The Total Western Diet and Vancomycin Increase Inflammation Mediated Colorectal Cancer

Niklas Aardema, Daphne Rodriguez, Tomohiro Shiina, Hope Tinsley, Ashli Hunter, Elizabeth Park, Sumira Phatak, Kimberly Campbell, Canyon Neil, Michaela Brubaker, Brandon Fitzgerald, Alec Miller, Kevin Contreras, Emily Speas, David Dang, Morgan Bishop, Robert Ward, Abby Benninghoff, and Korry Hintze
Factors

Inflammation

Gut Microbiome

Diet & Lifestyle
Pre-clinical studies (i.e. Animal Models)

AOM/DSS

Antibiotics <-> TWD
The Question

What is the effect of the total Western diet, vancomycin-induced changes to the gut microbiome, and the combination of the two on colorectal cancer in the presence of DSS-induced inflammation?
Hypothesis

• We hypothesize that *vancomycin* treatment will decrease the overall tumor burden, as measured by total tumor volume/colon, in mice fed the total Western diet in the presence of DSS-induced inflammation, and that this attenuation will be supported by a significant diet x treatment interaction.
Study Design

- A/VM
- A/Wa
- T/VM
- T/Wa

AOM/DSS

144 mice; 9 cages per group x 4 mice per cage (n=36)
Endpoints

- Tumor Burden (total tumor volume/colon)
- Tumor Multiplicity (number of tumors/colon)
- Tumor Size \((\text{mm}^3)\)
- Mucosal Injury and Inflammation
- Visual Colitis Assessment
- Microbiome
 - Taxonomic Summaries
 - Species Richness
 - Community Similarity
Statistical Analysis

• All data were analyzed using SAS On Demand.
• Data were tested for the main effects of diet, vancomycin treatment, and the diet x treatment interaction.
• Cage effect was taken into account when performing statistical analysis.
• Group mean analysis was performed using the Ryan-Einot-Gabriel-Welsh (REGWQ) test.
Results

Colitis Assessment 1 (1 day post-DSS)

Disease Activity Index

Diet:
- Water
- Vancomycin

AIN
- Water: a
- Vancomycin: b

TWD
- Water: bc
- Vancomycin: c

Statistical Tests:
- Diet: $P<0.01$
- AB: $P=0.01$
- D*AB: $P=0.22$
Results

Colitis Assessment 2 (14 days post-DSS)

- **Diet:** $P<0.01$
- **AB:** $P<0.01$
- **D*AB:** $P=0.31$

- **Water**
- **Vancomycin**

<table>
<thead>
<tr>
<th>Diet</th>
<th>Disease Activity Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIN</td>
<td>a</td>
</tr>
<tr>
<td>TWD</td>
<td>b</td>
</tr>
</tbody>
</table>

Legend:
- a
- ab
- b
- c
Results

Mucosal Injury (Recovery)

Diet: $P=0.01$
AB: $P=0.32$
D*AB: $P=0.81$
Results

Mucosal Injury (Terminal)

Diet: $P=0.64$
AB: $P=0.51$
D*AB: $P=0.04$
Results

Inflammation Score (Recovery)

Diet: $P<0.01$
AB: $P=0.60$
D*AB: $P=0.27$

Diet:
- AIN
- TWD

Groups:
- Water
- Vancomycin

Significance:
- a
- ab
- b
Results

Inflammation Score (Terminal)

Water
Vancomycin

Diet: $P<0.01$
AB: $P=0.13$
D*AB: $P<0.01$

<table>
<thead>
<tr>
<th>Diet</th>
<th>Inflammation Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIN</td>
<td>a</td>
</tr>
<tr>
<td>TWD</td>
<td>b</td>
</tr>
</tbody>
</table>

Notes:
- a vs. b: significant difference
- b vs. b: no significant difference

15
Results

Taxonomic Summaries by Treatment: Phylum Level

- **Verrucomicrobia**
- **Firmicutes**
- **Actinobacteria**

T/Wa
- Verrucomicrobia: Light Gray
- Firmicutes: Light Blue
- Actinobacteria: Orange

A/VM
- Verrucomicrobia: Light Gray
- Firmicutes: Light Blue
- Proteobacteria: Pink

T/VM
- Verrucomicrobia: Light Gray
- Firmicutes: Light Blue
- Proteobacteria: Pink
Results

Taxa with largest differences

<table>
<thead>
<tr>
<th>Type</th>
<th>A/Wa</th>
<th>T/Wa</th>
<th>A/VM</th>
<th>T/VM</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verrucomicrobia</td>
<td>5.2%</td>
<td>1.9%</td>
<td>37.5%</td>
<td>37.9%</td>
<td><0.0001</td>
</tr>
<tr>
<td>Firmicutes</td>
<td>81.4%</td>
<td>87.7%</td>
<td>29.8%</td>
<td>29.3%</td>
<td><0.0001</td>
</tr>
<tr>
<td>Actinobacteria</td>
<td>11.2%</td>
<td>8.9%</td>
<td>0.0%</td>
<td>0.0%</td>
<td><0.0001</td>
</tr>
<tr>
<td>Proteobacteria</td>
<td>0.1%</td>
<td>0.0%</td>
<td>32.5%</td>
<td>32.7%</td>
<td><0.0001</td>
</tr>
<tr>
<td>Bacteroidetes</td>
<td>1.9%</td>
<td>1.3%</td>
<td>0.0%</td>
<td>0.0%</td>
<td><0.0001</td>
</tr>
</tbody>
</table>
Results

Taxonomic Summaries by Treatment: Genus Level

- Akkermansia
- Allobaculum
- Clostridales
- Lactococcus
- Bifidobacterium
- Enterobacteriaceae
- Sutterella

A/Wa
T/Wa
A/VM
T/VM
Results

<table>
<thead>
<tr>
<th>Taxa with largest differences</th>
<th>A/Wa</th>
<th>T/Wa</th>
<th>A/VM</th>
<th>T/VM</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_Verrucomicrobia: g_Akkermansia</td>
<td>5.1%</td>
<td>1.9%</td>
<td>37.6%</td>
<td>37.9%</td>
<td><0.0001</td>
</tr>
<tr>
<td>p_Firmicutes: g_Allobaculum</td>
<td>42.7%</td>
<td>52.7%</td>
<td>0.0%</td>
<td>0.0%</td>
<td><0.0001</td>
</tr>
<tr>
<td>p_Firmicutes: o_Clostridiales</td>
<td>7.7%</td>
<td>5.8%</td>
<td>0.9%</td>
<td>0.4%</td>
<td>0.05</td>
</tr>
<tr>
<td>p_Firmicutes: g_Lactococcus</td>
<td>23.1%</td>
<td>17.4%</td>
<td>27.3%</td>
<td>26.8%</td>
<td><0.0001</td>
</tr>
<tr>
<td>p_Actinobacteria: g_Bifidobacterium</td>
<td>10.6%</td>
<td>8.5%</td>
<td>0.0%</td>
<td>0.0%</td>
<td><0.0001</td>
</tr>
<tr>
<td>p_Proteobacteria: f_Enterobacteriaceae</td>
<td>0.0%</td>
<td>0.0%</td>
<td>15.3%</td>
<td>20.5%</td>
<td><0.0001</td>
</tr>
<tr>
<td>p_Proteobacteria: g_Sutterella</td>
<td>0.0%</td>
<td>0.0%</td>
<td>8.9%</td>
<td>5.7%</td>
<td><0.0001</td>
</tr>
</tbody>
</table>
Results

![Observed Operational Taxonomic Units](chart.png)

- **Water**
- **Vancomycin**

Diet
- P = 0.48
- AB: P < 0.01
- D*AB: P = 0.47
Results

PD Whole Tree

\[
\log_{10}(\text{Index Score})
\]

<table>
<thead>
<tr>
<th>Diet</th>
<th>Water</th>
<th>Vancomycin</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIN</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>TWD</td>
<td>b</td>
<td>b</td>
</tr>
</tbody>
</table>

Diet: \(P=0.05 \)
AB: \(P<0.01 \)
D*AB: \(P=0.73 \)
Results

![Chao1 Index Graph]

- **Diet**: P = 0.48
- **AB**: P < 0.01
- **D*AB**: P = 0.70
Results
Results

![Tumor Size Graph]

- **Diet:** $P=0.22$
- **AB:** $P=0.08$
- **D*AB:** $P=0.39$
Results

Tumor Multiplicity

- **Water**
- **Vancomycin**

- **Diet:** $P<0.01$
- **AB:** $P<0.01$
- **D*AB:** $P=0.06$

The diagram shows the comparison of tumor multiplicities between water and vancomycin under different diets (AIN and TWD). The results indicate a significant difference in tumor multiplicities between the two groups.
Results

Tumor Burden

- **Water**
- **Vancomycin**

<table>
<thead>
<tr>
<th>Diet</th>
<th>(mm³)^(1/3)</th>
<th>AIN</th>
<th>TWD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>Vancomycin</td>
<td>b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diet: *P*<0.01
AB: *P*<0.01
D*AB: *P*=0.17
Summary

• TWD and VM increase DSS-induced colitis.
• TWD increases gut inflammation long-term.
• TWD increases colonic mucosal injury immediately following DSS treatment.
• VM alters gut microbial composition.
 • Relative taxonomic abundance
 • Species Richness
 • Community Similarity
• VM and TWD significantly increase colon tumorigenesis.
 • Tumor burden and multiplicity
Conclusion

The total Western diet and vancomycin-induced changes to the gut microbiome increase inflammation-induced colitis as measured by total tumor volume.