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Oocytes are the precursor cells to the female gamete, or egg. While reproduction may 

vary from species to species, within humans and most domesticated animals, the oocyte 

maturation process is fairly similar. As an oocyte matures, there are various processes that 

take place, all of which have an effect on the viability of the individual oocyte. Barring 

outside damage that may come to the oocyte, one of the primary reasons for non-viability is 

that of abnormal gene expression. Within this project, we focus on two oocyte maturation 

techniques: in vivo (IVV) derived oocytes (our gold-standard) and in vitro matured (IVM) 

oocytes. A great disparity exists between the viability rates of the two origination techniques, 

and this disparity has led to low yields and inefficiency in the fields of cloning, fertility 

treatments, as well as personalized medicine.  

Within our project we use existing swine oocyte gene expression profile data as a 

proxy measure of viability, based on the similarity to IVV oocytes. Four statistical techniques 

for assessing the individual oocyte viability are proposed and compared, including: a 

weighted root mean squared deviation (wRMSD) approach, a distance kernel p-value 

approach, a distance tolerance interval approach, and a classification tree method. The 

relative performance of these four measures is discussed.  



1. INTRODUCTION 

 
Oocytes are the precursor cells to what we often think of as the female egg cell. 

They operate and grow in essentially the same way within swine as they do in humans 

(Thomas, 2016). One main reason that one would be interested in studying oocytes is that 

they are the key to studying life, reproduction, and all other pertinent matters. Without 

access to oocytes, researchers in the fields of cloning, fertility treatments, and others 

would not be able to do their work. Currently, there are numerous methods of deriving 

(growing) oocytes, each with its benefits. In vivo (IVV) derived oocytes are held as the 

gold standard for viability, and other known origination methods are sub-par by 

comparison. However, alternatively derived oocytes do have many traits that are 

desirable. The in vitro maturation (IVM) method is one such method of oocyte 

derivation, as it allows the researchers to have access to the oocyte from early on. There 

are however, many problems associated with this method. From past studies, it is shown 

that the viability rate associated with IVV derived oocytes is upwards of 95%, however 

for IVM oocytes (and other similar methods) the viability rate is roughly only 25% (Dr.	
  S.	
  

Clay	
  Isom,	
  personal	
  communication). Similar low viability concerns arise with the 

SCNT (somatic cell nuclear transfer, or traditional cloning) origination method.  With 

such a low viability rate it is only natural to try to alleviate the frustration and waste that 

comes from focusing time, resources and energy on oocytes that are simply not viable. 

But how can one know if an oocyte is viable prior to investing in it? In general, one 

cannot. However, methods can be developed that test individual oocytes for viability, 

establishing a viability-optimized general gene expression profile. As laboratory 

originated oocytes can be treated with a wash that promotes growth and expression 



patterns in chosen directions (Dr.	
  S.	
  Clay	
  Isom,	
  personal	
  communication), it is apparent 

that establishing methods to test individual oocyte viability and thereby derive a general 

viable profile for oocytes would, in theory, increase the viability of non-IVV oocytes.  

Kwon et al. (2015) took embryos that were obtained from three different 

origination methods (IVV, IVM, and SCNT) and examined the gene expression profiles 

for 15 different genes of interest. In their project, a Weighted Root Mean Squared 

Deviation (wRMSD) was calculated based on expression level deviation from the mean 

expression level of the origination group. The average wRMSD for each origination 

group was calculated and compared. They found that the difference between the IVV 

group and the SCNT group was greater than the difference between the IVV group and 

the IVM group. These conclusions were relevant for comparing methods of origination, 

however we desire to compare individual oocyte viability.  

Within our project, the goal has been to establish origin-independent methods of 

evaluating individual oocyte viability, based simply on the observed gene expression 

profiles. As the process of collecting the observed gene expression profiles of oocytes is 

destructive, making the oocytes non-viable (and thereby making it impossible to tell if the 

oocyte would have been viable or not, simply by observing), there are a number of 

assumptions that one must make. First, assume that IVV-derived oocytes are the “gold 

standard” for oocyte viability. This assumption does not seem to be erroneous, as 

historically over 95% of all IVV-derived oocytes have been observed to be viable (Dr.	
  S.	
  

Clay	
  Isom,	
  personal	
  communication). The second assumption that is made is that the 

closer an oocyte’s gene expression profile gets to the mean of the IVV gene expression 

profiles, the more likely the oocyte is to be viable. Third, assume that the IVV oocyte 



gene expression profiles are a representative sample of all IVV oocyte gene expression 

profiles, and likewise for the IVM oocytes within the data.  

Dr. S. Clay Isom provided the project dataset in the form of an Excel spreadsheet, 

which contained the gene expression profiles for 29 IVV derived oocytes as well as 29 

IVM derived oocytes. Each of the gene expression profiles was expressed in the form of a 

log2 fold-change on 67 genes of interest compared to a common “housekeeping” gene. 

These specific 67 genes were selected, as they are affiliated with early cell growth, 

regulation and viability (Dr.	
  S.	
  Clay	
  Isom,	
  personal	
  communication). Overall there were 

few values that were missing (about 4.4%), but computationally if the case arose that a 

value was missing, that value was omitted from gene level calculations in the following 

methods. Once again, actual viability of these individual sample oocytes is unknown, as 

they yielded the “ultimate sacrifice” for science, though from the assumptions, greater 

similarity to IVV is treated as more likely to be viable.  

In this MS project, an adaption (on the single oocyte level) of the Kwon et al. 

(2015) wRMSD method is summarized in Section 2, along with three other novel 

methods – a Distance Kernel P-value method in Section 3, a Tolerance Interval method in 

Section 4, and a Decision Tree method in Section 5. Each of these methods is then 

compared for accuracy via simulation in Sections 6 and 7, and the methods’ performance 

is discussed in Section 8.  

 
  



2. WEIGHTED ROOT MEAN SQUARED DEVIATION  
KERNEL DENSITY P-VALUE 

 

We use an application of the weighted root mean squared deviation (wRMSD) 

approach proposed by Kwon et al (2015). Here, we compute the wRMSD from the center 

of the oocyte viability class. In the more practical case that viability status is unknown, 

we would then compute the wRMSD from the center of the oocyte maturation class 

(center of IVV if using an IVV oocyte, or IVM if using an IVM oocyte). Again, we 

operate under the assumption that IVV is considered viable. Kwon et al. (2015) said “We 

considered each gene expression to be an independent event; therefore, we combined all 

of the expression measurements of each (gene) sample in the calculation of the wRMSD. 

To minimize the bias from a measurement error of a gene expression profile with a low 

coefficient of variation (CV), the deviation of each gene expression level from the mean 

was weighted with the CV of the gene in the group.” Within the wRMSD calculation 

there are three main parts: the reference expression level (mean expression level for the 

gene within group), the expression level of the specified gene within the oocyte of 

interest, and the weighting coefficient. The weighting coefficient was further made up of 

“the proportion of the CV for the expression level of the ith gene to the sum of CV for 

those of all genes in the group” (Kwon, et al., 2015):  

 

 (1) 

 

In Equation 1, wRMSD is defined for a given oocyte.  Here, Ei refers to the 

expression level of the ith gene in the oocyte, Emi refers to the reference expression level 

wRMSD =

sX

i

wi · (Emi � Ei)2.



for the oocyte (i.e. mean of the IVV if the oocyte is IVV or IVM if the oocyte is in the 

IVM group) of the ith gene, and wi refers to the weight of the mean squared deviation of 

the gene expression, defined as follows:  

         

       

 

That is, the weight (wi) in Equation 1 is defined as the proportion of the 

Coefficient of Variation (CV) for the expression level of the ith gene (across all oocytes in 

the group – IVV or IVM) to the sum of the CV for those of all genes in the group.  

We set up the null hypothesis that an observed oocyte (with an accompanying 

wRMSD) came from the viable (or IVV) class, with the respective alternative hypothesis 

that it did not. P-values for likelihood of belonging to the “viable” class were then 

computed for the individual oocytes by comparing the oocyte’s observed wRMSD to the 

kernel density of the viable (or IVV) wRMSD distribution, and computing an upper tail 

area (see Figure 1). These p-values were then compared to an alpha 0.05 level for 

determining if there was enough evidence to reject our null hypothesis (that the observed 

oocyte was viable). This Kernel Density p-value portion was not utilized in the Kwon et 

al. paper, however it is a reasonable and necessary application of their published method 

that allows for individual oocyte classification and comparison between results from this 

and other methods.  

wi =
CViP
j CVj

.



 

Figure 1. The wRMSD distribution of IVV and IVM oocytes with calculated kernel 
density for the IVV wRMSD distribution overlaid on both histograms. An example IVM 
oocyte has been selected and its wRMSD has been found to be 1.19. The wRMSD of the 
oocyte is then compared to the kernel density of the wRMSD for the IVV group; we can 
then set up a hypothesis test with a null hypothesis that the observed oocyte comes from 
the IVV group. By computing an upper tail area from the kernel density, we can observe 
a p-value for our example oocyte equal to 0.052. This p-value is larger than our 0.05 
cutoff, so we would classify the observed oocyte as viable (by our assumption that the 
more closely related to the IVV group that an oocyte is, the more likely it is to be viable). 
  



3. DISTANCE KERNEL DENSITY P-VALUE METHOD 
 
 

We considered also a distance measurement method as a modification to the 

wRMSD approach presented by Kwon et al (2015). It utilizes only a subset of the 

available genes; those that a limma eBayes approach has determined are differentially 

expressed (between IVV and IVM groups) at an alpha 0.05 level (Ritchie, 2015). Briefly, 

the limma eBayes approach performs a modified t-test on the expression level of each 

gene, testing for differential expression between two conditions (IVV and IVM here). 

The gene expression profile of all IVV (or viable) oocytes is computed, and the mean 

expression is taken for each gene in order to form an IVV group mean gene expression 

profile. Using only the subset of differentially expressed genes, the distance measure for 

each oocyte from the mean of the IVV group gene expression profile is then computed. 

Here, distance is measured as an adaption to the Kwon et al. wRMSD approach:  

 

(2) 

 

In Equation 2, we only use information from differentially expressed genes. Wi is 

the weight for the specified gene i, and is defined as before, based on CVs. Emi 

represents the mean of the IVV (or viable) group for gene i. Ei represents the expression 

level of the ith differentially expressed gene for the specified oocyte. 

The distance kernel density is then calculated for the IVV (or viable) oocytes, 

based upon the calculated IVV distances. We then can use this kernel density distribution 

to set up a hypothesis test for each of the individual oocytes, using the following null and 

alternative hypotheses: H0 – The oocyte distance comes from the IVV (viable) 

Distance =

sX

i

wi · (Emi � Ei)2.



distribution of distances, i.e. the observed distance for the oocyte is within an expected 

range if it was of the IVV (viable) class, vs. Ha – The oocyte distance does not come from 

the IVV (viable) distribution of distances, i.e. the observed distance for the oocyte is 

outside the expected range if it is of the IVV (viable) class. In order to make a decision 

for the hypothesis test, we compute the upper tail probability above the distance observed 

in the oocyte of interest (see Figure 2). This upper tail area is our observed p-value. 

  



 

 

Figure 2. The distance distribution of IVV and IVM oocytes with calculated kernel 
density for the IVV distance distribution overlaid on both histograms. The same example 
IVM oocyte has been selected as in Figure 1, and its calculated distance has been found 
to be 9.78. The distance of the oocyte is then compared to the kernel density of the 
distances for the IVV group; we can then set up a hypothesis test with a null hypothesis 
that the observed oocyte comes from the IVV group. By computing an upper tail area 
from the kernel density, we can observe a p-value for our example oocyte equal to 0.019. 
This p-value is smaller than our 0.05 cutoff, so we would classify the observed oocyte as 
non-viable (by our assumption that the more closely related to the IVV group that an 
oocyte is, the more likely it is to be viable). 
  



4. TOLERANCE INTERVAL METHOD 
 

A tolerance interval is a numerical interval that is calculated to provide limits 

wherein at least a specified proportion of a sampled population falls with an indicated 

level of confidence. Oftentimes, tolerance intervals are constructed and applied in areas 

such as quality control or manufacturing to establish that certain product standards are 

being met by the overall bulk of the products. “More specifically, a 100×p%/100×(1−α) 

tolerance interval provides limits within which at least a certain proportion (p) of the 

population falls with a given level of confidence (1−α)” (Young, 2010). Tolerance 

intervals are based on the sampled data; however they allow us to say something about 

the population distribution. “A tolerance interval differs from a confidence interval in that 

the former encloses a proportion of the entire population distribution, while the latter is 

constructed to contain the value of a population parameter” (Millsap, 1988). Frequently, 

tolerance intervals are based on a specified distribution of the data, and more often than 

not, that distribution is assumed to be normal. However, we can also make the tolerance 

interval more general by taking a non-parametric approach (Wilks, 1941). In Wilks’ 

paper, he proves that there is a systematic way of calculating a confidence interval for an 

unknown data distribution; a tolerance interval can be calculated for a given population 

coverage proportion, level of confidence and minimum sample size, that guarantees at 

least the given population coverage proportion. This approach is outlined as follows: 

• Let a be the average value which p is to have, where p is the proportion of the 

population to be included in the interval (the mean coverage).  

• Draw a sample of size n from the population subject to the constraint that 

[(1-a)(n +1)]/2 = r, a positive integer. 



• Order the sampled data according to increasing magnitude from x1 to xn 

• Let L1 = xn-r+1, the upper tolerance limit of our 1-sided non-parametric tolerance 

interval 

As noted above, we need a minimum sample size value to ensure proper coverage 

of the population with the specified level of confidence. Within the framework of this 

project, we utilized the principles of this method to create a 95% non-parametric one-

sided tolerance interval for 95% coverage of the IVV distance distribution. The 

distribution of distances for the Isom data IVV oocytes is right skewed (see Figure 3), so 

we used an application of the non-parametric tolerance interval method.  

  



 

 

Figure 3. The distribution of IVV distances for the Isom data. The kernel density was 
overlaid to help depict the skewedness of the distribution. 

 

For a non-parametric approach, the calculation of the tolerance interval can be 

different than when we specify a distribution for the data. As we do not restrict our 

interval to a specific distribution, we require a larger sample size in order to maintain the 

same level of confidence and coverage for our tolerance interval than that of a specified 

distribution (i.e. Gaussian, Weibull, etc). The calculations for the minimum required 

sample size of a non-parametric tolerance interval are shown below (NIST, 2012):  

 



 

 

 

The above equation is an approximation for the minimum sample size n, needed 

for a non-parametric tolerance interval with confidence level γ, and population coverage 

proportion p. We also note that we are calling a specified value from a chi-squared 

distribution with 4 degrees of freedom. 

For our project, the minimum required sample size for a 95% confidence and at 

least 95% coverage was n=94, so we ended up needing a sample size of 100.  In the 

simulations of Section 6 below, we use n=100 oocytes, and we proceed with the 

construction of the tolerance interval here solely for demonstration purposes (though the 

actual sample size in the project dataset is n=58, so the actual coverage in this 

demonstration example is likely less than 95%). For each oocyte in the project, the IVV 

distance distribution was computed using the same distance function as previously 

discussed. That distance function again only looks at genes that are differentially 

expressed in the Isom dataset, as indicated by a limma eBayes approach, using a 

significance level of 0.05 as a cutoff for the FDR-adjusted p-values. Those oocytes that 

individually have a distance statistic outside of the constructed tolerance interval for the 

IVV oocytes (i.e. their distance was greater than that of the upper tolerance bound) were 

selected as being nonviable (see Figure 4).   

n ⇡ 1

4

(1 + p)

(1� p)
�2
1��,4 +

1

2
.



 

Figure 4. The distance distribution of IVV. The upper limit of the 95% confidence, 95% 
coverage non-parametric tolerance interval for the IVV group was calculated to be 9.63. 
The same example IVM oocyte as in Figures 1 and 2 has been selected and its distance 
was calculated to be 9.78. The distance of the oocyte is then compared to the upper limit 
of the tolerance interval for the IVV group. As the observed distance of 9.78 is larger 
than the upper tolerance limit of 9.63, we would classify this oocyte as non-viable, as it 
was classified as being less closely related to the IVV group (by our assumption that the 
more closely related to the IVV group that an oocyte is, the more likely it is to be viable). 
  



5. CLASSIFICATION TREE METHOD 
 

Classification trees or decision trees are a graphical representation of a set of rules used 

to classify data into categories. They are appropriate to use when one has a 2 or more 

level categorical variable as an outcome, with one or more variables as predictors. In 

general, we would use a classification tree to predict the class or outcome level of a 

number of observations within a dataset, based on the observed values of the predictor 

variables. In R, the default index for choosing the best split in the data (for classification) 

is the Gini index. The Gini index is a measure of impurity of a node (or a whole tree). 

The Gini impurity measure can be calculated in the following way (Kingsford, 2008): 

 

 

Within the Gini calculation, we are trying to classify items into m classes using a 

set of training items E. Let pi (i= 1,…,m) be the fraction of the items of E that belong to 

class i. Thus, the Gini index reaches an optimal value of zero when the set E contains 

items from only one class. Construction of a decision tree using this index can be broken 

down into a number of simple steps: 

1. The tree algorithm uses a training data set to build the tree, in other words, one 

needs to know the true outcomes in order to build a classification tree that can be 

used on other datasets drawn from the same population.  

2. The algorithm then uses the predictor variables to make the most optimal splits in 

the data. An optimal split is defined as using a variable to split the data from one 

group into two that provides the greatest differentiation between the different 

classes, separating them from one another as well as possible.  

Gini = 1�
mX

i=1

p2i .



3. The algorithm uses the most important variables to make splits in the data. If the 

observations in a specified branch of the tree contain a diverse group of classes, 

then the algorithm finds “the best” rule based on a single variable/feature to split 

that branch into two smaller branches. The quality of the split is again measured 

based upon a reduction in the Gini impurity measure. 

4. Only if every observation in the “branch” of the tree is from the same class, does 

the tree form a terminal node or leaf. 

5. One can invoke the minsplit argument in the rpart function of the package rpart 

(Therneau, 2015) for R (R Core Team, 2016) to indicate the minimum number of 

observations needed to make a split in the data (to mitigate overfitting and nodes 

with single observations). 

This process of actually using a tree to classify objects was aptly summarized in 

the following way: “In order to classify an object, we start at the root of the tree, evaluate 

the test, and take the branch appropriate to the outcome. The process continues until a 

leaf is encountered, at which time the object is asserted to belong to the class named by 

the leaf” (Quinlan, 1986). 

Within the framework of this project, the outcome or class variable is oocyte 

viability. A key advantage to a decision tree is that it provides a visual rule for 

distinguishing between viable and non-viable classifications, based again on the most 

differentially expressed genes (as was the case with our previous methods using the 

limma eBayes method). Again, the genes are the variables on which the tree is split, and 

while all genes have a chance of being chosen initially, the tree will chose the genes to 

split on that give the best split as calculated by the Gini Index (see Figure 5).  



 

 

Figure 5. A classification tree that was grown for the dataset; the splits are conducted 
based upon the gene expression values of the oocytes in the dataset. The resulting 
classification values of 0 and 1 refer to non-viable and viable respectably. Using the 
same example oocyte as in Figures 1, 2 and 4, we arrive at a classification of non-viable 
(shown in box above). 

 

  



6. SIMULATIONS  
	
  

In order to adequately compare the four previously summarized methods from 

Sections 2 through 5, simulations were conducted, in which datasets were generated and 

results were gathered for the four methods. As the goal was to determine how the 

methods compared to one another, the simulation was constructed as a function in R (see 

Appendix II) with the following five variables that could be altered to yield different 

situations for the simulated data:  

• n, the number of oocytes to be simulated 

• Pi, the mixing proportion for the mixture distribution of the IVM oocytes (i.e. the 

degree of similarity between the viable IVM group and the IVV group) 

• δ, the magnitude of differential expression for genes that are differentially 

expressed between IVM and IVV groups 

• WhichGenes, a given list of genes to be differentially expressed in the simulation 

• ProbViableIVM, the prior probability that any given IVM oocyte is viable  

 

At the start of a simulation, the function starts with the first of the n oocytes (for 

our project, n=100), and decides whether it will be generated as an IVV or IVM oocyte. 

This process is done randomly using a binomial generator with probability of IVV equal 

to 0.5. After maturation type is decided, we determine if the oocyte will be simulated as a 

viable oocyte or not. For the sake of the simulation, all IVV oocytes were given the 

viable class, while the probability that an IVM oocyte is deemed viable depends on the 

simulation variable “ProbViableIVM” (binomial distribution with probability of viable 

being equal to “ProbViableIVM”). After each of the oocytes has been assigned a 



maturation and viability type, the individual gene expression profiles for each oocyte are 

generated.  

Within the process of gene expression profile generation, the simulation function 

takes into account specific genes that the user wants to make sure are differentially 

expressed between viable and non-viable classes. The list of these gene names is to be 

supplied to the function by the user in the simulation argument “WhichGenes” (for our 

project, these were derived from the Isom data). For the genes identified as being 

differentially expressed, we then determine the degree of differential expression. Each 

named gene has its individual degree of differential expression, δi, which is generated 

randomly from a uniform distribution, with minimum equal to zero, and maximum equal 

to the absolute value of the user supplied variable δ (in our case, this is calculated as the 

median of the log fold-change for the differentially expressed genes from the Isom data). 

If the gene of interest is not included in the list of genes to be differentially expressed, δi 

is simply set to zero. Next, for each gene within the oocyte, we generate an expression 

value in the following manner: 

 
 
 

 
 
 

 
 
 

 
 
 

 

Degree of Differential Expression for Gene i = �i ⇠ U(0, �),

IV V Expression for Gene i = X ⇠ N(0, 1),

V iable IV M Expression for Gene i = � ⇤X + (1� �) ⇤ Y,

NonV iable IV M Expression for Gene i = Y ⇠ N(�i, 1),

� ⇠ Binom(1, P i).



The expression value for gene i of the oocyte is simply a random value from a 

standard normal distribution if the oocyte is an IVV oocyte. If the oocyte is a non-viable 

IVM oocyte, then the expression value for gene i is a random value from a normal 

distribution with mean equal to δi and standard deviation equal to one. If the oocyte is a 

viable IVM oocyte, then the expression level for gene i is a mixture of the two 

aforementioned distributions, with the mixing proportion, Pi, determining the degree of 

the mixture (i.e. the probability it will be more similar to the IVV group, see Figure 6). 

 

Figure 6. Example expression value distributions for IVV and Non-Viable IVM oocytes 
for gene i, such that δi is equal to three (for example purposes). The distribution of the 
Viable IVM oocyte expression value is represented as a mixture of the two above 
distributions. The proportion of the mixture is determined by the simulation argument Pi. 
In other words, the probability that an expression value for gene i in a Viable IVM oocyte 
will come from the IVV distribution is equal to Pi. 



 

For the purpose of this project, we have chosen only to vary the variables Pi and 

ProbViableIVM using the values 0.1, 0.3, 0.5, 0.7 and 0.9; all other variables remained 

constant throughout the simulations. Constant values and the list of differentially 

expressed genes came from the provided Isom data. We simply wished to see the effects 

of our mixing proportion as well as the probability of viable IVM oocytes, and how they 

affected our methods. Note, as we increase the mixing proportion, we are simply 

increasing the similarity between viable IVV and viable IVM oocytes within the 

simulation. When we increase the probability of viable IVMs, what we are doing is 

increasing the probability that a viable IVM oocyte is generated within our simulation set, 

as our oocyte number stayed constant across simulations. We note that this creates an 

imbalance in the group sizes, which we can then use to test how our methods handle such 

conditions. The support and resources from the Center for High Performance Computing 

at the University of Utah are gratefully acknowledged in providing the means of running 

the simulations (for a helpful tutorial, see Barton 2016). As the University of Utah system 

is set up for cluster computing, we were able to run 500 iterations at each simulation level 

in under 14 hours whereas it would have taken multiple days to compute the same 

amount on a traditional PC. 

In addition to gene expression data generation, the functions created for the 

simulations also compile results from our primary measures of interest for model 

evaluation, as averaged over 500 simulations: proportion correctly classified (PCC), 

sensitivity and specificity for each of the models. In this context, we define proportion 

correctly classified as the count of those oocytes that were classified as either being 



viable or non-viable when it was truly their respective viability status, divided by the total 

number of oocytes that were classified within the simulation (in this case 100). This was 

repeated 500 times and then averaged across each simulation level combination. A 

similar process was done for sensitivity and specificity. Sensitivity was defined as the 

count of correctly classified viable oocytes divided by the total number of viable oocytes, 

and specificity was defined as the count of correctly classified non-viable oocytes divided 

by the total number of non-viable oocytes. 

  



7. RESULTS 
 

On examining Figures 7 and 8 (as well as the full results summarized in  

Appendix I), we notice that in general, the tolerance method approach tends to outclass 

the other methods when looking at the proportion correctly classified (PCC).  A similar 

result is seen in Figures 9 and 10 when sensitivity is used as our measured outcome. In 

both outcomes, the tolerance interval approach scores roughly two to three percentage 

points higher on average (after averaging across 500 simulations at each mixing 

proportion by probability viable IVM combination) than the relatable wRMSD and 

distance kernel methods. In the aforementioned areas, the disparity between tolerance 

intervals and that of a decision tree are even more pronounced, as the decision tree looks 

to be simply lack-luster.  

Also, in reviewing Figure 7 and Figure 8, we note that it appears that the variable 

Pi (mixing proportion) seems to have very little effect on the method outcomes. We do 

see some slight changes in the slopes of the lines within the classification tree method in 

Figure 8 and Figure 9; however, nothing of major consequence that could accurately be 

attributed to the variable Pi. 



 
Figure 7. The Proportion Correctly Classified (PCC) of the different simulation 
combinations, as it specifically relates to the Mixing Proportion (Pi). The different line 
types, as well as the increasing depth of the blue color signify probability of a given 
IVM being viable across the four different methods.  

 

  



 

 
Figure 8.  The Proportion Correctly Classified (PCC) of the different simulation 
combinations, as it specifically relates to the Probability of a given IVM being viable. 
The different line types, as well as the increasing depth of the blue color signify the 
mixing proportion Pi across the four different methods. 
 
 



 
Figure 9.  The Sensitivity, or ability to correctly classify the viable oocytes of the 
different simulation combinations, as it specifically relates to the mixing proportion Pi. 
The different line types, as well as the increasing depth of the blue color signify the 
probability of a given IVM oocyte being viable across the four different methods. 
 
 



 
Figure 10.  The Sensitivity, or ability to correctly classify the viable oocytes of the 
different simulation combinations, as it specifically relates to the Probability of a given 
IVM being viable. The different line types, as well as the increasing depth of the blue 
color signify the mixing proportion Pi across the four different methods. 

 
 

Something to note is that, while it appears that the classification tree is greatly 

outclassed by these other three methods (specifically tolerance intervals), it does have 

situations where it outperforms all others, and in some ways, these situations may 

actually be quite valuable. In looking at the specificity of the methods (i.e. the ability of 

the methods to correctly classify non-viable oocytes) in Figure 11, classification trees 

actually outperform the other methods. This is an important feature, as part of our main 

goal was to establish a method that could identify both viable and non-viable oocytes.  

 
 



 

 
Figure 11.  The Specificity, or ability to correctly classify the non-viable oocytes of the 
different simulation combinations, as it specifically relates to the mixing proportion Pi. 
The different line types, as well as the increasing depth of the blue color signify the 
probability of a given IVM oocyte being viable across the four different methods. 

 
 

In Figure 11, it appears that as the mixing proportion (Pi) increases in the decision 

tree method, the harder time it has correctly classifying the non-viable samples. This 

would make sense, as we bring the two distributions closer together (see Figure 6), such 

that the IVV oocytes are appearing more similar to the IVM oocytes, and so the harder it 

would be to accurately separate them.  

 

 



 
Figure 12.  The Specificity, or ability to correctly classify the non-viable oocytes of the 
different simulation combinations, as it specifically relates to the Probability of a given 
IVM being viable. The different line types, as well as the increasing depth of the blue 
color signify the mixing proportion Pi across the four different methods. 

 
 
In Figure 12, we observe yet another interesting phenomenon. As the probability 

increases that any given IVM oocyte will be viable, it makes it increasingly difficult to 

correctly classify the non-viable samples, as it is simply more likely that any given 

oocyte will be viable than non-viable at that point. As the probability of any given IVM 

oocyte being viable increases, it creates more of dispersion between the group sample 

sizes, and one would expect a drop in the care that is given to oocytes of the lesser class. 

However, as we see in Figure 12, it appears as though the distance kernel and the 

tolerance interval methods actually get slightly better at classifying the non-viable IVM 



oocytes for the specificity measure, as the probability of viable IVM increases to its 

highest value.  

  



8. DISCUSSION  
 

Currently in the fields of cloning and embryology, researchers constantly run into 

complications and unplanned procedural failures due to the effects of low viability 

amongst oocytes derived in a laboratory setting. Non-viability of samples is a costly and 

unwanted outcome that is worth evaluating and attempting to mitigate. Past focus has 

been in evaluating origination methods and determining their ‘closeness’ to one another; 

specifically, the method’s proximity to IVV derived oocytes, the gold standard. While 

this may be a decent approach at evaluating origination methods, we claim that we can 

use alternate approaches to evaluate, and thereby later improve the quality of individual 

oocytes within a given method. With recent advances in gene expression technology, 

nutrient washes can be created in order to encourage the oocytes to express specific genes 

within a given origination method, thereby improving the viability and quality of the 

samples, while still retaining the flexibility of using the origination method of choice. 

While the goal was to identify methods that were best to use overall, we notice 

that we actually have a few different situations represented in the data, and as a result we 

get different “top methods” depending on the situation at hand. As noted above in Figures 

7 and 9, when looking at PCC and sensitivity, tolerance intervals seemed to always be the 

method that performed the best, however the kernel density p-value approach wasn’t far 

behind, with our modification of the published Kwon wRMSD method following shortly 

behind that. However, one reason that these methods could be performing so well in these 

result measurements (PCC and sensitivity), is that there is an imbalance of sample sizes. 

The viable oocyte group is consistently larger than the non-viable group, simply due to 

the nature of the probabilities, as all IVV oocytes are simulated as being viable, while an 



increasing number of IVM oocytes are counted as viable as the variable ProbIVMViable 

starts to increase. So, as a reiteration, as the variable ProbIVMViable increases, the 

disparity between the viable and non-viable group sizes starts to increase (note, when 

ProbIVMViable is set to 0.90, nearly all oocytes are in the viable group). It appears as 

though the classification tree method is more balanced and more immune to the effects of 

this imbalance in the data, as it appears to perform roughly equally across all groups, 

though it does still get swayed some as ProbIVMViable reaches higher values (see 

Figures 8, 10, and 12). So, if one is interested in a method that is more robust to the 

effects of imbalanced samples, or has a vested interest in the accuracy of identifying the 

non-viable samples (where they severely outperformed the other methods, see Figures 11 

and 12), classification trees may be the method to choose. If not, we would recommend 

the non-parametric tolerance interval approach based upon our calculated distance 

measure.  

At this point, we acknowledge the possible limitations of these simulations. First, 

we note that we have made a number of assumptions that we cannot fully prove with the 

resources at hand. First, we assume that oocytes that have gene expression profiles that 

are more like those of IVV oocytes are going to be more viable. Second, we assume the 

center of the observed IVV distribution to be the optimal gene expression profile. Third, 

we assume that the data provided to us from Dr. Isom is a representative sample of all 

IVV and IVM oocytes (viable and non-viable). Fourth, assumptions were made about the 

relative rates of viability in the different origination method groups based upon 

conversations with Dr. Isom, as he was our expert in the field. While these are a fair 

amount of assumptions, we did take precautions as to try to minimize their effects. The 



methods used were built or conceived in a way that they operate independent of oocyte 

origination method, they require no distributional assumptions of the oocyte data, and as 

demonstrated, do not require a complete balance of group sizes (though it may have 

yielded slightly different results had we forced this on the generated data).  

While overall the methods seemed to perform well in specific areas, there are 

some procedural aspects of these simulations that can be better handled. One such 

example is the techniques for handling missing values in the data. With oocyte data, 

when obtaining the gene expression profiles of the oocyte, we destroy the oocyte, thereby 

making it possible only to attempt to retrieve the profile once; if we miss a few values, 

we cannot go back and “re-observe” them. Hence, having a set method for handling 

missing values is advised. One recommendation could be to impute or borrow 

information from other similar oocytes in the same origination group. For the purposes of 

these simulations, if there was a missing value in the original Isom data, that value was 

simply omitted from the gene level calculations. Despite not being able to go back and 

“re-observe” the missing values, they were fairly infrequent (about 4.4% of the specific 

gene-level data) in the original dataset.  

Further method application and development is necessary in this field, as we 

showed how under the simulated circumstances that our three proposed methods 

consistently outperformed the previously published wRMSD method; however, our 

proposed methods were quite rudimentary or basic. More advanced classifiers such as 

Random Forest, neural networks, and the like, may end up doing a better job on these 

types of classification problems. But, also bear in mind, if the dataset has a large number 

of variables (such as genes here), then these other methods, while more complex and 



possibly better classifiers, may require a large increase in processing power and 

computing time.  
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APPENDIX I: FULL RESULTS 
Full Simulation Results: 500 iterations for each result number; the mean of the outcomes was recorded; see 
visualization in Figures 7-12. 
 

Result 
Number Pi 

Probability 
Viable IVM PCC Sensitivity Specificity Method 

1 0.1 0.1 0.55562 0.957686 0.06418214 wRMSD 
2 0.1 0.3 0.6442 0.9572701 0.06176947 wRMSD 
3 0.1 0.5 0.73368 0.9559364 0.06065979 wRMSD 
4 0.1 0.7 0.8216 0.9562596 0.06179166 wRMSD 
5 0.1 0.9 0.89254 0.9569693 0 wRMSD 
6 0.3 0.1 0.55408 0.9575066 0.06136217 wRMSD 
7 0.3 0.3 0.64334 0.9563099 0.06149518 wRMSD 
8 0.3 0.5 0.73326 0.9565633 0.05799724 wRMSD 
9 0.3 0.7 0.82716 0.9567615 0.08672111 wRMSD 

10 0.3 0.9 0.88568 0.9407172 0.1 wRMSD 
11 0.5 0.1 0.5547 0.9576374 0.06277166 wRMSD 
12 0.5 0.3 0.64462 0.9579131 0.06129233 wRMSD 
13 0.5 0.5 0.73454 0.9565436 0.06231212 wRMSD 
14 0.5 0.7 0.82184 0.9564298 0.06268898 wRMSD 
15 0.5 0.9 0.89 0.9514748 0.1 wRMSD 
16 0.7 0.1 0.5539 0.9577265 0.06433873 wRMSD 
17 0.7 0.3 0.64252 0.957133 0.05701877 wRMSD 
18 0.7 0.5 0.73436 0.9560838 0.0628393 wRMSD 
19 0.7 0.7 0.8213 0.9561947 0.08737186 wRMSD 
20 0.7 0.9 0.885 0.9514748 0 wRMSD 
21 0.9 0.1 0.5548 0.9583906 0.06224052 wRMSD 
22 0.9 0.3 0.64164 0.956466 0.05610936 wRMSD 
23 0.9 0.5 0.73422 0.9567238 0.0614104 wRMSD 
24 0.9 0.7 0.82104 0.9561652 0.05874454 wRMSD 
25 0.9 0.9 0.895 0.9569693 0.1 wRMSD 
26 0.1 0.1 0.58062 0.9648194 0.1113315 Distance Kernel 
27 0.1 0.3 0.65626 0.9640163 0.08360072 Distance Kernel 
28 0.1 0.5 0.74122 0.9634611 0.06880955 Distance Kernel 
29 0.1 0.7 0.8266 0.9629717 0.05768953 Distance Kernel 
30 0.1 0.9 0.90508 0.9677274 0.10152754 Distance Kernel 
31 0.3 0.1 0.5822 0.9649558 0.1146015 Distance Kernel 
32 0.3 0.3 0.65872 0.964505 0.08951383 Distance Kernel 
33 0.3 0.5 0.74284 0.9637019 0.07468482 Distance Kernel 
34 0.3 0.7 0.8287 0.964736 0.03139803 Distance Kernel 
35 0.3 0.9 0.90504 0.967727 0.1 Distance Kernel 
36 0.5 0.1 0.5845 0.9654879 0.1189987 Distance Kernel 



37 0.5 0.3 0.66078 0.9638159 0.09678404 Distance Kernel 
38 0.5 0.5 0.74372 0.9627725 0.08110845 Distance Kernel 
39 0.5 0.7 0.82366 0.9627791 0.07302354 Distance Kernel 
40 0.5 0.9 0.9 0.9622325 0.1 Distance Kernel 
41 0.7 0.1 0.57838 0.9665355 0.1072164 Distance Kernel 
42 0.7 0.3 0.66278 0.9641232 0.101658 Distance Kernel 
43 0.7 0.5 0.74662 0.9634287 0.09028951 Distance Kernel 
44 0.7 0.7 0.83046 0.9631017 0.08317705 Distance Kernel 
45 0.7 0.9 0.905 0.9622325 0.2 Distance Kernel 
46 0.9 0.1 0.58656 0.9651825 0.1237739 Distance Kernel 
47 0.9 0.3 0.66576 0.9640038 0.1102951 Distance Kernel 
48 0.9 0.5 0.74944 0.9638118 0.1003812 Distance Kernel 
49 0.9 0.7 0.83188 0.9624808 0.09573614 Distance Kernel 
50 0.9 0.9 0.915 0.967727 0.3 Distance Kernel 
51 0.1 0.1 0.57412 1 0.05354377 Tolerance Interval 
52 0.1 0.3 0.66158 1 0.03151418 Tolerance Interval 
53 0.1 0.5 0.7572 1 0.02256178 Tolerance Interval 
54 0.1 0.7 0.8516 0.9998506 0.01533592 Tolerance Interval 
55 0.1 0.9 0.93154 0.9947368 0.19783924 Tolerance Interval 
56 0.3 0.1 0.57496 1 0.05533945 Tolerance Interval 
57 0.3 0.3 0.6631 1 0.03570271 Tolerance Interval 
58 0.3 0.5 0.75788 1 0.02497714 Tolerance Interval 
59 0.3 0.7 0.8523 0.9998932 0.007981687 Tolerance Interval 
60 0.3 0.9 0.93722 0.9947368 0.1 Tolerance Interval 
61 0.5 0.1 0.57636 1 0.0582746 Tolerance Interval 
62 0.5 0.3 0.66428 1 0.03899848 Tolerance Interval 
63 0.5 0.5 0.75832 1 0.02703368 Tolerance Interval 
64 0.5 0.7 0.852 0.9998506 0.01754385 Tolerance Interval 
65 0.5 0.9 0.93 0.9947368 0.1 Tolerance Interval 
66 0.7 0.1 0.57334 1 0.05503084 Tolerance Interval 
67 0.7 0.3 0.66612 1 0.04427516 Tolerance Interval 
68 0.7 0.5 0.76036 1 0.03448108 Tolerance Interval 
69 0.7 0.7 0.8524 0.9998506 0.02123251 Tolerance Interval 
70 0.7 0.9 0.93 0.9947368 0.1 Tolerance Interval 
71 0.9 0.1 0.57794 1 0.06161823 Tolerance Interval 
72 0.9 0.3 0.66758 1 0.0481722 Tolerance Interval 
73 0.9 0.5 0.76126 1 0.03819451 Tolerance Interval 
74 0.9 0.7 0.85324 0.9998506 0.02712096 Tolerance Interval 
75 0.9 0.9 0.935 0.9947368 0.2 Tolerance Interval 
76 0.1 0.1 0.58964 0.6219182 0.5416533 Decision Tree 
77 0.1 0.3 0.59776 0.6867474 0.4256442 Decision Tree 



78 0.1 0.5 0.6455 0.7638124 0.2965806 Decision Tree 
79 0.1 0.7 0.75428 0.8573771 0.1840564 Decision Tree 
80 0.1 0.9 0.85754 0.9236677 0 Decision Tree 
81 0.3 0.1 0.59704 0.6274832 0.5505429 Decision Tree 
82 0.3 0.3 0.60888 0.6945525 0.4412472 Decision Tree 
83 0.3 0.5 0.67126 0.7789462 0.3412931 Decision Tree 
84 0.3 0.7 0.769 0.8631029 0.2185776 Decision Tree 
85 0.3 0.9 0.89519 0.9320175 0.1252257 Decision Tree 
86 0.5 0.1 0.60158 0.6321843 0.5556561 Decision Tree 
87 0.5 0.3 0.6267 0.7074931 0.4669443 Decision Tree 
88 0.5 0.5 0.68396 0.7861372 0.3645009 Decision Tree 
89 0.5 0.7 0.8287 0.8688106 0.2516531 Decision Tree 
90 0.5 0.9 0.87 0.9302729 0.08333333 Decision Tree 
91 0.7 0.1 0.60648 0.6372164 0.5610909 Decision Tree 
92 0.7 0.3 0.63342 0.7137988 0.4756032 Decision Tree 
93 0.7 0.5 0.68754 0.7883776 0.370693 Decision Tree 
94 0.7 0.7 0.77938 0.8686988 0.2524446 Decision Tree 
95 0.7 0.9 0.895 0.9411462 0.2142857 Decision Tree 
96 0.9 0.1 0.60816 0.6399419 0.5620293 Decision Tree 
97 0.9 0.3 0.63308 0.7134873 0.4764793 Decision Tree 
98 0.9 0.5 0.68412 0.7873414 0.3682815 Decision Tree 
99 0.9 0.7 0.77484 0.8677161 0.2423266 Decision Tree 

100 0.9 0.9 0.85 0.9283816 0.05 Decision Tree 
 

	
  
	
   	
  



APPENDIX II: R CODE 
	
  

library(tidyr) 
library(dplyr) 
library(tolerance) 
library(KernSmooth) 
library(ggplot2) 
library(mclust) 
library(rpart) 
library(limma) 
library(graphics) 
library(grDevices) 
library(methods) 
library(stats) 
library(utils) 
library(lattice) 
library(latticeExtra) 
library(RColorBrewer) 
 
#Read in the data# 
FunDat <- read.csv("dataDropped.csv") 
 
initiate <- function(x = FunDat){ 
  x$Log2.FC <- as.numeric(levels(x$Log2.FC))[x$Log2.FC] 
  #Create a single column key# 
  x <- x %>% arrange(Maturation, Mother, Oocyte) 
  x$OociteID <- x %>% unite(OocyteID, Maturation, Mother, 
Oocyte) 
  x$OocyteID <- x$OociteID$OocyteID 
  x <- x[,c(1,2,3,4,5,7)] 
  tableDat <- table(x$OocyteID) 
  numGenes <- max(tableDat) 
  goodIDs <- tableDat[tableDat == numGenes] 
  numOocytes <- length(goodIDs) 
  test <- as.vector(names(goodIDs)) 
  #Only oocytes with full profiles# 
  x <- x[ which(x$OocyteID %in% test), ] 
  x$GeneID <- rep(1:numGenes, numOocytes) 
  x$OocyteID <- rep(1:numOocytes, each = numGenes) 
  return(x) 
} 
 
FunDat <- initiate(FunDat) 
 
InitialGlean = function(dataset = FunDat){ 
  Obs <- as.data.frame(matrix(seq(max(dataset$GeneID,  



na.rm = T)), nrow=max(dataset$GeneID, na.rm = T), ncol = 
10)) 
  colnames(Obs) <- c("Mui NonViable", "SDi NonViable",  
"CVi NonViable", "absCVi NonViable", "wi NonViable",  
"Mui Viable", "SDi Viable", "CVi Viable", "absCVi Viable", 
"wi Viable") 
  subsetNonViable <- 0 
  subsetViable <- 0 
  ViabletestVals = matrix(NA, nrow = nrow(Obs), ncol = 1) 
  NonViabletestVals = matrix(NA, nrow = nrow(Obs),  
  ncol = 1) 
  for(j in (1:nrow(Obs))){ 
    subsetNonViable <- dataset$Log2.FC[ 
which(dataset$Viable == 0 & dataset$GeneID == j)] 
    Obs[j,1] <- mean(subsetNonViable, na.rm = TRUE)     
    Obs[j,2] <- sd(subsetNonViable, na.rm = TRUE) 
    Obs[j,3] <- (Obs[j,2]/Obs[j,1]) 
    Obs[j,4] <- abs(Obs[j,3]) 
     
    subsetViable <- dataset$Log2.FC[ which( 
      dataset$Viable == 1 & dataset$GeneID == j)] 
    Obs[j,6] <- mean(subsetViable, na.rm = TRUE)     
    Obs[j,7] <- sd(subsetViable, na.rm = TRUE) 
    Obs[j,8] <- (Obs[j,7]/Obs[j,6]) 
    Obs[j,9] <- abs(Obs[j,8]) 
  } 
  SumCV_NonViable <- sum(Obs$`absCVi NonViable`, na.rm = 
TRUE) 
  SumCV_Viable <- sum(Obs$`absCVi Viable`, na.rm = TRUE) 
  #Get the gene by gene weights for the group 
  Obs[,5] <- Obs[,4]/SumCV_NonViable 
  Obs[,10] <- Obs[,9]/SumCV_Viable 
  return(Obs) 
} 
 
wRMSD <- function(x = FunDat){ 
  Obs = InitialGlean(x) 
  dat <- as.data.frame(matrix(seq(max(x$OocyteID)), 
nrow=max(x$OocyteID), ncol = 4)) 
  colnames(dat) <- c("OocyteID", "Maturation", "Viable", 
"wRMSD") 
  #get viability for every Oocyte (58) 
  for(k in (1:nrow(dat))){ 
    for(l in (1:nrow(x))) 
      if(x$OocyteID[l] == k){ 
        dat[k,"Viable"] <- x$Viable[l] 
        if(dat[k,"Viable"] == 1){ 



          dat[k,"Viable"] = 0 
        } 
        else{ 
          dat[k,"Viable"] = 1 
        } 
      } 
  } 
  #get maturation type for every Oocyte (58) 
  for(k in (1:nrow(dat))){ 
    for(l in (1:nrow(x))) 
      if(x$OocyteID[l] == k){ 
        dat[k,"Maturation"] <- x$Maturation[l] 
      } 
  } 
  #for every Oocyte (58) 
  for(i in (1:nrow(dat))){ 
    SumValue <- 0 
    #for every Gene within Oocyte (69) 
    for(j in (1:nrow(Obs))){ 
      if(dat$Viable[i] == 0){ 
        Emi <- Obs[j,1] 
        Wi <- Obs[j,5] 
      } 
      else{ 
        Emi <- Obs[j,6] 
        Wi <- Obs[j,10] 
      } 
#if the log2FC is missing for the gene, don't do anything 
      if(is.na(x$Log2.FC[[ which(x$OocyteID == i &  
x$GeneID == j)]]) == 1){ 
      } 
      else{ 
        Ei <- x$Log2.FC[[ which(x$OocyteID == i &  
x$GeneID == j)]] 
        value <- Wi*(Emi - Ei)^2 
        SumValue <- SumValue + value 
      } 
    } 
    dat[i,"wRMSD"] <- sqrt(SumValue) 
  } 
  return(dat) 
} 
 
#The Function# 
wRMSDPvals <- function(dat = wRMSDdat){ 
  # Sort the data by wRMSD # 
  wRMSDdat <- dat[order(dat$wRMSD),] 



  wRMSDdat$Order <- c(1:nrow(wRMSDdat)) 
  e <- density(na.omit(wRMSDdat$wRMSD[wRMSDdat$Viable == 
1]), from = 0, to = 30, n=3000, bw = "SJ") 
  est2 <- approxfun(e) 
  NonViabledist <- wRMSDdat[wRMSDdat$Viable == 0, ] 
  Viabledist <- wRMSDdat[wRMSDdat$Viable == 1, ] 
  for(i in (1:nrow(wRMSDdat))){ 
    if(wRMSDdat$wRMSD[i] > max(Viabledist$wRMSD)){ 
      wRMSDdat$Pval[i] <- 0 
    } 
    else{ 
      temp <- (integrate(est2, 0, wRMSDdat$wRMSD[i], 
stop.on.error = FALSE, subdivisions = 200)) 
      wRMSDdat$Pval[i] <- 1 - temp$value 
    } 
    if(wRMSDdat$Pval[i] < 0){ 
      wRMSDdat$Pval[i] <- 0 
    } 
    if(wRMSDdat$Pval[i] > 1){ 
      wRMSDdat$Pval[i] <- 1 
    } 
  } 
  return(wRMSDdat) 
} 
 
distances <- function(x = FunDat){ 
  Obs = InitialGlean(x) 
  #Change the data format for the eBayes method 
  #Note Oocytes 1-29 are Maturation 1 (i.e. IVM), 30-58 are 
Maturation 2, (IVV) for the Isom data 
  #Use Viability for the simulated data, use maturation for 
the Isom data 
  y = arrange(x, Viable) 
  NumNonViable = nrow(y[y$Viable == 0,])/max(y$GeneID) 
  NumViable = nrow(y[y$Viable == 1,])/max(y$GeneID) 
  eBayesDat = spread(y[,c("Log2.FC","OocyteID","GeneID")], 
OocyteID, Log2.FC) 
  eBayesDat2 = eBayesDat[,-1] 
  groupLabels = as.factor(c(rep("NonViable", 
NumNonViable),rep("Viable", NumViable))) 
  design = model.matrix(~0 + groupLabels) 
  colnames(design) = levels(groupLabels) 
  xTemp = lmFit(eBayesDat2, design) 
  cont.matrix<-makeContrasts(NonViable-Viable, 
levels=design) 
  fit2<-contrasts.fit(xTemp, cont.matrix) 
  ebfit<-eBayes(fit2) 



  xTemp = topTable(ebfit, coef=1, number = nrow(xTemp)) 
  pvalTemp = cbind(row.names(xTemp),xTemp[,6]) 
  colnames(pvalTemp) = c("GeneID", "P-value") 
  #Select the differentially expressed Genes 
  sigPvalTemp = pvalTemp[pvalTemp[,2] < 0.05,] 
  for(i in 1:nrow(y)){ 
    if(is.element(y$GeneID[i], sigPvalTemp[,1])){ 
      y[i,"Log2.FC"] = y[i,"Log2.FC"] 
    } 
    else{ 
      y[i,"Log2.FC"] = NA 
    } 
  } 
  dat <- as.data.frame(matrix(seq(max(y$OocyteID)), 
nrow=max(y$OocyteID), ncol = 4)) 
  colnames(dat) <- c("OocyteID", "Maturation", "Viable", 
"Distances") 
  #get maturation type for every Oocyte (58) 
  for(k in (1:nrow(dat))){ 
    for(l in (1:nrow(y))) 
      if(y$OocyteID[l] == k){ 
        dat[k,"Maturation"] <- y$Maturation[l] 
      } 
  } 
  #get viability for every Oocyte (58) 
  for(k in (1:nrow(dat))){ 
    for(l in (1:nrow(y))) 
      if(y$OocyteID[l] == k){ 
        dat[k,"Viable"] <- y$Viable[l] 
        if(dat[k,"Viable"] == 1){ 
          dat[k,"Viable"] = 0 
        } 
        else{ 
          dat[k,"Viable"] = 1 
        } 
      } 
  } 
  #for every Oocyte (58) 
  for(i in (1:nrow(dat))){ 
    SumValue <- 0 
    #for every Gene within Oocyte (67) 
    for(j in (1:nrow(Obs))){ 
      # Compared to the IVV Gene Mean Expressions # 
      ViablegeneMeanExpr <- mean(y[which(y$Viable == 1 & 
y$GeneID == j), "Log2.FC"], na.rm = TRUE) 
      if(dat$Viable[i] == 0){ 
        Emi <- ViablegeneMeanExpr 



        Wi <- 1/Obs[j,"SDi NonViable"] 
      } 
      else{ 
        Emi <- ViablegeneMeanExpr 
        Wi <- 1/Obs[j,"SDi Viable"] 
      } 
      #if the log2FC is missing for the gene, don't do 
anything 
      if(is.na(y$Log2.FC[[ which(y$OocyteID == i &  
y$GeneID == j)]]) == 1){ } 
      else{ 
        Ei <- y$Log2.FC[[ which(y$OocyteID == i &  

y$GeneID == j)]] 
        value <- Wi*(Emi - Ei)^2 
        SumValue <- SumValue + value 
      } 
    } 
    dat[i,"Distances"] <- sqrt(SumValue) 
  } 
  return(dat) 
} 
 
DistancePvals <- function(dat = distData){ 
  # Sort the data by distances # 
  dat <- dat[order(dat$Distances),] 
  dat$Order <- c(1:nrow(dat)) 
   
  e <- density(na.omit(dat$Distances[dat$Viable == 1]), 
from = 0, to = 30, n=3000, bw = "SJ") 
  est2 <- approxfun(e) 
  NonViabledist <- dat[dat$Viable == 0, ] 
  Viabledist <- dat[dat$Viable == 1, ] 
  for(i in (1:nrow(dat))){ 
    if(dat$Distances[i] > max(Viabledist$Distances)){ 
      dat$Pval[i] <- 0 
    } 
    else{ 
      temp <- (integrate(est2, 0, dat$Distances[i])) 
      dat$Pval[i] <- 1 - temp$value 
    } 
    if(dat$Pval[i] < 0){ 
      dat$Pval[i] <- 0 
    } 
    if(dat$Pval[i] > 1){ 
      dat$Pval[i] <- 1 
    } 
  } 



    return(dat) 
} 
 
tolInt <- function(x = distFunDat){ 
  distFunDat <- distances(x) 
  Viabledist <- x[x$Viable == 1, ] 
  tolInterval <- nptol.int(Viabledist$Distances, alpha = 
.05, P = 0.95, side = 1) 
   
  return(tolInterval) 
} 
 
TreeFunc <- function(x = FunDat){ 
  #Reformat the data# 
  TreeDat <- x[,c("Gene","Viable","Log2.FC","OocyteID")] 
  TreeDat <- spread(TreeDat, Gene, Log2.FC)  
  ifelse(TreeDat$Viable == 1, TreeDat$Maturation <- 
"Viable", TreeDat$Maturation <- "Non-Viable") 
  cols <- as.formula(paste(colnames(TreeDat)[1], 
"~",paste(colnames(TreeDat)[c(3:ncol(TreeDat))], collapse = 
"+"), sep = "")) 
  #Grow Trees# 
  csv.cp=csv.rpartfull<-
rpart(cols,control=rpart.control(cp=0.0,minsplit=2),data=Tr
eeDat) 
  csv.cp.xval=rep(0,nrow(TreeDat)) 
  xvs=rep(1:10,length=nrow(TreeDat)) 
  xvs=sample(xvs) 
  data.cp.xval=rep(0,nrow(TreeDat)) 
  xvs=rep(1:10,length=nrow(TreeDat)) 
  xvs=sample(xvs) 
  for(i in 1:10){ 
    test=TreeDat[xvs==i,] 
    train=TreeDat[xvs!=i,] 
    glub=rpart(cols, control=rpart.control(cp=0.0, 
minsplit=2),data=train) 
    data.cp.xval[xvs==i]=predict(glub,test,type="class")} 
  #Use this for real data without vialbe/non-viable markers 
  
#data.cpconfuse.xval=table(TreeDat$Maturation,data.cp.xval) 
  #Use this for simulated data 
  data.cpconfuse.xval=table(TreeDat$Viable,data.cp.xval) 
  colnames(data.cpconfuse.xval) <- c("True Non-Viable", 
"True Viable") 
  rownames(data.cpconfuse.xval) <- c("Pred Non-Viable", 
"Pred Viable") 
  #Overall Error Rate# 



  #100-100*sum(diag(data.cpconfuse.xval))/nrow(TreeDat) 
  data.cpconfuse.xval 
  #plot(csv.cp, margin = 0.1, main = "4. Trimmed Decision 
Tree, Isom Data");text(csv.cp) 
   
  return(data.cpconfuse.xval) 
} 
 
DataSimulation = function(numOocytes, pi, delta, GeneNames, 
whichDEgenes, probabilityViableIVM, dat = eBayesDat2){ 
  #Error Checking# 
  if(pi > 1 | pi < 0) stop("pi, the mixing 
proportion/degree of similarity is invalid, must be between 
0 and 1 inclusive") 
  if(probabilityViableIVM > 1 | probabilityViableIVM < 0) 
stop("probabilityViableIVM is invalid, must be between 0 
and 1 inclusive") 
   
  #Oocyte Level# 
  # Note: Maturation = 0 means IVM, Maturation = 1 means 
IVV 
  Oocytes = as.data.frame(matrix(seq(1:numOocytes),  

nrow = numOocytes, ncol = 1)) 
  colnames(Oocytes) = "OocyteID" 
  Oocytes$Maturation = rbinom(numOocytes, size = 1,  

prob = 0.5) 
  for(i in 1:numOocytes){ 
    if(Oocytes$Maturation[i] == 1){ 
      Oocytes$Viable[i] = 1 
    } 
    else{ 
      Oocytes$Viable[i] = rbinom(1,1,probabilityViableIVM) 
    }} 
  while(nrow(Oocytes[Oocytes$Viable == 0,]) < 2){ 
    for(i in 1:numOocytes){ 
      if(Oocytes$Maturation[i] == 1){ 
        Oocytes$Viable[i] = 1 
      } 
      else{ 
        Oocytes$Viable[i] = 
rbinom(1,1,probabilityViableIVM) 
      }} 
    while(nrow(Oocytes[Oocytes$Viable == 1,]) < 2){ 
      for(i in 1:numOocytes){ 
        if(Oocytes$Maturation[i] == 1){ 
          Oocytes$Viable[i] = 1 
        } 



        else{ 
          Oocytes$Viable[i] = 
rbinom(1,1,probabilityViableIVM) 
        }} 
  } 
  } 
  #Gene Level# 
  #Setup# 
  GeneI = as.vector(matrix(NA, nrow = numOocytes,  

ncol = 1)) 
  for(j in 1:nrow(dat)){ 
    #j goes from 1 to number of genes 
    #This delta_i 
    if(is.element(j, whichDEgenes)){deltai =  

runif(1, min = 0, max = abs(delta))} 
    else{deltai = runif(1, min = 0, max = 0)} 
     
    #Oocyte Level Within Gene Level# 
    for(i in 1:numOocytes){ 
      #i goes from 1 to number of oocytes 
      #Gene Expression Distributions# 
      IVVdist = rnorm(1, mean = 0, sd = 1) 
      IVMdist = rnorm(1, mean = deltai, sd = 1) 
       
      IVVSample = IVVdist 
      comp = rbinom(1,1,pi) 
      IVMViableSample = comp*IVVdist + (1-comp)*IVMdist 
      IVMNonViableSample = IVMdist 
       
      if(Oocytes$Maturation[i] == 1){ 
        GeneI[i] = IVVSample 
      }  
      else{ 
        if(Oocytes$Viable[i] == 0){ 
          GeneI[i] = IVMNonViableSample 
        } 
        else{ 
          GeneI[i] = IVMViableSample 
        } 
      } 
    } 
    Oocytes = cbind(Oocytes, GeneI) 
    GeneNum = j 
    colnames(Oocytes) = 
c(colnames(Oocytes[,c(1:(ncol(Oocytes)-1))]), GeneNum) 
  } 
  Oocytes = gather(Oocytes, "GeneID", "Log2.FC", 4:70) 



  Oocytes = arrange(Oocytes, OocyteID) 
  Gene = as.vector(levels(FunDat$Gene)) 
  Oocytes = cbind(Oocytes, Gene) 
  Oocytes$GeneID = as.numeric(Oocytes$GeneID) 
  Oocytes$Viable = as.factor(Oocytes$Viable) 
  return(Oocytes) 
} 
 
wRMSDres = function(dat){ 
  temp = wRMSD(dat) 
  temp = wRMSDPvals(temp) 
  Results = as.data.frame(matrix(NA, nrow = 1, ncol = 4)) 
  colnames(Results) = 
c("M1negneg","M1negpos","M1posneg","M1pospos") 
  Results$M1negneg = nrow(temp[temp$Viable == 0 &  

temp$Pval < 0.05,]) 
  Results$M1negpos = nrow(temp[temp$Viable == 0 &  

temp$Pval >= 0.05,]) 
  Results$M1posneg = nrow(temp[temp$Viable == 1 &  

temp$Pval < 0.05,]) 
  Results$M1pospos = nrow(temp[temp$Viable == 1 &  

temp$Pval >= 0.05,]) 
  Results$M1PCC = (Results$M1negneg + 
Results$M1pospos)/(Results$M1negneg + Results$M1negpos + 
Results$M1posneg + Results$M1pospos) 
  Results$M1Sens = (Results$M1pospos)/(Results$M1posneg + 
Results$M1pospos) 
  Results$M1Spec = (Results$M1negneg)/(Results$M1negneg + 
Results$M1negpos) 
  return(Results) 
} 
 
distancesRes = function(dat){ 
  temp = distances(dat) 
  temp = DistancePvals(temp) 
  Results = as.data.frame(matrix(NA, nrow = 1, ncol = 4)) 
  colnames(Results) = 
c("M2negneg","M2negpos","M2posneg","M2pospos") 
  Results$M2negneg = nrow(temp[temp$Viable == 0 &  

temp$Pval < 0.05,]) 
  Results$M2negpos = nrow(temp[temp$Viable == 0 &  

temp$Pval >= 0.05,]) 
  Results$M2posneg = nrow(temp[temp$Viable == 1 &  

temp$Pval < 0.05,]) 
  Results$M2pospos = nrow(temp[temp$Viable == 1 &  

temp$Pval >= 0.05,]) 



  Results$M2PCC = (Results$M2negneg + 
Results$M2pospos)/(Results$M2negneg + Results$M2negpos + 
Results$M2posneg + Results$M2pospos) 
  Results$M2Sens = (Results$M2pospos)/(Results$M2posneg + 
Results$M2pospos) 
  Results$M2Spec = (Results$M2negneg)/(Results$M2negneg + 
Results$M2negpos) 
  return(Results) 
} 
 
tolIntRes = function(dat){ 
  tempDist = distances(dat) 
  temp = as.data.frame(tolInt(tempDist)) 
  Results = as.data.frame(matrix(NA, nrow = 1, ncol = 4)) 
  colnames(Results) = 
c("M3negneg","M3negpos","M3posneg","M3pospos") 
  Results$M3negneg = nrow(tempDist[tempDist$Viable == 0 & 
tempDist$Distances > temp[1,4],]) 
  Results$M3negpos = nrow(tempDist[tempDist$Viable == 0 & 
tempDist$Distances <= temp[1,4],]) 
  Results$M3posneg = nrow(tempDist[tempDist$Viable == 1 & 
tempDist$Distances > temp[1,4],]) 
  Results$M3pospos = nrow(tempDist[tempDist$Viable == 1 & 
tempDist$Distances <= temp[1,4],]) 
  Results$M3PCC = (Results$M3negneg + 
Results$M3pospos)/(Results$M3negneg + Results$M3negpos + 
Results$M3posneg + Results$M3pospos) 
  Results$M3Sens = (Results$M3pospos)/(Results$M3posneg + 
Results$M3pospos) 
  Results$M3Spec = (Results$M3negneg)/(Results$M3negneg + 
Results$M3negpos) 
  return(Results) 
} 
 
treeFuncRes = function(dat){ 
  temp = TreeFunc(dat) 
  temp = as.data.frame(temp) 
  Results = as.data.frame(matrix(NA, nrow = 1, ncol = 4)) 
  colnames(Results) = c("M4negneg","M4posneg","M4negpos", 
"M4pospos") 
  Results$M4negneg = temp$Freq[1] 
  Results$M4negpos = temp$Freq[2] 
  Results$M4posneg = temp$Freq[3] 
  Results$M4pospos = temp$Freq[4] 
  Results$M4PCC = (Results$M4negneg + 
Results$M4pospos)/(Results$M4negneg + Results$M4negpos + 
Results$M4posneg + Results$M4pospos) 



  Results$M4Sens = (Results$M4pospos)/(Results$M4posneg + 
Results$M4pospos) 
  Results$M4Spec = (Results$M4negneg)/(Results$M4negneg + 
Results$M4negpos) 
  return(Results) 
} 
 
SimulationRes = function(NumItterations = 100, Dat = 
FunDat){ 
  #Simulations# 
  #We will keep delta and proportionDEgenes constant for 
this project# 
  #delta should be found by looking at the log fold change 
of the eBayes (observed) data and take the median 
  #proportionDEgenes should be found by looking at the 
multiple-testing adjusted p-values of the eBayes (observed)  
  #data and noting the total number of genes that have a p-
value of <0.05, divided by total number of genes in 
dataset. 
   
  # The Check for delta # 
  #Note Oocytes 1-29 are Maturation 1 (i.e. IVM), 30-58 are 
Maturation 2, (IVV) 
  #Change the data format for the eBayes method 
  eBayesDat = spread(Dat[,c(5,6,7,1)], OocyteID, Log2.FC) 
#"Log2.FC","OocyteID","GeneID","Gene" 
  Genes = as.character(eBayesDat[,"Gene"]) 
  eBayesDat2 = eBayesDat[,-c(1,2)] 
  groupLabels = as.factor(c(rep("IVV", 
ncol(eBayesDat2)/2),rep("IVM", ncol(eBayesDat2)/2))) 
  design = model.matrix(~0 + groupLabels) 
  colnames(design) = levels(groupLabels) 
  fit = lmFit(eBayesDat2, design) 
  cont.matrix<-makeContrasts(IVM-IVV, levels=design) 
  fit2<-contrasts.fit(fit, cont.matrix) 
  ebfit<-eBayes(fit2) 
  #Get the Log-fold change of the eBayes data (ebfit) and 
take median of differentially expressed genes to find delta 
  tempTab = topTable(ebfit, coef=1, number=30) 
   
  Delta = median(tempTab[tempTab$adj.P.Val < 0.05,"logFC"])   
   
  # The Check for proportionDEgenes # 
  ProportionDEgenes = nrow(tempTab[tempTab$adj.P.Val < 
0.05,])/nrow(eBayesDat) 
  #Identify Which Genes 
  DEgenes = row.names(tempTab[tempTab$adj.P.Val < 0.05,]) 



   
  #Set up pi and proportion Viable IVM to loop over various 
values 
  Pi = as.vector(c(0.1, 0.3, 0.5, 0.7, 0.9)) 
  ProbabilityViableIVM = as.vector(c(0.1, 0.3, 0.5, 0.7, 
0.9)) 
   
  #Result matricies 
  pcc1 = matrix(NA, nrow = length(Pi), ncol = 
length(ProbabilityViableIVM)) 
  pcc2 = matrix(NA, nrow = length(Pi), ncol = 
length(ProbabilityViableIVM)) 
  pcc3 = matrix(NA, nrow = length(Pi), ncol = 
length(ProbabilityViableIVM)) 
  pcc4 = matrix(NA, nrow = length(Pi), ncol = 
length(ProbabilityViableIVM)) 
   
  sens1 = matrix(NA, nrow = length(Pi), ncol = 
length(ProbabilityViableIVM)) 
  sens2 = matrix(NA, nrow = length(Pi), ncol = 
length(ProbabilityViableIVM)) 
  sens3 = matrix(NA, nrow = length(Pi), ncol = 
length(ProbabilityViableIVM)) 
  sens4 = matrix(NA, nrow = length(Pi), ncol = 
length(ProbabilityViableIVM)) 
   
  spec1 = matrix(NA, nrow = length(Pi), ncol = 
length(ProbabilityViableIVM)) 
  spec2 = matrix(NA, nrow = length(Pi), ncol = 
length(ProbabilityViableIVM)) 
  spec3 = matrix(NA, nrow = length(Pi), ncol = 
length(ProbabilityViableIVM)) 
  spec4 = matrix(NA, nrow = length(Pi), ncol = 
length(ProbabilityViableIVM)) 
   
  #Data Generation and Results 
  for(i in 1:length(Pi)){ 
    for(j in 1:length(ProbabilityViableIVM)){ 
      r1 = r2 = r3 = r4 = as.data.frame(matrix(NA, nrow = 
NumItterations, ncol = 7)) #should have the the confusion 
matrix results (4) in addition to pcc, sens, spec, etc. 
      for(k in 1:NumItterations){ 
        data <- DataSimulation(numOocytes = 100, pi = 
Pi[i], delta = Delta, GeneNames = Genes, whichDEgenes = 
DEgenes, probabilityViableIVM = ProbabilityViableIVM[j], 
dat = eBayesDat2) 



        while(nrow(data[data$Viable == 0,]) < 
2*length(Genes)){ 
          data <- DataSimulation(numOocytes = 100, pi = 
Pi[i], delta = Delta, GeneNames = Genes, whichDEgenes = 
DEgenes, probabilityViableIVM = ProbabilityViableIVM[j], 
dat = eBayesDat2) 
        } 
        r1[k,] = wRMSDres(data) 
        r2[k,] = distancesRes(data) 
        r3[k,] = tolIntRes(data) 
        r4[k,] = treeFuncRes(data) 
      } 
      #Rows are pi values, columns are probabilityViableIVM 
      temp = apply(r1[,c(5:7)], 2, mean) 
      pcc1[i,j] = temp[1] 
      sens1[i,j] = temp[2] 
      spec1[i,j] = temp[3] 
       
      temp = apply(r2[,c(5:7)], 2, mean) 
      pcc2[i,j] = temp[1] 
      sens2[i,j] = temp[2] 
      spec2[i,j] = temp[3] 
       
       
      temp = apply(r3[,c(5:7)], 2, mean) 
      pcc3[i,j] = temp[1] 
      sens3[i,j] = temp[2] 
      spec3[i,j] = temp[3] 
       
       
      temp = apply(r4[,c(5:7)], 2, mean) 
      pcc4[i,j] = temp[1] 
      sens4[i,j] = temp[2] 
      spec4[i,j] = temp[3] 
    } 
  } 
  SimulationResults = list(pcc1, pcc2, pcc3, pcc4, sens1, 
sens2, sens3, sens4, spec1, spec2, spec3, spec4) 
  return(SimulationResults) 
} 

 
set.seed(122816) 
source("~/Documents/Current 
Classes/Research/FunctionSource.R") 
start = proc.time() 
example = SimulationRes(NumItterations = 500, Dat = FunDat) 
end = proc.time() 



totalTime = end-start 
 
temp = as.data.frame(matrix(NA, nrow = 25, ncol = 1)) 
temp$Pi = c(rep(0.1, 5),rep(0.3, 5),rep(0.5, 5),rep(0.7, 
5),rep(0.9, 5) ) 
temp$ProbViableIVM = c(rep(c(0.1, 0.3, 0.5, 0.7, 0.9), 5)) 
temp = temp[,-1] 
count = 1 
Method = list(NA) 
for(l in 1:4){ 
for(i in 1:nrow(Results[[l]])){ 
  for(j in 1:ncol(Results[[l]])){ 
    temp$PCC[count] = Results[[l]][i,j] 
    count = count + 1 
  } 
} 
count = 1 
for(i in 1:nrow(Results[[l+4]])){ 
  for(j in 1:ncol(Results[[l+4]])){ 
    temp$Sens[count] = Results[[l+4]][i,j] 
    count = count + 1 
  } 
} 
count = 1 
for(i in 1:nrow(Results[[l+8]])){ 
  for(j in 1:ncol(Results[[l+8]])){ 
    temp$Spec[count] = Results[[l+8]][i,j] 
    count = count + 1 
  } 
} 
 
Method[[l]] = temp 
temp = as.data.frame(matrix(NA, nrow = 25, ncol = 1)) 
temp$Pi = c(rep(0.1, 5),rep(0.3, 5),rep(0.5, 5),rep(0.7, 
5),rep(0.9, 5) ) 
temp$ProbViableIVM = c(rep(c(0.1, 0.3, 0.5, 0.7, 0.9), 5)) 
temp = temp[,-1] 
count = 1 
} 
Method[[1]]$Method = as.factor(rep("wRMSD",25)) 
Method[[2]]$Method = as.factor(rep("Distance Kernel",25)) 
Method[[3]]$Method = as.factor(rep("Tolerance 
Interval",25)) 
Method[[4]]$Method = as.factor(rep("Decision Tree",25)) 
 
temp = rbind(Method[[1]], Method[[2]], Method[[3]], 
Method[[4]]) 



 
#PCC by Pi 
Prob1 = temp[seq(1,100,5),] 
mypanel <- function(x, y) { 
       panel.superpose(x, y, groups = 
as.factor(Prob1$ProbViableIVM), type = "o", subscripts = 
as.factor(Prob1$ProbViableIVM),lty = 1, col = 
brewer.pal(9,"Blues")[3])   
       panel.grid(h=-1, v=-1) 
   } 
plot1 = xyplot(Prob1$PCC~Prob1$Pi|Prob1$Method, xlab = "Pi, 
Mixing Proportion", ylab = "Proportion Correctly 
Classified", panel = mypanel, ylim = c(0.5,1.0), main= 
"Plot of PCC by Pi, Probability IVM Viable, and Method", 
               key=list(columns=5,  
                        text=list(lab=c("ProbIVMViable = 
0.1","0.3","0.5","0.7","0.9")), 
                        lines=list(lty = c(1,2,3,4,5), col 
= c(brewer.pal(9,"Blues")[3], brewer.pal(9,"Blues")[5], 
brewer.pal(9,"Blues")[7], brewer.pal(9,"Blues")[8], 
brewer.pal(9,"Blues")[9]), lwd = 2))) 
 
Prob2 = temp[seq(2,100,5),] 
mypanel <- function(x, y) { 
  panel.superpose(x, y, groups = 
as.factor(Prob2$ProbViableIVM), type = "o", subscripts = 
as.factor(Prob2$ProbViableIVM),lty = 2, col = 
brewer.pal(9,"Blues")[5], lwd = 2)   
  panel.grid(h=-1, v=-1) 
} 
plot2 = xyplot(Prob2$PCC~Prob2$Pi|Prob1$Method, panel = 
mypanel) 
 
Prob3 = temp[seq(3,100,5),] 
mypanel <- function(x, y) { 
  panel.superpose(x, y, groups = 
as.factor(Prob3$ProbViableIVM), type = "o", subscripts = 
as.factor(Prob3$ProbViableIVM),lty = 3, col = 
brewer.pal(9,"Blues")[7], lwd = 2)   
  panel.grid(h=-1, v=-1) 
} 
plot3 = xyplot(Prob3$PCC~Prob3$Pi|Prob1$Method, panel = 
mypanel) 
 
Prob4 = temp[seq(4,100,5),] 
mypanel <- function(x, y) { 



  panel.superpose(x, y, groups = 
as.factor(Prob4$ProbViableIVM), type = "o", subscripts = 
as.factor(Prob4$ProbViableIVM),lty = 4, col = 
brewer.pal(9,"Blues")[8], lwd = 2)   
  panel.grid(h=-1, v=-1) 
} 
plot4 = xyplot(Prob4$PCC~Prob4$Pi|Prob1$Method, panel = 
mypanel) 
 
Prob5 = temp[seq(5,100,5),] 
mypanel <- function(x, y) { 
  panel.superpose(x, y, groups = 
as.factor(Prob5$ProbViableIVM), type = "o", subscripts = 
as.factor(Prob5$ProbViableIVM),lty = 5, col = 
brewer.pal(9,"Blues")[9], lwd = 2)   
  panel.grid(h=-1, v=-1) 
} 
plot5 = xyplot(Prob5$PCC~Prob5$Pi|Prob1$Method, panel = 
mypanel) 
 
FinalPlot1 = 
plot1+as.layer(plot2)+as.layer(plot3)+as.layer(plot4)+as.la
yer(plot5) 
 
 
#PCC by ProbIVMViable 
Prob1 = temp[c(1:5,26:30,51:55,76:80),] 
mypanel <- function(x, y) { 
  panel.superpose(x, y, groups = as.factor(Prob1$Pi), type 
= "o", subscripts = as.factor(Prob1$Pi),lty = 1, col = 
brewer.pal(9,"Blues")[3])   
  panel.grid(h=-1, v=-1) 
} 
plot1 = xyplot(Prob1$PCC~Prob1$ProbViableIVM|Prob1$Method, 
xlab = "Probability Viable IVM", ylab = "Proportion 
Correctly Classified", panel = mypanel, ylim = c(0.5,1.0), 
main= "Plot of PCC by Probability IVMViable, Pi and 
Method", 
               key=list(columns=5,  
                        text=list(lab=c("Pi = 
0.1","0.3","0.5","0.7","0.9")), 
                        lines=list(lty = c(1,2,3,4,5), col 
= c(brewer.pal(9,"Blues")[3], brewer.pal(9,"Blues")[5], 
brewer.pal(9,"Blues")[7], brewer.pal(9,"Blues")[8], 
brewer.pal(9,"Blues")[9]), lwd = 2))) 
 
 



Prob2 = temp[c(6:10,31:35,56:60,81:85),] 
mypanel <- function(x, y) { 
  panel.superpose(x, y, groups = as.factor(Prob2$Pi), type 
= "o", subscripts = as.factor(Prob2$Pi),lty = 2, col = 
brewer.pal(9,"Blues")[5], lwd = 2)   
  panel.grid(h=-1, v=-1) 
} 
plot2 = xyplot(Prob2$PCC~Prob2$ProbViableIVM|Prob1$Method, 
panel = mypanel) 
 
Prob3 = temp[c(11:15,36:40,61:65,86:90),] 
mypanel <- function(x, y) { 
  panel.superpose(x, y, groups = as.factor(Prob3$Pi), type 
= "o", subscripts = as.factor(Prob3$Pi),lty = 3, col = 
brewer.pal(9,"Blues")[7], lwd = 2)   
  panel.grid(h=-1, v=-1) 
} 
plot3 = xyplot(Prob3$PCC~Prob3$ProbViableIVM|Prob1$Method, 
panel = mypanel) 
 
Prob4 = temp[c(16:20,41:45,66:70,91:95),] 
mypanel <- function(x, y) { 
  panel.superpose(x, y, groups = as.factor(Prob4$Pi), type 
= "o", subscripts = as.factor(Prob4$Pi),lty = 4, col = 
brewer.pal(9,"Blues")[8], lwd = 2)   
  panel.grid(h=-1, v=-1) 
} 
plot4 = xyplot(Prob4$PCC~Prob4$ProbViableIVM|Prob1$Method, 
panel = mypanel) 
 
Prob5 = temp[c(21:25,46:50,71:75,96:100),] 
mypanel <- function(x, y) { 
  panel.superpose(x, y, groups = as.factor(Prob5$Pi), type 
= "o", subscripts = as.factor(Prob5$Pi),lty = 5, col = 
brewer.pal(9,"Blues")[9], lwd = 2)   
  panel.grid(h=-1, v=-1) 
} 
plot5 = xyplot(Prob5$PCC~Prob5$ProbViableIVM|Prob1$Method, 
panel = mypanel) 
 
FinalPlot2 = 
plot1+as.layer(plot2)+as.layer(plot3)+as.layer(plot4)+as.la
yer(plot5) 
 
#Sens by Pi 
Prob1 = temp[seq(1,100,5),] 
mypanel <- function(x, y) { 



  panel.superpose(x, y, groups = 
as.factor(Prob1$ProbViableIVM), type = "o", subscripts = 
as.factor(Prob1$ProbViableIVM),lty = 1, col = 
brewer.pal(9,"Blues")[3])   
  panel.grid(h=-1, v=-1) 
} 
plot1 = xyplot(Prob1$Sens~Prob1$Pi|Prob1$Method, xlab = 
"Pi, Mixing Proportion", ylab = "Sensitivity", panel = 
mypanel, ylim = c(0.6,1.1), main= "Plot of Sensitivity by 
Pi, Probability IVM Viable and Method", 
               key=list(columns=5,  
                        text=list(lab=c("ProbIVMViable = 
0.1","0.3","0.5","0.7","0.9")), 
                        lines=list(lty = c(1,2,3,4,5), col 
= c(brewer.pal(9,"Blues")[3], brewer.pal(9,"Blues")[5], 
brewer.pal(9,"Blues")[7], brewer.pal(9,"Blues")[8], 
brewer.pal(9,"Blues")[9]), lwd = 2))) 
 
Prob2 = temp[seq(2,100,5),] 
mypanel <- function(x, y) { 
  panel.superpose(x, y, groups = 
as.factor(Prob2$ProbViableIVM), type = "o", subscripts = 
as.factor(Prob2$ProbViableIVM),lty = 2, col = 
brewer.pal(9,"Blues")[5], lwd = 2)   
  panel.grid(h=-1, v=-1) 
} 
plot2 = xyplot(Prob2$Sens~Prob2$Pi|Prob1$Method, panel = 
mypanel) 
 
Prob3 = temp[seq(3,100,5),] 
mypanel <- function(x, y) { 
  panel.superpose(x, y, groups = 
as.factor(Prob3$ProbViableIVM), type = "o", subscripts = 
as.factor(Prob3$ProbViableIVM),lty = 3, col = 
brewer.pal(9,"Blues")[7], lwd = 2)   
  panel.grid(h=-1, v=-1) 
} 
plot3 = xyplot(Prob3$Sens~Prob3$Pi|Prob1$Method, panel = 
mypanel) 
 
Prob4 = temp[seq(4,100,5),] 
mypanel <- function(x, y) { 
  panel.superpose(x, y, groups = 
as.factor(Prob4$ProbViableIVM), type = "o", subscripts = 
as.factor(Prob4$ProbViableIVM),lty = 4, col = 
brewer.pal(9,"Blues")[8], lwd = 2)   
  panel.grid(h=-1, v=-1) 



} 
plot4 = xyplot(Prob4$Sens~Prob4$Pi|Prob1$Method, panel = 
mypanel) 
 
Prob5 = temp[seq(5,100,5),] 
mypanel <- function(x, y) { 
  panel.superpose(x, y, groups = 
as.factor(Prob5$ProbViableIVM), type = "o", subscripts = 
as.factor(Prob5$ProbViableIVM),lty = 5, col = 
brewer.pal(9,"Blues")[9], lwd = 2)   
  panel.grid(h=-1, v=-1) 
} 
plot5 = xyplot(Prob5$Sens~Prob5$Pi|Prob1$Method, panel = 
mypanel) 
 
FinalPlot3 = 
plot1+as.layer(plot2)+as.layer(plot3)+as.layer(plot4)+as.la
yer(plot5) 
 
 
#Sens by ProbIVMViable 
Prob1 = temp[c(1:5,26:30,51:55,76:80),] 
mypanel <- function(x, y) { 
  panel.superpose(x, y, groups = as.factor(Prob1$Pi), type 
= "o", subscripts = as.factor(Prob1$Pi),lty = 1, col = 
brewer.pal(9,"Blues")[3])   
  panel.grid(h=-1, v=-1) 
} 
plot1 = xyplot(Prob1$Sens~Prob1$ProbViableIVM|Prob1$Method, 
xlab = "Probability Viable IVM", ylab = "Sensitivity", 
panel = mypanel, ylim = c(0.6,1.1), main= "Plot of 
Sensitivity by Pi, Probability IVM Viable, and Method", 
               key=list(columns=5,  
                        text=list(lab=c("Pi = 
0.1","0.3","0.5","0.7","0.9")), 
                        lines=list(lty = c(1,2,3,4,5), col 
= c(brewer.pal(9,"Blues")[3], brewer.pal(9,"Blues")[5], 
brewer.pal(9,"Blues")[7], brewer.pal(9,"Blues")[8], 
brewer.pal(9,"Blues")[9]), lwd = 2))) 
 
 
Prob2 = temp[c(6:10,31:35,56:60,81:85),] 
mypanel <- function(x, y) { 
  panel.superpose(x, y, groups = as.factor(Prob2$Pi), type 
= "o", subscripts = as.factor(Prob2$Pi),lty = 2, col = 
brewer.pal(9,"Blues")[5], lwd = 2)   
  panel.grid(h=-1, v=-1) 



} 
plot2 = xyplot(Prob2$Sens~Prob2$ProbViableIVM|Prob1$Method, 
panel = mypanel) 
 
Prob3 = temp[c(11:15,36:40,61:65,86:90),] 
mypanel <- function(x, y) { 
  panel.superpose(x, y, groups = as.factor(Prob3$Pi), type 
= "o", subscripts = as.factor(Prob3$Pi),lty = 3, col = 
brewer.pal(9,"Blues")[7], lwd = 2)   
  panel.grid(h=-1, v=-1) 
} 
plot3 = xyplot(Prob3$Sens~Prob3$ProbViableIVM|Prob1$Method, 
panel = mypanel) 
 
Prob4 = temp[c(16:20,41:45,66:70,91:95),] 
mypanel <- function(x, y) { 
  panel.superpose(x, y, groups = as.factor(Prob4$Pi), type 
= "o", subscripts = as.factor(Prob4$Pi),lty = 4, col = 
brewer.pal(9,"Blues")[8], lwd = 2)   
  panel.grid(h=-1, v=-1) 
} 
plot4 = xyplot(Prob4$Sens~Prob4$ProbViableIVM|Prob1$Method, 
panel = mypanel) 
 
Prob5 = temp[c(21:25,46:50,71:75,96:100),] 
mypanel <- function(x, y) { 
  panel.superpose(x, y, groups = as.factor(Prob5$Pi), type 
= "o", subscripts = as.factor(Prob5$Pi),lty = 5, col = 
brewer.pal(9,"Blues")[9], lwd = 2)   
  panel.grid(h=-1, v=-1) 
} 
plot5 = xyplot(Prob5$Sens~Prob5$ProbViableIVM|Prob1$Method, 
panel = mypanel) 
 
FinalPlot4 = 
plot1+as.layer(plot2)+as.layer(plot3)+as.layer(plot4) 
+as.layer(plot5) 
 
#Spec by Pi 
Prob1 = temp[seq(1,100,5),] 
mypanel <- function(x, y) { 
  panel.superpose(x, y, groups = 
as.factor(Prob1$ProbViableIVM), type = "o", subscripts = 
as.factor(Prob1$ProbViableIVM),lty = 1, col = 
brewer.pal(9,"Blues")[3])   
  panel.grid(h=-1, v=-1) 
} 



plot1 = xyplot(Prob1$Spec~Prob1$Pi|Prob1$Method, xlab = 
"Pi, Mixing Proportion", ylab = "Specificity", panel = 
mypanel, ylim = c(0,0.6), main= "Plot of Specificity by Pi, 
Probability IVM Viable and Method", 
               key=list(columns=5,  
                        text=list(lab=c("ProbIVMViable = 
0.1","0.3","0.5","0.7","0.9")), 
                        lines=list(lty = c(1,2,3,4,5), col 
= c(brewer.pal(9,"Blues")[3], brewer.pal(9,"Blues")[5], 
brewer.pal(9,"Blues")[7], brewer.pal(9,"Blues")[8], 
brewer.pal(9,"Blues")[9]), lwd = 2))) 
 
Prob2 = temp[seq(2,100,5),] 
mypanel <- function(x, y) { 
  panel.superpose(x, y, groups = 
as.factor(Prob2$ProbViableIVM), type = "o", subscripts = 
as.factor(Prob2$ProbViableIVM),lty = 2, col = 
brewer.pal(9,"Blues")[5], lwd = 2)   
  panel.grid(h=-1, v=-1) 
} 
plot2 = xyplot(Prob2$Spec~Prob2$Pi|Prob1$Method, panel = 
mypanel) 
 
Prob3 = temp[seq(3,100,5),] 
mypanel <- function(x, y) { 
  panel.superpose(x, y, groups = 
as.factor(Prob3$ProbViableIVM), type = "o", subscripts = 
as.factor(Prob3$ProbViableIVM),lty = 3, col = 
brewer.pal(9,"Blues")[7], lwd = 2)   
  panel.grid(h=-1, v=-1) 
} 
plot3 = xyplot(Prob3$Spec~Prob3$Pi|Prob1$Method, panel = 
mypanel) 
 
Prob4 = temp[seq(4,100,5),] 
mypanel <- function(x, y) { 
  panel.superpose(x, y, groups = 
as.factor(Prob4$ProbViableIVM), type = "o", subscripts = 
as.factor(Prob4$ProbViableIVM),lty = 4, col = 
brewer.pal(9,"Blues")[8], lwd = 2)   
  panel.grid(h=-1, v=-1) 
} 
plot4 = xyplot(Prob4$Spec~Prob4$Pi|Prob1$Method, panel = 
mypanel) 
 
Prob5 = temp[seq(5,100,5),] 
mypanel <- function(x, y) { 



  panel.superpose(x, y, groups = 
as.factor(Prob5$ProbViableIVM), type = "o", subscripts = 
as.factor(Prob5$ProbViableIVM),lty = 5, col = 
brewer.pal(9,"Blues")[9], lwd = 2)   
  panel.grid(h=-1, v=-1) 
} 
plot5 = xyplot(Prob5$Spec~Prob5$Pi|Prob1$Method, panel = 
mypanel) 
 
FinalPlot5 = 
plot1+as.layer(plot2)+as.layer(plot3)+as.layer(plot4)+as.la
yer(plot5) 
 
#Spec by ProbIVMViable 
Prob1 = temp[c(1:5,26:30,51:55,76:80),] 
mypanel <- function(x, y) { 
  panel.superpose(x, y, groups = as.factor(Prob1$Pi), type 
= "o", subscripts = as.factor(Prob1$Pi),lty = 1, col = 
brewer.pal(9,"Blues")[3])   
  panel.grid(h=-1, v=-1) 
} 
plot1 = xyplot(Prob1$Spec~Prob1$ProbViableIVM|Prob1$Method, 
xlab = "Probability Viable IVM", ylab = "Specificity", 
panel = mypanel, ylim = c(0,0.6), main= "Plot of 
Specificity by Pi, Probability IVM Viable and Method", 
               key=list(columns=5,  
                        text=list(lab=c("Pi = 
0.1","0.3","0.5","0.7","0.9")), 
                        lines=list(lty = c(1,2,3,4,5), col 
= c(brewer.pal(9,"Blues")[3], brewer.pal(9,"Blues")[5], 
brewer.pal(9,"Blues")[7], brewer.pal(9,"Blues")[8], 
brewer.pal(9,"Blues")[9]), lwd = 2))) 
 
Prob2 = temp[c(6:10,31:35,56:60,81:85),] 
mypanel <- function(x, y) { 
  panel.superpose(x, y, groups = as.factor(Prob2$Pi), type 
= "o", subscripts = as.factor(Prob2$Pi),lty = 2, col = 
brewer.pal(9,"Blues")[5], lwd = 2)   
  panel.grid(h=-1, v=-1) 
} 
plot2 = xyplot(Prob2$Spec~Prob2$ProbViableIVM|Prob1$Method, 
panel = mypanel) 
 
Prob3 = temp[c(11:15,36:40,61:65,86:90),] 
mypanel <- function(x, y) { 



  panel.superpose(x, y, groups = as.factor(Prob3$Pi), type 
= "o", subscripts = as.factor(Prob3$Pi),lty = 3, col = 
brewer.pal(9,"Blues")[7], lwd = 2)   
  panel.grid(h=-1, v=-1) 
} 
plot3 = xyplot(Prob3$Spec~Prob3$ProbViableIVM|Prob1$Method, 
panel = mypanel) 
 
Prob4 = temp[c(16:20,41:45,66:70,91:95),] 
mypanel <- function(x, y) { 
  panel.superpose(x, y, groups = as.factor(Prob4$Pi), type 
= "o", subscripts = as.factor(Prob4$Pi),lty = 4, col = 
brewer.pal(9,"Blues")[8], lwd = 2)   
  panel.grid(h=-1, v=-1) 
} 
plot4 = xyplot(Prob4$Spec~Prob4$ProbViableIVM|Prob1$Method, 
panel = mypanel) 
 
Prob5 = temp[c(21:25,46:50,71:75,96:100),] 
mypanel <- function(x, y) { 
  panel.superpose(x, y, groups = as.factor(Prob5$Pi), type 
= "o", subscripts = as.factor(Prob5$Pi),lty = 5, col = 
brewer.pal(9,"Blues")[9], lwd = 2)   
  panel.grid(h=-1, v=-1) 
} 
plot5 = xyplot(Prob5$Spec~Prob5$ProbViableIVM|Prob1$Method, 
panel = mypanel) 
 
FinalPlot6 = 
plot1+as.layer(plot2)+as.layer(plot3)+as.layer(plot4)+ 
as.layer(plot5) 
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