The Total Western Diet and Vancomycin Increase Inflammation Mediated Colorectal Cancer

Niklas Aardema, Daphne Rodriguez, Tomohiro Shiina, Hope Tinsley, Ashli Hunter, Elizabeth Park, Sumira Phatak, Kimberly Campbell, Canyon Neil, Michaela Brubaker, Brandon Fitzgerald, Alec Miller, Kevin Contreras, Emily Speas, David Dang, Morgan Bishop, Robert Ward, Abby Benninghoff, and Korry Hintze
Factors

Inflammation

Gut Microbiome

Diet & Lifestyle
Pre-clinical studies (i.e. Animal Models)

AOM/DSS

Antibiotics ↔ TWD
The Question

What is the effect of the total Western diet, vancomycin-induced changes to the gut microbiome, and the combination of the two on colorectal cancer in the presence of DSS-induced inflammation?
Hypothesis

• We hypothesize that vancomycin treatment will decrease the overall tumor burden, as measured by total tumor volume/colon, in mice fed the total Western diet in the presence of DSS-induced inflammation, and that this attenuation will be supported by a significant diet x treatment interaction.
Study Design

A/VM T/VM

A/Wa T/Wa

AOM/DSS

144 mice; 9 cages per group x 4 mice per cage (n=36)
Endpoints

- Tumor Burden (total tumor volume/colon)
- Tumor Multiplicity (number of tumors/colon)
- Tumor Size (mm3)
- Mucosal Injury and Inflammation

- Visual Colitis Assessment
- Microbiome
 - Taxonomic Summaries
 - Species Richness
 - Community Similarity
Statistical Analysis

• All data were analyzed using SAS On Demand.
• Data were tested for the main effects of diet, vancomycin treatment, and the diet x treatment interaction.
• Cage effect was taken into account when performing statistical analysis.
• Group mean analysis was performed using the Ryan-Einot-Gabriel-Welsh (REGWQ) test.
Results

Colitis Assessment 1 (1 day post-DSS)

Disease Activity Index

Diet: $P<0.01$
AB: $P=0.01$
D*AB: $P=0.22$
Results

Colitis Assessment 2 (14 days post-DSS)

Disease Activity Index

- Water
- Vancomycin

Diet: $P<0.01$
AB: $P<0.01$
D*AB: $P=0.31$

Diet: AIN, TWD

Bars labeled with different letters indicate significant differences.
Results

Mucosal Injury (Recovery)

- Water
- Vancomycin

Injury Score

Diet: P=0.01
AB: P=0.32
D*AB: P=0.81

Diet

<table>
<thead>
<tr>
<th>Diet</th>
<th>Injury Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIN</td>
<td>a</td>
</tr>
</tbody>
</table>
| TWD | a | a

Significance: a

12
Results

Mucosal Injury (Terminal)

- Water
- Vancomycin

Diet: $P=0.64$
AB: $P=0.51$
D*AB: $P=0.04$

Injury Score

Diet

- AIN
- TWD

a
Results

Inflammation Score (Recovery)

<table>
<thead>
<tr>
<th>Diet</th>
<th>Water</th>
<th>Vancomycin</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T W D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Diet:** $P<0.01$
- **AB:** $P=0.60$
- **D*AB:** $P=0.27$
Results

Inflammation Score (Terminal)

- **Water**
- **Vancomycin**

Diet: $P < 0.01$
AB: $P = 0.13$
D*AB: $P < 0.01$
Results

Taxa with largest differences

<table>
<thead>
<tr>
<th>Type</th>
<th>A/Wa</th>
<th>T/Wa</th>
<th>A/VM</th>
<th>T/VM</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verrucomicrobia</td>
<td>5.2%</td>
<td>1.9%</td>
<td>37.5%</td>
<td>37.9%</td>
<td><0.0001</td>
</tr>
<tr>
<td>Firmicutes</td>
<td>81.4%</td>
<td>87.7%</td>
<td>29.8%</td>
<td>29.3%</td>
<td><0.0001</td>
</tr>
<tr>
<td>Actinobacteria</td>
<td>11.2%</td>
<td>8.9%</td>
<td>0.0%</td>
<td>0.0%</td>
<td><0.0001</td>
</tr>
<tr>
<td>Proteobacteria</td>
<td>0.1%</td>
<td>0.0%</td>
<td>32.5%</td>
<td>32.7%</td>
<td><0.0001</td>
</tr>
<tr>
<td>Bacteroidetes</td>
<td>1.9%</td>
<td>1.3%</td>
<td>0.0%</td>
<td>0.0%</td>
<td><0.0001</td>
</tr>
</tbody>
</table>
Results

Taxonomic Summaries by Treatment: Genus Level

Akkermansia
Allobaculum
Clostridales
Lactococcus
Bifidobacterium

A/Wa
T/Wa
A/VM
T/VM

Enterobacteriaceae
Sutterella
<table>
<thead>
<tr>
<th>Type</th>
<th>A/Wa</th>
<th>T/Wa</th>
<th>A/VM</th>
<th>T/VM</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_Verrucomicrobia: g_Akkermansia</td>
<td>5.1%</td>
<td>1.9%</td>
<td>37.6%</td>
<td>37.9%</td>
<td><0.0001</td>
</tr>
<tr>
<td>p_Firmicutes: g_Allobaculum</td>
<td>42.7%</td>
<td>52.7%</td>
<td>0.0%</td>
<td>0.0%</td>
<td><0.0001</td>
</tr>
<tr>
<td>p_Firmicutes: o_Clostridiales</td>
<td>7.7%</td>
<td>5.8%</td>
<td>0.9%</td>
<td>0.4%</td>
<td>0.05</td>
</tr>
<tr>
<td>p_Firmicutes: g_Lactococcus</td>
<td>23.1%</td>
<td>17.4%</td>
<td>27.3%</td>
<td>26.8%</td>
<td><0.0001</td>
</tr>
<tr>
<td>p_Actinobacteria: g_Bifidobacterium</td>
<td>10.6%</td>
<td>8.5%</td>
<td>0.0%</td>
<td>0.0%</td>
<td><0.0001</td>
</tr>
<tr>
<td>p_Proteobacteria: f_Enterobacteriaceae</td>
<td>0.0%</td>
<td>0.0%</td>
<td>15.3%</td>
<td>20.5%</td>
<td><0.0001</td>
</tr>
<tr>
<td>p_Proteobacteria: g_Sutterella</td>
<td>0.0%</td>
<td>0.0%</td>
<td>8.9%</td>
<td>5.7%</td>
<td><0.0001</td>
</tr>
</tbody>
</table>
Results

![Observed Operational Taxonomic Units](image)

- **Diet**: $P=0.48$
- **AB**: $P<0.01$
- **D^*AB**: $P=0.47$

The figure illustrates the observed operational taxonomic units (OTUs) under different dietary conditions. The results indicate a statistically significant difference in OTU counts between the Water and Vancomycin treatments, with further significance noted in the interaction term D^*AB.
Results

PD Whole Tree

![Graph showing log₁₀(Index Score) for AIN and TWD diets with Water and Vancomycin treatments.](image)

- Diet: \(P=0.05 \)
- AB: \(P<0.01 \)
- D*AB: \(P=0.73 \)
Results

Chao1 Index

Index Score

<table>
<thead>
<tr>
<th>Diet</th>
<th>Water</th>
<th>Vancomycin</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIN</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>TWD</td>
<td>ab</td>
<td>b</td>
</tr>
</tbody>
</table>

- Diet: $P=0.48$
- AB: $P<0.01$
- D*AB: $P=0.70$
Results
Results

![Bar graph showing tumor size comparison between Water and Vancomycin diets.](image)

- **Tumor Size**
 - **Diet**:
 - AIN: Water
 - TWD: Vancomycin

- **Log$_{10}(1+\text{mm}^3)$**

- **Statistical Analysis**:
 - Diet: $P=0.22$
 - AB: $P=0.08$
 - D*AB: $P=0.39$
Results

![Bar chart showing tumor multiplicity for AIN and TWD diets with and without vancomycin.](chart)

- **Tumor Multiplicity**
- **Y-axis:** Number of tumors
- **X-axis:** Diet (AIN, TWD)
- **Legend:**
 - Water
 - Vancomycin

Statistical Notes:
- **Diet:** $P<0.01$
- **AB:** $P<0.01$
- **D*AB:** $P=0.06$
Results

Tumor Burden

- Water
- Vancomycin

<table>
<thead>
<tr>
<th>Diet</th>
<th>Water</th>
<th>Vancomycin</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIN</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>TWD</td>
<td>a</td>
<td>b</td>
</tr>
</tbody>
</table>

Diet: $P<0.01$
AB: $P<0.01$
D*AB: $P=0.17$

$(\text{mm}^3)^{1/3}$
Summary

• TWD and VM increase DSS-induced colitis.
• TWD increases gut inflammation long-term.
• TWD increases colonic mucosal injury immediately following DSS treatment.
• VM alters gut microbial composition.
 • Relative taxonomic abundance
 • Species Richness
 • Community Similarity
• VM and TWD significantly increase colon tumorigenesis.
 • Tumor burden and multiplicity
Conclusion

The total Western diet and vancomycin-induced changes to the gut microbiome increase inflammation-induced colitis as measured by total tumor volume.