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Abstract

While measuring steady shear viscosity of Mozzarella-types#s in a rotational rheometer
at 70C, three main difficulties were encountered; wall slipycttral failure during
measurement and viscoelastic time dependent effectat&kplates were the most
successful surface modification at eliminating wall dipwever, even with serrated plates
shear banding occurred at higher shear rates. Because of thedagtic nature of the
cheeses, a time dependent viscous response occurred aagread S, requiring longer
times to attain steady shear conditions. Prolonged continuousnghaléered the structure of
the molten cheeses. The effects of structural change wextygexiuced by minimising the
total accumulated strain exerted on the sample during floweaetermination. These
techniques enabled successful measurement of steady sheaityistmolten Mozzarella-

type cheeses at %0 at shear rates up to 258 s
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1. Introduction

Accurate measurement of the rheological properties of food ialaterimportant for
equipment design, product development, quality control and process mgdeltzzarella
cheese is rheologically complex over its processing and consurgptiditions because it is
viscoelastic, exhibiting varying amounts of solid- and liquig-ldharacter depending upon
temperature, rate of deformation and extent of working during raeturé. Many studies
have been reported on small angle oscillatory shear measuseomeMozzarella-like
cheeses (Tunick et al., 1993; Hsieh, Yun, & Rao, 1993; AkukaSekaran, 1996;
Subramanian & Gunasekaran 1997; Guinee, Feeney, Auty & Fox 2@9Rjgupal &
Muthukumarappan, 2003; Karoui, Laguet & Dufour, 2003; Joshi, Muthukumarappa
Dave, 2004; Rock et al., 2005; Udayarajan, Horne & Lucey, 2007; iHustsal., 2012; Ma,
Balaban, Zhang, Emanuelsson-Patterson & James, 20143 asldtively easy to perform
such experiments on rotational rheometers. However, thefevaee reports on steady shear
viscosity measurements on such cheeses with rotational rlexsrbetause of the difficulty
in performing steady shear experiments (Lee, Imoto & Rha, FIré&yg, Eberhard,
Popplewell & Peleg, 1991; Guinee & O’ Callaghan 1997; Yu & Gukasé, 2001). Most of
the steady shear reports were conducted using empirical methdegices, and did not
produce data at shear rates >10Gapillary rheometers have been used successfully to
achieve higher shear rates but various flow instabilities weted during their use (Smith,
Rosenau & Peleg, 1980; Cavella, Chemin, & Masi, 1992; Taneyisul, Kimura & Shioya,

1992; Muliawan & Hatzikiriakos, 2008; Bahler & Hinrichs, 2013).

We are commencing a study on the cooking/stretching stage ipalkédiza manufacture as it
is poorly understood. The deformation regime in rotational rhemmset closer to the
processing conditions in this process stage than that itecgapheometers. Reported

average shear rates during cooking/stretching vary from 244 & batch pilot-scale twin

3
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screw cooker (Glenn & Daubert, 2003; Glenn, Daubert, Farkate&nski, 2003) to 70-150
s'for a laboratory scale, single impeller mixing device (Siéffe & Ng, 2000; Kapoor,
Lehtola & Metzger, 2004). We estimate maximum shear latygeen the screw tip and the
wall in a batch pilot-scale Blentech cooker to be about 200 & therefore useful to

determine shear viscosity of molten cheese at higher sitear r

The presence of a no-slip condition at the wall is an impopt@atequisite in accurately
measuring steady shear viscosity. In the case of Mozziéikellaheeses in the molten state,
liquid fat at the cheese surface starts lubricatingvidleé (Ruegg et al., 1991; Muliawan &
Hatzikiriakos, 2008). This lubrication violates the classicasiqmboundary condition,
leading to erroneous viscosity data (Yoshimura & Prud’homme, 198&)parly at shear
rates > 108 A rheologically complex material such as Mozzarelleeste exhibits time
dependency arising from two separate phenomena: 1. The vismoetdste of the material
which is important at low shear rates (€9 and 2. Structural change as a result of shearing
which is important after prolonged shearing at higher shear(fBiteffe, 1996; van Vliet,
2014). We use the term viscoelastic time dependency toteetiee first and structural
change to refer to the second. Because of these difficultigallb$lip and time dependency,

a limited amount of work has been conducted on steady shear rheoMgyz#rella cheese.

It is desirable to have a method that takes account eigheelastic time dependency and
measures the viscosity before significant structural changeckasred. The main aim of this
study was to develop such a method that is suitable at higheratesaand higher
temperatures. A secondary aim was to understand the physesadmena that occur during
shear viscosity measurement as these same phenomena wilt@son processing

equipment that imparts shear.
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2. Materialsand Methods
2.1 Materials

Samples of commercial Mozzarella cheese, a model Mdizzaheese and renneted casein
gel were obtained as frozen blocks from Fonterra Co-operatmgp@imited, Palmerston
North, New Zealand. Model Mozzarella cheese was prefgretxing and working
renneted casein gel, cream, water and salt &€ 70 a twin screw batch cooker (Blentech,
model CC-0045, Blentech Corporation, Rohnert Park, CA, USA). &edrtasein gel was a
dewatered, renneted and acidified curd made from skim Trik.compositions of the
cheeses were determined by the Analytical Services Group adrFeResearch and
Development Centre (Table 1). Each cheese block was thawe@ dor at least 24 h before
use in experiments. Cheese cylinders of 20 mm diameterdrar® from a cheese block
using a cork borer. Discs 2-3 mm thick were cut from thesgheglinder using a wire cutter.

Cheese discs were wrapped in food wrap to prevent moissgeuhal stored at°C.

2.2 Rheological properties

Initial experiments (as noted in figure legends) were condusiedstress controlled AR-G2
rheometer (TA Instruments, New Castle, DE, USA) using lghialhte geometry (diameter

20 mm). Unless otherwise noted in figure legends, all otherabeal measurements were

conducted on a MCR 301 rheometer (Anton Paar, Graz, Austrig as?eltier temperature
hood (H-PTD 200), a 20 mm serrated parallel plate geometrysang the following

conditions.

Cheese discs were equilibrated to room temperaturC{2for at least 30 min and then
placed between the parallel plates of the rheometem3ure good rheometer/sample

contact the measurement gap was set by closing the gap ateroperature until the normal



97 force was 5 N. While closing the gap, the velocity ofrtieometer moving head was 50
98 um/s. The sample was then heated t87Qsing the in-built Peltier heating system for both
99 the bottom plate and the upper temperature hood. The sampieenaseld at 76C for 2
100 min to ensure isothermal conditions and to allow some striesatien. To avoid drying
101  soybean oil was applied around the edges of the cheese disc. Adgihalbbmeasurements
102 were performed at 7AC. Oscillatory rheological measurements on renneted cadeirege

103  conducted in the linear viscoelastic range using 1 Hz freguamt 0.5% amplitude at 7C.

104  Temperature gradients across the samples were exploredausimgperature probe (Q1437
105  digital thermometer, Dick Smith Electronics, Auckland, Nesaldnd) and a high viscosity
106  standard oil (Viscosity reference standard N4000, Cannon Instti@oenpany, State

107  College, PA, USA).
108 2.3 Image acquisitionto illustrate wall slip

109  To visualize wall slip a digital camera, Canon EOS 650D (Cahokyo, Japan), was used in
110  video mode. The camera was operated remotely by computer oflingre EOS digital

111 version 25.2 (Canon, Tokyo, Japan). The camera was fixed sarnhe height as the rotating
112  plate and sample and was able to capture the wall slip évesterence mark was drawn

113 vertically on the sample and upper plate. The sample wasihea#&°C using the in-built

114  Peltier heating system. The rheometer was run at a sheaf @04 &. A video-clip was

115  captured at 50 framed sind 1280 x 720 resolution for 69 s. Still images were extrdied
116  the video using the software Windows Li¥eMovie Maker (Microsoft Corporation,

117 Redmond, WA, USA).

118 2.4 Environmental scanning electron microscopy
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To explore the effect of shearing on microstructure, environmesgahsg electron
microscopy (ESEM) was conducted on cheese samples obtaineddredatter shearing in
the rheometer. For the unsheared sample, a specimen veasnting random protein fibre
orientation. However, for the sheared fibrous-looking samplegiprébre orientation was
assumed to be along the length of the sample and the specasemtin the longitudinal
direction. Specimens were cut with dimensions 4x4x1 mm. ESEdtwaducted in a
variable pressure FEI Quanta 200F scanning electron microscopeH{igbioro, OR, USA)
equipped with a Schottky field emission gun and a Peltier costage in environmental
mode. Water vapour (imaging gas) was used as a gas mediumdiodaecelectron signal
amplification. The chamber was pumped for four to five cywiés minimum pressure 3.2
Torr and maximum pressure 7 Torr to stabilise the water vgpessure. A spot size of 3,
accelerating voltage of 10 kV and working distance of approximatélynn were used. In
order to ensure wetness of the sample, the relative huroidityye chamber was maintained at

60% by controlling pressure at 3.2 Torr and temperature aC2.0 °
3. Resultsand Discussion
3.1 Wall dlip and shear banding

In an initial attempt to determine a flow curve of modelzilrella cheese at 7Q using
smooth plate geometry, a flow discontinuity was observed, evaddne a sudden drop in
apparent viscosity and shear stress at shear rat€gFi§s1). Yu and Gunasekaran (2001)
reported a similar drop in viscosity in the shear rate r@rge" while measuring steady
shear viscosity of Mozzarella cheese afG0For Mozzarella-like cheeses at temperatures
above 30°C, the fat will be molten and so the cheese surfaceenit to be slippery (Ruegg
et al., 1991; Muliawan & Hatzikiriakos, 2008). The moltenaiadl slippery surfaces are likely

to cause loss of grip resulting in early wall slip.
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To confirm the hypothesis that molten fat was causing wpll@movie was filmed using a
high resolution camera (Fig. 2). Even at the very low shearaf 0.04 3, the images show
that the mark at the top of the cheese became displamadtifat on the top plate by 35 s and
was progressively displaced further after 45 s and 55 s. Hpkdement was a clear visual
indication of wall slip. From the polymer literature, the pietof wall slip is that of
accumulated strain/stress building up in polymeric chainshneg a critical value and
eventually leading to permanent detachment from the inteffdagemolten fat in Mozzarella
cheese may have worsened this situation. For an isotheamale of a Newtonian liquid or
Hookean solid the marker line would be expected to be lineaisigest the curve formed
with little distortion near the upper plate (Fig. 2) is caused tymperature gradient in the

sample from 55C on the lower Peltier plate to a lower temperaturbeatipper plate.

We modified the cheese contact surfaces in an attemptrim&ie or minimize the wall slip
effect. Best results were obtained with serrated pléd#éewed by sandpaper and then
sandblasted plates (Fig. 3). The viscosity values with thatedrplates (Fig. 3) are about 5
times those with smooth plates (Fig. 1) even at low sh&zs iadicating the large effect of
wall slip on the results. Flow discontinuities were still abed at shear rates > 108, so
surface modification has just changed the location of therapipslip or sample fracture
from the walls to within the material. Patarin, GatliaMagnin and Goldschmidt (2014)
described similar behaviour as macroscopic failure or frasttnen a cheese sample having
good contact with upper rotating and bottom stationary plates wagdhea rheometer.
This apparent slip or fracture within the sample is refelweas shear banding, shear

localisation or melt fracture in the polymer literature (8yc2005).

A temperature gradient across the samples was observedccwailacting tests on the AR-
G2 rheometer. When the temperature of the Peltier botta ks 70C a temperature

gradient of ~ 5C was recorded across the sample with the temperature piubaigh
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viscosity standard oil showed that the measured viscosity seasade at 26C but high at 70

°C indicating that the average sample temperature was |lbaethe 76C set temperature.
3.2 Transient viscoel agtic effects and measurement duration

At low shear rates (<0.1'sand 70°C, model Mozzarella cheese exhibited a transient
viscosity peak, a localized maximum of viscosity on the flowe (Fig. 3). Viscoelastic
materials exhibit non-steady state flow conditions at low stees (<1 3) if the timescale
of deformation is too small. This effect is related to fbevgate of stress dissipation within
the material resulting in slow development of steady flow conditiorthe literature, these
effects are termed start-up effects or time-dependarsiti@n effects (Mezger, 2011; van

Viiet, 2014).

The apparent viscosity of Mozzarella cheese at 0'Gind 70°C was found to be time
dependent (Fig. 4). Viscosity increased with measuremeataind eventually reached a
relatively constant steady state value at around 100 s. At a Isigber rate (10% apparent

viscosity attained a constant value in less than 2 s.

Mezger (2011) proposed a rule of thumb that measurement duragiachapoint should be
at least as long as the reciprocal of shear rate 3.&@Ht Fig. 4 agrees with this rule of
thumb. Attaining steady shear conditions at each shear ratis steportant for obtaining an
accurate flow curve for viscoelastic materials sucthegse. Van Vliet (2014) provides an
excellent description of the role of time scale in food rheologhding cheese examples.
The duration of shear rate application plays a vital roledrstiess response of the material.
Reaction to applied stress is nearly instantaneous for aetagtic material but is time-
dependent for soft solids (van Vliet, 2014; Malkin, 2013). For visstielmaterials time
dependency is related to the disruption and reformation of mateateractions and to the

spectrum of relaxation times of these processes (van 20&4).
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3.3 Sructural changes/failure during shearing

Continuous shearing of Mozzarella cheese at higher shear ratesaily resulted in
structural failure and expulsion of some of the sample fromhib@meter measurement gap
in the form of a thick strand (diameter about the same ané¢asurement gap) with aligned
protein fibres. The unsheared sample had a random ESEMustr(lEtg. 5). On the other
hand, the sheared sample exhibited alignment of the proteintastclfzure, presumably in
the direction of shearing. These observations plus observations on nuxirslla cheese
manufactured in pilot-scale equipment led us to the caodubat shearing of Mozzarella-
type cheese led to changes in the structure of the mainalar observations were reported
by Manski (2007), who created fat filled protein structures pashg calcium caseinate-fat
dispersions and showed that shearing led to structural orgeniiaitially and then with a

further increase in shear rate also resulted in failutkeofmaterial.

Steady-state viscosity measurement for Mozzarella ché#esefore changes the structure of
the cheese thus changing the viscosity that we are trying to raeAs#thiough viscosity
measurements can be used as probing tools for changes in stwetuigh to measure

steady shear viscosity before any significant structural éhaag occurred.
3.4 Optimum flow curve

One way to limit structural changes during rheological measamei®m to minimize shearing
of the sample during the measurement. Fig. 6 indicateshibadttategy was certainly an
improvement. The default shear rate settings for flow cunerm@tation resulted in an early
breakdown of the flow curve at a shear rate near‘1Utse flow curve with only 5 shear rate
steps with shorter measurement durations resulted in sudoaesfsurement of shear

viscosity up to a shear rate of 150 $he power law model fitted the data welf€R.998).

10



215  The practical limit of the method appeared to be about 18tls the chosen steps as only

216  one reliable data point was obtained at 15€em the triplicate runs.

217  To further check the robustness of the method two different skegaseries with lower
218  accumulated strain units were attempted on commercial dflelta cheese. The data

219  obtained from both series also fitted very well to the pdaemodel (R=0.998) and the
220 flow curves for the two series were virtually identi@@lg. 7). The maximum shear rate
221 achieved was 250'sThus, a smooth flow curve up to 25tvgas obtained for Mozzarella
222 cheese by allowing longer measurement durations at low sheata@eoid transient

223 viscoelastic effects and selecting only a few shearstaps in order to limit total

224  accumulated shear strain (<50 strain units).

225  Values of the flow behaviour index for commercial MozZareheese were similar (~0.74)
226 infigures 6 and 7 indicating similar moderate shear thinningvielra However, the

227  consistency coefficient shown in Fig. 7 is lower (~122"P¢han that in figure 6 (~211

228 Pa.$). Fig. 7 was performed on the same material as Figt @fter storage af@ for two

229 weeks. The lower consistency coefficient in Fig. 7 wasiplysattributed to softening caused
230 by proteolysis during storage of the cheese’a.4rhe effect of proteolysis on softening of
231  Mozzarella cheese is well reported (Metzger, Barbandrféd$tedt, 2001; Guinest al.,

232 2002; Kindstedt, Hillier & Mayes, 2010).

233  Rheological data obtained by Muliawan & Hatzikiriakos (2007) for Adoella cheese at 25
234  °C using both capillary and sliding plate rheometers were ibdescby the Herschel-Bulkley
235  model (i.e. Power law with yield stress) with a higher cdescy coefficient (K=3.34

236  kPa.$), a lower flow behaviour index (n=0.25) and a yield stress @P23. Muliawan &

237  Hatzikiriakos (2007) reported the absence of a yield stress abd@a6@l suggested this

238 was because of complete melting of the protein structure ame leasier initial flow of the

11



239  cheese. Our fit of data to the power law model therefore agigeduliawan &
240 Hatzikiriakos (2007) but absolute values of the model parameteesdiferent because of

241  our higher test temperature.
242 3.5 Flow properties of molten renneted casein gel

243  Some experiments were conducted with molten renneted casesffgetively a fat-free, low
244  salt Mozzarella cheese, to explore the role of the prptease in the flow instabilities such
245 as wall slip or structural failure. Fig. 8 indicates adiginuity occurred in the flow curve for
246  molten renneted casein gel at around 2%ih a sudden decrease in viscosity. Fat is absent
247  here so the occurrence of flow instability suggests breakdown @fipsituctures upon

248  shearing rather than wall slip.
249 3.6 Applicability of the Cox-Merzrule

250 The Cox-Merz rule is an empirical rule that seeks toealatillatory rheological data to

251 steady shear data. The Cox-Merz rule is represented by foll@gumtion:

Gr\?

52 @) = Inx @l =% [1+(2)

1)

w=y

253  Where,n(y) is shear viscosity in Paig* (w) complex viscosity in Pa.s) rotational speed in

254 rad.s', G’, storage modulus and G” loss modulus in Pa.

255 Reasonably good agreement was observed between complex viscosityaandssiosity

256  with our data almost superimposing over the shear rate rang@®$I1Fig. 8). This

257  agreement suggested that the Cox-Merz rule was applicat@arieted casein gel and also
258  suggested the possible use of oscillatory data to estimatevismasity at higher shear rates
259  beyond which wall slip or structural breakdown would have occurreatational steady

260 shear mode. Muliawan & Hatziriakos (2007) compared complex aat stscosities of

12
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Mozzeralla cheese at various temperatures froiC26 60°C and reported poor agreement
at temperatures up to 8G suggesting non-compliance to the Cox-Merz rule. They sumbest
this lack of agreement was caused by the solid-like steietud by the presence of a yield
stress at temperatures of 8Dand below. However, at 8Q or above where the cheese is
more molten Muliawan & Hatziriakos (2007) reported agreemetutden oscillatory and

steady shear data in agreement with Fig. 8.

3.7 Structural origins of rheological behaviour

Flow instabilities have been widely reported and discuss#tei polymer melt rheology
literature. Two of the most common terms used for structailare of the material during
rheological measurement are shear banding and melt fractuaaglad polymeric chains or
aggregated gel networks both show shear banding in simple sloedga(® & Wang, 2010).
Polymer chain entanglement and disentanglement (also known@slithed stretch
phenomena) in concentrated polymer dispersions are the usual phenbatdr@ae
consequences for rheological measurements (Ferry, 1980; Gya@831é; Boukany &

Wang, 2010). Entanglement of polymer chains may lead to an aldstic deformation
before the molten material actually starts flowing. If thie of external deformation is higher
than the chain relaxation rate, the chain or gel networkaolgpse to facilitate flow. This
collapse may be a localized event giving rise to a shearrzatyge of flow discontinuity.
This is a complex type of time dependency in that it is slaamdependent and also results in
structural change with time. Shear banding could also adselireakage of polymeric
interactions above a critical shear stress or shear rategGan & Gill, 2000). Melt fracture
is a stress induced structural failure of material perhagis@ from stress-induced
disentanglement among bulk polymer chains (Wang & Drda, 1997; KoopneamBoelder

& Molenaar, 2011).

13
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Casein structures in Mozzarella-like cheeses can beedi@s entangled polymers, as while
stretching at higher temperature, they form macroscopicsfibecause of calcium mediated
casein-casein interactions (Lucey, Johnson & Horne, 2003). Pplogsaeric chains may also
have cross links to further strengthen the protein network.aSstfeiation ot andf3-caseins
may form worme-like polymeric chains and hedgehog-like misghespectively (Horne,
1998). Casein gels have also been considered as a hatmogaetwork structure
consisting of strands of aggregated casein particles (van Rbeffs, Zoon & Walstra,
1989). In relatively concentrated and close packed conditiohsasucheese these casein
aggregates may interact with neighboring casein aggregates tteotagiglement (Horne,

1998).

The fact that casein structures in Mozzarella-like cleeear be considered as either
entangled polymers or aggregated gel networks suggests that ifigightee polymer
literature are relevant. High shear rates applied to mdliezzarella cheese in a capillary
rheometer result in melt fracture, which can be caugkdrdoy fat-protein separation or by a
stick-slip type of behaviour (Muliawan & Hatzikiriakos, 20@&hler & Hinrichs, 2013).
However, a critical shear stress or shear rate wassagdas cause melt fracture. Yu &
Gunasekaran (2001) reported a sharp drop in shear viscosifysitf@r molten Mozzarella
cheese and suggested that the cheese undergoes structural brestdal@some critical

shear rate.
4. Conclusions

Steady shear viscosity measurements are possible on molteanelte-like cheeses at
higher shear rates. The best methods to obtain reliable aridtenhdata up to 250'on
steady shear viscosity of Mozzarella cheese were: 1. UX& o serrated plates with a

Peltier temperature hood; 2. Using longer measurement dufatitow shear rates and; 3.

14
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Using fewer shear rate steps in the flow curve to limitdited accumulated shear strain. The
flow curves obtained for Mozzarella-type cheeses d&CA@ere found to follow the power

law model. At higher shear rates flow inconsistencies mag &om the combined effect of

wall slip and structural failure of the material. The Cogtilrule was found to be applicable

for renneted casein gel at 70 and is recommended as a possible tool to predict steady shea

viscosity from oscillatory rheological data.
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Figure Legends
Fig. 1. Flow curves of modeéVlozzarell: cheese showing wall slip obtained in the-G2

(TA Instruments) rheometer using smooth plates. Shear wg¢—=-), Shear stres:—=- ).

Fig. 2. Visualization of wall slip omodelMozzarella cheese at 86 using smooth rallel
plates on the ARG2 (TA Instruments) rheometer at 0.(* shear rate. The black marker i
on the cheese becomes displaced from that on the uppesuaigtesting wall slip. TT

images were taken at 0, 10, 25, 35, 45 and 55 s fromaheossharing.

Fig. 3. Effect of surface modification of the rotating parallel plaieghe flow curvess
model Mozzarella cheesExperiments used 40 grit sand paj—+) on the ARG2 (TA
Instruments) rheometer and sandblasted pl—<-) or serrated plate--v-) on the MCR30:

(Anton Paar) rheometer.

Fig. 4. Transient startip effects on sheaiscosity of commercial Mozzarella cheege

constant shear rates 0.0%(—) and 10 * ().

Fig. 5. Environmental scanning electron microscopSEM) images otinsheared mod:
Mozzarellacheese (upper row) and of a thick strand of sheared cheesadhaameie «
from the measurement gap of the rheometer after shearing fos@&20units (bottitom rov

Globular structures represent fat globt

Fig. 6. Two flow curves focommerciaMozzarella cheese using different shear rate
sequences: continuous flow curve using default settings of the AatsrMCR301 1 to gi
uniform spacings on the log shear rate ao) and flow curve using only fiveelected she:
rates ¢). For the default settings measurement duration decraaaddgarithmic rirate fri
25 s to 2 s as the shear rate increased from 0.01 t¢* accumulating 1572 total stra

units. The selected shear ratesre 0.01, 0.1, 10, 100 and 15 for measurement duratio
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of 100, 25, 5, 0.1 and 0.05 s respectively accumulating only 71stcd@t units. For clarity
only one flow curve is shown using the default settings. The floweouith selected shear

rates was performed in triplicate.

Fig. 7. Two flow curves of commercial Mozzarella cheese usingrdint series of shear rate
steps; Series 1: 0.01-0.1-1-10-100-20() with measurement durations of 100, 12.5, 5,
0.05, 0.05, 0.05 s respectively, performed in duplicate; S2rie®5-0.5-5-50-150-250 s
Y(A) with measurement durations of 50, 6.25, 2.5, 0.05, 0.05 s0@8pectively. The dotted
line represents the power law regression model fitted on tHedpseries. Total accumulated

strain was 23 units for series 1 and 41 units for series 2.

Fig.8. Shear viscosity) (¢) and complex viscosity,n*[1 (o) as a function of shear rate and
angular frequency to explore the applicability of the Cox-Merztailaolten renneted casein

gel. For oscillatory measurements the strain amplitude was 0.5%
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Revised Table

Table 1. Composition of Experimental Cheeses

Model Commercial Renneted
Mozzarella Mozzarella Casein
Gel
Moisture (g 100 g™ 53.9 48.7 56.1
Fat(g 100 g™ 22.2 22.4 0.2
Protein (g 100 g™ 22.3 24.7 41.6
Salt (NaCl) (g 100¢g™")  1.13 1.25 -
pH 5.5 5.4 5.6




Revised Figure
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Fig. 1. Flow curves of model Mozzarella cheese showing wall slip obtained in the
AR-G2 (TA Instruments) rheometer using smooth plates. Shear viscosity (—-), Shear
stress (—=-).
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Fig. 3. Effect of surface modification of the rotating parallel plates on the flow curves of
model Mozzarella cheese. Experiments used 40 grit sand paper (—=) on the AR-G2 (TA
Instruments) rheometer and sandblasted plates (=) or serrated plates (-¥- ) on the MCR301
(Anton Paar) rheometer.
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Fig. 4. Transient start-up effects on shear viscosity of commercia Mozzarella cheese at
constant shear rates 0.01 s* (—+-) and 10 s* ().
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Fig. 6. Two flow curves for commercial Mozzarella cheese using different shear rate
sequences: continuous flow curve using default settings of the Anton Paar MCR301 to give
uniform spacings on the log shear rate axis (o) and flow curve using only five selected shear
rates (#). For the default settings measurement duration decreased at a logarithmic rate from
25 sto 2 s as the shear rate increased from 0.01 to 200 s* accumulating 1572 total strain
units. The selected shear rates were 0.01, 0.1, 10, 100 and 150 s™ for measurement durations
of 100, 25, 5, 0.1 and 0.05 s respectively accumulating only 71 total strain units. For clarity
only one flow curve is shown using the default settings. The flow curve with selected shear
rates was performed in triplicate.
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Fig. 7. Two flow curves of commercial Mozzarella cheese using different series of shear rate
steps; Series 1: 0.01-0.1-1-10-100-200 s (m) with measurement durations of 100, 12.5, 5,
0.05, 0.05, 0.05 s respectively, performed in duplicate; Series 2: 0.05-0.5-5-50-150-250 s
Y(A) with measurement durations of 50, 6.25, 2.5, 0.05, 0.05, 0.05 s respectively. The dotted
line represents the power law regression model fitted on the pooled series. Total accumulated
strain was 23 units for series 1 and 41 units for series 2.
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Fig.8. Shear viscosity, n (¢) and complex viscosity, [in* [ (o) as a function of shear rate and
angular frequency to explore the applicability of the Cox-Merz rule to molten renneted casein
gel. For oscillatory measurements the strain amplitude was 0.5%.
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