY is 800, P* is zero, the required accuracy is 0.5, and the
chromosome length is 1. If we have five such pumping rates,
the final chromoseme length is 55. Notice that different pump-
ing rates can have different accuracies if desired. Longer chro-
mosomes can be used to achieve the desired accuracy at the

" expense of more GA run time.

Control parameter selection greatly affects the answer com-
puted by the GA. However, there are no published peneral
guidelines for selecting these parameters. Many studies have
attemipted Lo evaluate parameter values that work well under a
varicty of conditions [De Jong, 1975; Schaffer er al., 1989],
However, their results are problem-specific and depend on
how the GA is implemented. A major advantage of our pro-
posed methodology is that the GA itself takes very little time.
This is because the size of the study area affects only the time
required to evaluate the response functions. The ncural net-
works can evaluate the response function in significantly less
time than the full simulations, Therefore one can afford to use
a robust method like the GA despite the fact that the GA is
often considered slow bécause of the large number of function
evaluations. After the response functions are evaluated, the
GA takes very litlle time to find the best set of pumping rates.
This atlowed us to use the GA for several GA control param-
eter values,

At least 100 sets of control parameters were tested for each
problem discussed below. For the tested problems the best
resulls were obtained using a population size between 50 and
100. Our experience is that larger population sizes do not
affect the solution but do require extra time. However, if the
number of wells is larger or if only a relatively small subspace
provides a feasible solution, a larger population size will prob-
ably be needed.

“A crossover probability between 0.8 and 0.9 and a mutation
probability between 0.08 and 0.12 consistently lead to the best
results. Generally, a crossover rate-less than 0.7 provided an
inferior answer. A mutation rate greater than 0.12 increased
the siumber of infeasible evaluations without improving the
final answer. The worst performance of the GA was when the
mutation probability was zero. This is expected since mutation
prevents the GA from getting trapped at local optima.

5. Implementing the Gronndwater Management
Model :

A data set for a single-layer aquifer contaminated by dis-
solved trichloroethylene (TCE) is used to apply the proposed
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Figure 2. Base boundary, finite difference grid, boundary conditions, well locations, and initial TCE con-

centrations.

approach. TCE is moving toward nearby municipal wells. One
of the suggested approaches is to install a pump-and-treat
system near the contaminant source. In the original problem
the treatment facility size was determined a priori, However, in
this study we determine the treatment facility size and the
carresponding pumping rates that will assure cleanup of the
aquifer within 3 vears with a 939 probability. Figure 2 shows
the initial TCE concentrations, the finite difference grid, and
boundary condittons. Peralra and Aly [1995] provide a more-
detailed deseription of the study area.

MODFLOW {McDaonald and Harbaugh, 1988} and MT3D
[Zheng, 1990} are used to simulate groundwater {flow and
plume migration, respectively. Ten extraction wells and four
existing injection wells can be used. Injection wells are near
existing pipelines far from the plume center (Figure 2). Pre-
liminary analysis indicated that injection rates have littie effect
on groundwater hydraulics near the center of the plume.
Therefore, injection rates are fixed and we only determine
optimal extraction rates. We consitder two sets of scenarios. In
the first set we find optimal extraction rates from five wells. In

. the sccond set we determine optimal extraction rates from 10
wells.

To test the suggested approach, we base our design on 3, 10,
or 20 transmissivity realizations and compare the results. For
onc scemirio we consider up to 100 realizations,

The procedure for generating transmissivity realizations is as
follows. The naturat fogarithm of transmissivity, denoted ¥, is
assumed to tollow a multivariate normal distribution with
mean e = 9.3 {corresponding to a transmissivity of 13,360
feet’/d, or = 1241 m*/d) and exponentially decaying covari-
ance:

Cov (Y, Y) = o exp (~d, /A) (20)

where :r'(squarc roat of variance) and A (correlation length)
are parameters and ¢, ; is the Euclidean distance between

4

points i and j. In our study o = 2.92 and A = 300 feet (914

m). The coefficient of variation for Y is 0.18. For the generated
transmissivity realizations, the coefficient of variation ranged
between 0.23 and 0.28, ' '

Several methods are available for gencrating ¥ realizations.
The most straightforward, but computationally intensive, is the
matrix inversion method [Dawis, 1987]. The simple nearest
neighbor method {Smith and Freeze, 1979] uses lincar equa-
tions to describe the dependence of the conductivity in a given
block on conductivity values in surrounding blocks. This
method can handle both statistically isotropic and anisotropic
covariance functions,

We used the more efficient turning-bands method (TBM)
developed by Mantoglou and Wilson [1982] for penerating 2-D
Y realizations (see also work by Dietrich [1995] and Gneiring
[ 1996]).

6. Results and Discussion

The response surface for CMAX g, a3 a function of pump-
ing rates becomes more complex as NR increases. For exam-
ple, Figures 3a-3c show the response surfaces for an optimi-
zation problem using NR = 35, 10, and 15, To visualize the
response surfaces, only three extraction wells are considered,
and totul extraction is fixed (cquals the treatment facility Now
capacity of 2000 gallons/min, or 10,811 m?/d).

Figures 3a-3c show contours of CMAX g, generated using
250 simulations per realization (for each figure). For example,
1250 and 2500 simulations are used 10 generate the data for
Figures 3a and 3b, respectively. Each simulation is carried out
by changing the pumping rates and running the flow and trans-
port models for a given set of aquifer hydraulic conductivity
values.

The response surfaces in Figures 3a-3c¢ are highly nonlincar
with several local minima: Gradient-based optimization meth-
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ods cannot guarantee finding the global optimal salution for
such problems. A GA provides an attractive alternative. Note
in Figures 3a-3c that the global optimal solution does not
change as the number of realizations increases from 5 to 135,
This supports our suggestion that a few realizations may pro-
vide sufficient accuracy. :

The procedure suggested in section 3 is approximate be-
cause il uses a relatively small number of realizations while
solving the optimization problems. To test the effect of this
approximation, we use NR = 5, 10, and 20 to define
CMAX gy The first PM2 vajue is usually selected to be a
reasonable guess of the optimal value. I the developed opti-
mal pumping strategy achieves a higher reliability level than
desired, the second PMA% value is smaller than the first, and
vice versa.

In our application the first value was selected to be
2000 gallons/min (10,811 m*/d). Then optimal pumping rates
from the five extraction wells were determined to minimize
CMAXs, (defined using five realizations). The reliability of
the developed pumping strategy estimated using 500 Monte
Carlo simulations was found to be 100%. The second PMA*

PMAX

value was set to 1600 gallons/min (8649 m’/d; 1 gallon/min

equals 5.4054 m*/d) and the developed pumping strategy had
an estimated reliability value of 33%. Clearly, the PMA% value
that achieves a 95% reliability is closer to 2000 than to 1600
gallons/ntin. Subsequent P> values were set to 1950, 1900,
and 1850 galtons/min.

Figure 4 shows the results of Monte Carlo testing of pump-
ing strategies. It shows the proportion of postoptimization re-
alizations that achieve prescribed CMAX values. Figures 5 and
6 contrast total pumping with reliability for 5 and [0 extraction
wells, respectively. Here, considering additional wells resulted
in very little improvement for developed pumping strategies.

Figures 5 and 6 suggest that for the tested problem, there is
no need to use more than 0 realizations, To further test this
conclusion, we solved the CMAX )y, minimization problem
(for PMA% = 1900 gallons/min) for different values of NR.
Resuits in Figure 7 show that any number of realizations

zom 1 1 3
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& global minimum
15004 P(1} + P(2) + P{3) = 2,000 gpm|.

A6

mm—\ Ot
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Fi.g_ure da. CMAX,;, for five realizations.
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P(1) + P{2) + P(3} = 2,000 gpm
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Figure 3b. CMAX,,, for 10 realizations.

P(2) gpm

greater than 10 results in pumping rates that aré within 5% of
those computed using 100 realizations.

7. Summary

We have presented and demonstrated a new stochastic op-
limization approach for complex nonlinear problems. The sug-
gested approach is based on the multiple-realization method
and uscs a neural network to model complex response sur-
faces. The neural network was trained using one set of simu-
lations and then tested on another set of simulations, The
neural network was able to approximate CMAX yp, surfaces
with a high accuracy, as indicated by its performance on the
testing set.

2000 : - 1 I L
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Figure 3c. CMAX,,;, for 15 realizations,
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A genetic algorithm efficiently identified optimal pumping
rates. The suggested approach makes it easy to find the best
control parameters for the genetic algorithm. We found that a
crassover probability between 0.85 and 0.9, a mutation proba-
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bility between 0.08 and 0,12, and a population size between 50
and 100 always provided the best answer from the genetic
algorithm, However, it must be noted that the formulated
optimization problem is not highly constrained. If the optimi-
zation problem is highly constrained, then the genetic algo-
rithm may need more generations to find optimal pumping
rates. Also, other values for the crossover and mutation prob-
ahilities might lead to better performance.

For all tested problems, 10 realizations were adequate for
Anding optimal pumping rates. This is important since the
number of considered realizations significantly affects the CPU
time necded to train and test the neural network.

Extension of the suggested approach to handle other
groundwater management problems is straightforward. The
approach does not depend on the specific flow and transport
simulators or the sitate variables of interest,
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