
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Plan B and other Reports Graduate Studies

5-2017

Statistical Methods for Assessing Individual Oocyte Viability Statistical Methods for Assessing Individual Oocyte Viability

Through Gene Expression Profiles Through Gene Expression Profiles

Michael O. Bishop
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/gradreports

 Part of the Applied Statistics Commons

Recommended Citation Recommended Citation
Bishop, Michael O., "Statistical Methods for Assessing Individual Oocyte Viability Through Gene
Expression Profiles" (2017). All Graduate Plan B and other Reports. 916.
https://digitalcommons.usu.edu/gradreports/916

This Report is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Plan B and
other Reports by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/gradreports
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/gradreports?utm_source=digitalcommons.usu.edu%2Fgradreports%2F916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.usu.edu%2Fgradreports%2F916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/gradreports/916?utm_source=digitalcommons.usu.edu%2Fgradreports%2F916&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

	

Copyright © Michael O. Bishop 2017

All Rights Reserved

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. John R. Stevens for his resources, guidance,

mentoring and example throughout my undergraduate degree but even more so during my

graduate degree at Utah State University. Dr. Stevens has been patient with me and made

this work possible. He has guided me to the roles and responsibilities of an active

researcher, while being considerate of the additional responsibilities a father has in

raising a young family.

Above all others, at this time I am forever grateful for the constant support and

love given by my wife, Alessandra. None of this would have been possible without her

constant efforts to keep our home life in order, including raising our son Owen. Despite

the many hours spent on this project, Alessandra has always been understanding,

encouraging and supportive.

ABSTRACT

STATISTICAL METHODS FOR ASSESSING INDIVIDUAL OOCYTE VIABILITY
THROUGH GENE EXPRESSION PROFILES

By

Michael O. Bishop

Utah State University, 2017

Major Professor: Dr. John R. Stevens
Department: Mathematics and Statistics

Oocytes are the precursor cells to the female gamete, or egg. While reproduction may

vary from species to species, within humans and most domesticated animals, the oocyte

maturation process is fairly similar. As an oocyte matures, there are various processes that

take place, all of which have an effect on the viability of the individual oocyte. Barring

outside damage that may come to the oocyte, one of the primary reasons for non-viability is

that of abnormal gene expression. Within this project, we focus on two oocyte maturation

techniques: in vivo (IVV) derived oocytes (our gold-standard) and in vitro matured (IVM)

oocytes. A great disparity exists between the viability rates of the two origination techniques,

and this disparity has led to low yields and inefficiency in the fields of cloning, fertility

treatments, as well as personalized medicine.

Within our project we use existing swine oocyte gene expression profile data as a

proxy measure of viability, based on the similarity to IVV oocytes. Four statistical techniques

for assessing the individual oocyte viability are proposed and compared, including: a

weighted root mean squared deviation (wRMSD) approach, a distance kernel p-value

approach, a distance tolerance interval approach, and a classification tree method. The

relative performance of these four measures is discussed.

1. INTRODUCTION

Oocytes are the precursor cells to what we often think of as the female egg cell.

They operate and grow in essentially the same way within swine as they do in humans

(Thomas, 2016). One main reason that one would be interested in studying oocytes is that

they are the key to studying life, reproduction, and all other pertinent matters. Without

access to oocytes, researchers in the fields of cloning, fertility treatments, and others

would not be able to do their work. Currently, there are numerous methods of deriving

(growing) oocytes, each with its benefits. In vivo (IVV) derived oocytes are held as the

gold standard for viability, and other known origination methods are sub-par by

comparison. However, alternatively derived oocytes do have many traits that are

desirable. The in vitro maturation (IVM) method is one such method of oocyte

derivation, as it allows the researchers to have access to the oocyte from early on. There

are however, many problems associated with this method. From past studies, it is shown

that the viability rate associated with IVV derived oocytes is upwards of 95%, however

for IVM oocytes (and other similar methods) the viability rate is roughly only 25% (Dr.	 S.	

Clay	 Isom,	 personal	 communication). Similar low viability concerns arise with the

SCNT (somatic cell nuclear transfer, or traditional cloning) origination method. With

such a low viability rate it is only natural to try to alleviate the frustration and waste that

comes from focusing time, resources and energy on oocytes that are simply not viable.

But how can one know if an oocyte is viable prior to investing in it? In general, one

cannot. However, methods can be developed that test individual oocytes for viability,

establishing a viability-optimized general gene expression profile. As laboratory

originated oocytes can be treated with a wash that promotes growth and expression

patterns in chosen directions (Dr.	 S.	 Clay	 Isom,	 personal	 communication), it is apparent

that establishing methods to test individual oocyte viability and thereby derive a general

viable profile for oocytes would, in theory, increase the viability of non-IVV oocytes.

Kwon et al. (2015) took embryos that were obtained from three different

origination methods (IVV, IVM, and SCNT) and examined the gene expression profiles

for 15 different genes of interest. In their project, a Weighted Root Mean Squared

Deviation (wRMSD) was calculated based on expression level deviation from the mean

expression level of the origination group. The average wRMSD for each origination

group was calculated and compared. They found that the difference between the IVV

group and the SCNT group was greater than the difference between the IVV group and

the IVM group. These conclusions were relevant for comparing methods of origination,

however we desire to compare individual oocyte viability.

Within our project, the goal has been to establish origin-independent methods of

evaluating individual oocyte viability, based simply on the observed gene expression

profiles. As the process of collecting the observed gene expression profiles of oocytes is

destructive, making the oocytes non-viable (and thereby making it impossible to tell if the

oocyte would have been viable or not, simply by observing), there are a number of

assumptions that one must make. First, assume that IVV-derived oocytes are the “gold

standard” for oocyte viability. This assumption does not seem to be erroneous, as

historically over 95% of all IVV-derived oocytes have been observed to be viable (Dr.	 S.	

Clay	 Isom,	 personal	 communication). The second assumption that is made is that the

closer an oocyte’s gene expression profile gets to the mean of the IVV gene expression

profiles, the more likely the oocyte is to be viable. Third, assume that the IVV oocyte

gene expression profiles are a representative sample of all IVV oocyte gene expression

profiles, and likewise for the IVM oocytes within the data.

Dr. S. Clay Isom provided the project dataset in the form of an Excel spreadsheet,

which contained the gene expression profiles for 29 IVV derived oocytes as well as 29

IVM derived oocytes. Each of the gene expression profiles was expressed in the form of a

log2 fold-change on 67 genes of interest compared to a common “housekeeping” gene.

These specific 67 genes were selected, as they are affiliated with early cell growth,

regulation and viability (Dr.	 S.	 Clay	 Isom,	 personal	 communication). Overall there were

few values that were missing (about 4.4%), but computationally if the case arose that a

value was missing, that value was omitted from gene level calculations in the following

methods. Once again, actual viability of these individual sample oocytes is unknown, as

they yielded the “ultimate sacrifice” for science, though from the assumptions, greater

similarity to IVV is treated as more likely to be viable.

In this MS project, an adaption (on the single oocyte level) of the Kwon et al.

(2015) wRMSD method is summarized in Section 2, along with three other novel

methods – a Distance Kernel P-value method in Section 3, a Tolerance Interval method in

Section 4, and a Decision Tree method in Section 5. Each of these methods is then

compared for accuracy via simulation in Sections 6 and 7, and the methods’ performance

is discussed in Section 8.

2. WEIGHTED ROOT MEAN SQUARED DEVIATION
KERNEL DENSITY P-VALUE

We use an application of the weighted root mean squared deviation (wRMSD)

approach proposed by Kwon et al (2015). Here, we compute the wRMSD from the center

of the oocyte viability class. In the more practical case that viability status is unknown,

we would then compute the wRMSD from the center of the oocyte maturation class

(center of IVV if using an IVV oocyte, or IVM if using an IVM oocyte). Again, we

operate under the assumption that IVV is considered viable. Kwon et al. (2015) said “We

considered each gene expression to be an independent event; therefore, we combined all

of the expression measurements of each (gene) sample in the calculation of the wRMSD.

To minimize the bias from a measurement error of a gene expression profile with a low

coefficient of variation (CV), the deviation of each gene expression level from the mean

was weighted with the CV of the gene in the group.” Within the wRMSD calculation

there are three main parts: the reference expression level (mean expression level for the

gene within group), the expression level of the specified gene within the oocyte of

interest, and the weighting coefficient. The weighting coefficient was further made up of

“the proportion of the CV for the expression level of the ith gene to the sum of CV for

those of all genes in the group” (Kwon, et al., 2015):

 (1)

In Equation 1, wRMSD is defined for a given oocyte. Here, Ei refers to the

expression level of the ith gene in the oocyte, Emi refers to the reference expression level

wRMSD =

sX

i

wi · (Emi � Ei)2.

for the oocyte (i.e. mean of the IVV if the oocyte is IVV or IVM if the oocyte is in the

IVM group) of the ith gene, and wi refers to the weight of the mean squared deviation of

the gene expression, defined as follows:

That is, the weight (wi) in Equation 1 is defined as the proportion of the

Coefficient of Variation (CV) for the expression level of the ith gene (across all oocytes in

the group – IVV or IVM) to the sum of the CV for those of all genes in the group.

We set up the null hypothesis that an observed oocyte (with an accompanying

wRMSD) came from the viable (or IVV) class, with the respective alternative hypothesis

that it did not. P-values for likelihood of belonging to the “viable” class were then

computed for the individual oocytes by comparing the oocyte’s observed wRMSD to the

kernel density of the viable (or IVV) wRMSD distribution, and computing an upper tail

area (see Figure 1). These p-values were then compared to an alpha 0.05 level for

determining if there was enough evidence to reject our null hypothesis (that the observed

oocyte was viable). This Kernel Density p-value portion was not utilized in the Kwon et

al. paper, however it is a reasonable and necessary application of their published method

that allows for individual oocyte classification and comparison between results from this

and other methods.

wi =
CViP
j CVj

.

Figure 1. The wRMSD distribution of IVV and IVM oocytes with calculated kernel
density for the IVV wRMSD distribution overlaid on both histograms. An example IVM
oocyte has been selected and its wRMSD has been found to be 1.19. The wRMSD of the
oocyte is then compared to the kernel density of the wRMSD for the IVV group; we can
then set up a hypothesis test with a null hypothesis that the observed oocyte comes from
the IVV group. By computing an upper tail area from the kernel density, we can observe
a p-value for our example oocyte equal to 0.052. This p-value is larger than our 0.05
cutoff, so we would classify the observed oocyte as viable (by our assumption that the
more closely related to the IVV group that an oocyte is, the more likely it is to be viable).

3. DISTANCE KERNEL DENSITY P-VALUE METHOD

We considered also a distance measurement method as a modification to the

wRMSD approach presented by Kwon et al (2015). It utilizes only a subset of the

available genes; those that a limma eBayes approach has determined are differentially

expressed (between IVV and IVM groups) at an alpha 0.05 level (Ritchie, 2015). Briefly,

the limma eBayes approach performs a modified t-test on the expression level of each

gene, testing for differential expression between two conditions (IVV and IVM here).

The gene expression profile of all IVV (or viable) oocytes is computed, and the mean

expression is taken for each gene in order to form an IVV group mean gene expression

profile. Using only the subset of differentially expressed genes, the distance measure for

each oocyte from the mean of the IVV group gene expression profile is then computed.

Here, distance is measured as an adaption to the Kwon et al. wRMSD approach:

(2)

In Equation 2, we only use information from differentially expressed genes. Wi is

the weight for the specified gene i, and is defined as before, based on CVs. Emi

represents the mean of the IVV (or viable) group for gene i. Ei represents the expression

level of the ith differentially expressed gene for the specified oocyte.

The distance kernel density is then calculated for the IVV (or viable) oocytes,

based upon the calculated IVV distances. We then can use this kernel density distribution

to set up a hypothesis test for each of the individual oocytes, using the following null and

alternative hypotheses: H0 – The oocyte distance comes from the IVV (viable)

Distance =

sX

i

wi · (Emi � Ei)2.

distribution of distances, i.e. the observed distance for the oocyte is within an expected

range if it was of the IVV (viable) class, vs. Ha – The oocyte distance does not come from

the IVV (viable) distribution of distances, i.e. the observed distance for the oocyte is

outside the expected range if it is of the IVV (viable) class. In order to make a decision

for the hypothesis test, we compute the upper tail probability above the distance observed

in the oocyte of interest (see Figure 2). This upper tail area is our observed p-value.

Figure 2. The distance distribution of IVV and IVM oocytes with calculated kernel
density for the IVV distance distribution overlaid on both histograms. The same example
IVM oocyte has been selected as in Figure 1, and its calculated distance has been found
to be 9.78. The distance of the oocyte is then compared to the kernel density of the
distances for the IVV group; we can then set up a hypothesis test with a null hypothesis
that the observed oocyte comes from the IVV group. By computing an upper tail area
from the kernel density, we can observe a p-value for our example oocyte equal to 0.019.
This p-value is smaller than our 0.05 cutoff, so we would classify the observed oocyte as
non-viable (by our assumption that the more closely related to the IVV group that an
oocyte is, the more likely it is to be viable).

4. TOLERANCE INTERVAL METHOD

A tolerance interval is a numerical interval that is calculated to provide limits

wherein at least a specified proportion of a sampled population falls with an indicated

level of confidence. Oftentimes, tolerance intervals are constructed and applied in areas

such as quality control or manufacturing to establish that certain product standards are

being met by the overall bulk of the products. “More specifically, a 100×p%/100×(1−α)

tolerance interval provides limits within which at least a certain proportion (p) of the

population falls with a given level of confidence (1−α)” (Young, 2010). Tolerance

intervals are based on the sampled data; however they allow us to say something about

the population distribution. “A tolerance interval differs from a confidence interval in that

the former encloses a proportion of the entire population distribution, while the latter is

constructed to contain the value of a population parameter” (Millsap, 1988). Frequently,

tolerance intervals are based on a specified distribution of the data, and more often than

not, that distribution is assumed to be normal. However, we can also make the tolerance

interval more general by taking a non-parametric approach (Wilks, 1941). In Wilks’

paper, he proves that there is a systematic way of calculating a confidence interval for an

unknown data distribution; a tolerance interval can be calculated for a given population

coverage proportion, level of confidence and minimum sample size, that guarantees at

least the given population coverage proportion. This approach is outlined as follows:

• Let a be the average value which p is to have, where p is the proportion of the

population to be included in the interval (the mean coverage).

• Draw a sample of size n from the population subject to the constraint that

[(1-a)(n +1)]/2 = r, a positive integer.

• Order the sampled data according to increasing magnitude from x1 to xn

• Let L1 = xn-r+1, the upper tolerance limit of our 1-sided non-parametric tolerance

interval

As noted above, we need a minimum sample size value to ensure proper coverage

of the population with the specified level of confidence. Within the framework of this

project, we utilized the principles of this method to create a 95% non-parametric one-

sided tolerance interval for 95% coverage of the IVV distance distribution. The

distribution of distances for the Isom data IVV oocytes is right skewed (see Figure 3), so

we used an application of the non-parametric tolerance interval method.

Figure 3. The distribution of IVV distances for the Isom data. The kernel density was
overlaid to help depict the skewedness of the distribution.

For a non-parametric approach, the calculation of the tolerance interval can be

different than when we specify a distribution for the data. As we do not restrict our

interval to a specific distribution, we require a larger sample size in order to maintain the

same level of confidence and coverage for our tolerance interval than that of a specified

distribution (i.e. Gaussian, Weibull, etc). The calculations for the minimum required

sample size of a non-parametric tolerance interval are shown below (NIST, 2012):

The above equation is an approximation for the minimum sample size n, needed

for a non-parametric tolerance interval with confidence level γ, and population coverage

proportion p. We also note that we are calling a specified value from a chi-squared

distribution with 4 degrees of freedom.

For our project, the minimum required sample size for a 95% confidence and at

least 95% coverage was n=94, so we ended up needing a sample size of 100. In the

simulations of Section 6 below, we use n=100 oocytes, and we proceed with the

construction of the tolerance interval here solely for demonstration purposes (though the

actual sample size in the project dataset is n=58, so the actual coverage in this

demonstration example is likely less than 95%). For each oocyte in the project, the IVV

distance distribution was computed using the same distance function as previously

discussed. That distance function again only looks at genes that are differentially

expressed in the Isom dataset, as indicated by a limma eBayes approach, using a

significance level of 0.05 as a cutoff for the FDR-adjusted p-values. Those oocytes that

individually have a distance statistic outside of the constructed tolerance interval for the

IVV oocytes (i.e. their distance was greater than that of the upper tolerance bound) were

selected as being nonviable (see Figure 4).

n ⇡ 1

4

(1 + p)

(1� p)
�2
1��,4 +

1

2
.

Figure 4. The distance distribution of IVV. The upper limit of the 95% confidence, 95%
coverage non-parametric tolerance interval for the IVV group was calculated to be 9.63.
The same example IVM oocyte as in Figures 1 and 2 has been selected and its distance
was calculated to be 9.78. The distance of the oocyte is then compared to the upper limit
of the tolerance interval for the IVV group. As the observed distance of 9.78 is larger
than the upper tolerance limit of 9.63, we would classify this oocyte as non-viable, as it
was classified as being less closely related to the IVV group (by our assumption that the
more closely related to the IVV group that an oocyte is, the more likely it is to be viable).

5. CLASSIFICATION TREE METHOD

Classification trees or decision trees are a graphical representation of a set of rules used

to classify data into categories. They are appropriate to use when one has a 2 or more

level categorical variable as an outcome, with one or more variables as predictors. In

general, we would use a classification tree to predict the class or outcome level of a

number of observations within a dataset, based on the observed values of the predictor

variables. In R, the default index for choosing the best split in the data (for classification)

is the Gini index. The Gini index is a measure of impurity of a node (or a whole tree).

The Gini impurity measure can be calculated in the following way (Kingsford, 2008):

Within the Gini calculation, we are trying to classify items into m classes using a

set of training items E. Let pi (i= 1,…,m) be the fraction of the items of E that belong to

class i. Thus, the Gini index reaches an optimal value of zero when the set E contains

items from only one class. Construction of a decision tree using this index can be broken

down into a number of simple steps:

1. The tree algorithm uses a training data set to build the tree, in other words, one

needs to know the true outcomes in order to build a classification tree that can be

used on other datasets drawn from the same population.

2. The algorithm then uses the predictor variables to make the most optimal splits in

the data. An optimal split is defined as using a variable to split the data from one

group into two that provides the greatest differentiation between the different

classes, separating them from one another as well as possible.

Gini = 1�
mX

i=1

p2i .

3. The algorithm uses the most important variables to make splits in the data. If the

observations in a specified branch of the tree contain a diverse group of classes,

then the algorithm finds “the best” rule based on a single variable/feature to split

that branch into two smaller branches. The quality of the split is again measured

based upon a reduction in the Gini impurity measure.

4. Only if every observation in the “branch” of the tree is from the same class, does

the tree form a terminal node or leaf.

5. One can invoke the minsplit argument in the rpart function of the package rpart

(Therneau, 2015) for R (R Core Team, 2016) to indicate the minimum number of

observations needed to make a split in the data (to mitigate overfitting and nodes

with single observations).

This process of actually using a tree to classify objects was aptly summarized in

the following way: “In order to classify an object, we start at the root of the tree, evaluate

the test, and take the branch appropriate to the outcome. The process continues until a

leaf is encountered, at which time the object is asserted to belong to the class named by

the leaf” (Quinlan, 1986).

Within the framework of this project, the outcome or class variable is oocyte

viability. A key advantage to a decision tree is that it provides a visual rule for

distinguishing between viable and non-viable classifications, based again on the most

differentially expressed genes (as was the case with our previous methods using the

limma eBayes method). Again, the genes are the variables on which the tree is split, and

while all genes have a chance of being chosen initially, the tree will chose the genes to

split on that give the best split as calculated by the Gini Index (see Figure 5).

Figure 5. A classification tree that was grown for the dataset; the splits are conducted
based upon the gene expression values of the oocytes in the dataset. The resulting
classification values of 0 and 1 refer to non-viable and viable respectably. Using the
same example oocyte as in Figures 1, 2 and 4, we arrive at a classification of non-viable
(shown in box above).

6. SIMULATIONS
	

In order to adequately compare the four previously summarized methods from

Sections 2 through 5, simulations were conducted, in which datasets were generated and

results were gathered for the four methods. As the goal was to determine how the

methods compared to one another, the simulation was constructed as a function in R (see

Appendix II) with the following five variables that could be altered to yield different

situations for the simulated data:

• n, the number of oocytes to be simulated

• Pi, the mixing proportion for the mixture distribution of the IVM oocytes (i.e. the

degree of similarity between the viable IVM group and the IVV group)

• δ, the magnitude of differential expression for genes that are differentially

expressed between IVM and IVV groups

• WhichGenes, a given list of genes to be differentially expressed in the simulation

• ProbViableIVM, the prior probability that any given IVM oocyte is viable

At the start of a simulation, the function starts with the first of the n oocytes (for

our project, n=100), and decides whether it will be generated as an IVV or IVM oocyte.

This process is done randomly using a binomial generator with probability of IVV equal

to 0.5. After maturation type is decided, we determine if the oocyte will be simulated as a

viable oocyte or not. For the sake of the simulation, all IVV oocytes were given the

viable class, while the probability that an IVM oocyte is deemed viable depends on the

simulation variable “ProbViableIVM” (binomial distribution with probability of viable

being equal to “ProbViableIVM”). After each of the oocytes has been assigned a

maturation and viability type, the individual gene expression profiles for each oocyte are

generated.

Within the process of gene expression profile generation, the simulation function

takes into account specific genes that the user wants to make sure are differentially

expressed between viable and non-viable classes. The list of these gene names is to be

supplied to the function by the user in the simulation argument “WhichGenes” (for our

project, these were derived from the Isom data). For the genes identified as being

differentially expressed, we then determine the degree of differential expression. Each

named gene has its individual degree of differential expression, δi, which is generated

randomly from a uniform distribution, with minimum equal to zero, and maximum equal

to the absolute value of the user supplied variable δ (in our case, this is calculated as the

median of the log fold-change for the differentially expressed genes from the Isom data).

If the gene of interest is not included in the list of genes to be differentially expressed, δi

is simply set to zero. Next, for each gene within the oocyte, we generate an expression

value in the following manner:

Degree of Differential Expression for Gene i = �i ⇠ U(0, �),

IV V Expression for Gene i = X ⇠ N(0, 1),

V iable IV M Expression for Gene i = � ⇤X + (1� �) ⇤ Y,

NonV iable IV M Expression for Gene i = Y ⇠ N(�i, 1),

� ⇠ Binom(1, P i).

The expression value for gene i of the oocyte is simply a random value from a

standard normal distribution if the oocyte is an IVV oocyte. If the oocyte is a non-viable

IVM oocyte, then the expression value for gene i is a random value from a normal

distribution with mean equal to δi and standard deviation equal to one. If the oocyte is a

viable IVM oocyte, then the expression level for gene i is a mixture of the two

aforementioned distributions, with the mixing proportion, Pi, determining the degree of

the mixture (i.e. the probability it will be more similar to the IVV group, see Figure 6).

Figure 6. Example expression value distributions for IVV and Non-Viable IVM oocytes
for gene i, such that δi is equal to three (for example purposes). The distribution of the
Viable IVM oocyte expression value is represented as a mixture of the two above
distributions. The proportion of the mixture is determined by the simulation argument Pi.
In other words, the probability that an expression value for gene i in a Viable IVM oocyte
will come from the IVV distribution is equal to Pi.

For the purpose of this project, we have chosen only to vary the variables Pi and

ProbViableIVM using the values 0.1, 0.3, 0.5, 0.7 and 0.9; all other variables remained

constant throughout the simulations. Constant values and the list of differentially

expressed genes came from the provided Isom data. We simply wished to see the effects

of our mixing proportion as well as the probability of viable IVM oocytes, and how they

affected our methods. Note, as we increase the mixing proportion, we are simply

increasing the similarity between viable IVV and viable IVM oocytes within the

simulation. When we increase the probability of viable IVMs, what we are doing is

increasing the probability that a viable IVM oocyte is generated within our simulation set,

as our oocyte number stayed constant across simulations. We note that this creates an

imbalance in the group sizes, which we can then use to test how our methods handle such

conditions. The support and resources from the Center for High Performance Computing

at the University of Utah are gratefully acknowledged in providing the means of running

the simulations (for a helpful tutorial, see Barton 2016). As the University of Utah system

is set up for cluster computing, we were able to run 500 iterations at each simulation level

in under 14 hours whereas it would have taken multiple days to compute the same

amount on a traditional PC.

In addition to gene expression data generation, the functions created for the

simulations also compile results from our primary measures of interest for model

evaluation, as averaged over 500 simulations: proportion correctly classified (PCC),

sensitivity and specificity for each of the models. In this context, we define proportion

correctly classified as the count of those oocytes that were classified as either being

viable or non-viable when it was truly their respective viability status, divided by the total

number of oocytes that were classified within the simulation (in this case 100). This was

repeated 500 times and then averaged across each simulation level combination. A

similar process was done for sensitivity and specificity. Sensitivity was defined as the

count of correctly classified viable oocytes divided by the total number of viable oocytes,

and specificity was defined as the count of correctly classified non-viable oocytes divided

by the total number of non-viable oocytes.

7. RESULTS

On examining Figures 7 and 8 (as well as the full results summarized in

Appendix I), we notice that in general, the tolerance method approach tends to outclass

the other methods when looking at the proportion correctly classified (PCC). A similar

result is seen in Figures 9 and 10 when sensitivity is used as our measured outcome. In

both outcomes, the tolerance interval approach scores roughly two to three percentage

points higher on average (after averaging across 500 simulations at each mixing

proportion by probability viable IVM combination) than the relatable wRMSD and

distance kernel methods. In the aforementioned areas, the disparity between tolerance

intervals and that of a decision tree are even more pronounced, as the decision tree looks

to be simply lack-luster.

Also, in reviewing Figure 7 and Figure 8, we note that it appears that the variable

Pi (mixing proportion) seems to have very little effect on the method outcomes. We do

see some slight changes in the slopes of the lines within the classification tree method in

Figure 8 and Figure 9; however, nothing of major consequence that could accurately be

attributed to the variable Pi.

Figure 7. The Proportion Correctly Classified (PCC) of the different simulation
combinations, as it specifically relates to the Mixing Proportion (Pi). The different line
types, as well as the increasing depth of the blue color signify probability of a given
IVM being viable across the four different methods.

Figure 8. The Proportion Correctly Classified (PCC) of the different simulation
combinations, as it specifically relates to the Probability of a given IVM being viable.
The different line types, as well as the increasing depth of the blue color signify the
mixing proportion Pi across the four different methods.

Figure 9. The Sensitivity, or ability to correctly classify the viable oocytes of the
different simulation combinations, as it specifically relates to the mixing proportion Pi.
The different line types, as well as the increasing depth of the blue color signify the
probability of a given IVM oocyte being viable across the four different methods.

Figure 10. The Sensitivity, or ability to correctly classify the viable oocytes of the
different simulation combinations, as it specifically relates to the Probability of a given
IVM being viable. The different line types, as well as the increasing depth of the blue
color signify the mixing proportion Pi across the four different methods.

Something to note is that, while it appears that the classification tree is greatly

outclassed by these other three methods (specifically tolerance intervals), it does have

situations where it outperforms all others, and in some ways, these situations may

actually be quite valuable. In looking at the specificity of the methods (i.e. the ability of

the methods to correctly classify non-viable oocytes) in Figure 11, classification trees

actually outperform the other methods. This is an important feature, as part of our main

goal was to establish a method that could identify both viable and non-viable oocytes.

Figure 11. The Specificity, or ability to correctly classify the non-viable oocytes of the
different simulation combinations, as it specifically relates to the mixing proportion Pi.
The different line types, as well as the increasing depth of the blue color signify the
probability of a given IVM oocyte being viable across the four different methods.

In Figure 11, it appears that as the mixing proportion (Pi) increases in the decision

tree method, the harder time it has correctly classifying the non-viable samples. This

would make sense, as we bring the two distributions closer together (see Figure 6), such

that the IVV oocytes are appearing more similar to the IVM oocytes, and so the harder it

would be to accurately separate them.

Figure 12. The Specificity, or ability to correctly classify the non-viable oocytes of the
different simulation combinations, as it specifically relates to the Probability of a given
IVM being viable. The different line types, as well as the increasing depth of the blue
color signify the mixing proportion Pi across the four different methods.

In Figure 12, we observe yet another interesting phenomenon. As the probability

increases that any given IVM oocyte will be viable, it makes it increasingly difficult to

correctly classify the non-viable samples, as it is simply more likely that any given

oocyte will be viable than non-viable at that point. As the probability of any given IVM

oocyte being viable increases, it creates more of dispersion between the group sample

sizes, and one would expect a drop in the care that is given to oocytes of the lesser class.

However, as we see in Figure 12, it appears as though the distance kernel and the

tolerance interval methods actually get slightly better at classifying the non-viable IVM

oocytes for the specificity measure, as the probability of viable IVM increases to its

highest value.

8. DISCUSSION

Currently in the fields of cloning and embryology, researchers constantly run into

complications and unplanned procedural failures due to the effects of low viability

amongst oocytes derived in a laboratory setting. Non-viability of samples is a costly and

unwanted outcome that is worth evaluating and attempting to mitigate. Past focus has

been in evaluating origination methods and determining their ‘closeness’ to one another;

specifically, the method’s proximity to IVV derived oocytes, the gold standard. While

this may be a decent approach at evaluating origination methods, we claim that we can

use alternate approaches to evaluate, and thereby later improve the quality of individual

oocytes within a given method. With recent advances in gene expression technology,

nutrient washes can be created in order to encourage the oocytes to express specific genes

within a given origination method, thereby improving the viability and quality of the

samples, while still retaining the flexibility of using the origination method of choice.

While the goal was to identify methods that were best to use overall, we notice

that we actually have a few different situations represented in the data, and as a result we

get different “top methods” depending on the situation at hand. As noted above in Figures

7 and 9, when looking at PCC and sensitivity, tolerance intervals seemed to always be the

method that performed the best, however the kernel density p-value approach wasn’t far

behind, with our modification of the published Kwon wRMSD method following shortly

behind that. However, one reason that these methods could be performing so well in these

result measurements (PCC and sensitivity), is that there is an imbalance of sample sizes.

The viable oocyte group is consistently larger than the non-viable group, simply due to

the nature of the probabilities, as all IVV oocytes are simulated as being viable, while an

increasing number of IVM oocytes are counted as viable as the variable ProbIVMViable

starts to increase. So, as a reiteration, as the variable ProbIVMViable increases, the

disparity between the viable and non-viable group sizes starts to increase (note, when

ProbIVMViable is set to 0.90, nearly all oocytes are in the viable group). It appears as

though the classification tree method is more balanced and more immune to the effects of

this imbalance in the data, as it appears to perform roughly equally across all groups,

though it does still get swayed some as ProbIVMViable reaches higher values (see

Figures 8, 10, and 12). So, if one is interested in a method that is more robust to the

effects of imbalanced samples, or has a vested interest in the accuracy of identifying the

non-viable samples (where they severely outperformed the other methods, see Figures 11

and 12), classification trees may be the method to choose. If not, we would recommend

the non-parametric tolerance interval approach based upon our calculated distance

measure.

At this point, we acknowledge the possible limitations of these simulations. First,

we note that we have made a number of assumptions that we cannot fully prove with the

resources at hand. First, we assume that oocytes that have gene expression profiles that

are more like those of IVV oocytes are going to be more viable. Second, we assume the

center of the observed IVV distribution to be the optimal gene expression profile. Third,

we assume that the data provided to us from Dr. Isom is a representative sample of all

IVV and IVM oocytes (viable and non-viable). Fourth, assumptions were made about the

relative rates of viability in the different origination method groups based upon

conversations with Dr. Isom, as he was our expert in the field. While these are a fair

amount of assumptions, we did take precautions as to try to minimize their effects. The

methods used were built or conceived in a way that they operate independent of oocyte

origination method, they require no distributional assumptions of the oocyte data, and as

demonstrated, do not require a complete balance of group sizes (though it may have

yielded slightly different results had we forced this on the generated data).

While overall the methods seemed to perform well in specific areas, there are

some procedural aspects of these simulations that can be better handled. One such

example is the techniques for handling missing values in the data. With oocyte data,

when obtaining the gene expression profiles of the oocyte, we destroy the oocyte, thereby

making it possible only to attempt to retrieve the profile once; if we miss a few values,

we cannot go back and “re-observe” them. Hence, having a set method for handling

missing values is advised. One recommendation could be to impute or borrow

information from other similar oocytes in the same origination group. For the purposes of

these simulations, if there was a missing value in the original Isom data, that value was

simply omitted from the gene level calculations. Despite not being able to go back and

“re-observe” the missing values, they were fairly infrequent (about 4.4% of the specific

gene-level data) in the original dataset.

Further method application and development is necessary in this field, as we

showed how under the simulated circumstances that our three proposed methods

consistently outperformed the previously published wRMSD method; however, our

proposed methods were quite rudimentary or basic. More advanced classifiers such as

Random Forest, neural networks, and the like, may end up doing a better job on these

types of classification problems. But, also bear in mind, if the dataset has a large number

of variables (such as genes here), then these other methods, while more complex and

possibly better classifiers, may require a large increase in processing power and

computing time.

REFERENCES

1. Barton, S.W. (2016). "Tutorial for Using the Center for High Performance Computing

at The University of Utah and an example using Random Forest". Unpublished M.S.
Report, Utah State University.
http://digitalcommons.usu.edu/gradreports/873

2. Kingsford, C., & Salzberg, S. L. (2008). “What are decision trees?” Nature

Biotechnology, 26(9), 1011–1013.
http://doi.org/10.1038/nbt0908-1011.

3. Kwon, S., et al. (2015). “Assessment of Difference in Gene Expression Profile
Between Embryos of Different Derivations”, Cellular Reprogramming, VOL. 17, NO.
1. DOI: 10.1089/cel.2014.0057.

4. Millsap, R. E. (1988). “Tolerance Intervals: Alternatives to Credibility Intervals in
Validity Generalization Research”, Applied Psychological Measurement, March
1988, VOL. 12, NO. 1, PP.27-32.

5. NIST/SEMATECH (2012). “e-Handbook of Statistical Methods”,
http://www.itl.nist.gov/div898/handbook/prc/section2/prc265.htm, 3-3-17.

6. Quinlan, J. R. (1986). "Induction of decision trees." Machine learning 1.1: 81-106.	
doi:10.1023/A:1022643204877.
http://link.springer.com/article/10.1023/A:1022643204877.

7. R Core Team (2016). R: A language and environment for statistical computing. R

Foundation for Statistical Computing, Vienna, Austria.
https://www.R-project.org/.

8. Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K.

(2015). “limma powers differential expression analyses for RNA-sequencing and
microarray studies”, Nucleic Acids Research 43(7), e47.

9. Therneau, T., Atkinson B., and Ripley B. (2015). rpart: Recursive Partitioning and

Regression Trees. R package version 4.1-10.
https://CRAN.R-project.org/package=rpart

10. Thomas, F. H., Vanderhyden, B. C. (2006). “Oocyte-granulosa cell interactions

during mouse follicular development: regulation of kit ligand expression and its role
in oocyte growth”, Reproductive Biology and Endocrinology 2006 4:19. doi:
10.1186/1477-7827-4-19. https://rbej.biomedcentral.com/articles/10.1186/1477-7827-
4-19.

11. Wilks, S. S. (1941). “Determination of Sample Sizes for Setting Tolerance Limits”.
Ann. Math. Statist. 12, no. 1, 91--96. doi:10.1214/aoms/1177731788.
http://projecteuclid.org/euclid.aoms/1177731788.

12. Young, D. S. (2010). Book Reviews: "Statistical Tolerance Regions: Theory,
Applications, and Computation", Technometrics, February 2010, VOL. 52, NO. 1,
pp.143-144.

	

APPENDIX I: FULL RESULTS
Full Simulation Results: 500 iterations for each result number; the mean of the outcomes was recorded; see
visualization in Figures 7-12.

Result
Number Pi

Probability
Viable IVM PCC Sensitivity Specificity Method

1 0.1 0.1 0.55562 0.957686 0.06418214 wRMSD
2 0.1 0.3 0.6442 0.9572701 0.06176947 wRMSD
3 0.1 0.5 0.73368 0.9559364 0.06065979 wRMSD
4 0.1 0.7 0.8216 0.9562596 0.06179166 wRMSD
5 0.1 0.9 0.89254 0.9569693 0 wRMSD
6 0.3 0.1 0.55408 0.9575066 0.06136217 wRMSD
7 0.3 0.3 0.64334 0.9563099 0.06149518 wRMSD
8 0.3 0.5 0.73326 0.9565633 0.05799724 wRMSD
9 0.3 0.7 0.82716 0.9567615 0.08672111 wRMSD

10 0.3 0.9 0.88568 0.9407172 0.1 wRMSD
11 0.5 0.1 0.5547 0.9576374 0.06277166 wRMSD
12 0.5 0.3 0.64462 0.9579131 0.06129233 wRMSD
13 0.5 0.5 0.73454 0.9565436 0.06231212 wRMSD
14 0.5 0.7 0.82184 0.9564298 0.06268898 wRMSD
15 0.5 0.9 0.89 0.9514748 0.1 wRMSD
16 0.7 0.1 0.5539 0.9577265 0.06433873 wRMSD
17 0.7 0.3 0.64252 0.957133 0.05701877 wRMSD
18 0.7 0.5 0.73436 0.9560838 0.0628393 wRMSD
19 0.7 0.7 0.8213 0.9561947 0.08737186 wRMSD
20 0.7 0.9 0.885 0.9514748 0 wRMSD
21 0.9 0.1 0.5548 0.9583906 0.06224052 wRMSD
22 0.9 0.3 0.64164 0.956466 0.05610936 wRMSD
23 0.9 0.5 0.73422 0.9567238 0.0614104 wRMSD
24 0.9 0.7 0.82104 0.9561652 0.05874454 wRMSD
25 0.9 0.9 0.895 0.9569693 0.1 wRMSD
26 0.1 0.1 0.58062 0.9648194 0.1113315 Distance Kernel
27 0.1 0.3 0.65626 0.9640163 0.08360072 Distance Kernel
28 0.1 0.5 0.74122 0.9634611 0.06880955 Distance Kernel
29 0.1 0.7 0.8266 0.9629717 0.05768953 Distance Kernel
30 0.1 0.9 0.90508 0.9677274 0.10152754 Distance Kernel
31 0.3 0.1 0.5822 0.9649558 0.1146015 Distance Kernel
32 0.3 0.3 0.65872 0.964505 0.08951383 Distance Kernel
33 0.3 0.5 0.74284 0.9637019 0.07468482 Distance Kernel
34 0.3 0.7 0.8287 0.964736 0.03139803 Distance Kernel
35 0.3 0.9 0.90504 0.967727 0.1 Distance Kernel
36 0.5 0.1 0.5845 0.9654879 0.1189987 Distance Kernel

37 0.5 0.3 0.66078 0.9638159 0.09678404 Distance Kernel
38 0.5 0.5 0.74372 0.9627725 0.08110845 Distance Kernel
39 0.5 0.7 0.82366 0.9627791 0.07302354 Distance Kernel
40 0.5 0.9 0.9 0.9622325 0.1 Distance Kernel
41 0.7 0.1 0.57838 0.9665355 0.1072164 Distance Kernel
42 0.7 0.3 0.66278 0.9641232 0.101658 Distance Kernel
43 0.7 0.5 0.74662 0.9634287 0.09028951 Distance Kernel
44 0.7 0.7 0.83046 0.9631017 0.08317705 Distance Kernel
45 0.7 0.9 0.905 0.9622325 0.2 Distance Kernel
46 0.9 0.1 0.58656 0.9651825 0.1237739 Distance Kernel
47 0.9 0.3 0.66576 0.9640038 0.1102951 Distance Kernel
48 0.9 0.5 0.74944 0.9638118 0.1003812 Distance Kernel
49 0.9 0.7 0.83188 0.9624808 0.09573614 Distance Kernel
50 0.9 0.9 0.915 0.967727 0.3 Distance Kernel
51 0.1 0.1 0.57412 1 0.05354377 Tolerance Interval
52 0.1 0.3 0.66158 1 0.03151418 Tolerance Interval
53 0.1 0.5 0.7572 1 0.02256178 Tolerance Interval
54 0.1 0.7 0.8516 0.9998506 0.01533592 Tolerance Interval
55 0.1 0.9 0.93154 0.9947368 0.19783924 Tolerance Interval
56 0.3 0.1 0.57496 1 0.05533945 Tolerance Interval
57 0.3 0.3 0.6631 1 0.03570271 Tolerance Interval
58 0.3 0.5 0.75788 1 0.02497714 Tolerance Interval
59 0.3 0.7 0.8523 0.9998932 0.007981687 Tolerance Interval
60 0.3 0.9 0.93722 0.9947368 0.1 Tolerance Interval
61 0.5 0.1 0.57636 1 0.0582746 Tolerance Interval
62 0.5 0.3 0.66428 1 0.03899848 Tolerance Interval
63 0.5 0.5 0.75832 1 0.02703368 Tolerance Interval
64 0.5 0.7 0.852 0.9998506 0.01754385 Tolerance Interval
65 0.5 0.9 0.93 0.9947368 0.1 Tolerance Interval
66 0.7 0.1 0.57334 1 0.05503084 Tolerance Interval
67 0.7 0.3 0.66612 1 0.04427516 Tolerance Interval
68 0.7 0.5 0.76036 1 0.03448108 Tolerance Interval
69 0.7 0.7 0.8524 0.9998506 0.02123251 Tolerance Interval
70 0.7 0.9 0.93 0.9947368 0.1 Tolerance Interval
71 0.9 0.1 0.57794 1 0.06161823 Tolerance Interval
72 0.9 0.3 0.66758 1 0.0481722 Tolerance Interval
73 0.9 0.5 0.76126 1 0.03819451 Tolerance Interval
74 0.9 0.7 0.85324 0.9998506 0.02712096 Tolerance Interval
75 0.9 0.9 0.935 0.9947368 0.2 Tolerance Interval
76 0.1 0.1 0.58964 0.6219182 0.5416533 Decision Tree
77 0.1 0.3 0.59776 0.6867474 0.4256442 Decision Tree

78 0.1 0.5 0.6455 0.7638124 0.2965806 Decision Tree
79 0.1 0.7 0.75428 0.8573771 0.1840564 Decision Tree
80 0.1 0.9 0.85754 0.9236677 0 Decision Tree
81 0.3 0.1 0.59704 0.6274832 0.5505429 Decision Tree
82 0.3 0.3 0.60888 0.6945525 0.4412472 Decision Tree
83 0.3 0.5 0.67126 0.7789462 0.3412931 Decision Tree
84 0.3 0.7 0.769 0.8631029 0.2185776 Decision Tree
85 0.3 0.9 0.89519 0.9320175 0.1252257 Decision Tree
86 0.5 0.1 0.60158 0.6321843 0.5556561 Decision Tree
87 0.5 0.3 0.6267 0.7074931 0.4669443 Decision Tree
88 0.5 0.5 0.68396 0.7861372 0.3645009 Decision Tree
89 0.5 0.7 0.8287 0.8688106 0.2516531 Decision Tree
90 0.5 0.9 0.87 0.9302729 0.08333333 Decision Tree
91 0.7 0.1 0.60648 0.6372164 0.5610909 Decision Tree
92 0.7 0.3 0.63342 0.7137988 0.4756032 Decision Tree
93 0.7 0.5 0.68754 0.7883776 0.370693 Decision Tree
94 0.7 0.7 0.77938 0.8686988 0.2524446 Decision Tree
95 0.7 0.9 0.895 0.9411462 0.2142857 Decision Tree
96 0.9 0.1 0.60816 0.6399419 0.5620293 Decision Tree
97 0.9 0.3 0.63308 0.7134873 0.4764793 Decision Tree
98 0.9 0.5 0.68412 0.7873414 0.3682815 Decision Tree
99 0.9 0.7 0.77484 0.8677161 0.2423266 Decision Tree

100 0.9 0.9 0.85 0.9283816 0.05 Decision Tree

	
	 	

APPENDIX II: R CODE
	

library(tidyr)
library(dplyr)
library(tolerance)
library(KernSmooth)
library(ggplot2)
library(mclust)
library(rpart)
library(limma)
library(graphics)
library(grDevices)
library(methods)
library(stats)
library(utils)
library(lattice)
library(latticeExtra)
library(RColorBrewer)

#Read in the data#
FunDat <- read.csv("dataDropped.csv")

initiate <- function(x = FunDat){
 x$Log2.FC <- as.numeric(levels(x$Log2.FC))[x$Log2.FC]
 #Create a single column key#
 x <- x %>% arrange(Maturation, Mother, Oocyte)
 x$OociteID <- x %>% unite(OocyteID, Maturation, Mother,
Oocyte)
 x$OocyteID <- x$OociteID$OocyteID
 x <- x[,c(1,2,3,4,5,7)]
 tableDat <- table(x$OocyteID)
 numGenes <- max(tableDat)
 goodIDs <- tableDat[tableDat == numGenes]
 numOocytes <- length(goodIDs)
 test <- as.vector(names(goodIDs))
 #Only oocytes with full profiles#
 x <- x[which(x$OocyteID %in% test),]
 x$GeneID <- rep(1:numGenes, numOocytes)
 x$OocyteID <- rep(1:numOocytes, each = numGenes)
 return(x)
}

FunDat <- initiate(FunDat)

InitialGlean = function(dataset = FunDat){
 Obs <- as.data.frame(matrix(seq(max(dataset$GeneID,

na.rm = T)), nrow=max(dataset$GeneID, na.rm = T), ncol =
10))
 colnames(Obs) <- c("Mui NonViable", "SDi NonViable",
"CVi NonViable", "absCVi NonViable", "wi NonViable",
"Mui Viable", "SDi Viable", "CVi Viable", "absCVi Viable",
"wi Viable")
 subsetNonViable <- 0
 subsetViable <- 0
 ViabletestVals = matrix(NA, nrow = nrow(Obs), ncol = 1)
 NonViabletestVals = matrix(NA, nrow = nrow(Obs),
 ncol = 1)
 for(j in (1:nrow(Obs))){
 subsetNonViable <- dataset$Log2.FC[
which(dataset$Viable == 0 & dataset$GeneID == j)]
 Obs[j,1] <- mean(subsetNonViable, na.rm = TRUE)
 Obs[j,2] <- sd(subsetNonViable, na.rm = TRUE)
 Obs[j,3] <- (Obs[j,2]/Obs[j,1])
 Obs[j,4] <- abs(Obs[j,3])

 subsetViable <- dataset$Log2.FC[which(
 dataset$Viable == 1 & dataset$GeneID == j)]
 Obs[j,6] <- mean(subsetViable, na.rm = TRUE)
 Obs[j,7] <- sd(subsetViable, na.rm = TRUE)
 Obs[j,8] <- (Obs[j,7]/Obs[j,6])
 Obs[j,9] <- abs(Obs[j,8])
 }
 SumCV_NonViable <- sum(Obs$`absCVi NonViable`, na.rm =
TRUE)
 SumCV_Viable <- sum(Obs$`absCVi Viable`, na.rm = TRUE)
 #Get the gene by gene weights for the group
 Obs[,5] <- Obs[,4]/SumCV_NonViable
 Obs[,10] <- Obs[,9]/SumCV_Viable
 return(Obs)
}

wRMSD <- function(x = FunDat){
 Obs = InitialGlean(x)
 dat <- as.data.frame(matrix(seq(max(x$OocyteID)),
nrow=max(x$OocyteID), ncol = 4))
 colnames(dat) <- c("OocyteID", "Maturation", "Viable",
"wRMSD")
 #get viability for every Oocyte (58)
 for(k in (1:nrow(dat))){
 for(l in (1:nrow(x)))
 if(x$OocyteID[l] == k){
 dat[k,"Viable"] <- x$Viable[l]
 if(dat[k,"Viable"] == 1){

 dat[k,"Viable"] = 0
 }
 else{
 dat[k,"Viable"] = 1
 }
 }
 }
 #get maturation type for every Oocyte (58)
 for(k in (1:nrow(dat))){
 for(l in (1:nrow(x)))
 if(x$OocyteID[l] == k){
 dat[k,"Maturation"] <- x$Maturation[l]
 }
 }
 #for every Oocyte (58)
 for(i in (1:nrow(dat))){
 SumValue <- 0
 #for every Gene within Oocyte (69)
 for(j in (1:nrow(Obs))){
 if(dat$Viable[i] == 0){
 Emi <- Obs[j,1]
 Wi <- Obs[j,5]
 }
 else{
 Emi <- Obs[j,6]
 Wi <- Obs[j,10]
 }
#if the log2FC is missing for the gene, don't do anything
 if(is.na(x$Log2.FC[[which(x$OocyteID == i &
x$GeneID == j)]]) == 1){
 }
 else{
 Ei <- x$Log2.FC[[which(x$OocyteID == i &
x$GeneID == j)]]
 value <- Wi*(Emi - Ei)^2
 SumValue <- SumValue + value
 }
 }
 dat[i,"wRMSD"] <- sqrt(SumValue)
 }
 return(dat)
}

#The Function#
wRMSDPvals <- function(dat = wRMSDdat){
 # Sort the data by wRMSD #
 wRMSDdat <- dat[order(dat$wRMSD),]

 wRMSDdat$Order <- c(1:nrow(wRMSDdat))
 e <- density(na.omit(wRMSDdat$wRMSD[wRMSDdat$Viable ==
1]), from = 0, to = 30, n=3000, bw = "SJ")
 est2 <- approxfun(e)
 NonViabledist <- wRMSDdat[wRMSDdat$Viable == 0,]
 Viabledist <- wRMSDdat[wRMSDdat$Viable == 1,]
 for(i in (1:nrow(wRMSDdat))){
 if(wRMSDdat$wRMSD[i] > max(Viabledist$wRMSD)){
 wRMSDdat$Pval[i] <- 0
 }
 else{
 temp <- (integrate(est2, 0, wRMSDdat$wRMSD[i],
stop.on.error = FALSE, subdivisions = 200))
 wRMSDdat$Pval[i] <- 1 - temp$value
 }
 if(wRMSDdat$Pval[i] < 0){
 wRMSDdat$Pval[i] <- 0
 }
 if(wRMSDdat$Pval[i] > 1){
 wRMSDdat$Pval[i] <- 1
 }
 }
 return(wRMSDdat)
}

distances <- function(x = FunDat){
 Obs = InitialGlean(x)
 #Change the data format for the eBayes method
 #Note Oocytes 1-29 are Maturation 1 (i.e. IVM), 30-58 are
Maturation 2, (IVV) for the Isom data
 #Use Viability for the simulated data, use maturation for
the Isom data
 y = arrange(x, Viable)
 NumNonViable = nrow(y[y$Viable == 0,])/max(y$GeneID)
 NumViable = nrow(y[y$Viable == 1,])/max(y$GeneID)
 eBayesDat = spread(y[,c("Log2.FC","OocyteID","GeneID")],
OocyteID, Log2.FC)
 eBayesDat2 = eBayesDat[,-1]
 groupLabels = as.factor(c(rep("NonViable",
NumNonViable),rep("Viable", NumViable)))
 design = model.matrix(~0 + groupLabels)
 colnames(design) = levels(groupLabels)
 xTemp = lmFit(eBayesDat2, design)
 cont.matrix<-makeContrasts(NonViable-Viable,
levels=design)
 fit2<-contrasts.fit(xTemp, cont.matrix)
 ebfit<-eBayes(fit2)

 xTemp = topTable(ebfit, coef=1, number = nrow(xTemp))
 pvalTemp = cbind(row.names(xTemp),xTemp[,6])
 colnames(pvalTemp) = c("GeneID", "P-value")
 #Select the differentially expressed Genes
 sigPvalTemp = pvalTemp[pvalTemp[,2] < 0.05,]
 for(i in 1:nrow(y)){
 if(is.element(y$GeneID[i], sigPvalTemp[,1])){
 y[i,"Log2.FC"] = y[i,"Log2.FC"]
 }
 else{
 y[i,"Log2.FC"] = NA
 }
 }
 dat <- as.data.frame(matrix(seq(max(y$OocyteID)),
nrow=max(y$OocyteID), ncol = 4))
 colnames(dat) <- c("OocyteID", "Maturation", "Viable",
"Distances")
 #get maturation type for every Oocyte (58)
 for(k in (1:nrow(dat))){
 for(l in (1:nrow(y)))
 if(y$OocyteID[l] == k){
 dat[k,"Maturation"] <- y$Maturation[l]
 }
 }
 #get viability for every Oocyte (58)
 for(k in (1:nrow(dat))){
 for(l in (1:nrow(y)))
 if(y$OocyteID[l] == k){
 dat[k,"Viable"] <- y$Viable[l]
 if(dat[k,"Viable"] == 1){
 dat[k,"Viable"] = 0
 }
 else{
 dat[k,"Viable"] = 1
 }
 }
 }
 #for every Oocyte (58)
 for(i in (1:nrow(dat))){
 SumValue <- 0
 #for every Gene within Oocyte (67)
 for(j in (1:nrow(Obs))){
 # Compared to the IVV Gene Mean Expressions #
 ViablegeneMeanExpr <- mean(y[which(y$Viable == 1 &
y$GeneID == j), "Log2.FC"], na.rm = TRUE)
 if(dat$Viable[i] == 0){
 Emi <- ViablegeneMeanExpr

 Wi <- 1/Obs[j,"SDi NonViable"]
 }
 else{
 Emi <- ViablegeneMeanExpr
 Wi <- 1/Obs[j,"SDi Viable"]
 }
 #if the log2FC is missing for the gene, don't do
anything
 if(is.na(y$Log2.FC[[which(y$OocyteID == i &
y$GeneID == j)]]) == 1){ }
 else{
 Ei <- y$Log2.FC[[which(y$OocyteID == i &

y$GeneID == j)]]
 value <- Wi*(Emi - Ei)^2
 SumValue <- SumValue + value
 }
 }
 dat[i,"Distances"] <- sqrt(SumValue)
 }
 return(dat)
}

DistancePvals <- function(dat = distData){
 # Sort the data by distances #
 dat <- dat[order(dat$Distances),]
 dat$Order <- c(1:nrow(dat))

 e <- density(na.omit(dat$Distances[dat$Viable == 1]),
from = 0, to = 30, n=3000, bw = "SJ")
 est2 <- approxfun(e)
 NonViabledist <- dat[dat$Viable == 0,]
 Viabledist <- dat[dat$Viable == 1,]
 for(i in (1:nrow(dat))){
 if(dat$Distances[i] > max(Viabledist$Distances)){
 dat$Pval[i] <- 0
 }
 else{
 temp <- (integrate(est2, 0, dat$Distances[i]))
 dat$Pval[i] <- 1 - temp$value
 }
 if(dat$Pval[i] < 0){
 dat$Pval[i] <- 0
 }
 if(dat$Pval[i] > 1){
 dat$Pval[i] <- 1
 }
 }

 return(dat)
}

tolInt <- function(x = distFunDat){
 distFunDat <- distances(x)
 Viabledist <- x[x$Viable == 1,]
 tolInterval <- nptol.int(Viabledist$Distances, alpha =
.05, P = 0.95, side = 1)

 return(tolInterval)
}

TreeFunc <- function(x = FunDat){
 #Reformat the data#
 TreeDat <- x[,c("Gene","Viable","Log2.FC","OocyteID")]
 TreeDat <- spread(TreeDat, Gene, Log2.FC)
 ifelse(TreeDat$Viable == 1, TreeDat$Maturation <-
"Viable", TreeDat$Maturation <- "Non-Viable")
 cols <- as.formula(paste(colnames(TreeDat)[1],
"~",paste(colnames(TreeDat)[c(3:ncol(TreeDat))], collapse =
"+"), sep = ""))
 #Grow Trees#
 csv.cp=csv.rpartfull<-
rpart(cols,control=rpart.control(cp=0.0,minsplit=2),data=Tr
eeDat)
 csv.cp.xval=rep(0,nrow(TreeDat))
 xvs=rep(1:10,length=nrow(TreeDat))
 xvs=sample(xvs)
 data.cp.xval=rep(0,nrow(TreeDat))
 xvs=rep(1:10,length=nrow(TreeDat))
 xvs=sample(xvs)
 for(i in 1:10){
 test=TreeDat[xvs==i,]
 train=TreeDat[xvs!=i,]
 glub=rpart(cols, control=rpart.control(cp=0.0,
minsplit=2),data=train)
 data.cp.xval[xvs==i]=predict(glub,test,type="class")}
 #Use this for real data without vialbe/non-viable markers

#data.cpconfuse.xval=table(TreeDat$Maturation,data.cp.xval)
 #Use this for simulated data
 data.cpconfuse.xval=table(TreeDat$Viable,data.cp.xval)
 colnames(data.cpconfuse.xval) <- c("True Non-Viable",
"True Viable")
 rownames(data.cpconfuse.xval) <- c("Pred Non-Viable",
"Pred Viable")
 #Overall Error Rate#

 #100-100*sum(diag(data.cpconfuse.xval))/nrow(TreeDat)
 data.cpconfuse.xval
 #plot(csv.cp, margin = 0.1, main = "4. Trimmed Decision
Tree, Isom Data");text(csv.cp)

 return(data.cpconfuse.xval)
}

DataSimulation = function(numOocytes, pi, delta, GeneNames,
whichDEgenes, probabilityViableIVM, dat = eBayesDat2){
 #Error Checking#
 if(pi > 1 | pi < 0) stop("pi, the mixing
proportion/degree of similarity is invalid, must be between
0 and 1 inclusive")
 if(probabilityViableIVM > 1 | probabilityViableIVM < 0)
stop("probabilityViableIVM is invalid, must be between 0
and 1 inclusive")

 #Oocyte Level#
 # Note: Maturation = 0 means IVM, Maturation = 1 means
IVV
 Oocytes = as.data.frame(matrix(seq(1:numOocytes),

nrow = numOocytes, ncol = 1))
 colnames(Oocytes) = "OocyteID"
 Oocytes$Maturation = rbinom(numOocytes, size = 1,

prob = 0.5)
 for(i in 1:numOocytes){
 if(Oocytes$Maturation[i] == 1){
 Oocytes$Viable[i] = 1
 }
 else{
 Oocytes$Viable[i] = rbinom(1,1,probabilityViableIVM)
 }}
 while(nrow(Oocytes[Oocytes$Viable == 0,]) < 2){
 for(i in 1:numOocytes){
 if(Oocytes$Maturation[i] == 1){
 Oocytes$Viable[i] = 1
 }
 else{
 Oocytes$Viable[i] =
rbinom(1,1,probabilityViableIVM)
 }}
 while(nrow(Oocytes[Oocytes$Viable == 1,]) < 2){
 for(i in 1:numOocytes){
 if(Oocytes$Maturation[i] == 1){
 Oocytes$Viable[i] = 1
 }

 else{
 Oocytes$Viable[i] =
rbinom(1,1,probabilityViableIVM)
 }}
 }
 }
 #Gene Level#
 #Setup#
 GeneI = as.vector(matrix(NA, nrow = numOocytes,

ncol = 1))
 for(j in 1:nrow(dat)){
 #j goes from 1 to number of genes
 #This delta_i
 if(is.element(j, whichDEgenes)){deltai =

runif(1, min = 0, max = abs(delta))}
 else{deltai = runif(1, min = 0, max = 0)}

 #Oocyte Level Within Gene Level#
 for(i in 1:numOocytes){
 #i goes from 1 to number of oocytes
 #Gene Expression Distributions#
 IVVdist = rnorm(1, mean = 0, sd = 1)
 IVMdist = rnorm(1, mean = deltai, sd = 1)

 IVVSample = IVVdist
 comp = rbinom(1,1,pi)
 IVMViableSample = comp*IVVdist + (1-comp)*IVMdist
 IVMNonViableSample = IVMdist

 if(Oocytes$Maturation[i] == 1){
 GeneI[i] = IVVSample
 }
 else{
 if(Oocytes$Viable[i] == 0){
 GeneI[i] = IVMNonViableSample
 }
 else{
 GeneI[i] = IVMViableSample
 }
 }
 }
 Oocytes = cbind(Oocytes, GeneI)
 GeneNum = j
 colnames(Oocytes) =
c(colnames(Oocytes[,c(1:(ncol(Oocytes)-1))]), GeneNum)
 }
 Oocytes = gather(Oocytes, "GeneID", "Log2.FC", 4:70)

 Oocytes = arrange(Oocytes, OocyteID)
 Gene = as.vector(levels(FunDat$Gene))
 Oocytes = cbind(Oocytes, Gene)
 Oocytes$GeneID = as.numeric(Oocytes$GeneID)
 Oocytes$Viable = as.factor(Oocytes$Viable)
 return(Oocytes)
}

wRMSDres = function(dat){
 temp = wRMSD(dat)
 temp = wRMSDPvals(temp)
 Results = as.data.frame(matrix(NA, nrow = 1, ncol = 4))
 colnames(Results) =
c("M1negneg","M1negpos","M1posneg","M1pospos")
 Results$M1negneg = nrow(temp[temp$Viable == 0 &

temp$Pval < 0.05,])
 Results$M1negpos = nrow(temp[temp$Viable == 0 &

temp$Pval >= 0.05,])
 Results$M1posneg = nrow(temp[temp$Viable == 1 &

temp$Pval < 0.05,])
 Results$M1pospos = nrow(temp[temp$Viable == 1 &

temp$Pval >= 0.05,])
 Results$M1PCC = (Results$M1negneg +
Results$M1pospos)/(Results$M1negneg + Results$M1negpos +
Results$M1posneg + Results$M1pospos)
 Results$M1Sens = (Results$M1pospos)/(Results$M1posneg +
Results$M1pospos)
 Results$M1Spec = (Results$M1negneg)/(Results$M1negneg +
Results$M1negpos)
 return(Results)
}

distancesRes = function(dat){
 temp = distances(dat)
 temp = DistancePvals(temp)
 Results = as.data.frame(matrix(NA, nrow = 1, ncol = 4))
 colnames(Results) =
c("M2negneg","M2negpos","M2posneg","M2pospos")
 Results$M2negneg = nrow(temp[temp$Viable == 0 &

temp$Pval < 0.05,])
 Results$M2negpos = nrow(temp[temp$Viable == 0 &

temp$Pval >= 0.05,])
 Results$M2posneg = nrow(temp[temp$Viable == 1 &

temp$Pval < 0.05,])
 Results$M2pospos = nrow(temp[temp$Viable == 1 &

temp$Pval >= 0.05,])

 Results$M2PCC = (Results$M2negneg +
Results$M2pospos)/(Results$M2negneg + Results$M2negpos +
Results$M2posneg + Results$M2pospos)
 Results$M2Sens = (Results$M2pospos)/(Results$M2posneg +
Results$M2pospos)
 Results$M2Spec = (Results$M2negneg)/(Results$M2negneg +
Results$M2negpos)
 return(Results)
}

tolIntRes = function(dat){
 tempDist = distances(dat)
 temp = as.data.frame(tolInt(tempDist))
 Results = as.data.frame(matrix(NA, nrow = 1, ncol = 4))
 colnames(Results) =
c("M3negneg","M3negpos","M3posneg","M3pospos")
 Results$M3negneg = nrow(tempDist[tempDist$Viable == 0 &
tempDist$Distances > temp[1,4],])
 Results$M3negpos = nrow(tempDist[tempDist$Viable == 0 &
tempDist$Distances <= temp[1,4],])
 Results$M3posneg = nrow(tempDist[tempDist$Viable == 1 &
tempDist$Distances > temp[1,4],])
 Results$M3pospos = nrow(tempDist[tempDist$Viable == 1 &
tempDist$Distances <= temp[1,4],])
 Results$M3PCC = (Results$M3negneg +
Results$M3pospos)/(Results$M3negneg + Results$M3negpos +
Results$M3posneg + Results$M3pospos)
 Results$M3Sens = (Results$M3pospos)/(Results$M3posneg +
Results$M3pospos)
 Results$M3Spec = (Results$M3negneg)/(Results$M3negneg +
Results$M3negpos)
 return(Results)
}

treeFuncRes = function(dat){
 temp = TreeFunc(dat)
 temp = as.data.frame(temp)
 Results = as.data.frame(matrix(NA, nrow = 1, ncol = 4))
 colnames(Results) = c("M4negneg","M4posneg","M4negpos",
"M4pospos")
 Results$M4negneg = temp$Freq[1]
 Results$M4negpos = temp$Freq[2]
 Results$M4posneg = temp$Freq[3]
 Results$M4pospos = temp$Freq[4]
 Results$M4PCC = (Results$M4negneg +
Results$M4pospos)/(Results$M4negneg + Results$M4negpos +
Results$M4posneg + Results$M4pospos)

 Results$M4Sens = (Results$M4pospos)/(Results$M4posneg +
Results$M4pospos)
 Results$M4Spec = (Results$M4negneg)/(Results$M4negneg +
Results$M4negpos)
 return(Results)
}

SimulationRes = function(NumItterations = 100, Dat =
FunDat){
 #Simulations#
 #We will keep delta and proportionDEgenes constant for
this project#
 #delta should be found by looking at the log fold change
of the eBayes (observed) data and take the median
 #proportionDEgenes should be found by looking at the
multiple-testing adjusted p-values of the eBayes (observed)
 #data and noting the total number of genes that have a p-
value of <0.05, divided by total number of genes in
dataset.

 # The Check for delta #
 #Note Oocytes 1-29 are Maturation 1 (i.e. IVM), 30-58 are
Maturation 2, (IVV)
 #Change the data format for the eBayes method
 eBayesDat = spread(Dat[,c(5,6,7,1)], OocyteID, Log2.FC)
#"Log2.FC","OocyteID","GeneID","Gene"
 Genes = as.character(eBayesDat[,"Gene"])
 eBayesDat2 = eBayesDat[,-c(1,2)]
 groupLabels = as.factor(c(rep("IVV",
ncol(eBayesDat2)/2),rep("IVM", ncol(eBayesDat2)/2)))
 design = model.matrix(~0 + groupLabels)
 colnames(design) = levels(groupLabels)
 fit = lmFit(eBayesDat2, design)
 cont.matrix<-makeContrasts(IVM-IVV, levels=design)
 fit2<-contrasts.fit(fit, cont.matrix)
 ebfit<-eBayes(fit2)
 #Get the Log-fold change of the eBayes data (ebfit) and
take median of differentially expressed genes to find delta
 tempTab = topTable(ebfit, coef=1, number=30)

 Delta = median(tempTab[tempTab$adj.P.Val < 0.05,"logFC"])

 # The Check for proportionDEgenes #
 ProportionDEgenes = nrow(tempTab[tempTab$adj.P.Val <
0.05,])/nrow(eBayesDat)
 #Identify Which Genes
 DEgenes = row.names(tempTab[tempTab$adj.P.Val < 0.05,])

 #Set up pi and proportion Viable IVM to loop over various
values
 Pi = as.vector(c(0.1, 0.3, 0.5, 0.7, 0.9))
 ProbabilityViableIVM = as.vector(c(0.1, 0.3, 0.5, 0.7,
0.9))

 #Result matricies
 pcc1 = matrix(NA, nrow = length(Pi), ncol =
length(ProbabilityViableIVM))
 pcc2 = matrix(NA, nrow = length(Pi), ncol =
length(ProbabilityViableIVM))
 pcc3 = matrix(NA, nrow = length(Pi), ncol =
length(ProbabilityViableIVM))
 pcc4 = matrix(NA, nrow = length(Pi), ncol =
length(ProbabilityViableIVM))

 sens1 = matrix(NA, nrow = length(Pi), ncol =
length(ProbabilityViableIVM))
 sens2 = matrix(NA, nrow = length(Pi), ncol =
length(ProbabilityViableIVM))
 sens3 = matrix(NA, nrow = length(Pi), ncol =
length(ProbabilityViableIVM))
 sens4 = matrix(NA, nrow = length(Pi), ncol =
length(ProbabilityViableIVM))

 spec1 = matrix(NA, nrow = length(Pi), ncol =
length(ProbabilityViableIVM))
 spec2 = matrix(NA, nrow = length(Pi), ncol =
length(ProbabilityViableIVM))
 spec3 = matrix(NA, nrow = length(Pi), ncol =
length(ProbabilityViableIVM))
 spec4 = matrix(NA, nrow = length(Pi), ncol =
length(ProbabilityViableIVM))

 #Data Generation and Results
 for(i in 1:length(Pi)){
 for(j in 1:length(ProbabilityViableIVM)){
 r1 = r2 = r3 = r4 = as.data.frame(matrix(NA, nrow =
NumItterations, ncol = 7)) #should have the the confusion
matrix results (4) in addition to pcc, sens, spec, etc.
 for(k in 1:NumItterations){
 data <- DataSimulation(numOocytes = 100, pi =
Pi[i], delta = Delta, GeneNames = Genes, whichDEgenes =
DEgenes, probabilityViableIVM = ProbabilityViableIVM[j],
dat = eBayesDat2)

 while(nrow(data[data$Viable == 0,]) <
2*length(Genes)){
 data <- DataSimulation(numOocytes = 100, pi =
Pi[i], delta = Delta, GeneNames = Genes, whichDEgenes =
DEgenes, probabilityViableIVM = ProbabilityViableIVM[j],
dat = eBayesDat2)
 }
 r1[k,] = wRMSDres(data)
 r2[k,] = distancesRes(data)
 r3[k,] = tolIntRes(data)
 r4[k,] = treeFuncRes(data)
 }
 #Rows are pi values, columns are probabilityViableIVM
 temp = apply(r1[,c(5:7)], 2, mean)
 pcc1[i,j] = temp[1]
 sens1[i,j] = temp[2]
 spec1[i,j] = temp[3]

 temp = apply(r2[,c(5:7)], 2, mean)
 pcc2[i,j] = temp[1]
 sens2[i,j] = temp[2]
 spec2[i,j] = temp[3]

 temp = apply(r3[,c(5:7)], 2, mean)
 pcc3[i,j] = temp[1]
 sens3[i,j] = temp[2]
 spec3[i,j] = temp[3]

 temp = apply(r4[,c(5:7)], 2, mean)
 pcc4[i,j] = temp[1]
 sens4[i,j] = temp[2]
 spec4[i,j] = temp[3]
 }
 }
 SimulationResults = list(pcc1, pcc2, pcc3, pcc4, sens1,
sens2, sens3, sens4, spec1, spec2, spec3, spec4)
 return(SimulationResults)
}

set.seed(122816)
source("~/Documents/Current
Classes/Research/FunctionSource.R")
start = proc.time()
example = SimulationRes(NumItterations = 500, Dat = FunDat)
end = proc.time()

totalTime = end-start

temp = as.data.frame(matrix(NA, nrow = 25, ncol = 1))
temp$Pi = c(rep(0.1, 5),rep(0.3, 5),rep(0.5, 5),rep(0.7,
5),rep(0.9, 5))
temp$ProbViableIVM = c(rep(c(0.1, 0.3, 0.5, 0.7, 0.9), 5))
temp = temp[,-1]
count = 1
Method = list(NA)
for(l in 1:4){
for(i in 1:nrow(Results[[l]])){
 for(j in 1:ncol(Results[[l]])){
 temp$PCC[count] = Results[[l]][i,j]
 count = count + 1
 }
}
count = 1
for(i in 1:nrow(Results[[l+4]])){
 for(j in 1:ncol(Results[[l+4]])){
 temp$Sens[count] = Results[[l+4]][i,j]
 count = count + 1
 }
}
count = 1
for(i in 1:nrow(Results[[l+8]])){
 for(j in 1:ncol(Results[[l+8]])){
 temp$Spec[count] = Results[[l+8]][i,j]
 count = count + 1
 }
}

Method[[l]] = temp
temp = as.data.frame(matrix(NA, nrow = 25, ncol = 1))
temp$Pi = c(rep(0.1, 5),rep(0.3, 5),rep(0.5, 5),rep(0.7,
5),rep(0.9, 5))
temp$ProbViableIVM = c(rep(c(0.1, 0.3, 0.5, 0.7, 0.9), 5))
temp = temp[,-1]
count = 1
}
Method[[1]]$Method = as.factor(rep("wRMSD",25))
Method[[2]]$Method = as.factor(rep("Distance Kernel",25))
Method[[3]]$Method = as.factor(rep("Tolerance
Interval",25))
Method[[4]]$Method = as.factor(rep("Decision Tree",25))

temp = rbind(Method[[1]], Method[[2]], Method[[3]],
Method[[4]])

#PCC by Pi
Prob1 = temp[seq(1,100,5),]
mypanel <- function(x, y) {
 panel.superpose(x, y, groups =
as.factor(Prob1$ProbViableIVM), type = "o", subscripts =
as.factor(Prob1$ProbViableIVM),lty = 1, col =
brewer.pal(9,"Blues")[3])
 panel.grid(h=-1, v=-1)
 }
plot1 = xyplot(Prob1$PCC~Prob1$Pi|Prob1$Method, xlab = "Pi,
Mixing Proportion", ylab = "Proportion Correctly
Classified", panel = mypanel, ylim = c(0.5,1.0), main=
"Plot of PCC by Pi, Probability IVM Viable, and Method",
 key=list(columns=5,
 text=list(lab=c("ProbIVMViable =
0.1","0.3","0.5","0.7","0.9")),
 lines=list(lty = c(1,2,3,4,5), col
= c(brewer.pal(9,"Blues")[3], brewer.pal(9,"Blues")[5],
brewer.pal(9,"Blues")[7], brewer.pal(9,"Blues")[8],
brewer.pal(9,"Blues")[9]), lwd = 2)))

Prob2 = temp[seq(2,100,5),]
mypanel <- function(x, y) {
 panel.superpose(x, y, groups =
as.factor(Prob2$ProbViableIVM), type = "o", subscripts =
as.factor(Prob2$ProbViableIVM),lty = 2, col =
brewer.pal(9,"Blues")[5], lwd = 2)
 panel.grid(h=-1, v=-1)
}
plot2 = xyplot(Prob2$PCC~Prob2$Pi|Prob1$Method, panel =
mypanel)

Prob3 = temp[seq(3,100,5),]
mypanel <- function(x, y) {
 panel.superpose(x, y, groups =
as.factor(Prob3$ProbViableIVM), type = "o", subscripts =
as.factor(Prob3$ProbViableIVM),lty = 3, col =
brewer.pal(9,"Blues")[7], lwd = 2)
 panel.grid(h=-1, v=-1)
}
plot3 = xyplot(Prob3$PCC~Prob3$Pi|Prob1$Method, panel =
mypanel)

Prob4 = temp[seq(4,100,5),]
mypanel <- function(x, y) {

 panel.superpose(x, y, groups =
as.factor(Prob4$ProbViableIVM), type = "o", subscripts =
as.factor(Prob4$ProbViableIVM),lty = 4, col =
brewer.pal(9,"Blues")[8], lwd = 2)
 panel.grid(h=-1, v=-1)
}
plot4 = xyplot(Prob4$PCC~Prob4$Pi|Prob1$Method, panel =
mypanel)

Prob5 = temp[seq(5,100,5),]
mypanel <- function(x, y) {
 panel.superpose(x, y, groups =
as.factor(Prob5$ProbViableIVM), type = "o", subscripts =
as.factor(Prob5$ProbViableIVM),lty = 5, col =
brewer.pal(9,"Blues")[9], lwd = 2)
 panel.grid(h=-1, v=-1)
}
plot5 = xyplot(Prob5$PCC~Prob5$Pi|Prob1$Method, panel =
mypanel)

FinalPlot1 =
plot1+as.layer(plot2)+as.layer(plot3)+as.layer(plot4)+as.la
yer(plot5)

#PCC by ProbIVMViable
Prob1 = temp[c(1:5,26:30,51:55,76:80),]
mypanel <- function(x, y) {
 panel.superpose(x, y, groups = as.factor(Prob1$Pi), type
= "o", subscripts = as.factor(Prob1$Pi),lty = 1, col =
brewer.pal(9,"Blues")[3])
 panel.grid(h=-1, v=-1)
}
plot1 = xyplot(Prob1$PCC~Prob1$ProbViableIVM|Prob1$Method,
xlab = "Probability Viable IVM", ylab = "Proportion
Correctly Classified", panel = mypanel, ylim = c(0.5,1.0),
main= "Plot of PCC by Probability IVMViable, Pi and
Method",
 key=list(columns=5,
 text=list(lab=c("Pi =
0.1","0.3","0.5","0.7","0.9")),
 lines=list(lty = c(1,2,3,4,5), col
= c(brewer.pal(9,"Blues")[3], brewer.pal(9,"Blues")[5],
brewer.pal(9,"Blues")[7], brewer.pal(9,"Blues")[8],
brewer.pal(9,"Blues")[9]), lwd = 2)))

Prob2 = temp[c(6:10,31:35,56:60,81:85),]
mypanel <- function(x, y) {
 panel.superpose(x, y, groups = as.factor(Prob2$Pi), type
= "o", subscripts = as.factor(Prob2$Pi),lty = 2, col =
brewer.pal(9,"Blues")[5], lwd = 2)
 panel.grid(h=-1, v=-1)
}
plot2 = xyplot(Prob2$PCC~Prob2$ProbViableIVM|Prob1$Method,
panel = mypanel)

Prob3 = temp[c(11:15,36:40,61:65,86:90),]
mypanel <- function(x, y) {
 panel.superpose(x, y, groups = as.factor(Prob3$Pi), type
= "o", subscripts = as.factor(Prob3$Pi),lty = 3, col =
brewer.pal(9,"Blues")[7], lwd = 2)
 panel.grid(h=-1, v=-1)
}
plot3 = xyplot(Prob3$PCC~Prob3$ProbViableIVM|Prob1$Method,
panel = mypanel)

Prob4 = temp[c(16:20,41:45,66:70,91:95),]
mypanel <- function(x, y) {
 panel.superpose(x, y, groups = as.factor(Prob4$Pi), type
= "o", subscripts = as.factor(Prob4$Pi),lty = 4, col =
brewer.pal(9,"Blues")[8], lwd = 2)
 panel.grid(h=-1, v=-1)
}
plot4 = xyplot(Prob4$PCC~Prob4$ProbViableIVM|Prob1$Method,
panel = mypanel)

Prob5 = temp[c(21:25,46:50,71:75,96:100),]
mypanel <- function(x, y) {
 panel.superpose(x, y, groups = as.factor(Prob5$Pi), type
= "o", subscripts = as.factor(Prob5$Pi),lty = 5, col =
brewer.pal(9,"Blues")[9], lwd = 2)
 panel.grid(h=-1, v=-1)
}
plot5 = xyplot(Prob5$PCC~Prob5$ProbViableIVM|Prob1$Method,
panel = mypanel)

FinalPlot2 =
plot1+as.layer(plot2)+as.layer(plot3)+as.layer(plot4)+as.la
yer(plot5)

#Sens by Pi
Prob1 = temp[seq(1,100,5),]
mypanel <- function(x, y) {

 panel.superpose(x, y, groups =
as.factor(Prob1$ProbViableIVM), type = "o", subscripts =
as.factor(Prob1$ProbViableIVM),lty = 1, col =
brewer.pal(9,"Blues")[3])
 panel.grid(h=-1, v=-1)
}
plot1 = xyplot(Prob1$Sens~Prob1$Pi|Prob1$Method, xlab =
"Pi, Mixing Proportion", ylab = "Sensitivity", panel =
mypanel, ylim = c(0.6,1.1), main= "Plot of Sensitivity by
Pi, Probability IVM Viable and Method",
 key=list(columns=5,
 text=list(lab=c("ProbIVMViable =
0.1","0.3","0.5","0.7","0.9")),
 lines=list(lty = c(1,2,3,4,5), col
= c(brewer.pal(9,"Blues")[3], brewer.pal(9,"Blues")[5],
brewer.pal(9,"Blues")[7], brewer.pal(9,"Blues")[8],
brewer.pal(9,"Blues")[9]), lwd = 2)))

Prob2 = temp[seq(2,100,5),]
mypanel <- function(x, y) {
 panel.superpose(x, y, groups =
as.factor(Prob2$ProbViableIVM), type = "o", subscripts =
as.factor(Prob2$ProbViableIVM),lty = 2, col =
brewer.pal(9,"Blues")[5], lwd = 2)
 panel.grid(h=-1, v=-1)
}
plot2 = xyplot(Prob2$Sens~Prob2$Pi|Prob1$Method, panel =
mypanel)

Prob3 = temp[seq(3,100,5),]
mypanel <- function(x, y) {
 panel.superpose(x, y, groups =
as.factor(Prob3$ProbViableIVM), type = "o", subscripts =
as.factor(Prob3$ProbViableIVM),lty = 3, col =
brewer.pal(9,"Blues")[7], lwd = 2)
 panel.grid(h=-1, v=-1)
}
plot3 = xyplot(Prob3$Sens~Prob3$Pi|Prob1$Method, panel =
mypanel)

Prob4 = temp[seq(4,100,5),]
mypanel <- function(x, y) {
 panel.superpose(x, y, groups =
as.factor(Prob4$ProbViableIVM), type = "o", subscripts =
as.factor(Prob4$ProbViableIVM),lty = 4, col =
brewer.pal(9,"Blues")[8], lwd = 2)
 panel.grid(h=-1, v=-1)

}
plot4 = xyplot(Prob4$Sens~Prob4$Pi|Prob1$Method, panel =
mypanel)

Prob5 = temp[seq(5,100,5),]
mypanel <- function(x, y) {
 panel.superpose(x, y, groups =
as.factor(Prob5$ProbViableIVM), type = "o", subscripts =
as.factor(Prob5$ProbViableIVM),lty = 5, col =
brewer.pal(9,"Blues")[9], lwd = 2)
 panel.grid(h=-1, v=-1)
}
plot5 = xyplot(Prob5$Sens~Prob5$Pi|Prob1$Method, panel =
mypanel)

FinalPlot3 =
plot1+as.layer(plot2)+as.layer(plot3)+as.layer(plot4)+as.la
yer(plot5)

#Sens by ProbIVMViable
Prob1 = temp[c(1:5,26:30,51:55,76:80),]
mypanel <- function(x, y) {
 panel.superpose(x, y, groups = as.factor(Prob1$Pi), type
= "o", subscripts = as.factor(Prob1$Pi),lty = 1, col =
brewer.pal(9,"Blues")[3])
 panel.grid(h=-1, v=-1)
}
plot1 = xyplot(Prob1$Sens~Prob1$ProbViableIVM|Prob1$Method,
xlab = "Probability Viable IVM", ylab = "Sensitivity",
panel = mypanel, ylim = c(0.6,1.1), main= "Plot of
Sensitivity by Pi, Probability IVM Viable, and Method",
 key=list(columns=5,
 text=list(lab=c("Pi =
0.1","0.3","0.5","0.7","0.9")),
 lines=list(lty = c(1,2,3,4,5), col
= c(brewer.pal(9,"Blues")[3], brewer.pal(9,"Blues")[5],
brewer.pal(9,"Blues")[7], brewer.pal(9,"Blues")[8],
brewer.pal(9,"Blues")[9]), lwd = 2)))

Prob2 = temp[c(6:10,31:35,56:60,81:85),]
mypanel <- function(x, y) {
 panel.superpose(x, y, groups = as.factor(Prob2$Pi), type
= "o", subscripts = as.factor(Prob2$Pi),lty = 2, col =
brewer.pal(9,"Blues")[5], lwd = 2)
 panel.grid(h=-1, v=-1)

}
plot2 = xyplot(Prob2$Sens~Prob2$ProbViableIVM|Prob1$Method,
panel = mypanel)

Prob3 = temp[c(11:15,36:40,61:65,86:90),]
mypanel <- function(x, y) {
 panel.superpose(x, y, groups = as.factor(Prob3$Pi), type
= "o", subscripts = as.factor(Prob3$Pi),lty = 3, col =
brewer.pal(9,"Blues")[7], lwd = 2)
 panel.grid(h=-1, v=-1)
}
plot3 = xyplot(Prob3$Sens~Prob3$ProbViableIVM|Prob1$Method,
panel = mypanel)

Prob4 = temp[c(16:20,41:45,66:70,91:95),]
mypanel <- function(x, y) {
 panel.superpose(x, y, groups = as.factor(Prob4$Pi), type
= "o", subscripts = as.factor(Prob4$Pi),lty = 4, col =
brewer.pal(9,"Blues")[8], lwd = 2)
 panel.grid(h=-1, v=-1)
}
plot4 = xyplot(Prob4$Sens~Prob4$ProbViableIVM|Prob1$Method,
panel = mypanel)

Prob5 = temp[c(21:25,46:50,71:75,96:100),]
mypanel <- function(x, y) {
 panel.superpose(x, y, groups = as.factor(Prob5$Pi), type
= "o", subscripts = as.factor(Prob5$Pi),lty = 5, col =
brewer.pal(9,"Blues")[9], lwd = 2)
 panel.grid(h=-1, v=-1)
}
plot5 = xyplot(Prob5$Sens~Prob5$ProbViableIVM|Prob1$Method,
panel = mypanel)

FinalPlot4 =
plot1+as.layer(plot2)+as.layer(plot3)+as.layer(plot4)
+as.layer(plot5)

#Spec by Pi
Prob1 = temp[seq(1,100,5),]
mypanel <- function(x, y) {
 panel.superpose(x, y, groups =
as.factor(Prob1$ProbViableIVM), type = "o", subscripts =
as.factor(Prob1$ProbViableIVM),lty = 1, col =
brewer.pal(9,"Blues")[3])
 panel.grid(h=-1, v=-1)
}

plot1 = xyplot(Prob1$Spec~Prob1$Pi|Prob1$Method, xlab =
"Pi, Mixing Proportion", ylab = "Specificity", panel =
mypanel, ylim = c(0,0.6), main= "Plot of Specificity by Pi,
Probability IVM Viable and Method",
 key=list(columns=5,
 text=list(lab=c("ProbIVMViable =
0.1","0.3","0.5","0.7","0.9")),
 lines=list(lty = c(1,2,3,4,5), col
= c(brewer.pal(9,"Blues")[3], brewer.pal(9,"Blues")[5],
brewer.pal(9,"Blues")[7], brewer.pal(9,"Blues")[8],
brewer.pal(9,"Blues")[9]), lwd = 2)))

Prob2 = temp[seq(2,100,5),]
mypanel <- function(x, y) {
 panel.superpose(x, y, groups =
as.factor(Prob2$ProbViableIVM), type = "o", subscripts =
as.factor(Prob2$ProbViableIVM),lty = 2, col =
brewer.pal(9,"Blues")[5], lwd = 2)
 panel.grid(h=-1, v=-1)
}
plot2 = xyplot(Prob2$Spec~Prob2$Pi|Prob1$Method, panel =
mypanel)

Prob3 = temp[seq(3,100,5),]
mypanel <- function(x, y) {
 panel.superpose(x, y, groups =
as.factor(Prob3$ProbViableIVM), type = "o", subscripts =
as.factor(Prob3$ProbViableIVM),lty = 3, col =
brewer.pal(9,"Blues")[7], lwd = 2)
 panel.grid(h=-1, v=-1)
}
plot3 = xyplot(Prob3$Spec~Prob3$Pi|Prob1$Method, panel =
mypanel)

Prob4 = temp[seq(4,100,5),]
mypanel <- function(x, y) {
 panel.superpose(x, y, groups =
as.factor(Prob4$ProbViableIVM), type = "o", subscripts =
as.factor(Prob4$ProbViableIVM),lty = 4, col =
brewer.pal(9,"Blues")[8], lwd = 2)
 panel.grid(h=-1, v=-1)
}
plot4 = xyplot(Prob4$Spec~Prob4$Pi|Prob1$Method, panel =
mypanel)

Prob5 = temp[seq(5,100,5),]
mypanel <- function(x, y) {

 panel.superpose(x, y, groups =
as.factor(Prob5$ProbViableIVM), type = "o", subscripts =
as.factor(Prob5$ProbViableIVM),lty = 5, col =
brewer.pal(9,"Blues")[9], lwd = 2)
 panel.grid(h=-1, v=-1)
}
plot5 = xyplot(Prob5$Spec~Prob5$Pi|Prob1$Method, panel =
mypanel)

FinalPlot5 =
plot1+as.layer(plot2)+as.layer(plot3)+as.layer(plot4)+as.la
yer(plot5)

#Spec by ProbIVMViable
Prob1 = temp[c(1:5,26:30,51:55,76:80),]
mypanel <- function(x, y) {
 panel.superpose(x, y, groups = as.factor(Prob1$Pi), type
= "o", subscripts = as.factor(Prob1$Pi),lty = 1, col =
brewer.pal(9,"Blues")[3])
 panel.grid(h=-1, v=-1)
}
plot1 = xyplot(Prob1$Spec~Prob1$ProbViableIVM|Prob1$Method,
xlab = "Probability Viable IVM", ylab = "Specificity",
panel = mypanel, ylim = c(0,0.6), main= "Plot of
Specificity by Pi, Probability IVM Viable and Method",
 key=list(columns=5,
 text=list(lab=c("Pi =
0.1","0.3","0.5","0.7","0.9")),
 lines=list(lty = c(1,2,3,4,5), col
= c(brewer.pal(9,"Blues")[3], brewer.pal(9,"Blues")[5],
brewer.pal(9,"Blues")[7], brewer.pal(9,"Blues")[8],
brewer.pal(9,"Blues")[9]), lwd = 2)))

Prob2 = temp[c(6:10,31:35,56:60,81:85),]
mypanel <- function(x, y) {
 panel.superpose(x, y, groups = as.factor(Prob2$Pi), type
= "o", subscripts = as.factor(Prob2$Pi),lty = 2, col =
brewer.pal(9,"Blues")[5], lwd = 2)
 panel.grid(h=-1, v=-1)
}
plot2 = xyplot(Prob2$Spec~Prob2$ProbViableIVM|Prob1$Method,
panel = mypanel)

Prob3 = temp[c(11:15,36:40,61:65,86:90),]
mypanel <- function(x, y) {

 panel.superpose(x, y, groups = as.factor(Prob3$Pi), type
= "o", subscripts = as.factor(Prob3$Pi),lty = 3, col =
brewer.pal(9,"Blues")[7], lwd = 2)
 panel.grid(h=-1, v=-1)
}
plot3 = xyplot(Prob3$Spec~Prob3$ProbViableIVM|Prob1$Method,
panel = mypanel)

Prob4 = temp[c(16:20,41:45,66:70,91:95),]
mypanel <- function(x, y) {
 panel.superpose(x, y, groups = as.factor(Prob4$Pi), type
= "o", subscripts = as.factor(Prob4$Pi),lty = 4, col =
brewer.pal(9,"Blues")[8], lwd = 2)
 panel.grid(h=-1, v=-1)
}
plot4 = xyplot(Prob4$Spec~Prob4$ProbViableIVM|Prob1$Method,
panel = mypanel)

Prob5 = temp[c(21:25,46:50,71:75,96:100),]
mypanel <- function(x, y) {
 panel.superpose(x, y, groups = as.factor(Prob5$Pi), type
= "o", subscripts = as.factor(Prob5$Pi),lty = 5, col =
brewer.pal(9,"Blues")[9], lwd = 2)
 panel.grid(h=-1, v=-1)
}
plot5 = xyplot(Prob5$Spec~Prob5$ProbViableIVM|Prob1$Method,
panel = mypanel)

FinalPlot6 =
plot1+as.layer(plot2)+as.layer(plot3)+as.layer(plot4)+
as.layer(plot5)

	

	Statistical Methods for Assessing Individual Oocyte Viability Through Gene Expression Profiles
	Recommended Citation

	Microsoft Word - Final Masters Project.docx

