The Total Western Diet and Vancomycin Increase Inflammation Mediated Colorectal Cancer

Niklas Aardema, Daphne Rodriguez, Tomohiro Shiina, Hope Tinsley, Ashli Hunter, Elizabeth Park, Sumira Phatak, Kimberly Campbell, Canyon Neil, Michaela Brubaker, Brandon Fitzgerald, Alec Miller, Kevin Contreras, Emily Speas, David Dang, Morgan Bishop, Robert Ward, Abby Benninghoff, and Korry Hintze
Factors

Inflammation

Gut Microbiome — Diet & Lifestyle

2
Pre-clinical studies (i.e. Animal Models)

- AOM/DSS
- Antibiotics
- TWD
The Question

What is the effect of the total Western diet, vancomycin-induced changes to the gut microbiome, and the combination of the two on colorectal cancer in the presence of DSS-induced inflammation?
Hypothesis

• We hypothesize that *vancomycin* treatment will decrease the overall tumor burden, as measured by total tumor volume/colon, in mice fed the total Western diet in the presence of *DSS*-induced inflammation, and that this attenuation will be supported by a significant diet x treatment interaction.
Study Design

A/VM

T/VM

A/Wa

T/Wa

AOM/DSS

144 mice; 9 cages per group x 4 mice per cage (n=36)
Endpoints

- Tumor Burden (total tumor volume/colon)
- Tumor Multiplicity (number of tumors/colon)
- Tumor Size (mm3)
- Mucosal Injury and Inflammation
- Visual Colitis Assessment
- Microbiome
 - Taxonomic Summaries
 - Species Richness
 - Community Similarity
Statistical Analysis

• All data were analyzed using SAS On Demand.
• Data were tested for the main effects of diet, vancomycin treatment, and the diet x treatment interaction.
• Cage effect was taken into account when performing statistical analysis.
• Group mean analysis was performed using the Ryan-Einot-Gabriel-Welsh (REGWQ) test.
Results

Colitis Assessment 1 (1 day post-DSS)

- Water
- Vancomycin

Disease Activity Index

Diet: $P<0.01$
AB: $P=0.01$
D*AB: $P=0.22$

- AIN
- TWD
Results

Colitis Assessment 2 (14 days post-DSS)

Disease Activity Index

Diet: \(P<0.01 \)
AB: \(P<0.01 \)
D*AB: \(P=0.31 \)
Results

Mucosal Injury (Recovery)

Diet: $P=0.01$
AB: $P=0.32$
D*AB: $P=0.81$
Results

Mucosal Injury (Terminal)

<table>
<thead>
<tr>
<th>Diet</th>
<th>Injury Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIN</td>
<td>a</td>
</tr>
<tr>
<td>TWD</td>
<td>a</td>
</tr>
</tbody>
</table>

- Water: Diet: $P=0.64$
- Vancomycin: AB: $P=0.51$
- Interaction: D*AB: $P=0.04$
Results

Inflammation Score (Recovery)

Diet: $P<0.01$
AB: $P=0.60$
D*AB: $P=0.27$
Results

Inflammation Score (Terminal)

- **Water**
- **Vancomycin**

Diet: $P<0.01$
AB: $P=0.13$
D*AB: $P<0.01$

- AIN
 - a
- TWD
 - b
 - a
 - b

Inflammation Score
Results

Taxonomic Summaries by Treatment: Phylum Level

- **Verrucomicrobia**
 - T/Wa: 0%
 - A/VM: 0%
 - T/VM: 0%

- **Firmicutes**
 - T/Wa: 100%
 - A/VM: 99%
 - T/VM: 98%

- **Actinobacteria**
 - T/Wa: 1%
 - A/VM: 1%
 - T/VM: 1%

- **Proteobacteria**
 - T/Wa: 1%
 - A/VM: 1%
 - T/VM: 1%
Results

<table>
<thead>
<tr>
<th>Type</th>
<th>A/Wa</th>
<th>T/Wa</th>
<th>A/VM</th>
<th>T/VM</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verrucomicrobia</td>
<td>5.2%</td>
<td>1.9%</td>
<td>37.5%</td>
<td>37.9%</td>
<td><0.0001</td>
</tr>
<tr>
<td>Firmicutes</td>
<td>81.4%</td>
<td>87.7%</td>
<td>29.8%</td>
<td>29.3%</td>
<td><0.0001</td>
</tr>
<tr>
<td>Actinobacteria</td>
<td>11.2%</td>
<td>8.9%</td>
<td>0.0%</td>
<td>0.0%</td>
<td><0.0001</td>
</tr>
<tr>
<td>Proteobacteria</td>
<td>0.1%</td>
<td>0.0%</td>
<td>32.5%</td>
<td>32.7%</td>
<td><0.0001</td>
</tr>
<tr>
<td>Bacteroidetes</td>
<td>1.9%</td>
<td>1.3%</td>
<td>0.0%</td>
<td>0.0%</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Taxa with largest differences
Results

Taxonomic Summaries by Treatment: Genus Level

- Akkermansia
- Allobaculum
- Clostridales
- Lactococcus
- Bifidobacterium

A/Wa T/Wa A/VM T/VM

Enterobacteriaceae Sutterella
Results

Taxa with largest differences

<table>
<thead>
<tr>
<th>Type</th>
<th>A/Wa</th>
<th>T/Wa</th>
<th>A/VM</th>
<th>T/VM</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_Verrucomicrobia: g_Akkermansia</td>
<td>5.1%</td>
<td>1.9%</td>
<td>37.6%</td>
<td>37.9%</td>
<td><0.0001</td>
</tr>
<tr>
<td>p_Firmicutes: g_Allobaculum</td>
<td>42.7%</td>
<td>52.7%</td>
<td>0.0%</td>
<td>0.0%</td>
<td><0.0001</td>
</tr>
<tr>
<td>p_Firmicutes: o_Clostridiales</td>
<td>7.7%</td>
<td>5.8%</td>
<td>0.9%</td>
<td>0.4%</td>
<td>0.05</td>
</tr>
<tr>
<td>p_Firmicutes: g_Lactococcus</td>
<td>23.1%</td>
<td>17.4%</td>
<td>27.3%</td>
<td>26.8%</td>
<td><0.0001</td>
</tr>
<tr>
<td>p_Actinobacteria: g_Bifidobacterium</td>
<td>10.6%</td>
<td>8.5%</td>
<td>0.0%</td>
<td>0.0%</td>
<td><0.0001</td>
</tr>
<tr>
<td>p_Proteobacteria: f_Enterobacteriaceae</td>
<td>0.0%</td>
<td>0.0%</td>
<td>15.3%</td>
<td>20.5%</td>
<td><0.0001</td>
</tr>
<tr>
<td>p_Proteobacteria: g_Sutterella</td>
<td>0.0%</td>
<td>0.0%</td>
<td>8.9%</td>
<td>5.7%</td>
<td><0.0001</td>
</tr>
</tbody>
</table>
Results

Observed Operational Taxonomic Units

- Water
- Vancomycin

Diet:
- P = 0.48
- AB: P < 0.01
- D*AB: P = 0.47

of OTUs

<table>
<thead>
<tr>
<th>Diet</th>
<th>Water</th>
<th>Vancomycin</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIN</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>TWD</td>
<td>ab</td>
<td>b</td>
</tr>
</tbody>
</table>
Results

PD Whole Tree

\[\log_{10}(\text{Index Score}) \]

- **AIN**
 - Water: Group a
 - Vancomycin: Group b

- **TWD**
 - Water: Group a
 - Vancomycin: Group b

Statistical Analysis
- Diet: \(P=0.05 \)
- AB: \(P<0.01 \)
- D*AB: \(P=0.73 \)
Results

![Chao1 Index Graph]

- Diet: $P=0.48$
- AB: $P<0.01$
- D*AB: $P=0.70$
Results

PCoA - PC1 vs PC2

PCoA - PC1 vs PC3

PCoA - PC3 vs PC2

A/VM

A/Wa

T/VM

T/Wa
Results

![Tumor Size Graph]

- **Diet:** Water vs. Vancomycin
- **Log_{10}(1+mm^3)**
- **Diet:** AIN vs. TWD

Statistical Analysis:
- **Diet:** $P=0.22$
- **AB:** $P=0.08$
- **D*AB:** $P=0.39$

Note: Results indicate no significant difference in tumor size between the Water and Vancomycin groups.
Results

Tumor Multiplicity

- Water
- Vancomycin

Diet: $P<0.01$
AB: $P<0.01$
D*AB: $P=0.06$

![Graph showing tumor multiplicity for different diets](image)
Results

![Bar chart showing Tumor Burden with different diets and treatments.](chart)

- **Diet Effects**:
 - Water: Indicates a significant difference with a p-value of 0.01.
 - Vancomycin: Shows a significant difference with a p-value of 0.01.

- **Interaction**:
 - Dietary effects are not significantly different (D*AB: p=0.17).

- **Group Contributions**:
 - Within each diet group, treatments are labeled with lowercase letters indicating significance levels.
Summary

• TWD and VM increase DSS-induced colitis.
• TWD increases gut inflammation long-term.
• TWD increases colonic mucosal injury immediately following DSS treatment.
• VM alters gut microbial composition.
 • Relative taxonomic abundance
 • Species Richness
 • Community Similarity
• VM and TWD significantly increase colon tumorigenesis.
 • Tumor burden and multiplicity
Conclusion

The total Western diet and vancomycin-induced changes to the gut microbiome increase inflammation-induced colitis as measured by total tumor volume.