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Abstract. We present a methodology to account for the stochastic nature of hydraulic 
conductivity during the design of pump-and-treat systems for aquifer cleanup. The 
methodology (I) uses a genetic algorithm to find the global optimal solution and (2) 
incorporates a neural network to model the response surface within the genetic algorithm. 
We apply the methodology for a real example and different optimization scenarios. The 
employed optimization formulation requires few hydraulic conductivity realizations. The 
presented approach produces a trade~off curve het\veen reliability and treatment facility size . 

I. Introduction 

A major objective of many groundwater remediation sys­
t~ms is to reduc\! contaminant concentrations to below certain 
levels. This is often accompli~hcd by extracting contaminated 
groundwater and treating it at the surface. Then treated \vater 
can he injected to the aquifer via injection (recharge) wells. 
Tbis is the pump·and·treat approach to groundwater remedia­
tion. Determining \Veil locations and their pumping rates is 
most important for designing pump·<.md-treat systems. 

NumcnHJS simulation/optimization (S/0) models that com­
bine groundwatt:r !low anJ uansport models with operations 
research mdhoJs have heen developed to help design ground~ 
water remediation systems [e.g., Gorelick et al., 1984; Ah!feld, 
1990; Whijfe/1 and Shoemaker, 1993; Rugen· and Dow/a, 1994; 
Hegazy and Pemlta. 1997]. Reviews hy Gorelick [19X3] and 
H'agner [ 1995} describe S/0 models developed for groundwater 
management. 

Two approaches have been used for representing simulation 
constraints \vithin optimization models. In the first approach, 
simulation equations are used as constraints inside the optimi­
zation model I e.g .. Aguado and Remson, J9.SO; McKinney and 
Lin, 1993: Glwrhi and Pemfra. 1994; Takahashi and Peralta, 1995]. 

In the second npproach, simple expressions arc used to de­
scribe stnte variables (e.g., contaminant concentrations) as 
functions of pumping rates. These simple expressions can be 
obtained using Taylor series or curve-fitting methods [A//(\'. 
1986; Lejk"offand Gorelick, 1990; San:\'er eta/., 1995: Eja:: and 
Peralta. 1995; Coopaet a!.. J99R]. In this study we use a neural 
nct\vork lo reprcsl':nt the <>imulation constraints inside the opti· 
mization model. Neural networks arc dc~nihcd in a later s.cction. 

Several researchers applied nonlinear optimization to aqui­
fer cleanup pmhlems [Uort'lick et a/., 19-S.f: Ah~feld, !990; 
Gharhi and Peralta, 199-L Peralta eta! .. 1995; Peralta and A~v, 
1990]. Nonlinear programming techniques cannot guarantee 
global optimality when applied to large nonconvex problems. 
For real problems, where the time required to simulate the 
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groundwater system is significant, nonlinear programming 
methods may need prohibitive amounts of CPU time. 

The limitations of mathematical programming have moti­
vated researchers to usc alternative optimization techniques 
such as simulated annealing !Rizzo and Dougherty, 1996] and 
genetic algorithms (GAs) fMcKinne_y· and Lin, 1993; Ritzel eta/., 
1994; Rogers and Dow/a, 1994]. Ritzel eta/. [1994] found that a 
GA performed better than mathematical programming for 
nonlinear and mixed-integer nonlinear problems. AfcKinney et 
al. [1994] found that using a GA to compute the starting point 
for a nonlinear gradient-based optimization algorithm pro­
vided significant advantages and allowed them to locate solu­
tions that arc approximately globally optimal. 

A combination of neural networks and a GA was used by 
Rogers and Dow/a [ i994J. They found that this combination 
involved less computational burden and more flexibility than 
mathematical programming methods. However, Rogers and 
Dow/a [ 1994] used a discrete representation of pumping rates. 
Wells were either pumping at their maximum capacity or not 
pumping. In the present study pumping rates are allowed to 
range between the upper and lower limits in prescribed small 
increments. Aly and Peralta [ 1997] used neural netvmrks and a 
genetic algorithm in the design of an aquifer cleanup system to 
reduce the concentrations of two contaminants simultaneously. 
Dow/a and Rogers [ 1995] provide a summai)' of neural net­
works' applications in hydrogeology. 

Optimization methods rely on the prediction accuracy of 
flow and transport models used to represent the aquifer. Since 
accurate modeling of any aquifer can be very difficult, devel­
oped optimal strategies may not be optimal for the real aquifer 
system. There is a growing attention to considering the sto­
chastic nature of aquifer parameters while designing remedia· 
tion strategies. G(m'fick [ 1990] discusses some tet:hniques used 
to account for uncertainty in designing groundwater manage­
ment systems. In the following section we describe the most 
significant proposed approaches and discuss their applicability. 

Design of pump-and-treat systems is often complicated by 
the random nature of aquifer parameters. Three general tech­
niques have been used for solving groundwater management 
problems under uncertainty. In the hrst the sources of uncer­
tainty are not defined, hut it is assumed that optimal pumping 

2523 



2524 ALY AND PERALTA: OPTIMAL DESIGN 

rates can he mmlilh:d after a period of implcnH.:ntation und 
monitoring [Jones eta/., I9K7: IJ'hiffen and Shoemaker, 1993). 
In this technique the differences between variable values pre­
dicted via optimization and the measured variable values (ob­
tained from the field after the optimal strategy is implemented) 
are used to guide subsequent modification of the optimal strat­
egy. The relation used to modify the computed optimal strat­
egies is termed a fecUback law. The process is continued as the 
modified optimal strategy i:-. implemented. 

In the second technique a probability distribution is either 
derived or assumed for the variahlt:s of interest. Then analyt­
ical relations arc developed to relate the quantilcs nf this 
distribution tn the Jeci:-.inn \'ariahle:-.. The:-.e analytical relations 
are used as constraints in the optimizntion problem. These 
constraints are termed chance constraints, and the resulting 
optimization mmkl i:-. known a:-. the chance-constrained model 
[ C111llilla and !'endta, !9:"-;9; Pemlta wul I Vwd, 1991]. 

In the third stllchastic groundwater man<tgcmcnt technique 
a group of constraints i~ fnrmulateJ, each fur a different real­
ization nf the uncertain aquifer parametl'rs [ll'agner and 
Gorelick. 1987]. A realization is a set of the uncertain param­
eters' values. Typically, each realization is gener<Hcd from the 
probabilistic model of the uncertain paramekrs. The resulting 
optimal strategy must S<ttisfy all (or :-.omc) of the realizations 
simultanenusly. The idea is tn tind optimal strategies that are 
robust (sati:·Jy all managl."mcnt constraints) for a range of the 
uncertain paramckrs. Several studies trieJ to estimate the 
reliability of optimal strateiies cnmputed using the muhiple­
realization technique [Motgan eta/., 1993; Chan, 1993, 1994]. 

AH cited .studies concluded that in order w assure a design 
that has a high level of reliability, at least 50 to 100 realizations 
are needed [Chait, 1993, 199-t: Morgan eta/ .. 1993]. For large 
problems, where the time required to simulate the system is 
significant, the time n:quired to generate all the constraint 
equatilHlS cun be prohibitive. I fowcvcr. :-.ince the response sur­
faces for Jiffaent rcalizatiun;.; can he cvaluah.·d :-.imulta­
neously, one can greatly speed the process by computing them 
in paralleL Another possihle remedy is to determine whether 
some realizations can be dropped without having to carry out 
the optimization rGome::-liemande: und Cam'ra, 1994; Ran­
jirlwn t:f a!., 1993j.l\aral::iH. [1997] U\ed a robust optimization 
approach and tried to de\'clop an effective methodology for 
selecting critical realiDllions. 

In this study we pr..:sent and apply an approximation method 
that develops the trade-off curve between system size (total 
flow) and estimated reliability. The rest of the manuscript is 
organized as follows. In section 2 we describe the prohlcm and 
outline the proposeU methodology. In section 3 we provide an 
overview of neural networks and describe the neural net\vork 
used in this study. In sectinn-+ we introduce the g.enetic algo­
rithm and its implem~ntation. In sections 5 and fi we shov.' an 
application or tlw flt"l1pn.s~._·d approach and our conclusion-;. 

2. Problem Statement and Solution 
Methodology 

Consider an aquifer having a dissolved contaminant plume 
to be addressed via a pump-and-treat (P&T) system. The P&T 
system will use a combination of extraction and injection wells 
along with a treatment facility. It is desirable to determine the 
size of the treatment facility. well locatiom, and pumping 
scheJuks. The Lksign most a~sure with ( 1-{~) reliability that 

concentrations at the e-nd of the planning period arc hclow a 
prescribed value, where a ·is a prescribed probability of failure. 

We approximate the well-location-determination problem 
by selecting a number of potential locations for pumping wells. 
The optimization model will compute a pumping rate for each 
of these \veil locations. This pumping rate can be zero, indi­
cating that no well is needed at this location. This common 
approximation greatly simplifies the analysis. Few studies have 
attempted to use well locations as deciSion variables [Wang and 
Ahlfc/d, 1994; Huang and Mayer, 1997). 

2.1. Optimization Problem Formulation and Process 
Onn-iew 

Assume M1' possible extraction and injection WI!Jis and a 
treatment facility nf size pMAx_ Maximum total extraction rate 
equals treatment facility size. For a particular pumping strat­
egy (set of pumping rates) deftnc CMAX, as the maximum 
concentration remaining in the aquikr at the end of the plan­
ning period forth~ i til realization. A solution of the formulated 
optimization problem is a pumping strategy that achieves ac­
ceptable aquifer cleanup by the end of the planning period 
with prnbabi1ity (l·a). The solution process overview is as 
follows: 

I. Select a treatment facility size (PMAx). 

2. For the selected size, compute the nptimal pumping 
rates that minimize CMAX(NR) (dctined helow in (1)). This 
step is detailed in section 2.2. 

3. Use Monte-Carlo simulation to determine the reliability 
of the pumping strategy ( d~vcloped in step 2). Reliability is 
approximated as the fraction of simulations for which cr•v1AX; 
does not exceed a target concentration value (usually the max­
imum contamination limit, MCL). 

Steps 1 through 3 are repeated for differenr selections of 
pMAx. The results can he represented as a curve that shows 
rdiahility versus pMAx. The appropriate value for pr>.I.·\X is 
th~n selected from the curve to achieve the t..ksircd rcliahility. 

In step 2 we define CMAX(NR) as the L,.... norm of concen­
trations resulting from a single pumping strategy applied to 
NR realizations. 

CMAX<'"I ~ max (CMAX,. CMAX,, · · ·, CMAX"") (I) 

The process is repeated for each set of evaluated pumping 
rates. This approach results in a single concentration constraint 
within the optimization model while assuring cleanup for all 
considered realizations simultaneously. In step 2, CMAX(NR) 
minimization is motivated by tlte idea that once the treatment 
facility size is selected, it is desirable to usc the available system 
to reduce contaminant concentrations as much as possible. 

If NR is large (e.g., greater than 100) in step 2, there \VOuld 
be no need for step 3. However, for real prohlems, large NR 
values usually require prohibitive amounts of CPU time. In this 
study we used ~50-300 simulations for l'ach realiz:ltimi. If each 
flow and transport simulation require'::> 10 min of CPU time, 
then each realization reyuires more than 41 hnurs. Simulations 
for 100 realizations require more than 170 days of CPU time. 
Many real problems require more than 10 min of CPU time to 
simulate flow and transport. This discussion ignores the fact 
that these simulations can he run in p<lrallel to reduce time 
requirements. We are merely trying to illustrate the size of the 
problem at h;md. 

Here we propose a new approximation approach to reduce 
the number of realizations used in step~ (e.g., 5-20 instead of 
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hundreds). According to the results of Clwn [1994), if NR lnputlayer 
realizations are used and the pumping strategy developed in 

Output. layer 

step 2 achieves a CfviAX1NRl value equal to target concentra-
tion value. then lhe reliability of this pumping strategy is ap-
proximately NR/(NR + 1). However, when the treatment fa-
cility size is large enough and a large number of potential wells 
is ust.:d, the resulting pumping strategic<:> will usually achieve 
crvtAX(NHJ values that arc less than the target concentration. 
Therefore each pumping strategy is expected to have a greater 
reliability them NR/(NR + 1). If NR is 5, each pumping strat­
egy is expected to have a reliability greater than 83%. How­
ever, the simulations in step 3 arc needed to determine the 
actual reliability. This approach reduces the number of real­
izations by about Hos:~. V..'hilc assuring that developed pumping 
strategies achieve the desired reliability. In a Inter section we 
show how the clmi~c of NR affects the design . 

2.2. Optimization t•roblem f'nr Each pr>.tAx Value 

In the dc~cribcd formulatinn, the objective function is to 
minimize C!vtAX1 NRJ· One constraint limits total pumping 
from exceeding the maximum flow rate that the treatment 
facility can ha~dlc {P:-..tAx). Another constraint forces total 
extraction to equal total injection . 

Minimize CMAX;NRJ subject to 

e = 1, 2, ...• M~' (2) 

.\1·' 

(3) 

.II"' .1/1' 

2: p(el ~ 2: p(e) (4) 
,. ' 

CMAX""' ~ f, [p( I I. p(2), · · · , p!M"I] (5) 

wht:l"C M'" is number of extraction wells; p 1·(L~) and pu(t;) arc 
lower and upper bounds. respectively. for the pumping rate at 
loc.:Hion t; \L3 T 1

]; and ?~1 ,-..:--;, is maximum allmved pumping 
frum aH extraction wells l L' r· 1]. Here pMAX is the flow 
capacity of the neatment facility. 

We use a response-surface approach to define the function 
fc within the optimization model. Few forms have been sug­
gested in the literature for repre~enting cnntaminant concen­
trations relations to pumping rates. A/fey f 19.S6] found that 
simple liiK'ar regressitlll pn1vidcd LlHHigh ;;rcurill). for predict­
ing solute concentrations. J hl\vevcr. in our study simpk linear 
regression \Vas not aJcquate to represent CMAXtNRl as a 
function of pumping rates. 

Lef'kojf and Gorelick 11990] used regression to approximate 
transport of salt mass and found that this simplified the anal­
ysis. Howevn, they did not show the employed functional 
form. Eja:.: and Peralta 11995] used multiple linear regression to 
Jlt approximating expressions as surrogates for solute transport 
equations to solve a stream waste\vater loading problem. Coo­
per et a!. i 1 99~] used a polynomial function to describe light 
nonaqueous phase liquid transient removal via an extraction 
well. 

In this study, mving to the complex nature of the CMAX{NR> 
surface as a function of pumping rates, we were unable to 
approximate th12 response surface using a polynomial equation 
with a re:1sonahk numhn of terms. Instead. \VC used a neural 
nel\mrk (NN) to rcprc:-.cnt Ctv1AX(NR)· 

v(j) 

v=g(u) 

' 
v(j) ~g~1(J)) 

Figure 1. Neural network architecture for five wells. 

3. Neural Networks 
Neural networks (NNs) have received much attention in 

many disciplines. Their use has grown owing to their wide­
spread acceptance as powerful and flexible forecasting tools as 
well as to their applicability to almost any problem. Initially. 
neural networks were developed as an attempt to emulate the 
parallel processing nature of the human brain. Biophysics sug· 
gests that man's cognizant power can be attributed to our own 
biological neural networks. Billions of neurons, mnking thou­
sands of chemical and electrical nl!lncctions, endow tiS with 
sensory perception, rationalization, and adaption skills. An NN 
attempts to perform the same functions. although not nearly us 

efficiently. Much the same way that humans learn by pattern 
recognition, synaptic training, and experience, an NN is trained 
to rationalize through repetitive learning and generalization. 

In this study we use a multilayt;r, feed-forward, error back­
propagation neural network (Figure 1 ). The network is com­
posed of multiple processing elements organized in a series of 
two or more mutually exclusive layers [Henz eta/., 1991J. 

The first layer is called the input layer and is used to receive 
the stimuli (pumping rates). Pumping rates arc :-;calcd hcforc 
they are used as inputs to the first layer. The scaling is line<~r 
and is used to make any individual pumping rate generate a 
value that is smaller (in magnitUde) than 0.9 when used as 
input to the sigmoid function described below. The last layer 
(output layer) is used to receive the responses of the network 



2526 ALY AND PERALTA: OPTIMAL DESIGN 

and produce a value between -1 and 1. This value is then 
linearly scaled to compute CMAX(NR)· Input CMAX(NR) val­
ues are linearly scaled to be betv..·een -0.9 and 0.9. 

There is one hidden layer bctwet:n the input and output 
layers. Each node in the bidden layer receives input from two 
nodes in the input layer. That is, if there are 1t.fP nodes in the 

(M'') input layer (AfP wells). there arc 2 (AfP choose 2) nodes in 

the hidden layer. There is only one ~ode in the output layer. 
This node receives input from all nodes in the hidden layer and 
produces a single value. 

!v1ure hidden layers can increase the predictive capability of 
the nenvnrk. especially to dassify patterns that are not linearly 
separable [Zumda, !992), but one hidden layer is sufficient for 
most applications [Crhenko, 1988]. Poggio [l983J showed that a 
neural network with two hidden layers can represent any con­
tinuous function. 1-lowev~tr, designing the structure of a neural 
network for a specific application is best decided hy the prob­
lem at hand. In this study a single hilldco layer provided a good 
approximation of the predicted variable (CMAX(Nt·q) for all 
tested scennrios. 

In any layer, all nodes work independently and concurrently. 
All nodes in the network (except those in the input layer) 
perform two kinds of computations: determining the net~input 
value to the node and computing the output value. The net­
input v<llue to the ith node is 

net,= 2: pljlJV,., + H; ( 6) 

where j represents all input c0nnections to the node, IV is the 
weight of input pumping rate p, and 8 is the hias. In this study, 
only tht: output node lws a bias weight. Each node converts the 
net input to an activation value 

a,= F,(net,l (7) 

Then the output value is r.:nmputcJ by the output function 

o, = [,Ia;) (8) 

Usually a, net1 and the output value is 

0, = f,( net,) (9) 

The output function is usually a sigmoid function. A function 
is sigmoid if it is bounded, monotonic, continuous, and smooth 
[Smith, 1993]. In this ~tucly we selected a sigmoid function that 
is bounded hetween -I and 1. Our selected function is 

(10) 

Each time 0; is computed (from the output layer), it is 
comp~trr:d with the desired re~ponst: (supervised learning). A 
learning algorithm is used tn adjust the weights of the inter~ 
connr:ctions accon.Jing to the error obtained from the compar­
ison. A training sample ~et is applied to the network repeatedly 
un1il an equilibrium state is reached or a predefined training 
period expires. The values of the \\1eights are saved and can he 
later used to simulate response to any set of pumping rates. 

We used backpropagation (Rumellwn et a!., 1986] with a 
supervised learning algorithm. The learning algorithm uses 
gradient descent to achieve training (or learning) hy adjusting 
the weights to minimize the error measured by the difference 
hctWL'cn the desired and actual network outputs. 

(II) 

(12) 
p 

where p is an index for a training sample. The weights are then 
adjusted by a rule of the fonn 

W;(t) = W,(t- I)- 1\,d,(t) 

(,£ 
d ,u l = 8-w, u~T) 

(13) 

(14) 

where A; is the learning rate for weight i and t is an iteration 
counter. This rule, the steepest-descent method, has two lim­
itations. First, there are no guidelines for selecting a learning 
rate(s). Second, the method can easily converge to a local 
minimum. 

To avoid the first limitation, we used the delta-bar~dclta 
adaptive learning rule [Jacobs, 19S8]. This method yields faster 
convergence than steepest descent and avoids the learning rate 
selection dilemma. It is not unusual to achieve a target error 
level in one tenth the number of iterations that would he 
required using steepest descent and an optimal learning rate 
[Smith, 1993], 

The concept of the delta~bar~delta rule is simple. There is a 
learning rate for each weight in the netvmrk. If the direction in 
which the error decreases as this weight changes is the same as 
the direction it has been decreasing recently, increase the 
learning rate. If the direction is opposite of the recent direc­
tion, decrease the learning rate. 

The direction in which the error decreases is determined hy 
the sign of di. If d,. is positive, the error decreases as the weight 
goes down; if d,. is negative, the error decreases as the weight 
goes up. The direction of weight change is defined as the 
average of current and past derivatives. This average change c 
at iteration J is 

c(t) = Oc(t- I)+ (I - O)d(t) 

O::sH<l 

(15) 

( 16) 

where 8 is a parameter that controls how long ;'recently" 
means. 

The learning rate for a weight is 

A(t) = A(t - I) + K 

A(l) = A(t- 1)</> 

d(t)c(t) > 0 

d(t)c(t) :50 
(17) 

where K and t/J are parameters. Once A is selected, the actual 
weight update rule is 

W"'(t) = w,.(t- I)- Am(tldm(l) (18) 

In practice, the NN performance is not highly sensitive to the 
choice of values forK, 4>, and H (Smith, Jf)QJj. For the training 
sessions discussed in this paper, actual values that worked well 
across a variety of problems are K = 0.1. ¢ = 0.5, and fJ = 0. 7. 

The second problem of gradient-hased learning is conver~ 
gence to local minima. A possible remedy to this problem is to 
start the training algorithm from different starting points (ini­
tial guess values for the weights). However, this substantially 
increases the learning time because one learning session will be 
required for each initial guess. 

Another remedy is to break the da!a set into batches of 
similar or different sizes. Batches are used in cycles ro cnmpute 
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the weight updates In each iteration. For example. if the train­
ing set contains 100 observations, one can break the observa­
tions into 5 batches of 20. In the training session the first 
iteration uses the gradient of the error computed only for 
observations in the first batch. The second iteration uses the 
gradient of the error for observations in the second batch, and 
so forth. The 11th iteration uses the first batch again to find the 
error derivative. The error is computed for all sets of pumping 
rates each iteration, and the weights that score the lowest error 
are retained. Weight updates are computed for different 
batches until many iterations fail to find weight va(ues that 
have a lower error than the best weights. 

We used R0-85% of total simulations for training and re· 
taincd th~ rest for testing. Each training set was separated into 
10 cqual·size batches. For testing, the test data was introduced 
into the network and its mean squared error was computed. 
Then we computecf the ratio of this mean squared error to the 
training set's mean squared error. For all tested problems this 
ratio was less than 1.45 (for most tested problems this ratio was 
less than 1.05 ). This indicate~ that the NN has been adequately 
trained and it can he used for simulating the system. A large 
ratio indicates lack of training or, worse, overtraining. Over­
training is unlikely in our case. When the number of wells is 5, 
the largest number of weights is 31 and the size of the training 
set is greater than 250. \Vhen the number of wells is 10, the 
largest number of weights is 46 and the size of the learning set 
is greater than 350. Overtraining means that the net\.vork has 
memorized the training data set. This problem is unlikely in a 
network where the numher of weights is small compared to the 
size of the training set. 

4. The Genetic Algorithm 
Genetic algorithms (GAs) arc heuristic rules for searching a 

solution space to identify the best solution. The use of GAs was 
first suggeste-d by /Iofiand !1975], who based his search on a 
survival-of~the-fittest rule. Since then, GAs have been used in 
many disciplines. Dm·is [1991] reviews many important appli­
cations of GAs, and Goldberg [ 19X9J presents a comprehensive 
introduction to GAs. In groundwater management, GAs have 
been used hy AlcKimu'y and Lin [1993], Ritzel eta/. !1994], 
Rogas and Dmda [ 1994 J, Cieniawski er a!. !1995], and others. 
In this manuscript \Ve focus on how the GA is implemented to 
address the subject problem. 

The major advantage of GAs is that they are independent of 
the particular problem being analyzed. A GA requires only an 
ohjective (fitness) function that can be evaluated for any set of 
the control variahles. This function can be nonlinear, nondif­
ferentiable, or discontinuous. GAs require only that system 
performance can be evaluated for any set of the decision vari· 
abies. In this study the fitness value is the reciprocal of 
CMAX(NI{ 1. Th~rdon: the GA tries to find the pumping rates 
that will result in th~ smallest CMAX<NRJ· 

We used a GA with the hasic reproduction, crossover, and 
mutation operators. The GA we used i::. similar to the simple 
genetic algorithm (SGA) of Goldberg [1989]. However, instead 
of the roulette-wh~.:el selection in the SGA, we use tournament 
selection [Goldberg, 1990]. 

For the presented problem, one problem with GAs is that 
they do not provide an explicit method to handle constraints. 
Instead of explicitly considering constraints,-penalty terms are 
added to the objective (fitness) function. In our formulation, 
nne constraint limits total pumping. An eflkient method to 

handle such a constraint in a GA is to assign a very low fitness 
value for any set of pumping rates whose sum exceeds the 
upper bound on total pumping. After a few generations the 
GA hardly tries to evaluate the fitness value for any set of 
pumping rates whose sum exceeds pMAX. 

We used binary coding where the pumping rate from each 
well is represented by L digits of the chromosome. For exam­
ple, when we tried to optimize the pumping rates from five 
extraction wells, the chromosome length was SL. The chromo­
some length, L, is determined from the desired representation 
accuracy. For example, if the pumping rate from one well can 
range between pL and pu and the desired accuracy is £, then 

[ ( 
[P" pLI) ] I L = log I + e (log 2) (I 9) 

where the logarithm is taken to any base. For example, when 
pu is 800, pL is zero, the required accuracy is 0.5, and the 
chromosome length is 11. If we have five such pumping rates, 
the final chromosome length is 55. Notice that different pump­
i~g rates can have different accuracies if desired. Longer chro­
mosomes can be used to achieve the desired accuracy at the 
expense of more GA run time. 

Control parameter selection greatly affects the answer com­
puted by the GA. However, there are no published general 
guidelines for selecting these parameters. Many studies have 
attempted to evaluate parameter values that work well under a 
variety of conditions [De long, 1975; Schaffer et a/., 1989]. 
However, their results are problem-specific and depend on 
how the GA is implemented. A major advantage of our pro· 
posed methodology is that the GA itself takes very little time. 
This is because the size of the study area affects only the time 
required to evaluate the response functions. The neural net­
works can evaluate the response function in significantly less 
time than the full simulations. Therefore one can afford to use 
a robust method like the GA despite the fact that the GA is 
often considered slow because of the large number of function 
evaluations. After the response functions are evaluated, the 
GA tak..:!s very little time to find the hest set of pumping rates. 
This allowed us to use the GA for several GA control param­
eter values. 

At least 100 sets of control parameters were tested for each 
problem discussed below. For the tested problems the best 
results were obtained using a population size between 50 and 
100. Our experience is that larger population sizes do not 
affect the solution but do require extra time. However, if the 
number of wells is larger or if only a relatively small subspace 
provides a feasible solution, a larger population size will prob­
ably be needed. 

A crossover probability betv.teen 0.8 and 0.9 and a mutation 
probability between 0.08 and 0.12 consistently lead to the best 
results. Generally, a crossover rate less than 0.7 provided an 
inferior answer. A mutation rate greater than 0.12 increased 
the number of infeasible evaluations without improving the 
final answer. The worst performance of the GA was when the 
mutation probability was zero. This is expected since mutation 
prevents the GA from getting trapped at local optima. 

5. Implementing the Groundwater Management 
Model 

A data set for a single-layer aquifer contaminated by dis· 
solved trichloroethylene (TCE) is used to npply the proposed 
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Figure 2. Base boundary, finite difference grid, boundary conditions, well locations, and initial TCE con­
centrations. 

approach. TCE is moving toward nearby municipat wells. One 
of the suggested approaches is to install a pump-and-treat 
system near the contaminant source. In the original problem 
the treatment facility size was determined a priori. However, in 
this study we determine the treatment facility size and the 
~:orrespomling pumping raiL's th;tl will assure cleanup of the 
aquifer within 3 years with a 95(:0(- probability. Figure 2 shows 
the initial TCE t.:onccntration'>. the hnite difference grid, and 
boundary conditiom.. Paafra al!(/ A~l' [1995/ provide a more­
detailed description of the study area. 

MODFLOW [it!cDmwld and Harbaugh, 1988} and MT3D 
lZheng, 1990J are used to simulate groundwater How and 
plume migration, respcctivdy. Ten extraction wells and four 
existing injection wells can be used. Injection wells are near 
existing pipelines far from the plume center (Figure 2). Pre­
liminary analysis indicated that injection rates have little effect 
on groundwater hydraulics ncar the center of the plume. 
Therefore, injcctilm rates are fixed and we only determine 
optimal extraction rates. We consider two sets of scenarios. In 
the flrst set we fi.nd optimal extraction rates from five wells. In 
the second set we determine optimal extraction rates from 10 
wells. 

To test the suggested approach, we base our design on 5. 10, 
or 20 transmissivity rcalizatiom and compare the results. For 
one scenario we consider up to If)[] realizations. 

The procedure for generating tran~missivity realizations is as 
follows. The natural logarithm of transmissivity. denoted Y, is 
assumed to follow a multivariate normal distrihution with 
mean /.L = 9.5 (corresponding to a transmissivity of 13,360 
feet 2/t.l, or = 1241 m2/d) and exponentially decaying covari· 
a nee: 

Cov ( Y, Y,J ~ u' exp ( -dj ,\) (20) 

where rr (square rnot of variance) and A (correlation length) 
are ptlrameters. and d,_, is the Euclidean distance her.~,-·een 

points i and j. In our study a" ~ 2.92 and ,\ ~ 300 feet (91.4 
m). The coefficient of variation for Y is 0.18. For the generated 
transmissivity realizations, the coefficient of variation ranged 
between 0.23 and 0.28. 

Several rndbods are availahle for generating Y realizations. 
The mo~t straightfonvard, but computationally intensive, is the 
matrix inversion method [Davis, 1987). The simple nearest 
neighbor method !Smith and Freeze, 1979) uses linear equa­
tions to describe the dependence of the conductivity in a given 
block on conlluctivity values in surrounding hlocks. This 
method can handle both statistically isotropic and anisotropic 
covariance functions. 

We used the more efficient turning-bands method (TBM) 
developed by Afantoglou and Wilson [1982] for generating 2-D 
Y realizations (s.ee also work by Dietrich {1995J and Gneiting 
[ !996]). 

6. Results and Discussion 
The response surface for CMAX<NRJ as a function of pump· 

ing rates becomes more complex as NR increases. For exam­
ple, Figures 3a-3c show the response .surfaces for an optimi­
zation problem using NR = 5, 10, and 15. To visualize the 
response surfaces, only three extraction \veils are considered, 
and total extraction is tixcd (equals the treatment facility How 
capacity of 2000 gallons/min, or 1 O,R11 m3/d). 

Figures 3a-3c show contours of CMAX(:-.lR) generated using 
250 simulations per realization (for each figure). For example, 
1250 and 2500 simulations are used to generate the data for 
Figures 3a and 3b, respectively. Each simulation is carried out 
by changing the pumping rates and running the flow and trans­
port models for a given set of aquifer hydraulic conductivity 
values. 

The response surfaces in Figures Ja-Jc arc highly nonlinear 
with several local minima. Gradient-hased optimization rneth-
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ods cannot guarantee finding the global optimal solution for 
such problems. A GA provides an attractive alternative. Note 
in Figures 3a~3c that the global optimal solution does not 
change as the number of realizations increases from 5 to 15. 
This supports our suggestion that a few realizations may pro­
vide sufficient accuracy . 

The procedure suggested in section 3 is approximate be­
cause it uses a relatively small number of realizations while 
solving the optimization problems. To test the effect of this 
approximation, we use NR = 5, 10, and 20 to define 
CMAX(NR)· The first pr-.rAx value is usually selected to be a 
reasonable guess of the optimal value. If the developed opti­
mal pumping strategy achieves a higher reliability level than 
desired, the second pMAx value is smaller than the first, and 
vice versa. 

In our application the first pMAx value was selected to be 
2000 gallons/min (10,811 m3/d). Then optimal pumping rates 
from the five extraction wells were determined to minimize 
CMAX(s) (defined using five realizations). The reliability of 
the developed pumping strategy estimated using 500 Monte 
Carlo simulations was found to be 100%. The second pMAX 

value was set to 1600 gallons/min (8649 m3/d; 1 gallon/min 
equals 5.4054 m3/d) and the developed pumping strategy had 
an estimated reliability value of 33%. Clearly, the pMAX value 
that achieves a 95% reliability is closer to 2000 than to 1600 
gallons/min. Subsequent P~1A:x values were set to 1950, 1900, 
and 1850 gallons/min. 

Figure 4 shows the results of Monte Carlo testing of pump­
ing strategies. It shows the proportion of postoptimization re­
alizations that achieve prescribed CMAX values. Figures 5 and 
6 contrast total pumping \Vith reliability for 5 anJ lO extraction 
wells. respectively. Here. considering additional wells resulted 
in very little improvement for developed pumping strategies. 

Figun:s 5 and 6 suggest that for the tested problem, there is 
no rt~.:r.::d to usc more than 10 realizations. To further test this 
conclusion, we solved the CMAXrNH) minimization problem 
(for pMAX = 1900 gallons/min) for different values of NR. 
Results in Figure 7 show that any number of realizations 

20·ocH~------~----~-L~--~~~~~~+ 

E 
~ 

150 

01 100 
Oi 
iL 

0 sao 

[] local minimum 

+ global minimum 

P(1) + P(2) + P{3) = 2,000 gpm 

10 

1000 

P(1) gpm 

1500 

Figure Ja. CMAX15 > for five realizations. 

2000 

C local minimum 

+ global minimum 

P(1) + P(2} + P(3) = 2,000 gpm 

P(1)gpm 

Figure 3b. CMAX(to) for 10 realizations. 

greater than 10 results in pumping rates that are within 5% of 
those computed using 100 realizations. 

7. Summary 
We have presented and demonstrated a new stochastic op­

timization approach for complex nonlinear problems. The sug­
gested approach is based on the multiple-realization method 
and uses a neural network to model complex response sur­
faces. The neural network was trained using one set of simu­
lations and then tested on another set of simulations. The 
neural network was able to approximate CMAX(NR> surfaces 
with a high accuracy, as indicated by its performance on the 
testing set. 

C locat minimum 
+ global minimum 

P(1) + P(2) + P(3) = 2.ooo-gpm 

P(t) gpm 

Figure 3c. CMAX1 15 ) for 15 realizations. 
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Figure 4. Empirical cumulative distribution functions for 
CMAX based on 10-realization design for five wells. 
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Figure 5. Reliability versus treatment facility size for a five­
well design. 
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Figure 6. Reliability versus treatment facility size for a lO­
well design. 

A genetic algorithm efficiently identified optimal pumping 
rates. The suggested approach makes it easy to find the best 
control parameters for the genetic algorithm. We found that a 
crossover probability betweeri 0.85 and 0.9, a mutation proba-

1,2 0(} ~ Pl2\ 
~ 

1,0 0(} 

. 
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P(1) 

v 

~....,..-~ P(S) 

2 0(} 
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~· 
P14\ 

20 40 60 80 100 

Number of Realizations 

Figure 7. Optimal pumping rates versus number of simulta­
neously considered realizations. 
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bility between 0.08 and 0. I 2, and a population size between 50 
and 100 always provided the best answer from the genetic 
algorithm. Hmvever, it must be noted that the formulated 
optimization prohlem is not highly constrained. If the optimi­
zation problem is highly constrained, then the genetic algo­
rithm may need more generations to find optimal pumping 
rates. Also, other values for the crossover and mutation prob­
abilities might lead w better performance. 

f.llr all tested problems, I 0 realizations were adequate for 
finding optimal pumping rates. This is important since the 
number of considered realizations significantly affects the CPU 
time needed to train and test the neural network. 

Extension of the suggested approach to handle other 
groundwater management problems is straightforward. The 
approach docs not depend on the specific ftow and transport 
simulators or the state variables of interest. 
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