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Abstract

One of the foundations of financial economics is the idea that rational investors will discount

stocks with more risk (volatility), which will result in a positive relation between risk and

future returns. However, the empirical evidence is mixed when determining how volatility is

related to future returns. In this paper, we examine this relation using a range-based mea-

sure of volatility, which is shown to be theoretically, numerically, and empirically superior to

other measures of volatility. In a variety of tests, we find that range-based volatility is nega-

tively associated with expected stock returns. These results are robust to time-series multi-

factor models as well as cross-sectional tests. Our findings contribute to the debate about

the direction of the relationship between risk and return and confirm the presence of the low

volatility anomaly, or the anomalous finding that low volatility stocks outperform high volatil-

ity stocks. In other tests, we find that the lower returns associated with range-based volatility

are driven by stocks with lottery-like characteristics.

Introduction

Much of financial economics is grounded on the assumption that risk and return are positively

related. Traditional asset pricing theory rests on the assumption that rational investors will

have preferences for low levels of risk [1]–[3]. Less demand for riskier assets implies lower

stock prices and higher future returns. Initial tests of the relationship between risk and return

seem to confirm this fundamental idea. For instance, a positive time-series relationship

between market volatility and value-weighted market returns has been shown when ARIMA

and GARCH models are used to calculate volatility [4]. Similar results are found for aggregate

idiosyncratic volatility [5], [6]. However, conflicting results regarding the cross-sectional asso-

ciation between volatility and future returns have been shown in other research. When exam-

ining volatility and current returns at the stock level, a negative relation between expected

returns and volatility—especially idiosyncratic volatility, has been documented for both U.S.

and international markets [7], [8]. Volatility is generally measured as the standard deviation of

returns, or residual returns, where residuals are obtained from daily Fama and French regres-

sions [9]. On the other hand, Fu [10] shows that volatility is time-varying and that, when
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forecasting volatility using exponential GARCH models, the lead-lag, cross-sectional relation

between volatility and stock returns becomes positive. This more recent literature seems to

indicate that the direction of the relation between risk and return at the firm level depends on

how volatility is measured.

In this study, we contribute to the debate by examining a range-based measure of volatility,

which has been shown to be theoretically, numerically, and empirically superior to other mea-

sures of volatility in its efficiency [11]. Compared to other measures of volatility, range-based

volatility is also distributed more normally and is robust to microstructure issues that are often

problematic in volatility estimation.

We conduct a series of tests to determine the relation between next-month returns and

the natural log of the difference between the highest price and the lowest price during a

particular month, which we denote as range-based volatility hereafter. After sorting stocks

into five value-weighted portfolios constructed on range-based volatility, we find that next-

month average returns are monotonically decreasing. The return difference between extreme

portfolios is statistically and economically significant. For instance, the difference between

extreme portfolios is approximately 1.1% per month. In additional tests, we estimate portfo-

lio alphas from CAPM and other multifactor models [9], [12]. Results show that alphas are

generally decreasing across increasing range-based volatility portfolios. We again find that

differences in alphas between extreme portfolios are statistically significant and economically

meaningful. For example, when using the Fama and French [9] three-factor model, the alpha

in the lowest range-based volatility portfolio is 92 basis points per month. The high-minus-

low difference yields an alpha of slightly more than 1% per month. Our portfolio analysis,

therefore, documents a significant, negative return premium associated with range-based

volatility.

In a series of other tests, we examine the cross-sectional relationship between range-based

volatility and next-month returns. Using a number of different Fama-MacBeth [13] regres-

sions, we find that, after controlling for beta, market cap, book-to-market ratios, momentum,

and illiquidity [14], range-based volatility produces a negative estimate that is both statistically

and economically significant. In economic terms, a one-standard deviation increase in range-

based volatility is associated with a 35 basis point reduction in next-month returns. In our

analysis, the momentum premium, or the return premium associated with a one-standard

deviation increase in past returns from month t-12 to t-2, is 32 basis points per month. Thus,

the negative return premium associated with range-based volatility is of the same magnitude

as the positive momentum return premium. Interestingly, other tests do not reveal a signifi-

cant return premium associated with our measure of idiosyncratic volatility. When controlling

for idiosyncratic volatility, however, we still observe the negative return premium for range-

based volatility. In fact, the magnitude of the return premium is unchanged whether or not we

control for idiosyncratic volatility.

In our second set of tests, we begin to explore why we observe underperformance in stocks

with the greatest price range. We first examine this cross-sectional, negative return premium

for various subsamples based on other measures of risk, specifically, idiosyncratic volatility

and beta. While we find that the negative return premium associated with range-based volatil-

ity holds in each of the idiosyncratic volatility subsamples, we find strong evidence that the

premium is strongest in stocks with the highest idiosyncratic volatility. We also find some evi-

dence that stocks with high betas seem to drive the negative range-based volatility premium.

These results suggest that the negative association between range-based volatility and next-

month returns is partially explained by higher levels of risk.

Next, we attempt to further identify the explanation for the peculiar negative return pre-

mium found in range-based volatility. A number of studies have attempted to provide
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explanations for this relationship between volatility and future returns. For instance, Baker

and Wurgler [15] argue that since the performance of institutional investors is benchmarked

against an index, these investors have disincentives to arbitrage low volatility stocks. A vari-

ety of other arguments that stem from the limits to arbitrage related to low volatility stocks

have also been examined [16], [17]. Another potential explanation for the observed negative

relationship between risk and return is based on the psychology literature. Prospect theory is

an alternative to expected utility theory [18]. According to prospect theory, individuals tend

to overweight the tails of return distributions and have a stronger aversion to losses than

preferences for gains. The application of prospect theory to finance shows that investor pref-

erences for stocks that resemble lotteries can theoretically lead to price premiums and subse-

quent underperformance of stocks [19]. Empirical research tends to support this prediction

[20]–[24]. An alternative argument is that volatility reflects an important lottery-like prop-

erty and results in the underperformance of stocks with higher volatility (and other lottery-

like characteristics) [25]. More recently, there has been evidence that the underperformance

of stocks with high levels of systematic risk is driven by investor demand for lottery stocks

[26].

We test whether the return premium associated with range-based volatility is driven by

stocks that are most likely to resemble lotteries. Using the various lottery characteristics from

the prior literature, we find that the range-based volatility return premium is driven by stocks

that most resemble lotteries. These results are robust to different lottery classifications [25],

measures of expected idiosyncratic volatility [21], and the measure of maximum daily returns

[22]. Combined, our results suggest that not only is there a negative return premium associated

with range-based volatility, but the premium appears to be driven by stocks that have lottery-

like characteristics.

By showing that range-based volatility has a negative effect on future returns, our study

contributes to the debate about the fundamental relation between risk and return. To the

extent that range-based volatility is, in fact, a superior measure of volatility [11], our findings

indicate that generally speaking, investors overpay for risky assets. Although some research

suggests that stocks with high volatility should have higher expected returns because investors

cannot fully diversify away from the firm-specific risk in their portfolios [27], our findings sup-

port the growing body of evidence that documents a negative return premium in stocks with

higher volatility. Further, the second part of our analysis provides additional support for the

argument that preferences for more volatile stocks are directly associated with preferences for

stocks that look like lotteries [25], [26].

Data description

The data used throughout the analysis come from several sources. From the Center for

Research on Security Prices (CRSP), we obtain stock prices, returns, trading volume, shares

outstanding at the daily and monthly level. From Wharton Research Data Services (WRDS),

we gather daily and monthly Fama-French factors [9], [12]. We also obtain the annual book

value of equity for each stock. We note that to be included in our sample, we require the book

value of equity to be positive. The sample time period extends from 1980 to 2012. After com-

bining the data from each of these sources for our time period, we are left with more than

19,000 unique stocks and nearly 1.88 million stock-month observations.

Using the highest ask price and the lowest bid price during a particular month, we calculate

the variable of interest, range-based volatility, as the natural log of the difference between the

high price and the low price during a particular month (Ln(Price Range)). We estimate other

measures of risk: idiosyncratic volatility (IdioVolt) and Beta. IdioVolt is calculated by first
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estimating the following equation using daily data for each stock in our sample.

Ri;t � Rf ;t ¼ aþ bMKTMKTt þ bHMLHMLt þ bSMBSMBt þ bUMDUMDt þ εi;t ð1Þ

The dependent variable is the daily excess return for each stock i (over the yield on one-

month T-bills). The independent variable includes MRP, which is the market risk premium, or

the excess return of the market less the risk-free rate. SMB is the small-minus-big return factor

while HML is the high-minus-low return factor. UMD is the up-minus-down, momentum fac-

tor. Here, the subscript t represents a particular day in our sample time period. IdioVolt is the

standard deviation of the daily residual returns εi,t in each month. Beta is obtained from esti-

mating a variant of Eq (1), where we restrict βHML = βSMB = βUMD = 0. We note that both Beta
and IdioVolt are estimated using rolling six-month windows to allow for a sufficient number

of observations to preserve accuracy. Size is stock i’s monthly market capitalization on the last

day of each month. B/M is the book-to-market ratio using our monthly Size variable and the

annual book value of equity from Compustat. Momentum is the cumulative return from

month t-12 to t-2 for each stock i. Illiquidity is calculated as the average daily ratio of the abso-

lute value of the return to trading volume (in 100,000s) [14]. Multiple papers have discussed

the implications of examining the extreme tails of return distributions [21], [22], [28], [29]. In

this spirit, we examine volatility return premia by focusing on extreme tails of prices [11].

Table 1 reports statistics that summarize our sample, which consists of much of the universe

of securities listed on CRSP. We note that CRSP contains the universe of publicly traded secu-

rities that are listed on major stock exchanges in the United States, such as the NYSE, AMEX,

and the Nasdaq stock exchange. The CRSP data does not include securities that trade on Over-

the-Counter (OTC) markets or the PinkSheets markets. Therefore, the construction of our

sample begins with the universe of securities that are listed on the U.S. major exchanges. Some

CRSP securities do not have available Compustat data (and visa versa). Therefore, we lose

approximately 25% of observations when merging the two datasets together. Panel A shows

the distribution of the main variables that we use throughout our analysis. We find that the

average stock has a Ln(Price Range) of 0.3723. We note that the skewness and kurtosis of the

variable are relatively small, which supports the previous arguments [11] that this measure of

range-based volatility is approaching a Gaussian distribution. This is particularly true when

comparing the distribution of Ln(Price Range) to the distribution of IdioVolt. For instance, the

average stock has an IdioVolt of 0.0334, but the variable is heavily (positively) skewed and has

excess kurtosis. While the distribution of Beta is centered on the mean, the distribution con-

tains a high level of kurtosis. In columns 4 through 7, we find that the average stock in our

sample has a market capitalization of $1.71 billion, a book-to-market ratio of 0.4276, momen-

tum of 0.1502, and illiquidity of 9.4178. These summary statistics are similar to those in prior

studies in the asset pricing literature.

Panel B shows a correlation matrix of the variables used throughout the analysis. A few

results are noteworthy. We find that Ln(Price Range) while positively related to Beta, is nega-

tively correlated with IdioVolt. These results suggest that range-based volatility is capturing

something different than what traditional measures of idiosyncratic volatility capture. The

arguments presented in Alizadeh, Brandt, and Diebold [11] suggest that this measure of range-

based volatility properly captures stochastic volatility whereas idiosyncratic volatility may be

more persistent. We note that estimate idiosyncratic skewness and idiosyncratic kurtosis using

daily residual returns (for a six-month window) from Eq (1). We then estimate correlation

coefficients between our variable of interest (Ln(Price Range)) and both idiosyncratic skew-

ness and idiosyncratic kurtosis. We find that the negative correlation between Ln(Price Range)
and skewness is -0.087 while the negative correlation between Ln(Price Range) and kurtosis is
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-0.095, respectively. It is possible that the negative correlation between range-based volatility

and idiosyncratic volatility is due to the potential persistence in the latter. Perhaps an investi-

gation that compares range-based (stochastic) volatility to other traditional measures of vola-

tility with built-in persistence may be a fruitful avenue for future research. To continue our

summary of the data, we plot range-based volatility and idiosyncratic volatility across are sam-

ple time period (Fig 1). Here, we see that the range-based volatility for the average stock seems

to be negatively related to the average stock’s idiosyncratic volatility for the first part of our

sample time period. When examining the relation between range-based volatility and CAPM

beta across time, we do not find a meaningful pattern (Fig 2). In panel B, we also find that Ln
(Price Range) is positively correlated with Size, B/M, and Momentum and negatively associated

with Illiquidity. We note that, while significant (due to the number of observations in our sam-

ple), the correlation coefficients are relatively close to zero for B/M and Illiquidity.

Empirical tests and results

Range-based volatility and returns—Portfolio analysis

To test for a return premium associated with range-based volatility, we first begin by examin-

ing the returns and alphas to value-weighted portfolios that are sorted by Ln(Price Range).

Table 1. Summary statistics and correlation.

Panel A. Summary Statistics

Ln(Price Range) IdioVolt Beta Size B/M Momentum Illiquidity

1 2 3 4 5 6 7

Mean 0.3723 0.0334 0.8511 1.7099 0.4276 0.1502 9.4178

Median 0.4447 0.0262 0.8368 0.1268 0.0657 0.1243 0.9991

Std. Deviation 1.1374 0.0262 0.9350 9.9758 11.9400 0.5640 660.29

Skewness -0.3430 5.5118 -0.0391 19.4530 132.0139 1.9787 1,158.30

Kurtosis 1.10 136.83 16.26 563.25 22,603.43 31.59 1,489,774.96

Panel B. Correlation Matrix

Ln(Price Range) 1.0000 -0.3334 0.2044 0.1678 0.0103 0.2092 -0.0238

[<.0001] [<.0001] [<.0001] [<.0001] [<.0001] [<.0001]

IdioVolt 1.0000 -0.0015 -0.1100 -0.0053 -0.0546 0.0498

[0.0399] [<.0001] [<.0001] [<.0001] [<.0001]

Beta 1.0000 0.0269 -0.0071 0.0778 -0.0102

[<.0001] [<.0001] [<.0001] [<.0001]

Size 1.0000 -0.0052 0.0126 -0.0024

[<.0001] [<.0001] [0.0009]

B/M 1.0000 -0.0062 0.0009

[<.0001] [0.2215]

Momentum 1.0000 -0.0101

[<.0001]

Illiquidity 1.0000

The table reports statistics that describe our sample. Panel A presents some summary statistics for the variables used throughout the analysis. Panel B

presents a correlation matrix along with corresponding p-values in brackets. Ln(Price Range) is the natural log of the difference between the highest price

during a particular month and the lowest price. IdioVolt is the idiosyncratic volatility and is obtained by calculating the standard deviation of daily residual

returns, where residuals are obtained from a daily four-factor model. Beta is the slope coefficient from estimating a daily CAPM. We note that IdioVolt and

Beta are calculated for each stock in each month using a rolling six-month window. Size is the market capitalization on the last day of each month in $

Billions. B/M is the book-to-market ratio. Momentum is the cumulative returns from month t-12 to t-2. Illiquidity is the monthly average of the ratio of the

absolute value of the daily return scaled by the daily volume (in $ millions).

https://doi.org/10.1371/journal.pone.0188517.t001
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Fig 1. LN(PRICE RANGE) and IDIO. VOLATILITY across the sample time period. The figure shows our measure of Range Based

Volatility (Ln(Price Range)) and Idiosyncratic Volatility (Idio. Volatility), which is the standard deviation of daily residual returns that are

obtained from a standard four-factor model, for each year in our sample time period.

https://doi.org/10.1371/journal.pone.0188517.g001

Fig 2. LN(PRICE RANGE) and BETA across the sample time period. The figure shows our measure of Range Based

Volatility (Ln(Price Range)) and the CAPM Beta for each year in our sample time period.

https://doi.org/10.1371/journal.pone.0188517.g002
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Given that prior research [11] finds that the Ln(Price Range) is a more efficient estimate of vol-

atility than previously used measures, our hope is that examining range-based volatility might

shed some light on the conflicting findings regarding the lead-lag relationship between stock

returns and volatility from previous research. Panel A of Table 2 presents the mean (next-

month) returns and market-adjusted returns for portfolios sorted on the Ln(Price Range). Mar-

ket-adjusted returns are the returns in month t+1 less the value-weighted CRSP market index

in month t+1. We note that the CRSP value-weighted market index consists of the weighted

average of all U.S. stocks listed on CRSP, where weights are based on the market capitalization

of each stock. Column 1 details the portfolio returns from the lowest quintile of Ln(Price
Range). Columns 2 through 5 provide the findings from quintiles 2 through 5 respectively. In

column 6, we report the difference between extreme portfolios (Q5 –Q1) along with corre-

sponding t-statistics that test whether the high minus low returns are significantly different

from zero. For both rows in Panel A, we find mean returns and market-adjusted returns are

decreasing monotonically across increasing Ln(Price Range) portfolios. The Q5 –Q1 difference

in mean returns is -0.0114 (t-statistic = -4.15). Similar results are found when looking at

adjusted returns. These high minus low differences are not only statistically significant but

they are also economically meaningful. For example, in annual terms, the difference in raw

returns is more than 13.5%. The results in Panel A corroborate previous findings [7], [8], [30]

and necessitate further examination. We recognize, however, the need to control for other risk

factors in a more multivariate setting.

Panels B through D of Table 2 present the results from estimating variants of the following

equation using 384 months of value-weighted portfolios based on Ln(Price Range).

Rp;tþ1 � Rf ;tþ1 ¼ aþ bMKTMKTtþ1 þ bHMLHMLtþ1 þ bSMBSMBtþ1 þ bUMDUMDtþ1 þ εp;tþ1 ð2Þ

Eq (2) is identical to Eq (1) with three exceptions. First, we estimate the equation for each

portfolio p instead of each stock i. Second, the subscript t represents months instead of days

during our sample time period. Third, the dependent and independent variables are measured

over month t+1 while the portfolios are sorted at the end of month t. As before, the dependent

variable is the monthly excess return of the portfolio over the one-month yield on T-Bills.

The independent variables are the various monthly risk factors. Panel B shows the results for

CAPM regressions (i.e., we restrict βHML = βSMB = βUMD = 0). Panel C presents the findings for

the three-factor regressions (i.e., we restrict βUMD = 0). Panel D shows the results from the full

specification. Robust t-statistics are reported in parentheses [31].

For brevity, in the discussion of Table 2, we focus primarily on the alphas from estimating

Eq (2) although we also report the coefficients on the various risk factors. Panel B reports the

results from a CAPM regression that uses the CRSP value-weighted portfolio as the market

return. Only in the low Ln(Price Range) portfolio do we find a positive and significant alpha.

Further, alphas are monotonically decreasing across increasing portfolios of Ln(Price Range).
The difference between extreme portfolios is again negative and significant (difference =

-0.0127, t-statistic = -4.32), supporting our findings in Panel A and suggesting that Ln(Price
Range) is associated with a negative return premium. Panel C estimates alphas using a Fama

and French (1993 and 1996) three-factor model. Again we find that alphas are generally

decreasing, although not monotonically. However, the difference between Q5 and Q1 is

-0.0102 (t-statistic = -3.98), suggesting that, after holding the three risk factors constant, the

return premium associated with Ln(Price Range) is about 1% per month. Qualitatively similar

results are found in Panel D where we estimate alphas using a four-factor model [12]. Here,

we find that alphas are again decreasing monotonically across portfolios. Further, we find that,

in the highest portfolio, the alpha is negative and marginally significant (estimate = -0.0012,
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Table 2. Portfolio analysis.

Panel A. Mean Returns across Value-Weighted Portfolios

Q1 (Low) Q2 Q3 Q4 Q5 (High) Q5 –Q1

1 2 3 4 5 6

Mean Returns 0.0213 0.0123 0.0105 0.0104 0.0099 -0.0114***

(-4.15)

Adj. Returns 0.0191 0.0101 0.0083 0.0082 0.0078 -0.0113***

(-4.15)

Panel B. CAPM Regressions by Value-Weighted Portfolios

Alpha 0.0114*** 0.0023 0.0004 -0.0001 -0.0013 -0.0127***

(4.19) (1.25) (0.32) (-0.05) (-1.17) (-4.32)

MKT 0.9821*** 1.0024*** 1.0143*** 1.0800*** 1.2141*** 0.2320***

(16.08) (19.91) (26.51) (38.63) (47.87) (3.51)

Panel C. Fama and French [9] Multifactor Regressions by Value-Weighted Portfolios

Alpha 0.0092*** 0.0001 -0.0014 -0.0013** -0.0010 -0.0102***

(3.71) (0.07) (-1.58) (-2.28) (-1.58) (-3.98)

MKT 0.9184*** 0.9655*** 0.9842*** 1.0392*** 1.0946*** 0.1762**

(13.29) (24.88) (39.61) (68.47) (64.46) (2.48)

HML 0.3849*** 0.3999*** 0.3269*** 0.2141*** -0.1217*** -0.5066***

(2.89) (5.24) (6.95) (7.48) (-4.65) (-3.74)

SMB 1.0222*** 0.8685*** 0.7096*** 0.6036*** 0.5960*** -0.4262***

(8.02) (9.43) (12.65) (15.75) (18.04) (-3.24)

Panel D. Carhart [12] Multifactor Regressions by Value-Weighted Portfolios

Alpha 0.0129*** 0.0028* 0.0005 -0.0004 -0.0012* -0.0141***

(4.89) (1.87) (0.54) (-0.78) (-1.91) (-5.20)

MKT 0.8190*** 0.8916*** 0.9349*** 1.0157*** 1.1010*** 0.2820***

(12.00) (23.09) (39.79) (68.95) (65.05) (4.01)

HML 0.2288* 0.2839*** 0.2494*** 0.1772*** -0.1118*** -0.3406***

(1.76) (4.01) (5.89) (6.53) (-4.41) (-2.57)

SMB 1.0324*** 0.8761*** 0.7147*** 0.6060*** -0.5954*** -1.6278***

(10.26) (12.89) (17.54) (18.91) (18.92) (-15.44)

UMD -0.4156*** -0.3089*** -0.2062*** -0.0982*** 0.0265 0.4421***

(-4.68) (-4.89) (-5.64) (-5.22) (1.41) (4.87)

The table report returns and alphas across value-weighted portfolios sorted by Ln(Price Range), which is the natural log of the difference between the

highest price during a particular month and the lowest price. Panel A presents the Mean Returns and Adj. Returns. We note that Adj. Returns are returns in

month t+1 less the value-weighted CRSP market index. Column 6 reports the difference between extreme portfolios along with corresponding t-statistics.

Panels B through D present the results from estimating variants of the following equation using 384 months of data by value-weighted portfolios based on

the Ln(Price Range).

Rp;tþ1 � Rf ;tþ1 ¼ aþ bMKTMKTtþ1 þ bHMLHMLtþ1 þ bSMBSMBtþ1 þ bUMDUMDtþ1 þ εp;tþ1

The dependent variable is the excess return of the portfolio over the 1-month T-Bill yield. The independent variable includes MRP, which is the market risk

premium, or the excess return of the market less the risk-free rate. SMB is the small-minus-big return factor while HML is the high-minus-low return factor.

UMD is the up-minus-down factor. The dependent and independent variables are measured over month t+1 while the portfolios are sorted at the end of

month t. Panel B shows the results for CAPM regressions. Panel C presents the findings for the three-factor regressions. Panel D shows the results from the

full specification. Robust t-statistics are reported in parentheses.

*denote statistical significance at the 0.10 level.

** denote statistical significance at the 0.05 level.

*** denote statistical significance at the 0.01 levels.

https://doi.org/10.1371/journal.pone.0188517.t002
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t-statistic = -1.91). As before, the difference between extreme portfolios is negative and statisti-

cally significant (difference = -0.0141, t-statistic = -5.20).

Although these time-series regressions indicate that Ln(Price Range) is associated with a sig-

nificantly lower stock returns, prior research has shown that a number of stock characteristics

can influence the cross-section of stock returns. In the next section, we examine the cross-sec-

tional relationship between Ln(Price Range) and next-month returns using Fama-MacBeth

regressions [13].

Range-based volatility and returns—A Fama and MacBeth approach

Table 3 presents results from estimating the following equation using pooled stock-month

data. We note that we estimate 384 cross-sectional regressions using a Fama-MacBeth

approach [13].

Ri;tþ1 ¼ b1LnðPriceRangei;tÞ þ b2Betai;t þ b3Sizei;t þ b4B=Mi;t þ b5Momentumi;tþ

b6Illiquidityi;t þ aþ εi;tþ1

ð3Þ

Table 3. Fama-MacBeth regressions.

Partial Specifications Full Specification

Specification: 1 2 3 4 5 6 7

Ln(Price Range) -0.3928*** -0.3781*** -0.2436*** -0.3180*** -0.4196*** -0.3510*** -0.3066***

(-4.05) (-3.73) (-2.69) (-3.43) (-4.57) (-3.68) (-3.97)

Beta -0.0674 -0.0282

(-0.76) (-0.33)

Size -0.1130*** -0.0115

(-2.61) (-0.24)

B/M 0.6312*** 0.6420***

(9.13) (9.69)

Momentum 0.2816* 0.5636***

(1.67) (3.84)

Illiquidity 0.0093*** 0.0079***

(3.16) (3.13)

Constant 1.4481*** 1.4883*** 2.7120*** 3.1181*** 1.3523*** 1.4002*** 3.0808***

(4.07) (4.75) (3.71) (8.62) (3.99) (3.97) (4.79)

The table reports the results from estimating variants of the following equation using a Fama-MacBeth regression.

Ri;tþ1 ¼ b1LnðPriceRangei;tÞ þ b2Betai;t þ b3Sizei;t þ b4B=Mi;t þ b5Momentumi;t þ b6Illiquidityi;t þ aþ εi;tþ1

The dependent variable is the monthly return for stock i in month t+1. The independent variable of interest is Ln(Price Range), which is the natural log of the

difference between the highest price during a particular month and the lowest price. The control variables include the following. Beta is the CAPM beta

obtained from estimating a standard daily CAPM data using a six-month rolling window. Size is the natural log of end-of-month market capitalization (in

$Billions). B/M is the natural log of the book-to-market ratio for each stock in each month. Momentum is the cumulative return from month t-12 to t-2.

Illiquidity is the monthly average of the ratio of the absolute value of the daily return scaled by dollar volume (in $Millions). In parenthesis, we report t-

statistics that are obtained from adjusted standard errors that account for three lags.

*denotes statistical significance at the 0.10 level.

** denotes statistical significance at the 0.05 level.

*** denotes statistical significance at the 0.01 level.

https://doi.org/10.1371/journal.pone.0188517.t003
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The dependent variable is the monthly return for stock i in month t+1. The independent

variable of interest is Ln(Price Range), which is the natural log of the difference between the

highest price during a particular month and the lowest price. The control variables include the

following. Beta, which is the CAPM beta obtained from estimating a standard daily market

model using a six-month rolling window. Size is the natural log of end-of-month market capi-

talization (in $Billions). B/M is the natural log of the book-to-market ratio for each stock in

each month. Momentum is the cumulative return from month t-12 to t-2. Illiquidity is the Ami-

hud (2002) measure of illiquidity, which is the average daily ratio of the absolute value of the

return scaled by dollar volume (in $Millions). In parenthesis, we report t-statistics that are

obtained from standard errors that account for three lags [32].

Column 1 of Table 3 is a simple regression that only includes the Ln(Price Range) as an

independent variable. Similar to our previously documented results, Ln(Price Range) is nega-

tively related to next month returns and is highly significant (estimate = -0.3928, t-statistic =

-4.05). Columns 2 through 6 of Table 3 replicate Column 1 but include each of the control var-

iables separately. The included control variables have the expected signs. Beta is positive but

insignificant, Size is negative and significant and has the greatest impact on the estimation

of the coefficient on Ln(Price Range). The remaining control variables, B/M, Momentum, and

Illiquidity are each positively related to next-month returns and vary in their significance.

Although including the individual control variables does have some impact on the estimated

effect of Ln(Price Range), the coefficient remains highly statistically significant in each of the

first six columns. Column 7 of Table 3 reports the results from our full specification. Here,

we again find that Ln(Price Range) produces a negative and significant estimate (estimate =

-0.3066, t-statistic = -3.97). The coefficient is not only statistically significant, but it is also eco-

nomically meaningful as a one standard deviation increase in Ln(Price Range) corresponds to a

35 basis point reduction in next-month returns. Thus, these cross-sectional regression results

support our findings in the previous table and suggest that range-based volatility is negatively

associated with expected returns.

Given that several papers [7], [8] have documented a negative return premium associated

with idiosyncratic volatility, it might be important to add IdioVolt as an additional control var-

iable. Next, we estimate the following equation.

Ri;tþ1 ¼ b1LnðPriceRangei;tÞ þ b2IdioVolt i;t þ b3Betai;t þ b4Sizei;t þ b5B=Mi;t þ b6Momentumi;tþ

b7Illiquidityi;t þ aþ εi;tþ1

ð4Þ

In Eq (4), the dependent and independent variables are identical to those in Eq (3) with one

exception. Here, we include IdioVolt as an additional control variable. As before, we estimate

Eq (4) using a Fama-MacBeth approach [13]. We control for heteroskedasticity and autocorre-

lation in error terms and report t-statistics from standard errors that have been corrected with

three lags [32]. We report these results in Table 4.

Column 1 presents the results from a simple regression where the only independent vari-

able is IdioVolt. Results show that the estimate for IdioVolt is not reliably different from zero.

Column 2 shows that when controlling for the other variables (except Ln(Price Range)), the

coefficient on IdioVolt is again statistically close to zero. These findings differ from Ang et al.

[8] that show a reliably negative coefficient for their measure of idiosyncratic volatility. Per-

haps the reason for this discrepancy is due to the different ways in which our measure of idio-

syncratic volatility is calculated. Ang et al. [8] estimate idiosyncratic volatility using the daily

residuals from a three-factor model instead of a four-factor model. Not finding a reliable esti-

mate for idiosyncratic volatility is not surprising, given that results in Fu [10] show the rela-

tionship between idiosyncratic volatility and next-month returns is fragile and heavily

Range-based volatility, expected stock returns, and the low volatility anomaly
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depends on how volatility is estimated. At a very minimum, the culmination of prior work

indicates that the cross-sectional relationship between idiosyncratic volatility and next-month

returns is not very robust to differences in the way volatility is calculated.

Columns 3 through 9 replicate the analysis in the previous table but include both IdioVolt
and Ln(Price Range) in each of the specifications. The most important result is that Ln(Price
Range) produces a negative estimate that is both statistically and economically significant in

each of the specifications. Further, IdioVolt does not produce a reliable coefficient in any of the

specifications. In the full specification, we find that, while B/M, Momentum, and Illiquidity are

positively related to next-month returns, Ln(Price Range) still produces an estimate of -0.2954

(t-statistic = -4.12). In economic terms, the results in column 9 suggest that, after holding

other variables constant, a one standard deviation increase in Ln(Price Range) is associated

with a 34 basis point reduction in next-month returns. Combined with findings in the previ-

ous two tables, these tests reveal a reliable, negative return premium associated with range-

based volatility.

Table 4. Fama-MacBeth regressions.

Partial Specifications Full Specification

Specification: 1 2 3 4 5 6 7 8 9

Ln(Price Range) -0.3388*** -0.3214*** -0.2238*** -0.2385*** -0.3821*** -0.3201*** -0.2954***

(-4.31) (-4.06) (-2.80) (-3.30) (-5.26) (-4.11) (-4.12)

IdioVolt 2.7090 -0.1560 -3.2780 -2.4734 -7.6437 1.0961 -3.6674 -5.7789 -1.4156

(0.45) (-0.03) (-0.56) (-0.43) (-1.29) (0.20) (-0.65) (-0.96) (-0.27)

Beta -0.0361 -0.0428 -0.0145

(-0.48) (-0.53) (-0.19)

Size -0.0746** -0.1153*** 0.0199

(-2.15) (-4.02) (0.60)

B/M 0.6490*** 0.6136*** 0.6468***

(11.33) (10.36) (11.21)

Momentum 0.5386*** 0.3622** 0.6187***

(3.86) (2.39) (4.61)

Illiquidity 0.0082*** 0.0097*** 0.0081***

(3.30) (3.37) (3.24)

Constant 1.0444*** 3.6392*** 1.3991*** 1.3827*** 2.8399*** 2.8935*** 1.3136*** 1.4416*** 2.6348***

(4.37) (7.47) (5.38) (5.97) (6.60) (9.54) (5.26) (5.59) (6.26)

The table reports the results from estimating variants of the following equation using a Fama-MacBeth (1973) regression.

Ri;tþ1 ¼ b1LnðPriceRangei;tÞ þ b2IdioVolti;t þ b3Betai;t þ b4Sizei;t þ b5B=Mi;t þ b6Momentumi;t þ b7Illiquidityi;t þ aþ εi;tþ1

The dependent variable is the monthly return for stock i in month t+1. The independent variables of interest are Ln(Price Range), which is the natural log of

the difference between the highest price during a particular month and the lowest price, and IdioVolt, which is obtained by calculating the standard deviation

of daily residual returns, where residuals are obtained from a daily four-factor model. The control variables include the following. Beta is the CAPM beta

obtained from estimating a standard daily CAPM data using a six-month rolling window. Size is the natural log of end-of-month market capitalization (in

$Billions). B/M is the natural log of the book-to-market ratio for each stock in each month. Momentum is the cumulative return from month t-12 to t-2.

Illiquidity is the monthly average of the ratio of the absolute value of the daily return scaled by dollar volume (in $Millions). In parenthesis, we report t-

statistics that are obtained from adjusted standard errors that account for three lags.

*denote statistical significance at the 0.10 level.

** denote statistical significance at the 0.05 level.

*** denote statistical significance at the 0.01 levels.

https://doi.org/10.1371/journal.pone.0188517.t004
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Do traditional measures of risk explain the range-based volatility return

premium

In this section, we attempt to explain which factors drive the return premium associated with

range-based volatility. In our first of two sets of tests, we create subsamples based on other

common measures of risk, idiosyncratic volatility, and beta, and then estimate Eq (3) using the

Fama-Macbeth [13] approach for each of the subsamples. We begin by sorting stocks into ter-

ciles based on IdioVolt during each month of our sample time period. We then test whether

the return premium associated with Ln(Price Range) is strongest in the high idiosyncratic vola-

tility tercile. Table 5 reports the results of this analysis.

For brevity, we focus our discussion on the coefficients for Ln(Price Range) in this table

and those that follow. The first row of Table 5 shows that the estimates for Ln(Price Range)
are decreasing monotonically across the increasing terciles. In column 1, we do not find a sig-

nificant return premium associated with Ln(Price Range) as the coefficient is -0.0599 and the

corresponding t-statistic is -1.56. We do, however, find that in the Mid IdioVolt tercile,

Table 5. Fama-MacBeth regressions on idiosyncratic volatility terciles.

Low

IdioVolt

Mid

IdioVolt

High

IdioVolt

1 2 3

Ln(Price Range) -0.0599 -0.1891*** -0.3702***

(-1.56) (-2.75) (-3.17)

Beta 0.0174 0.0107 0.0167

(0.14) (0.11) (0.27)

Size -0.0220 0.0257 -0.4502***

(-0.78) (0.68) (-5.91)

B/M 0.1183*** 0.5037*** 1.1963***

(3.08) (8.51) (13.17)

Momentum 1.0314*** 1.2490*** 0.5732***

(4.49) (7.32) (4.58)

Illiquidity -0.0018 -0.0135* 0.0048**

(-0.06) (-1.87) (2.34)

Constant 1.6203*** 2.0724*** 8.8785***

(3.96) (4.65) (10.73)

The table reports the results from estimating variants of the following equation using a Fama-MacBeth (1973) regression for three subsamples.

Ri;tþ1 ¼ b1LnðPriceRangei;tÞ þ b2IdioVolti;t þ b3Betai;t þ b4Sizei;t þ b5B=Mi;t þ b6Momentumi;tþ

b7Illiquidityi;t þ aþ εi;tþ1

The dependent variable is the monthly return for stock i in month t+1. The independent variables of interest are Ln(Price Range), which is the natural log of

the difference between the highest price during a particular month and the lowest price, and IdioVolt, which is obtained by calculating the standard deviation

of daily residual returns, where residuals are obtained from a daily four-factor model. The control variables include the following. Beta is the CAPM beta

obtained from estimating a standard daily CAPM data using a six-month rolling window. Size is the natural log of end-of-month market capitalization (in

$Billions). B/M is the natural log of the book-to-market ratio for each stock in each month. Momentum is the cumulative return from month t-12 to t-2.

Illiquidity is the monthly average of the ratio of the absolute value of the daily return scaled by dollar volume (in $Millions). In each month, we sort stocks into

terciles based on IdioVolt. Column 1 reports the results for the bottom tercile. Columns 2 and 3 present the results for the middle and top terciles,

respectively. In parenthesis, we report t-statistics that are obtained from adjusted standard errors that account for three lags.

* denote statistical significance at the 0.10 level.

** denote statistical significance at the 0.05 level.

*** denote statistical significance at the 0.01 level.

https://doi.org/10.1371/journal.pone.0188517.t005
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the estimate for Ln(Price Range) is negative and statistically significant (estimate = -0.1891,

t-statistic = -2.75). Finally, in the highest IdioVolt tercile, the coefficient of interest is -0.3702

(t-statistic = -3.17). The difference in the coefficient between columns 1 and 3 is statistically

significant (z-statistic = 2.54) suggesting that the return premium is significantly stronger in

the high idiosyncratic volatility tercile compared to the low idiosyncratic volatility tercile. In

an additional comparison, the estimate for Ln(Price Range) in column 3 is slightly more than

20% larger (in absolute value) than the corresponding coefficient in column 7 of Table 3, sug-

gesting that idiosyncratic volatility indeed drives the range-based volatility return premium.

Next, we continue our analysis by determining whether the return premium is stronger in

high beta stocks. As before, we sort stocks into terciles based on our estimates of beta. We then

estimate Eq (3) for each subsample using a Fama-MacBeth approach [13], which is presented

in Table 6. A few results are noteworthy. First, while the coefficients on Ln(Price Range) are

reliably negative across each of the columns, the estimate is most negative in column 3, the

high beta tercile. We note, however, that the coefficient is not monotonically decreasing across

Table 6. Fama-MacBeth regressions on beta terciles.

Low Beta Mid Beta High Beta

1 2 3

Ln(Price Range) -0.2967*** -0.2475*** -0.3581***

(-3.83) (-3.56) (-3.57)

Beta -0.1103 0.1274 -0.2376**

(-0.86) (0.68) (-2.01)

Size -0.0723 0.0013 -0.0080

(-1.55) (0.03) (-0.15)

B/M 0.6923*** 0.4680*** 0.8077***

(12.03) (7.29) (9.14)

Momentum 0.5366*** 0.5395*** 0.7053***

(3.30) (2.94) (4.41)

Illiquidity 0.0077*** 0.0069 0.0128

(3.71) (0.95) (1.45)

Constant 3.7261*** 2.3321*** 3.9227***

(6.05) (3.65) (5.93)

The table reports the results from estimating variants of the following equation using a Fama-MacBeth (1973) regression for three subsamples.

Ri;tþ1 ¼ b1LnðPriceRangei;tÞ þ b2IdioVolti;t þ b3Betai;t þ b4Sizei;t þ b5B=Mi;t þ b6Momentumi;tþ

b7Illiquidityi;t þ aþ εi;tþ1

The dependent variable is the monthly return for stock i in month t+1. The independent variables of interest are Ln(Price Range), which is the natural log of

the difference between the highest price during a particular month and the lowest price, and IdioVolt, which is obtained by calculating the standard deviation

of daily residual returns, where residuals are obtained from a daily four-factor model. The control variables include the following. Beta is the CAPM beta

obtained from estimating a standard daily CAPM data using a six-month rolling window. Size is the natural log of end-of-month market capitalization (in

$Billions). B/M is the natural log of the book-to-market ratio for each stock in each month. Momentum is the cumulative return from month t-12 to t-2.

Illiquidity is the monthly average of the ratio of the absolute value of the daily return scaled by dollar volume (in $Millions). In each month, we sort stocks into

terciles based on Beta. Column 1 reports the results for the bottom tercile. Columns 2 and 3 present the results for middle and top terciles, respectively. In

parenthesis, we report t-statistics that are obtained from adjusted standard errors that account for three lags.

* denote statistical significance at the 0.10 level.

** denote statistical significance at the 0.05 level.

*** denote statistical significance at the 0.01 level.

https://doi.org/10.1371/journal.pone.0188517.t006
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increasing beta terciles. Further, while the coefficient on Ln(Price Range) decreases approxi-

mately 21% from column 1 to column 3, the difference between coefficients in these two col-

umns is not statistically significant (z-statistic = 0.49). Therefore, in Table 6, we only find weak

evidence that the return premium associated with range-based volatility is driven by high beta

stocks.

In unreported tests, we include IdioVolt as an additional control variable and we are able to

draw similar conclusions to those drawn in Tables 5 and 6. As additional robustness tests, we

also sort stocks into quintiles instead of terciles based on both idiosyncratic volatility and beta.

Again, we find qualitatively similar results to those reported in these two tables. Combined,

the results suggest that the negative return premium associated with range-based volatility is

driven by stocks with high idiosyncratic volatility and, to a lesser extent, stocks with high beta.

Lottery stocks and the range-based volatility return premium

In this subsection, we continue to explore factors that influence the return premium associated

with range-based volatility. In the previous subsection, we find that other traditional measures

of risk can partially explain the observed return premium. We note that prior literature has

found a significantly negative cross-sectional relationship between either idiosyncratic volatil-

ity or beta and future returns [7], [8], [30]. Some researchers [25], [26] have argued that prefer-

ences for riskier stocks, which results in demand-induced price premiums and subsequent

underperformance of such stocks, may indeed be related to preferences for stocks that resem-

ble lotteries. For instance, research in Kumar [25] argues that, among other characteristics,

higher levels of idiosyncratic volatility may contribute to the resemblance of lotteries. In partic-

ular, he suggests that stocks with high idiosyncratic volatility, high idiosyncratic skewness, and

low stock prices are more likely to resemble lottery-like payoffs and classifies such stocks as lot-

tery stocks. In his analysis, he finds that lottery stocks significantly underperform non-lottery

stocks indicating an unusual level of demand for these stocks. Similarly, Bali, et al. [26] find

that the return premium for either beta or idiosyncratic volatility becomes negligible when

controlling for lottery demand. If the preference for higher risk stocks is simply a subset for a

larger preference for lottery-like stocks, then the return premium associated with range-based

volatility should be driven by these types of stocks.

In the next three tables, we replicate the analysis in Tables 5 and 6 but instead of creating

subsamples of stocks based on risk, we create subsamples based on lottery-type stocks. We first

estimate Eq (3) for stocks that are classified as lottery stocks [25] and those that are not. In par-

ticular, we denote a stock to be a lottery stock if, during a particular time period, the stock has

idiosyncratic volatility above the median, idiosyncratic skewness above the median, and a

share price below the median. We note that idiosyncratic skewness is estimated similarly to

idiosyncratic volatility except we calculate the skewness of daily residual returns (where residu-

als come from a daily four-factor model) instead of the standard deviation of residual returns.

As before, we use a rolling six-month period in order to allow for a proper number of observa-

tions for the sake of better accuracy when estimating moments of the return distribution.

Approximately 20% of stocks are classified as lottery stocks according to this definition, which

is similar to prior research [25].

Table 7 presents the analysis. Column 1 shows the results for the subsample of stocks that

are classified as lottery stocks while column 2 presents the results for non-lottery stocks. Inter-

estingly, we find that the coefficient on Ln(Price Range) is -0.5552 (t-statistic = -4.55) in col-

umn 1 and -0.2309 (t-statistic = -3.69) in column 2. Not only is the coefficient of interest more

than twice as negative in column 1 than in column 2, but the difference between coefficients is

also statistically significant (z-statistic = 2.36). These results suggest that the return premium
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associated with range-based volatility is stronger for stocks that resemble lotteries than for

stocks that do not.

Next, we sort stocks based on an alternative measure that captures lottery-like stocks. Boyer

and Vorkink [21] estimate expected idiosyncratic skewness (E[IdioSkew]) using a predictive

regression where prior skewness, volatility, momentum, and turnover (among other variables)

are used to predict idiosyncratic skewness. They show that stocks with the highest expected idi-

osyncratic skewness significantly underperform stocks with the lowest expected idiosyncratic

skewness suggesting that, again, investor preferences for these types of stocks lead to price pre-

miums and lower future returns. Table 8 reports the results from estimating Eq (3) using

regressions for three subsamples of stocks that have been created using expected idiosyncratic

skewness [21]. Focusing again on the variable of interest, Ln(Price Range), we find that the

coefficient on this variable is decreasing monotonically across increasing E[IdioSkew] terciles.

The coefficient on Ln(Price Range) in the low E[IdioSkew] tercile (column 1) is positive but sta-

tistically close to zero (estimate = 0.0271, t-statistic = 0.39). The same coefficient in the mid E
[IdioSkew] tercile (column 2) is -0.2012 (t-statistic = -2.56). Finally, the coefficient in column

3, the high E[IdioSkew] tercile, is -0.3966 (t-statistic = -3.34). The z-statistic testing for a

Table 7. Fama-MacBeth regressions on lottery stocks.

Lottery Stocks Non-Lottery Stocks

1 2

Ln(Price Range) -0.5552*** -0.2309***

(-4.55) (-3.69)

Beta 0.0374 0.0088

(0.55) (0.08)

Size -0.3506*** -0.0155

(-4.53) (-0.39)

B/M 1.2110*** 0.4370***

(12.61) (8.08)

Momentum 0.6791*** 0.5931***

(5.02) (3.38)

Illiquidity 0.0052 0.0100***

(1.43) (3.39)

Constant 7.7785*** 2.5112***

(9.10) (4.58)

The table reports the results from estimating variants of the following equation using a Fama-MacBeth (1973) regression for three subsamples.

Ri;tþ1 ¼ b1LnðPriceRangei;tÞ þ b2IdioVolti;t þ b3Betai;t þ b4Sizei;t þ b5B=Mi;t þ b6Momentumi;tþ

b7Illiquidityi;t þ aþ εi;tþ1

The dependent variable is the monthly return for stock i in month t+1. The independent variables of interest are Ln(Price Range), which is the natural log of

the difference between the highest price during a particular month and the lowest price, and IdioVolt, which is obtained by calculating the standard deviation

of daily residual returns, where residuals are obtained from a daily four-factor model. The control variables include the following. Beta is the CAPM beta

obtained from estimating a standard daily CAPM data using a six-month rolling window. Size is the natural log of end-of-month market capitalization (in

$Billions). B/M is the natural log of the book-to-market ratio for each stock in each month. Momentum is the cumulative return from month t-12 to t-2.

Illiquidity is the monthly average of the ratio of the absolute value of the daily return scaled by dollar volume (in $Millions). In each month, we classify stocks

as lottery or non-lottery stocks. Column 1 reports the results for lottery stocks and column 2 reports the results for non-lottery stocks. In parenthesis, we

report t-statistics that are obtained from adjusted standard errors that account for three lags.

* denote statistical significance at the 0.10 level.

** denote statistical significance at the 0.05 level.

*** denote statistical significance at the 0.01 level.

https://doi.org/10.1371/journal.pone.0188517.t007
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significant difference between coefficients in columns 1 and 3 is 3.08 suggesting that stocks

with high expected idiosyncratic skewness drive the return premium associated with range-

based volatility. These findings corroborate the results in Table 7 that suggest that lottery-type

stocks help explain the negative return premium in stocks with high Ln(Price Range).
In our final set of tests, we continue our analysis by creating subsamples based on the mea-

sure of MaxRet [22], which is the daily maximum return during a particular month. Bali et al.

[22] argue that higher levels of MaxRet are an important signal to investors with preferences

for lottery-like characteristics. Consistent with the prior work in this area, they show that

stocks with the highest MaxRet significantly underperform stocks with the lowest MaxRet,
which again indicates that investors with preferences for lottery-like returns might bid up

prices in these particular stocks.

Table 9 reports the results estimating Eq (3) using a Fama-MacBeth approach [13]. Col-

umns 1 through 3 present the regressions by the subsamples based on MaxRet.
In the low MaxRet tercile, we find that Ln(Price Range) produces a negative coefficient that

is not reliably different from zero (estimate = -0.0235, t-statistic = -0.48). However, in the high

Table 8. Fama-MacBeth regressions on E[IdioSkew] terciles.

Low

E[IdioSkew]

Mid

E[IdioSkew]

High

E[IdioSkew]

1 2 3

Ln(Price Range) 0.0271 -0.2012** -0.3966***

(0.39) (-2.56) (-3.34)

Beta -0.0512 -0.1022 0.0962

(-0.38) (-0.99) (1.16)

Size 0.0092 0.0315 -0.5112***

(0.20) (0.70) (-5.63)

B/M 0.7926*** 1.0423*** 1.3768***

(9.22) (10.08) (12.02)

Momentum 0.7192*** 1.0646*** 0.5170***

(3.78) (6.09) (3.45)

Illiquidity 0.9534 0.0015 0.0051**

(0.68) (0.06) (2.42)

Constant 3.2435*** 3.6913*** 9.8825***

(4.70) (5.75) (10.29)

The table reports the results from estimating variants of the following equation using a Fama-MacBeth (1973) regression for three subsamples.

Ri;tþ1 ¼ b1LnðPriceRangei;tÞ þ b2IdioVolti;t þ b3Betai;t þ b4Sizei;t þ b5B=Mi;t þ b6Momentumi;tþ

b7Illiquidityi;t þ aþ εi;tþ1

The dependent variable is the monthly return for stock i in month t+1. The independent variables of interest are Ln(Price Range), which is the natural log of

the difference between the highest price during a particular month and the lowest price, and IdioVolt, which is obtained by calculating the standard deviation

of daily residual returns, where residuals are obtained from a daily four-factor model. The control variables include the following. Beta is the CAPM beta

obtained from estimating a standard daily CAPM data using a six-month rolling window. Size is the natural log of end-of-month market capitalization (in

$Billions). B/M is the natural log of the book-to-market ratio for each stock in each month. Momentum is the cumulative return from month t-12 to t-2.

Illiquidity is the monthly average of the ratio of the absolute value of the daily return scaled by dollar volume (in $Millions). In each month, we sort stocks into

terciles based on E[IdioSkew]. Column 1 reports the results for the bottom tercile. Columns 2 and 3 present the results for middle and top terciles. In

parenthesis, we report t-statistics that are obtained from adjusted standard errors that account for three lags.

* denote statistical significance at the 0.10 level.

** denote statistical significance at the 0.05 level.

*** denote statistical significance at the 0.01 level.

https://doi.org/10.1371/journal.pone.0188517.t008
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MaxRet tercile, the coefficient on Ln(Price Range) is -0.4059 (t-statistic = -3.20). The difference

between these coefficients is statistically significant at the 0.01 level (z-statistic = 2.81) suggest-

ing that consistent with the results in the previous two tables, the return premium associated

with range-based volatility is driven by stocks with high maximum daily returns.

As with all of our analysis in Tables 3 through 9, we provide t-statistics from robust stan-

dard errors [32] that account for three lags. We note that in unreported tests, the conclusions

that we draw are similar whether we include zero lags or (up to) six lags. We also note that

including IdioVolt as an additional control variable in Tables 7 through 9 but does not mean-

ingfully alter our results. Finally, we replicate our analysis by sorting stocks into quintiles

based on E[IdioSkew] and/or MaxRet instead of terciles, and find qualitatively similar results to

those reported in this paper. Our analysis shows that range-based volatility is associated with

significantly lower returns, is not driven by stocks with higher levels of risk, and is strongest in

stocks with lottery-like characteristics.

Table 9. Fama-MacBeth regressions on MaxRet terciles.

Low

MaxRet

Mid

MaxRet

High

MaxRet

1 2 3

Ln(Price Range) -0.0235 -0.2554*** -0.4059***

(-0.48) (-3.10) (-3.20)

Beta 0.1554 0.1132 -0.0601

(1.24) (1.17) (-0.84)

Size -0.0500 -0.0251 -0.1772***

(-1.42) (-0.69) (-2.75)

B/M 0.2259*** 0.4591*** 1.1706***

(5.16) (7.27) (13.44)

Momentum 0.5945*** 0.9319*** 0.6006***

(3.22) (5.35) (4.25)

Illiquidity -0.0122 0.0105* 0.0057***

(-0.90) (1.83) (2.71)

Constant 2.2402*** 2.6399*** 6.1272***

(4.40) (5.39) (8.03)

The table reports the results from estimating variants of the following equation using a Fama-MacBeth (1973) regression for three subsamples.

Ri;tþ1 ¼ b1LnðPriceRangei;tÞ þ b2IdioVolti;t þ b3Betai;t þ b4Sizei;t þ b5B=Mi;t þ b6Momentumi;tþ

b7Illiquidityi;t þ aþ εi;tþ1

The dependent variable is the monthly return for stock i in month t+1. The independent variables of interest are Ln(Price Range), which is the natural log of

the difference between the highest price during a particular month and the lowest price, and IdioVolt, which is obtained by calculating the standard deviation

of daily residual returns, where residuals are obtained from a daily four-factor model. The control variables include the following. Beta is the CAPM beta

obtained from estimating a standard daily CAPM data using a six-month rolling window. Size is the natural log of end-of-month market capitalization (in

$Billions). B/M is the natural log of the book-to-market ratio for each stock in each month. Momentum is the cumulative return from month t-12 to t-2.

Illiquidity is the monthly average of the ratio of the absolute value of the daily return scaled by dollar volume (in $Millions). In each month, we sort stocks into

terciles based on MaxRet. Column 1 reports the results for the bottom tercile. Columns 2 and 3 present the results for middle and top terciles. In

parenthesis, we report t-statistics that are obtained from adjusted standard errors that account for three lags.

* denote statistical significance at the 0.10 level.

** denote statistical significance at the 0.05 level.

*** denote statistical significance at the 0.01 level.

https://doi.org/10.1371/journal.pone.0188517.t009
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Conclusion

Previous research has found conflicting results regarding the cross-sectional association

between volatility and future returns. Prior studies [7], [8] have found that idiosyncratic vola-

tility is negatively associated with expected returns in both U.S. and international markets. On

the other hand, there is also research that shows that volatility is time-varying and that, when

forecasting volatility using exponential GARCH models, the lead-lag, cross-sectional relation

between volatility and stock returns becomes positive [10]. These studies indicate that the

direction of the relation between risk and return at the firm level depends on how volatility is

measured.

In this study, we contribute to the debate by examining a range-based measure of volatility

detailed in Alizadeh, Brandt, and Diebold [11]. They show that the natural log of the price

range is theoretically, numerically, and empirically superior to other measures of volatility in

its efficiency. Compared to other measures of volatility, range-based volatility is also distrib-

uted more normally than other measures of volatility and is robust to microstructure issues

that are often problematic in volatility estimation.

We conduct a series of traditional asset pricing tests to examine the relation between next-

month returns and the natural log of the difference between highest price and the lowest price

during a particular month. After sorting stocks into five value-weighted portfolios based on

range-based volatility, we find that next-month average returns are monotonically decreasing.

The return difference between extreme portfolios is statistically and economically significant.

We also estimate portfolio alphas from CAPM and other multifactor models [9], [12] and find

that alphas are generally decreasing across increasing range-based volatility portfolios. Next,

we examine this cross-sectional, negative return premium for various subsamples based on

other measures of risk, specifically, idiosyncratic volatility and beta. While we find that the

negative return premium associated with range-based volatility holds in each of the idiosyn-

cratic volatility subsamples, we find strong evidence that the premium is strongest in stocks

with the highest idiosyncratic volatility. Finally, we attempt to further identify the explanation

for the peculiar negative return premium found in range-based volatility by sorting stocks by

lottery characteristics [19]. We test whether the return premium associated with range-based

volatility is driven by stocks that are most likely to resemble lotteries. Using the various lottery

characteristics from the prior literature, [21], [25], [26] we find that the range-based volatility

return premium is driven by stocks that most resemble lotteries.
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