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Abstract

Model-Based Stripmap Synthetic Aperture Radar Processing

by

Roger D. West, Doctor of Philosophy

Utah State University, 2011

Major Professor: Dr. Jacob H. Gunther
Department: Electrical and Computer Engineering

Synthetic aperture radar (SAR) is a type of remote sensor that provides its own illu-

mination and is capable of forming high resolution images of the reflectivity of a scene. The

reflectivity of the scene that is measured is dependent on the choice of carrier frequency;

different carrier frequencies will yield different images of the same scene.

There are different modes for SAR sensors; two common modes are spotlight mode

and stripmap mode. Furthermore, SAR sensors can either be continuously transmitting a

signal, or they can transmit a pulse at some pulse repetition frequency (PRF). The work

in this dissertation is for pulsed stripmap SAR sensors.

The resolvable limit of closely spaced reflectors in range is determined by the bandwidth

of the transmitted signal and the resolvable limit in azimuth is determined by the bandwidth

of the induced azimuth signal, which is strongly dependent on the length of the physical

antenna on the SAR sensor. The point-spread function (PSF) of a SAR system is determined

by these resolvable limits and is limited by the physical attributes of the SAR sensor.

The PSF of a SAR system can be defined in different ways. For example, it can be

defined in terms of the SAR system including the image processing algorithm. By using

this definition, the PSF is an algorithm-specific sinc-like function and produces the bright,

star-like artifacts that are noticeable around strong reflectors in the focused image. The
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PSF can also be defined in terms of just the SAR system before any image processing

algorithm is applied. This second definition of the PSF will be used in this dissertation.

Using this definition, the bright, algorithm-specific, star-like artifacts will be denoted as the

inter-pixel interference (IPI) of the algorithm. To be specific, the combined effect of the

second definition of PSF and the algorithm-dependent IPI is a decomposition of the first

definition of PSF.

A new comprehensive forward model for stripmap SAR is derived in this dissertation.

New image formation methods are derived in this dissertation that invert this forward model

and it is shown that the IPI that corrupts traditionally processed stripmap SAR images can

be removed. The removal of the IPI can increase the resolvability to the resolution limit,

thus making image analysis much easier.

SAR data is inherently corrupted by uncompensated phase errors. These phase errors

lower the contrast of the image and corrupt the azimuth processing which inhibits proper

focusing (to the point of the reconstructed image being unusable). If these phase errors

are not compensated for, the images formed by system inversion are useless, as well. A

model-based autofocus method is also derived in this dissertation that complements the

forward model and corrects these phase errors before system inversion.

(167 pages)
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Chapter 1

Introduction

This chapter gives an introduction to synthetic aperture radar (SAR) and explains

some of its uses. It is also explained that there are different modes of SAR imaging, such

as stripmap SAR and spotlight SAR. A brief survey of different SAR image formation

methods are explained and some of the issues that prevent a well-focused SAR image are

also explained. One source of image artifact that is common in SAR images is the inter-pixel

interference (IPI) of the processing algorithm. This chapter also explains that the IPI that

is present in the commonly-used SAR image formation methods can be accounted for and

removed with model-based SAR image formation methods.

This chapter concludes by stating the major contributions this dissertation makes to

stripmap SAR and gives an outline of the contents of this dissertation.

1.1 Introduction to SAR

Synthetic aperture radar (SAR) is a remote sensor that provides its own illumination,

which makes it an active remote sensor (as opposed to a passive remote sensor which relies on

the reflected illumination from some naturally incident source in the scene being observed).

The illumination that a SAR sensor provides is a transmitted radio-wave signal centered

about a chosen carrier frequency.

A SAR sensor can produce a high resolution image of ground reflectivity that looks

similar to an optical image. However, the information content of a SAR image is different

than what is in an image at the visible spectrum. What a SAR sensor measures is the

reflectivity of a scene at a particular wavelength of the electromagnetic spectrum. Some

objects, such as lakes and rivers, that are very apparent in an optical images may be virtually

invisible in SAR images, and vice versa.
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There are many applications for SAR sensors. With a properly selected carrier fre-

quency, a SAR sensor can penetrate foliage or dry sand to image scenes beneath the canopy

of a forest or measure the sand layer thickness in deserts [1, 2]. Since SAR sensors provide

their own illumination, they can be used to image the ground at night. Properly equipped

SAR sensors can identify motion in a scene [3] or measure ground elevation (topography) [4].

A SAR sensor can be flown over a scene at different times to measure such things as the

changes in the terrain elevation after an earthquake [5].

SAR sensors are usually flown on either a satellite or an airplane. There are also

different modes in which a SAR sensor can be used. The two most common modes are

spotlight SAR (where the antenna is gimbaled to always point at the same spot on the

ground as the platform moves) and stripmap SAR (where the antenna is fixed to the side of

the vehicle and the path of the antenna beam traces a strip on the ground as the platform

moves). There are also different types of SAR sensors such as continuous wave (continuously

transmitting) or pulsed (transmit a signal at equally spaced time intervals). Processing SAR

data to form a focused image is dependent on the vehicle the sensor is mounted to and the

choice of the SAR mode and type.

A SAR sensor obtains its high resolution in range from pulse compression techniques

well known in the radar literature [6–8]. How SAR obtains its high azimuth resolution is

what differentiates it from traditional radar systems. It is well known in antenna theory [9]

that to obtain good resolvability in the direction of interest with an antenna, the antenna

must have a narrow beamwidth (in SAR this direction is the cross-range or azimuth direc-

tion). With carrier frequencies typically used for SAR sensors, the size of the antenna to

produce this narrow beamwidth for the resolution that is desired is prohibitively large. The

way a SAR sensor achieves its high azimuth resolution is by synthesizing a larger antenna

array by transmitting and receiving at locations where the antenna elements of the required

(much larger) antenna aperture would have been and combining the collected data in an

appropriate manner. Hence the name synthetic aperture radar.
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In order for the collected data to be combined correctly, the phase of the carrier fre-

quency at each pulsing instant and the phase of the received signal must be known, hence

SAR systems are coherent systems. Embedded in the collected data are azimuth phase

signals, constructed from the phase of the carrier, that can be compressed using matched

filtering. The compression of these azimuth signals is what gives SAR its high azimuth

resolution. If the phase is not known, or if the incorrect phase is used, the image that is

formed will be out of focus (perhaps to the point of not even being usable).

One of the big challenges of producing a well focused SAR image is the azimuth focus-

ing. The azimuth focusing is also accomplished by matched filtering and is very sensitive

to phase errors. The phase errors that corrupt the azimuth matched filtering stem from

unaccounted motion of the sensor, incorrect digital elevation models (DEM), and signal

propagation effects. By using a global positioning system (GPS) and an inertial measure-

ment unit (IMU), the motion and attitude of the sensor can be tracked to a fairly high

level of accuracy. Motion compensation algorithms exist that use the GPS and IMU data

to help correct for most of the known flight path deviations. However, the data from GPS

and IMU are not perfect, thus residual phase errors may still exist. These residual phase

errors, along with the phase errors from incorrect DEMs and signal propagation effects, will

blur a SAR image. Data driven algorithms, known as autofocus algorithms, correct these

phase errors and can greatly improve the focusing of a blurred SAR image.

The traditional algorithms that are used to focus SAR data fall into either time-domain

methods or frequency-domain methods. The frequency-domain methods are very efficient

because they utilize efficient fast Fourier transform (FFT) algorithms in their processing.

However, there are many assumptions that go along with using FFT methods, such as

transmitting a pulse at equally spaced locations and having an ideal flight (no deviation

from a linear path). If these assumptions do not hold, then the frequency-domain methods

produce blurred SAR images. The time-domain methods are more computationally inten-

sive than the frequency-domain methods, but such things as motion errors and DEMs are

easily taken into account. Thus, the time-domain methods typically produce better focused
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images than frequency-domain methods, at the cost of computation.

Both the time and frequency domain methods are essentially different ways (with dif-

ferent assumptions) of implementing a two-dimensional matched filter or two-dimensional

correlation. One artifact that will be referred to as inter-pixel interference (IPI) that is in-

herent in images produced by either method is the bright, star-like patterns around strong

reflectors in a processed image. IPI is actually an artifact of all correlation-based methods,

thus is exists about each reflector in the image, though it is usually more noticeable around

strong reflectors. IPI can make it difficult to analyze what is actually in the image because

the IPI around strong reflectors masks weaker reflectors.

1.2 Advantages of Model-Based SAR Processing

Fairly recently, a new class of “inverse problems” methods has been introduced for

spotlight SAR [10,11]. These methods derive the forward model of the spotlight SAR data

acquisition, then invert the model to form an image. These methods can produce the best

spotlight SAR images at the cost of higher computational complexity. Model-based methods

are capable of achieving higher quality SAR images by including as many real effects as

possible in the model and by providing a mathematically principled approach to solving for

the parameters of interest. In SAR, these parameters are the ground reflectivity. Among

the effects that can be modeled is the IPI. Thus, upon system inversion, the IPI can be

removed, resulting in an image that is much easier to analyze.

Currently, there is not an explicit forward model for stripmap SAR that accounts for

a generic pulsed signal, an arbitrary antenna beam pattern, that can account for arbitrary

flight paths and sensor attitude angles, and that can model arbitrary additive noise.

1.3 Contributions of this Dissertation

The first contribution to stripmap SAR in this dissertation is the development of a

comprehensive linear forward model for the data collected from stripmap SAR. Although

a pulsed linear frequency modulated (LFM) signal is used throughout this dissertation,

the model allows for an arbitrary pulsed signal to be used. The model also allows for the
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antenna beam pattern to be modeled, it allows for arbitrary flight paths, and it also allows

for arbitrary additive noise to be modeled.

Due to the additive noise in the forward model, the collected data also has a statistical

interpretation. Based on this statistical interpretation of the forward model, the second

contribution is the development of the maximum likelihood (ML) image formation method.

The ML method has two steps. It is shown that the first step is equivalent to the convolution

back projection (CBP) algorithm which is a time-domain image formation method, and the

second step removes the IPI in the image.

The third contribution is the development of two maximum a posteriori (MAP) image

formation methods. It is shown that if the noise is additive white Gaussian noise (AWGN)

and the prior probabilities of the ground reflectivity are Gaussian, then the MAP methods

have a close connection to regularized least squares algorithms. Under these assumptions,

it is shown that a novel application of the block recursive least squares (BRLS) algorithm

is to form a MAP stripmap SAR image. Furthermore, if an ideal stripmap flight is flown,

then there is structure in the stripmap SAR data collection process. This structure allows

a new block fast array RLS (BFARLS) algorithm to be used to form a MAP image. The

BFARLS requires a block hyperbolic transformation and while it is not a direct contribution

to stripmap SAR, the block hyperbolic transformation that is developed is still interesting

in its own right.

The final contribution is the development of a model-based autofocus algorithm for

stripmap SAR. Based on the linear forward model, it is shown that estimating the phase

error is a constrained subspace fitting problem. It is shown that the phase error can be

estimated and applied to correct the image without iterating between the image and data

domain.

1.4 Outline of Dissertation

The outline of this dissertation is as follows. Chapter 2 introduces the concepts of

range resolution and pulse compression (matched filtering) from radar theory that will be

needed in the development of SAR. Chapter 3 introduces some basic concepts for generic
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pulsed SAR systems. Chapter 4 covers the important concepts for a pulsed stripmap SAR

system. The concepts and equations in Chapters 2-4 form the foundation of the forward

model for stripmap SAR and are also used to build the SAR simulator that is used to test

the proposed algorithms.

The forward model is developed in Chapter 5. Based on the forward model, Chapter 6

derives the ML image formation method and Chapter 7 derives the MAP image formation

methods. Chapter 8 extends the forward model to account for phase corrupted data and

derives a model-based autofocus algorithm. The new autofocus algorithm is a constrained

subspace fitting problem and methods are derived for solving for the phase estimates.

The conclusion of this dissertation and the future work in model-based stripmap SAR

are presented in Chapter 9. Finally, the Appendix covers the block hyperbolic transforma-

tions that are needed in the BFARLS algorithm.
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Chapter 2

Radar Preliminaries

This chapter briefly introduces some topics from radar systems that are common to

both radar and SAR systems that we will need throughout this dissertation. Although

there is not anything new being contributed to the field in this chapter, the content lays

the groundwork for the development in the remainder of this dissertation. Ideal point

reflectors are described in this chapter. Range resolution is described, which is the ability

to distinguish between reflectors in the range direction. The linear frequency modulated

(LFM) waveform is discussed and a simple block diagram is given for generating a pulsed

LFM signal. The receiver for quadrature demodulating a pulsed LFM signal is also discussed

and is illustrated in a simple block diagram. Finally, the matched filter in the receiver is

also discussed. Range compressing the reflected signal has the effect of greatly improving

the range resolution of a radar system.

2.1 Ideal Point Reflectors

The reflectivity of an object is a function of many different parameters: the geometry

of the object, the size of the object (relative to wavelength), and the angle of incidence,

just to name a few. The reflectivity of an isolated object in free-space with no background

reflectivity (or with the background much less reflective than the object) is called the radar

cross section (RCS). In imaging radar the reflectivity of a scene is measured and a pixel in

the reconstructed image represents a patch of ground. The patch of ground is an aggregate

of smaller reflectors that are too closely space to be resolvable by the radar imaging system.

In this case, it is not correct to interpret the results as RCS, but as an average RCS. Some

radar literature refers to the average RCS as scattering brightness [12].

The term ideal point reflector will be used in this dissertation to describe a reflector
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that has unit reflectivity from any angle of incidence (isotropic) and that is independent

of wavelength over the bandwidth of interest (non-dispersive) [12]. In this dissertation, it

will be assumed that these ideal reflectors are on the ground and that they are much more

reflective than the ambient background. Also, the term reflector will be used interchangeably

with ideal point reflector.

2.2 Range Resolution

Being able to resolve multiple reflectors in range is very important to a radar system.

Range resolution is defined as the ability to distinguish between two separate but closely

spaced reflectors in range. Similar discussions on range resolution can be found in the radar

literature [6, 13].

Consider a monostatic radar system that transmits and receives a single pulsed signal.

Let the transmitted pulse (denoted s(t)) have duration Tp seconds. For a discrete set of ideal

reflectors, the reflected signal will have the form (neglecting antenna pattern, propagation

loss, and noise)

r(t) =
N∑

n=1

σns(t− τn), (2.1)

where σn denotes the radar cross section (RCS) of the nth ideal reflector and τn denotes the

round-trip delay from the radar system to the nth reflector. The round-trip delay to the

nth reflector and the range from the nth reflector to the radar are related by

τn =
2

c
Rn, (2.2)

where Rn is the range from the radar to the nth reflector.

It is clear that if the reflectors are separated in time by greater than Tp/2 seconds

in the direction of the propagation of the signal (this accounts for the round-trip of the

signal) that each signal reflected from a reflector will not be overlapped by its neighbor and

therefore the number of reflectors (and their distance from the radar) can be easily resolved.
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Converting this to range by multiplying by c gives the range resolution as

∆R =
c

2
Tp. (2.3)

As an illustration, if a transmitted pulse has duration 1×10−6 seconds (let c = 3×108),

then the reflectors are resolvable if they are 150 meters apart. The pulse duration could

always be shortened to improve range resolution, however to maintain the same signal-to-

noise ratio (SNR) the transmitted power would need to be increased, also the bandwidth

would increase. It will be shown below that the range resolution can be increased by using

pulse compression.

2.3 Pulsed LFM Transmitted Signals

One of the most popular transmitted signals in radar systems is the pulsed linear

frequency modulated (LFM) waveform, sometimes referred to as a chirp signal [13, 14].

There are many reasons for using the LFM waveform. One reason is that it has good pulse

compression properties. The LFM signal is the signal that will be used throughout this

dissertation unless otherwise specified.

A single LFM pulse with a duration of Tp seconds is given by the equation

s(t) = <
{

w(t)ej2π(fct+
α
2
t2)
}

(2.4)

= w(t) cos
(
2πfct+ παt2

)
(2.5)

where α is the linear frequency rate and w(t) is the window function, defined as

w(t) =







1, 0 ≤ t ≤ Tp,

0, otherwise.

(2.6)

An example of a baseband (fc = 0) pulsed LFM signal is illustrated in figure 2.1. The

window function is overlaid on top of the pulse s(t). The radar transmits many of these

pulses that are separated in time by T seconds. T is known as the pulse repetition interval
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Fig. 2.1: Illustration of a baseband LFM signal with Tp = 5 × 10−6 sec, α = 7 × 1011

Hz/sec2, and fc = 0.

(PRI) and the reciprocal of T is called the pulse repetition frequency (PRF). The signal

model for transmitting successive pulses is given by

s(t) =
∑

k

w(t− kT ) cos
(
2πfc(t− kT ) + πα(t− kT )2 + ψk

)
, (2.7)

where ψk = 2πfcTk is the phase of the carrier frequency at the instant of the kth pulse. A

simple block diagram for a pulsed LFM system is illustrated in figure 2.2. In figure 2.2, the

time variable is t and has limits −∞ < t <∞; the notation ((t))T is time modulo T so that

((t))T falls in the interval 0 ≤ ((t))T ≤ T .

2.4 Received Pulsed LFM Signal

Consider a stationary monostatic radar system located at x and a stationary reflector

located at u. Because both are stationary, there is no Doppler shift in the reflected signal,

and using the same assumptions, the received signal has the same form as in (2.1). Suppose
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πα((t))2T

cos(·)

sin(·)

s(t− kT )w((t))T

cos(2πfct)

− sin(2πfct)

Fig. 2.2: Illustration of a simple pulsed LFM transmitter.

the transmitted LFM signal

s(t) = w(t) cos
(
2πfct+ παt2

)
(2.8)

is reflected from a single reflector. The received signal has the form

r(t) = σ1w(t− τ1) cos
(
2πfc(t− τ1) + πα(t− τ1)

2
)
. (2.9)

The received signal is obviously still at the carrier frequency (the received signal is also

bandpass filtered for practical reasons) and because the time delay to the reflector is em-

bedded in the phase, a quadrature demodulator is used to demodulate the received signal so

that the phase can be recovered [6,13]. The signal in the in-phase branch of the demodulator

is multiplied by cos(2πfct)

rI(t) = r(t) cos(2πfct) (2.10)

= σ1w(t− τ1) cos
(
2πfc(t− τ1) + πα(t− τ1)

2
)
cos(2πfct). (2.11)

Using the trigonometric identity

cos(A) cos(B) =
1

2
(cos(A+B) + cos(A−B)), (2.12)
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the in-phase branch signal is

rI(t) =
σ1
2
[w(t− τ1) cos

(
2π(2t− τ1) + πα(t− τ1)

2
)

(2.13)

+ cos
(
−2πfcτ1 + πα(t− τ1)

2
)
]. (2.14)

Similarly, the quadrature branch is multiplied by − sin(2πfct)

rQ(t) =
σ1
2
w(t− τ1)[− sin

(
2π(2t− τ1) + πα(t− τ1)

2
)

(2.15)

+ sin
(
−2πfcτ1 + πα(t− τ1)

2
)
], (2.16)

where the trigonometric identity

cos(A) sin(B) =
1

2
(sin(A+B)− sin(A−B)) (2.17)

is used. Both branches have a term that is twice the carrier frequency and a baseband

term. Low-pass filtering (assume the LPF has a gain of two to get rid of the fractions) each

branch removes the double frequency term and passes the baseband term, giving

rI,LPF (t) = σ1w(t− τ1) cos
(
−2πfcτ1 + πα(t− τ1)

2
)

(2.18)

rQ,LPF (t) = σ1w(t− τ1) sin
(
−2πfcτ1 + πα(t− τ1)

2
)
. (2.19)

It is convenient at this point to sample both branches at t = nTs and create a complex

signal by adding the in-phase branch to j times the quadrature branch. However, for this

derivation, the development will continue with continuous time signals and the connection

to sampled signals will be made at the end of the derivation. Adding the continuous-time

in-phase signal to j times the continuous-time quadrature signal gives

rC(t) = σ1w(t− τ1)e
j(−2πfcτ1+πα(t−τ1)2) (2.20)

= σ1w(t− τ1)e
−j(2πfcτ1−πα(t−τ1)2). (2.21)
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Up to this point, the signal has been brought to baseband; the time delay to the

reflector has not been recovered. A block diagram of these signal operations is illustrated

in figure 2.3. It is clear from (2.21) that if there is only one reflector in the radar beam

then the delay to the single reflector could be obtained by just noting when the reflected

signal is present at the receiver. The effective time duration of the signal in the receiver

is Tp seconds, hence nothing has been done to improve the range resolution. However, the

pulsed LFM signal has good pulse compression properties and, as will be shown, after pulse

compression the effective time duration of the compressed signal is greatly reduced from

Tp, and therefore much better range resolution is possible.

2.5 Matched Filtering and Pulse Compression

A matched filter is used to compress a pulsed LFM signal, the output of the matched

filter gives greatly improved resolution. The following development is common in the radar

literature [13, 14]. Let the matched filter be given as

hMF (t) = w(−t)e−j(πα(−t)2), (2.22)

which is a time reversed and conjugated version of the transmitted signal with the carrier

removed. Let ∗ denote the convolution operator, then the output of the matched filter is

r(t)

BPF rC(t)

LPF

cos(2πfct)

rI(t)

− sin(2πfct)

rQ(t) j
LPF

Fig. 2.3: Illustration of the quadrature demodulation portion of the receiver for a pulsed
LFM signal.
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given as

rMF (t) = rC(t) ∗ hMF (t) (2.23)

=

∞∫

−∞

rC(λ)hMF (t− λ)dλ (2.24)

= σ1

∞∫

−∞

w(λ− τ1)e
−j(2πfcτ1−πα(λ−τ1)2)w(λ− t)e−j(πα(λ−t)2)dλ. (2.25)

Let ρ = λ− τ1, thus λ = ρ+ τ1 and dρ = dλ. Using this change of variables gives

rMF (t) = σ1

∞∫

−∞

w(ρ)e−j(2πfcτ1−παρ2)w(ρ− (t− τ1))e
−j(πα(ρ−(t−τ1))2)dρ (2.26)

= σ1e
−j2πfcτ1e−jπα(t−τ1)

2

∞∫

−∞

w(ρ)w(ρ− (t− τ1))e
j2πα(t−τ1)ρdρ, (2.27)

where the second term comes from expanding the square, canceling terms, and factoring

out terms from the integral that are not dependent on ρ. From the definition of the window

function given in (2.6), the limits on ρ are

w(ρ) =







1, 0 ≤ ρ ≤ Tp,

0, otherwise,

(2.28)

w(ρ− (t− τ1)) =







1, t− τ1 ≤ ρ ≤ t− τ1 + Tp,

0, otherwise,

(2.29)

thus there are two cases to consider for the limits of the convolution integral as illustrated

in figure 2.4. Consider the first case where t < τ1. Let γ = t− τ1, then the integral becomes
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0 Tpt− τ1 t− τ1 + Tp

ρ

t > τ1 t− τ1 ≤ ρ ≤ TpCASE 2:

0 Tpt− τ1 t− τ1 + Tp

ρ

t < τ1 0 ≤ ρ ≤ t− τ1 + TpCASE 1:

Fig. 2.4: Illustration of the cases to consider for the convolution integral for the output of
matched filtering.

rMF (t) = σ1e
−j2πfcτ1e−jπαγ2

γ+Tp∫

0

ej2παγρdρ (2.30)

= σ1e
−j2πfcτ1e−jπαγ2

(
1

j2παγ

[

ej2παγ(γ+Tp) − 1
])

(2.31)

= σ1e
−j2πfcτ1e−jπαγ2

(

1

παγ

[
ejπαγ(γ+Tp) − e−j2παγ(γ+Tp)

]

j2
ejπαγ(γ+Tp)

)

(2.32)

= σ1e
−j2πfcτ1ejπαTpγ

(
sin(παγ(Tp + γ))

παγ

)

. (2.33)

Now, consider the second case where t > τ1. Again, let γ = t−τ1, then the integral becomes

rMF (t) = σ1e
−j2πfcτ1e−jπαγ2

Tp∫

γ

ej2παγρdρ (2.34)

= σ1e
−j2πfcτ1e−jπαγ2

(
1

j2παγ

[

ej2παγTp − ej2παγ
2
])

(2.35)

= σ1e
−j2πfcτ1ejπαTpγ

(

1

παγ

[
ejπαγ(Tp−γ) − e−jπαγ(Tp−γ)

]

j2

)

(2.36)

= σ1e
−j2πfcτ1ejπαTpγ

(
sin(παγ(Tp − γ))

παγ

)

. (2.37)

In the second step, the relationship

eA − eB =
(

e
A−B

2 − e−
A−B

2

)

e
A+B

2 (2.38)
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is used.

Notice that in the first case, γ < 0 and in the second case γ > 0. Using this, the two

cases can be combined into the single equation

rMF (t) = σ1e
−j2πfcτ1ejπαTpγ

(
sin(παγ(Tp − |γ|))

παγ

)

. (2.39)

Substituting in γ = t− τ1 gives the final equation for the matched filter output

rMF (t) = σ1e
−j2πfcτ1ejπαTp(t−τ1)

(
sin(πα(t− τ1)(Tp − |t− τ1|))

πα(t− τ1)

)

. (2.40)

From the limits of integration, the equation for the matched filter output (2.40) is valid for

the time interval −Tp ≤ t ≤ Tp and is zero outside this interval. A plot of the real and

imaginary parts of this signal along with the envelope generated by the autocorrelation of

the window function is illustrated in figure 2.5 for a reflector with σ1 = 1 and τ1 = 15×10−6

seconds. The magnitude of the matched filter output is illustrated in figure 2.6. Notice at

the time instant t = τ1 that the equation reduces to

rMF (τ1) = σ1e
−j2πfcτ1Tp, (2.41)

from which σ1 and τ1 can be extracted. In general σ1 will be a complex number which will

alter the phase.

This derivation for the output of the matched filter used a non-causal matched filter.

In practice, a causal matched filter is employed. To make the matched filter causal, it must

be delayed by Tp seconds. Thus, using

hMF (t) = w(Tp − t)ejπα(Tp−t)2 (2.42)

as the matched filter will produce the matched filter output

rMF (t) = σ1e
−j2πfcτ1ejπαTp(t−τ1−Tp)

(
sin(πα(t− τ1 − Tp)(Tp − |t− τ1 − Tp|))

πα(t− τ1 − Tp)

)

. (2.43)
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Fig. 2.5: Illustration of the real and imaginary parts and the autocorrelation of the window
function for the output of the non-causal matched filter for a single reflector (σ1 = 1).
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the output of the non-causal matched filter for a single reflector (σ1 = 1).
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The output of the causal matched filter at t = τ1 + Tp gives the same result as the output

of the non-causal matched filter at t = τ1.

As discussed above, the range resolution without any processing is determined by the

duration of the transmitted pulse, Tp. Let T
′
p denote the time duration of the main peak of

the matched filter output. Using T ′
p as the new pulse duration, the range resolution is now

∆R′ =
c

2
T ′
p. (2.44)

As an example, take Tp = 5 × 10−6 seconds (as illustrated in figure 2.1). Computing

the time duration of the main peak of the matched filter output from either (2.40) or (2.43)

gives T ′
p = 6.0844× 10−7 seconds. Thus ∆R = 750 meters and ∆R′ = 91.266 meters. This

is an improvement of over a factor of eight. Typical improvements for SAR systems are

factors on the order of 1, 000 [15].
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Chapter 3

Pulsed Synthetic Aperture Radar Preliminaries

This chapter introduces several elements of SAR that are common to most modalities.

Although no significant contribution is being made to SAR in this chapter, the development

here provides the necessary foundation for the forward model for stripmap SAR. Also many

of the concepts in this chapter are needed to create a SAR simulator. The antenna that

will be used throughout this dissertation is introduced. Coordinate frames for the vehicle,

antenna, and an inertial reference are also introduced to help describe SAR geometry and

the antenna pointing direction. The induced azimuth signal that forms the basis for SAR

is derived and the bandwidth of this signal is discussed. It is also explained that one of

the factors that determines the pulse repetition frequency (PRF) for pulsed SAR systems is

the bandwidth of this induced signal. A model for the data contained in each range sample

is also derived. Finally, some concepts that pertain to image formation such as the SAR

point-spread function and SAR resolution are briefly discussed. More will be said on these

when a specific SAR modality is chosen.

3.1 SAR Antenna

One of the most critical elements of SAR is the antenna. Therefore, we must first briefly

describe the antenna that will be referenced throughout this chapter and dissertation.

The antenna that will be used throughout this dissertation is a uniformly weighted

rectangular two-dimensional array of half-wave dipoles. Two important physical parameters

of this antenna are its length and width (denoted as L and W , respectively). An equation

that approximately describes the power pattern of this antenna is [13]

a(φ, θ) =

(

sin
(
πL

λ sin(θ)
)
sin
(
πW

λ sin(φ)
)

(
πL

λ sin(θ)
) (
πW

λ sin(φ)
)

)2

, (3.1)
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where λ is the wavelength of the center frequency being transmitted from the antenna and θ

and φ are the azimuth and elevation angles, repectively, and are measured from the boresight

of the antenna. The boresight of the antenna is said to be pointing in the direction of the

peak of the power pattern. This power pattern is essentially a squared, two-dimensional,

2π-periodic, sinc-like function. Figure 3.1 shows a contour plot of the power pattern with

L = 0.4 m, W = 0.2 m, and λ = 0.1 m for −90◦ ≤ φ ≤ 90◦ and −90◦ ≤ θ ≤ 90◦. This

antenna also has another mainlobe at φ = θ = 180◦. For the sake of using this simplified

model, it will be assumed that this other mainlobe is suppressed by a back-wave absorber.

Some other important parameters for this antenna are the first null beam widths (the

angle between the first nulls on either side of the mainlobe), the half-power beam widths

(the angle between the first points that are 3 dB down from the peak of the mainlobe)

in both the azimuth and elevation directions, and the effective area. Denote the first-null

beam width in azimuth by ϑN and in elevation by ϕN . The angle ϑN can be found by

setting θ = ϑN in (3.1) and solving (3.1) equal to zero for ϑN . The angle ϕN can be found

similarly. If λ << L and λ << W , then the antenna narrow beam assumption and the
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θ
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)

Power Pattern of 2-D Array: L = 0.4 m, W = 0.2 m, λ = 0.1 m
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Fig. 3.1: Contour plot of the antenna power pattern with L = 0.4 m, W = 0.2 m, and
λ = 0.1 m.
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small angle approximation, sin(x) ≈ x, can be used giving [9, 13]

ϑN ≈ 2λ

L
(3.2)

ϕN ≈ 2λ

W
. (3.3)

Let ϑ3dB denote the half-power beam width in azimuth and ϕ3dB denote the half-power

beam width in elevation. Using the antenna narrow beam assumption, an approximate way

to compute their values is [13]

ϑ3dB ≈ λ

L
, (3.4)

ϕ3dB ≈ λ

W
. (3.5)

Let Ae denote the effective area of the antenna. The effective area is computed as the

product of the length and width of the antenna array

Ae = LW ≈ λ2

ϑ3dBϕ3dB
(3.6)

3.2 SAR Coordinate Frames

It is helpful to introduce some coordinate frames to help fully describe the geometry

of SAR and the antenna pointing direction. For the sake of defining a (relatively) inertial

frame for the scene to be imaged, assume that the scene to be imaged is flat and rectangular

and that the antenna is mounted on the pilot’s left hand side of the vehicle. Let the origin

of the inertial reference frame be located on the ground, half-way up the azimuth direction

of the scene to be imaged, and on the side of the image closest to the path of the sensor.

Then, define the orthogonal coordinate frame by the following unit vectors: ii1 points in the

cross-range (azimuth) direction, ii2 points in the range direction, and ii3 = ii1 × ii2 points up.

This frame is illustrated in figure 3.2.

To define the coordinate frame for the vehicle, let the origin be the center of mass,

then define the orthogonal coordinate frame by the following unit vectors: vv
1 points in the
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Fig. 3.2: Illustration of inertial reference frame for SAR.

direction out of the front of the vehicle, vv
2 points out the pilots left hand side of the vehicle,

and vv
3 = vv

1 × vv
2 points out of the top of the vehicle. The inertial frame and the vehicle

frame should be perfectly aligned (only displaced) if a perfectly straight flight path is flown.

Finally, to define the coordinate frame for the antenna, let the origin be the phase

center. Then define the orthogonal coordinate frame by the following unit vectors: aa1 points

in the azimuth direction, aa2 points in the elevation direction, and aa3 = aa1 × aa2 points in

the boresight direction of the antenna (in the direction of the peak of the mainlobe). These

coordinate frames are needed in order to describe the attitude of the vehicle, which effects

the antenna pointing direction aa3.

The attitude of the vehicle carrying the SAR sensor is described by roll, pitch, and

yaw. Roll is a rotation about the vv
1 axis, pitch is a rotation about the vv

2 axis, and yaw

is a rotation about the vv
3 axis each with respect to the inertial coordinate frame. The

vehicle’s attitude with respect to the inertial frame can be described by the rotation matrix

Ψi
v(t) where the subscripts are read “from vehicle to inertial” and the origin of the vehicle’s

coordinate frame can be described as a displacement from the inertial frame by the vector

xi(t). Note that since Ψi
v(t) is a rotation matrix its inverse is equal to its transpose, thus
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(Ψi
v(t))

−1 = (Ψi
v(t))

T = Ψv
i (t). The matrix Ψv

i (t) describes a vector from the inertial frame

in the vehicle frame.

As an example of changing coordinate frames, the unit vector that points out of the

front of the vehicle has the following description in the inertial frame

vi
1(t) = Ψi

v(t)v
v
1 + xi(t). (3.7)

This equation can also be written more compactly as






vi
1(t)

1




 =






Ψi
v(t) xi(t)

0T 1











vv
1

1




 . (3.8)

The inverse of this rotation and translation matrix is






Ψi
v(t) xi(t)

0T 1






−1

=






Ψv
i (t) −Ψv

i (t)x
i(t)

0T 1




 . (3.9)

The antenna phase center is typically at a fixed distance from the origin of the vehicle

coordinate frame and is rigidly fixed to the vehicle carrying it. However, in some SAR

modes it is allowed to be gimballed. For the sake of generality in this development, the

antenna frame will be allowed to be gimballed. If the antenna coordinate frame is aligned

with the vehicle frame, its non-gimballed orientation with respect to the vehicle reference

frame is described by a rotation of (−90◦ + ψ0) about a
a
1 and a displacement, b0, from the

origin of the vehicle coordinate system. The antenna pointing direction as seen from the

vehicle coordinate frame is given by the matrix equation






av3(t)

1




 =






Ψv
a(t) bv

0

0T 1











aa3

1




 . (3.10)
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Combining the two frame changes, the antenna pointing direction in the inertial frame is

described by the equation






ai3(t)

1




 =






Ψi
v(t) xi(t)

0T 1











Ψv
a(t) bv

0

0T 1











aa3

1




 . (3.11)

Similarly, the rest of the antenna coordinate directions can be found in the inertial frame

and are denoted as ai1(t) and ai2(t).

There are several reasons for keeping track of the pointing direction and location of the

antenna. For one, some processing algorithms need to know when a reflector is under the

antenna illumination (for some antenna threshold level). Another reason is that compen-

sation for motion errors from some predetermined flight path becomes possible. Another

reason is that it makes it possible for a better two-dimensional matched filter to be designed.

All of these reasons have the benefit that the image formed from the processed SAR data

will be more focused.

Let ui
0 be a stationary point on the ground in the inertial coordinate frame. This point

as viewed from the antenna coordinate frame is






ua
0(t)

1




 =






Ψa
v(t) −Ψa

v(t)b
v
0

0T 1











Ψv
i (t) −Ψv

i (t)x
i(t)

0T 1






︸ ︷︷ ︸

Ga
i (t)






ui
0

1




 . (3.12)

With the stationary point on the ground now mapped into the antenna frame, the azimuth

and elevation angles that this point makes with the bore-sight of the antenna can be found

by projecting this vector onto two appropriate planes spanned by the antenna coordinates.

The two projection matrices are

Paz =






[

aa1 aa3

]











(aa1)
T

(aa3)
T






[

aa1 aa3

]






−1 




(aa1)
T

(aa3)
T









 (3.13)
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and

Pel =






[

aa2 aa3

]











(aa2)
T

(aa3)
T






[

aa2 aa3

]






−1 




(aa2)
T

(aa3)
T









 . (3.14)

Using the identity to find the cosine of the angle between two vectors

cos(ϑ) =
〈x,y〉

||x||2||y||2
, (3.15)

the antenna azimuth angle is computed from

θ(t) = arccos

(〈aa3, Pazu
a
0(t)〉

||Pazu
a
0(t)||2

)

, (3.16)

and the antenna elevation angle is computed from

φ(t) = arccos

(〈aa3, Pelu
a
0(t)〉

||Pelu
a
0(t)||2

)

, (3.17)

where the fact that aa3 is a unit vector has been used. These angles can be used in (3.1) to

determine the weighting caused by the antenna pattern in the reflected signal.

3.3 Induced Azimuth Signal

Consider a stationary reflector at a ground location ui
0 = (xi0, y

i
0, z

i
0) and a vehi-

cle (such as an airplane) flying past the reflector with a flight profile given by xi(t) =

(xi(t), yi(t), zi(t)). Unless the airplane is flying an exact circle around the reflector, there

will be a relative distance that changes with time between the airplane and the reflector,

given as

R0(t) = ||xi(t)− ui
0||2 (3.18)

=
√

(xi(t)− xi0)
2 + (yi(t)− yi0)

2 + (zi(t)− zi0)
2. (3.19)
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The time derivative of the relative distance between the airplane and the reflector gives

the relative velocity, denoted by vREL(t), between the two. This is described by the equation

vREL(t) =
d

dt
R0(t) (3.20)

=
d

dt

√

(xi(t)− xi0)
2 + (yi(t)− yi0)

2 + (zi(t)− zi0)
2 (3.21)

=
1

2R0(t)

d

dt

(
(xi(t)− xi0)

2 + (yi(t)− yi0)
2 + (zi(t)− zi0)

2
)

(3.22)

=
1

R0(t)

(
(xi(t)− xi0)ẋ

i(t) + (yi(t)− yi0)ẏ
i(t) + (zi(t)− zi0)ż

i(t)
)

(3.23)

=
(xi(t)− ui

0)
T ẋi(t)

||xi(t)− ui
0||2

(3.24)

=

〈
ẋi(t), (xi(t)− ui

0)
〉

||xi(t)− ui
0||2

. (3.25)

In a later chapter, the time derivative of the relative velocity will also be needed. This

quantity is the relative acceleration between the airplane and the reflector and is denoted

by aREL(t). Computing the derivative and after some algebraic manipulations, the relative

acceleration is given by

aREL(t) =

(
||ẋi(t)||22 +

〈
ẍi(t), (xi(t)− xi

0)
〉)

||xi(t)− xi
0||22 −

(〈
ẋi(t), (xi(t)− xi

0)
〉)2

||xi(t)− xi
0||

3/2
2

.

(3.26)

If the sensor is transmitting a pure sinusoidal signal through an isotropic antenna,

the relative velocity induces a Doppler shift in the received signal. The Doppler shift is a

function of time because the relative velocity is. The equation for the Doppler shift is given

by (note that vREL(t) << c, ∀t)

fD(t) = −2vREL(t)

λ
, (3.27)

where λ is the wavelength of the transmitted frequency. Notice that the equation for fD(t)

is just a scaling of the equation for the relative velocity. Another important function is the
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time derivative of the Doppler frequency,

ḟD(t) = −2aREL(t)

λ
. (3.28)

Let the sensor transmit the pure sinusoidal signal

s(t) = cos(2πfct), (3.29)

and assume there is only a single ideal reflector and the sensor transmits through an isotropic

antenna. Ignoring propagation loss, the received reflected signal is

r(t) = cos(2πfc(t− τ(t)), (3.30)

where τ(t) is the time delay of the round trip of the signal. To be explicit, the received

signal is

r(t) = cos

(

2πfc

(

t− 2R0(t)

c

))

(3.31)

= cos

(

2πfct− 4πR0(t)
fc
c

)

(3.32)

= cos

(

2πfct−
4π

λ
R0(t)

)

. (3.33)

Quadrature demodulating (to preserve the phase of the received signal) the received signal

becomes

r̃(t) = e−j 4π
λ
R0(t) (3.34)

= ej2πφ(t). (3.35)

A SAR image has excellent range resolution due to pulse compression, but the high

azimuth resolution comes from exploiting this induced signal.
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Fig. 7.9: Illustration of the pre-array on iteration 35.
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Fig. 7.10: Illustration of the post-array on iteration 35.
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cells in the reconstruction array) and Na ≤ Nn (not every sample in range necessarily

constitutes a range cell in the reconstructed image). As an example, let the PRF = 1000

Hz, vT = L/2 (then Na is equal to the number of pulses), let Nn = 2000 and assume the

sampling rate is such that Nr = Nn, if SAR data is collected for 20 seconds (a fairly short

collection time), then Na = 20, 000. It is easy to see how Na can be much larger than Nr.

The most computational step in the BRLS algorithm is the computation of the matrix

product UH
i Pi−1Ui which requires (NaNr)

2sNn + (sNn)
2NaNr multiplies on each iteration

of the algorithm, thus the computational complexity for the BRLS is O((NaNr)
2sNn). The

storage requirements for the matrix P can be quite large. If we use the parameters in the

example above, then P has dimensions 40, 000, 000× 40, 000, 000.

The most computational step in the block FARLS is applying the 2Nr transformations

to the pre-array to transform it into the post-array. This step in the algorithm is on the order

of O(NaN
2
r sNn). Using the parameters above, the array has dimensions 6, 000×40, 004, 000.

As can be seen, the computational complexity of the block FARLS is a factor of Na

lower than the BRLS, which is a significant savings. Also, storing the array in the block

FARLS requires much less memory than storing the inverse covariance matrix in the BRLS

algorithm. Thus, if the assumptions on the data acquisition hold, then a significant savings

can be gained by using the block FARLS algorithm.

7.7 Summary

It was shown in this chapter that information on the reflectivity of the scene can be

included in the form of prior probabilities and the resulting ground reflectivity estimates

are MAP estimates. It was shown that if the prior probabilities are assumed Gaussian, then

the MAP estimates can be formed by regularized least-squares algorithms. This chapter

developed two algorithms for forming MAP estimates; the first is a new application of the

BRLS algorithm and the second uses the structure of the data matrix for an ideal flight and

a flat earth model to develop a new block FARLS algorithm. Finally, the two algorithms

were compared and it was shown that for an ideal flight and a flat earth model, the block

FARLS offers a significant savings (both computational and in memory) over the BRLS.
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Chapter 8

Model-Based Stripmap Autofocus

Many autofocus algorithms exist for correcting uncompensated residual phase errors

in SAR images. The processing in these algorithms depends on the SAR modality (e.g.

spotlight, stripmap, etc.). In this chapter a model-based phase error estimation method

is developed. It is shown that these phase error estimates can be applied to correct phase

errors in stripmap SAR images. The proposed phase estimation method uses classical

subspace fitting techniques which are well known in the array processing literature. The

novelty in this approach is how the autofocus method is derived from the linear forward

model. It is shown that an estimate of the phase error may be obtained without having to

form the image. It is also shown that the proposed method is non-iterative in the sense that

iterations between the image domain and the range compressed domain are not necessary

to obtain the phase error estimates.

8.1 Background

Despite the best efforts to have a SAR sensor follow a predetermined nominal trajectory,

phase errors still exist in the collected data that corrupt the azimuth compression of the

collected data. It is well known that these phase errors come mainly from two sources,

[4, 32, 33]. A low frequency phase error will exist for uncompensated platform deviations

from the nominal flight path, which has the effect of broadening the main-lobe of the

azimuth compressed signals. Most of the gross platform errors are accounted for via motion

compensation algorithms which use available navigational data. However, navigational

data has limited accuracy and is corrupted by noise as well. The other source of phase error

stems from signal propagation effects. These phase errors tend to be high frequency phase

errors and the effect they have is not so much broadening the main lobe of the azimuth
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compressed pulse as raising the side-lobes, which lowers the contrast of the image and masks

less reflective objects in the image. Autofocus algorithms are data driven algorithms that

estimate and correct these phase errors.

Several autofocus algorithms exist, most of which are specific to the particular SAR

modality being used (stripmap, spotlight, etc.). Each approach can be further classified as

parametric, non-parametric, or metric based. The parametric approaches (such as map-

drift) model the phase error as a polynomial or as sinusoidal and use the data to estimate

the coefficients (parameters) [4, 33–35]. Because they use the data to estimate the coeffi-

cients, they are limited to only reliably estimating a small number of coefficients. Hence,

these approaches perform well if the phase error is low frequency, but they fail to model the

presence of high frequency phase error. The non-parametric approaches make the assump-

tion that all of the range data collected from a single pulse is corrupted by the same phase

error [4, 36, 37]. If this holds, non-parametric techniques are able to estimate both low and

high frequency phase errors. Finally, the metric based methods generally assume that the

phase error has low frequencies and that it comes from a sensor velocity error. However,

they can also be combined with non-parametric methods to produce good results [38, 39].

They utilize a cost function, such as image intensity or neg-entropy, to correct the azimuth

matched filter that is applied to azimuth compress the data.

What all these methods have in common is that they must step back in the processing

chain (usually azimuth decompression) to where the individual phase errors from each pulse

exist to apply the phase compensation. For spotlight SAR, this amounts to computing an

azimuth FFT to decompress the azimuth pulses, applying the phase compensation, then

re-compressing in azimuth via an inverse FFT. For stripmap SAR, azimuth decompression

is not quite so straightforward. The azimuth compression is accomplished by matched

filtering. Deconvolving the azimuth matched filter to decompress the image to get back to

the range compressed data is an ill-posed problem. Thus the range compressed data must

be saved; this is the domain where phase error compensation must take place.

There are a variety of ways in which autofocus is implemented for stripmap SAR. The
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development in this chapter is a novel, model-based, non-parametric autofocus algorithm

explicitly for stripmap SAR.

8.2 Phase Error Model Development

In the CBP and the ML algorithms, the image is reconstructed to a predetermined

reconstruction grid that has Nr range bins and Na azimuth bins. Usually there is a digital

elevation model (DEM) that accompanies the collected SAR and navigational data so the

radial distance from the sensor location to each reconstruction point can be determined.

Motion compensation due to gross sensor position deviations from the nominal trajectory

are easily accounted for in the CBP and ML algorithms, but unknown phase errors due to

sensor location uncertainty, DEM errors, and signal propagation errors typically are not.

This section derives a model for the phase errors. The development begins by recalling the

linear forward model for stripmap SAR that was derived in Chapter 5.

8.2.1 Phase Error Free Model

In Chapter 5 the linear forward model was developed that was used for maximum

likelihood (ML) image formation. It was also shown that CBP is the first step in the ML

image formation. Here, the same model will be used for phase estimation.

The following is the linear model that was presented in (5.16):

d = Fg + η. (8.1)

In (8.1), F is an NnNk × NaNr matrix, d is an (NkNn × 1) vector, g is an (NaNr × 1)

vector, and η is an NnNk×1 vector, where Nk is the number of transmitted pulses, Nn is the

number of samples taken from each pulse, Na is the number of rows in the reconstruction

array, and Nr is the number of columns in the reconstruction array.
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It was shown in (5.10) that the matrix F can be decomposed into a vertical stack of

Nk (Nn ×NaNr) submatrices

F =









F1

...

FNk









, (8.2)

where the submatrix Fk is the model of the demodulated sampled returns from the ground

locations under the illumination of the antenna based on all navigational data from the kth

pulse.

It was also shown in Chapter 5 that the CBP image (in terms of (8.1)) is computed

from the matrix/vector product

gCBP = FHd (8.3)

= [FH
1 d1 · · · FH

Nk
dNk

]1 (8.4)

= G1, (8.5)

where dk is the Nn × 1 vector of collected data from the kth pulse and 1 is the vector of all

ones.

If the 1 vector is replaced by a vector β, where βi = ejφi ,

gCBP(β) = Gβ, (8.6)

then if phase errors did exist in the data, then the vector β could be found that corrects

for the phase error, while simultaneously forming the CBP image.

8.2.2 Phase Error Model

With the assumption that the incidence angle does not vary too much over the region

being imaged, and that the uncompensated phase error is not too large, the model for

uncompensated phase error in the kth pulse manifests itself as a constant phase multiplier
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for all the samples collected from the kth pulse. (If the first assumption does not hold, data

from a narrow strip (in range) of the reconstruction grid can be used so that the assumption

does hold.) The model for the uncompensated phase error is

Fk(βk) = Λβk
Fk, (8.7)

where Λβk
= βkI and βk = ejφk is the unknown phase term. Making the assumption that

a residual phase error may exist for each pulse, the resulting model becomes

F(β) = ΛβF , (8.8)

where

Λβ = BlockDiag(Λβ1 , · · · ΛβNk
) (8.9)

= Diag(β)⊗ I, (8.10)

where ⊗ is the Kronecker product [29]. Multiplying F on the left by Λβ in (8.8) changes

the range space of F ; if Λβ were multiplying F on the right, the range space would stay

the same (provided Λβ is full-rank).

Using (8.8) in (8.1), the altered forward model which includes phase errors is

d = F(β)g + η. (8.11)

In the absence of noise, (8.11) states that d is contained in the range of F(β).

8.3 Subspace Fitting Autofocus

If the residual phase is not compensated for, the resulting formed image will not be

in focus and will have poor contrast. The proposed method provides a vector β̂ of phase

correction terms such that [β̂]i = β̂i, which is an estimate of βi. The proposed method

for estimating β uses subspace fitting principles that are well known in array processing
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literature [40].

8.3.1 Subspace Fitting Autofocus Derivation

In Chapter 6, the ML image estimation reduces to the problem

minimize J(g) = ||Fg − d||22. (8.12)

Using (8.11), (8.12) can be altered to include the phase errors

min. J(g,β) = ||F(β)g − d||22 subject to |βi| = 1. (8.13)

Equation (8.13) can be minimized with respect to g and β separately. Minimizing first over

g, the estimate for the coefficient vector is the least-squares solution

ĝ = (FH(β)F(β))−1FH(β)d. (8.14)

Substituting (8.14) into (8.13), the problem becomes

min. J(β) = ||(I − PF(β))d||22 s.t. |βi| = 1, (8.15)

where

PF(β) = F(β)(FH(β)F(β))−1FH(β) (8.16)

is the orthogonal projection matrix constructed from F(β). In (8.15) the concept of sub-

space fitting is apparent: it measures the projection of d onto the subspace orthogonal to

the range space of F(β) for a given β. By the model in (8.11), d is in the range of F(β) for

the true β, so the norm in (8.15) should be small. The minimization problem in (8.15) is to

find the vector β that brings the subspace closest to d by minimizing the out-of-subspace

distance.
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Expanding the norm gives

min. J(β) = dHd− dHPH
F(β)d− dHPF(β)d+ dHPH

F(β)PF(β)d s.t. |βi| = 1. (8.17)

Using the following properties of projection matrices, PH
F(β) = PF(β) and P 2

F(β) = PF(β),

this reduces to

min. J(β) = dHd− dHPF(β)d s.t. |βi| = 1. (8.18)

The first term in (8.18) does not depend on β and by changing the sign of the second term,

the minimization can be restated as the following maximization problem

β̂ = argmax
β

dHPF(β)d s.t. |βi| = 1. (8.19)

To move beyond this point, it is necessary to look at the structure of PF(β). Using the

definition of F(β) in (8.8)

PF(β) = F(β)(FH(β)F(β))−1FH(β) (8.20)

= ΛβF(FHΛH
β ΛβF)−1FHΛH

β (8.21)

= ΛβF(FHF)−1FHΛH
β , (8.22)

where, due to its construction, ΛH
β Λβ = I. Thus, (8.19) becomes

β̂ = argmax
β

dHΛβF(FHF)−1FHΛH
β d s.t. |βi| = 1. (8.23)

Because Λβ is a diagonal matrix, its diagonal and d can be swapped

ΛH
β d = ΛdI1β

∗, (8.24)
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where I1 = I ⊗ 1. Using the structure of d in (8.5), the product of ΛdI1 is

ΛdI1 = BlockDiag(d1, . . . , dNk
). (8.25)

Substituting this result into (8.23) and using (8.2) and (8.5) gives

β̂ = argmax
β

βT
[
GH(FHF)−1G

]
β∗ s.t. |βi| = 1 (8.26)

= argmax
β

βTMβ∗ s.t. |βi| = 1, (8.27)

where G is defined in (8.5) and M = GH(FHF)−1G. From (8.27) it is apparent that the

image does not need to be formed to estimate β.

8.3.2 Subspace Fitting Autofocus Optimization Strategy

At first glance, optimizing (8.27) may seem like an eigenvector problem, but it is

important to note that the optimization in (8.27) is not as simple as finding the eigenvector

associated with the largest eigenvalue of M, because this method does not capture the

constraint |βi| = 1.

Recall that βi = ejφi , using this, the constrained problem in (8.27) may be equivalently

written as the unconstrained problem

φ̂ = argmax
φ

ejφ
TMe−jφ, (8.28)

where [e±jφ]i = e±jφi . Equation (8.28) can be maximized by a number of different methods.

The optimization methods that will be explored in this chapter are gradient ascent, a

regularized Newton’s method, and a method that uses the convexity of the linearization of

(8.27).



118

Optimization by Gradient Ascent

Let the objective function to be maximized be denoted as

J(φ) = ejφ
TMe−jφ (8.29)

= u(φ)TMv(φ). (8.30)

Using the chain-rule, the gradient of (8.29) is (note that MH = M thus MT = M∗)

∂J

∂φ
=

∂uT

∂φ

∂J

∂u

∣
∣
∣
∣
u=ejφ

+
∂vT

∂φ

∂J

∂v

∣
∣
∣
∣
v=e−jφ

(8.31)

= jDiag
(

ejφ
)

Me−jφ − jDiag
(

e−jφ
)

M∗ejφ (8.32)

= 2<
{

jDiag(ejφ)Me−jφ
}

. (8.33)

Thus, the update rule for the gradient ascent method is

φn+1 = φn + µ2<
{

jDiag(ejφn)Me−jφn

}

, (8.34)

where φ0 = 0 (assume no phase error) and µ is a step-size parameter.

The step size µ in the gradient can be a fixed value, or it can be found by a line search

method [41]. Fixing a value of µ is the least computational, however it may require more

iterations to reach the maximum value than computing a line search.

Optimization by Newton’s Method

Newton’s method requires the Hessian matrix, which is the matrix of second partial

derivatives. Using the linearity properties of partial derivatives and <{·} and the results
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from (8.33), the ith column of the Hessian is

H(:,i) =
∂2J

∂φ∂φi
(8.35)

= 2<
{

j
∂

∂φi
Diag(ejφ)Me−jφ

}

(8.36)

= 2<
{

j
(

jejφiEiiMe−jφ − je−jφiDiag(ejφ)Mei

)}

(8.37)

= 2<
{

e−jφiDiag(ejφ)Mei − ejφiEiiMe−jφ
}

(8.38)

= 2<
{

e−jφiDiag(ejφ)M(:,i) − ejφi(M(i,:)e
−jφ)ei

}

, (8.39)

where Eii is the matrix that has a one in the (i, i)th entry and is zero everywhere else.

Writing out a few columns of H reveals that the structure of the Hessian is

H = 2<
{

Diag(ejφ)MDiag(e−jφ)−Diag(Me−jφ)Diag(ejφ)
}

. (8.40)

The Hessian matrix is not full rank; it has a null-space spanned by the all-ones vector, 1.

Thus, H is not invertible and the Newton step cannot be computed. However, a regularized

Hessian matrix computed as

H̃ = 2<
{

Diag(ejφ)MDiag(e−jφ)−Diag(Me−jφ)Diag(ejφ)− M̃
}

(8.41)

is invertible, where M̃ is a diagonal matrix that has the diagonal elements of M as its

entries. Using this regularized Hessian matrix, the regularized Newton update rule is

φn+1 = φn − H̃−1 ∂J

∂φ
. (8.42)

As part of the regularization, after each update if |[φn]i| ≥ π then that value is set to zero.
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Convex Optimization of Linearized Objective Function

The problem as stated in (8.27) does not fit the criterion for a convex optimization

problem. The first reason is that while the objective function

f0(β) = βTMβ∗ (8.43)

is a convex function, the tools for convex optimization do not support maximizing a convex

function. The other reason (8.27) is not a convex problem is that the constraints |βi| = 1

are not convex, either. It is important to note that if the domain of a convex function is

convex, then the maximum value of the convex function will occur on the boundary of its

domain. With this in mind, the non-convex constraints can be relaxed to |βi| ≤ 1, which

are convex. Thus, the optimization problem can be relaxed to

β̂ = argmax
β∈D

βTMβ∗, where D = {βi | |βi| ≤ 1}. (8.44)

However this does not help overcome the fact that a convex function cannot be maximized

via convex optimization tools.

Since (8.43) is differentiable and convex and the (relaxed) domain is convex, the fol-

lowing statement about the linearization (by a truncated Taylor series expansion) about a

point β0 ∈ D is true [41]

f0(β) ≥ f0(β0) + <
{
∇f0(β0)

H(β − β0)
}
. (8.45)

Equation (8.45) states that f0(β) will always be greater than or equal to the tangent

hyperplane at β0. The reason this helps in the development is that the tangent plane is

both convex and concave and the tools for convex optimization will allow for maximizing a

concave function over a convex domain. Let t = f0(β), then rearranging (8.45) gives

0 ≥ <







[

∇f0(β0)
H −1

]






β − β0

t− f0(β0)












. (8.46)
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Equation (8.46) describes a halfspace. The tangent plane at β0 is the boundary of this

halfspace and is achieved at equality

0 = <







[

∇f0(β0)
H −1

]






β − β0

t− f0(β0)












, (8.47)

which can also be written as

t = <
{
∇f0(β0)

H(β − β0)
}
+ f0(β0). (8.48)

In (8.47), β is a point in the domain and t is the “vertical” coordinate. From this

perspective, the linearized optimization problem is to maximize the vertical direction on

the tangent plane subject to staying in the domain. Using the definition of t in (8.48),

defining z = β − β0 (then β = z+ β0), and noting that f0(β0) is a constant and does not

affect the optimization, the optimization problem linearized about β0 can be stated as

maximize <
{
∇f0(β0)

Hz
}

(8.49)

s.t. |zi + β0,i| ≤ 1, ∀i. (8.50)

This linearized optimization problem needs to be iterated to find the global maximum.

Each iteration produces a new vector,

βn = zn−1 + βn−1, (8.51)

that is on the constraint boundary (due to (8.50)). It is well known that moving in a

direction with a positive directional derivative (from the point the gradient is computed at)

is a move uphill, thus f0(βn) ≥ f0(βn−1) (due to (8.49)).
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8.4 Results of Proposed Autofocus Methods

This section demonstrates the proposed methods and compares the optimization strate-

gies on simulated data. The data collected have the phase error shown in figure 8.1. Figure

8.2 shows the original image the data is collected from. The image contains three strong

point reflectors and four weaker point reflectors in a Gaussian background. Figure 8.3 shows

the reconstruction using the CBP algorithm without any phase correction and figure 8.4

shows the ML reconstruction. The three reflectors are visible, but significant blurring in

azimuth is apparent.

In the optimization methods that follow, only the phase errors that affect the strong

reflectors will be estimated. This demonstrates that this autofocus method can be used for

focusing an arbitrary patch of the image.

8.4.1 Results Using Gradient Ascent

The gradient ascent method works very well, however many iterations are needed to

get good enough phase estimates so that the resulting image is in focus. This section

demonstrates the gradient ascent method for the simulation described above with the step-

size µ = 1.3× 10−7.

The top of figure 8.5 shows the phase estimates after 100, 000 iterations and the bottom

shows the phase estimate error (note that a constant phase error does not adversely effect

the reconstruction). Figure 8.6 shows the norm of the gradient versus the iteration number.

Finally, figure 8.7 and figure 8.8 illustrate the CBP and ML reconstructions (respectively)

after applying the phase estimates.

8.4.2 Results Using Regularized Newton’s Method

Compared to the gradient ascent method, the regularized Newton’s method requires

orders of magnitude fewer iterations to obtain good phase estimates. This section demon-

strates the regularized Newton’s method for the simulation described above.

The top of figure 8.9 shows the phase estimates after 1, 000 iterations and the bottom

shows the phase estimate error (recall that a constant phase error does not adversely effect
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the reconstruction). Figure 8.10 shows the norm of the Newton step versus the iteration

number. Finally, figure 8.11 and figure 8.12 illustrate the CBP and ML reconstructions

(respectively) after applying the phase estimates.

8.4.3 Results Using Convex Optimization

The software package CVX [42] was used to obtain the solution for the convex opti-

mization in each iteration. Compared to the gradient ascent method, he linearized convex

optimization method requires orders of magnitude fewer iterations to obtain good phase

estimates. Compared to the regularized Newton’s method, it requires the same order of

magnitude iterations. This section demonstrates the linearized convex optimization method

for the simulation described above.

The top of figure 8.13 shows the phase estimates after 500 iterations and the bottom

shows the phase estimate error (recall that a constant phase error does not adversely effect

the reconstruction). Figure 8.14 shows the norm of the step taken each iteration versus

the iteration number (the drop-outs are the iterations where CVX could not find a solution).

Finally, figure 8.15 and figure 8.16 illustrate the CBP and ML reconstructions (respectively)

after applying the phase estimates.

8.5 Comparison of Optimization Strategies

This section discusses the results of the three optimization strategies and discusses the

advantages and disadvantages of the different methods. This section concludes by comparing

the computational complexity of the different methods.

8.5.1 Optimization Results

It is clear from the figures above that each optimization method is able to estimate the

phase errors well enough to form a focused CBP and ML image. It is interesting to note

the phase estimates from the three methods.

In figure 8.5, it is clear that the gradient ascent method has a difficult time estimating

the first and last few phase estimates. However, the phase estimates in between are very
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Fig. 8.1: Illustration of the applied phase error.
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Fig. 8.2: Illustration of the original image.
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Fig. 8.3: CBP reconstruction without phase compensation.
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Fig. 8.4: ML reconstruction without phase compensation.
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Fig. 8.7: CBP reconstruction after applying the phase estimates from the gradient ascent
method. Compare to figure 8.3.
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Fig. 8.8: ML reconstruction after applying the phase estimates from the gradient ascent
method. Compare to figure 8.4.
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Fig. 8.9: Top: Illustration of the regularized Newton method phase error estimates after
1, 000 iterations. Bottom: Illustration of the phase estimate error.
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Fig. 8.10: Illustration of the norm of the regularized Newton step versus iteration number.
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Fig. 8.11: CBP reconstruction after applying the phase estimates from the regularized
Newton method. Compare to figure 8.3.
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Fig. 8.12: ML reconstruction after applying the phase estimates from the regularized New-
ton method. Compare to figure 8.4.
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Fig. 8.13: Top: Illustration of the linearized convex method phase error estimates after 500
iterations. Bottom: Illustration of the phase estimate error.
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Fig. 8.14: Illustration of the norm of the step taken each iteration versus iteration number
for the linearized convex method.
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Fig. 8.15: CBP reconstruction after applying the phase estimates from the linearized convex
method. Compare to figure 8.3.
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Fig. 8.16: ML reconstruction after applying the phase estimates from the linearized convex
method. Compare to figure 8.4.
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good. If the number of iterations is increased, the first and last few estimates become better.

The gradient ascent method will obtain the solution when the norm of the gradient is zero,

however it is can be seen from the slope of the curve in figure 8.6 that the convergence

of the norm of the gradient to zero is very slow. From the different simulations that were

tried, the gradient ascent method seemed to be the most robust; difficult problems took

more iterations, but if the algorithms was allowed to run long enough, good estimates were

obtained.

In figure 8.9, it is clear that all the phase estimates (except the first) are very good. It

can be seen in figure 8.10 that the convergence of the regularized Newton method is very

fast. This method is not quite as robust as the gradient ascent method. The reconstructions

were not always better than those obtained using the gradient ascent method for some of

the more challenging simulations. In these more challenging cases, the norm of the Newton

step still converged quickly to zero, however the phase estimates were not very good. It

seems that the choice of the regularization is too dominant in some of the more challenging

problems, and the estimated solution is pulled too far away from the true solution.

In figure 8.13, it is clear that all the phase estimates are very good. It can be seen in

figure 8.14 that the norm of the step of each iteration starts to converge to zero slowly at

higher iterations. However, the step lengths at higher iterations are very small (compared

to the gradient ascent method) so that for all practical purposes, the phase estimates are

obtained. The convex optimization solver that was used for each iteration was sensitive to

the conditioning of M. There are often times the solver could not obtain a solution for one

iteration, but it would work just fine for the next; the better the conditioning of M, the less

this happened. Good phase estimates were usually obtained if the method were allowed to

run long enough.

8.5.2 Comparison of Computational Complexity

It is well known that each iteration of the gradient ascent has complexity O(N) and

each iteration of the Newton method has complexity O(N3). It is difficult to quantify the

order of complexity of each iteration of the convex optimization method. If a log-barrier
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convex optimization solver were tailored to the optimization problem, then the complexity

would be O(N). The CVX package uses many different methods to solve convex optimization

problems, and it is not clear if the methods use the structure of the objective function and

the constraints to reduce the computational complexity of obtaining the solution for each

iteration.

It is clear from figure 8.10 that the regularized Newton method converges very quickly.

Although each iteration may be more computational, the Newton method may be a better

choice than the gradient ascent method because the total computational burden may be

less. If a tailored log-barrier solver were used for the linearized convex optimization method,

then the clear choice would be to use the convex optimization method because a solution is

found in about as many iterations as the Newton method, but the computational complexity

is that of the gradient ascent method.

8.6 Summary

This chapter showed that under the certain assumptions, model-based autofocus for

stripmap SAR is a constrained subspace fitting problem. It was also shown that the phase

error estimates can be obtained without forming the image or iterating between the image

and data domains. The optimization methods that were used to obtain the phase estimates

were the gradient ascent method, a regularized Newton method, and a linearized convex

optimization method. A comparison of these methods was also given and the computational

complexity of each was also discussed.
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Chapter 9

Summary and Future Work

This chapter summarizes the important elements of each chapter in this dissertation

and the contributions made to stripmap SAR. This chapter also extends some of the con-

tributions and suggests ideas for future work in model-based stripmap SAR processing.

9.1 Summary

This section covers the important concepts contained in each chapter and summarizes

the contributions made. Chapters 2-4 covered the theoretical foundations of pulsed SAR

systems. The forward model for stripmap SAR was derived in Chapter 5 and it was shown

that the forward model is linear in the ground reflectivity parameters. The ML image for-

mation method was derived in Chapter 6 and it was shown that CBP is one of the necessary

steps in forming the ML image. Two MAP image formation methods were derived in Chap-

ter 7 and it was shown that under the right set of assumptions that MAP methods have a

close connection to regularized least-squares algorithms. Finally, a model-based autofocus

method was derived in Chapter 8 and it was shown that the model-based autofocus method

is a constrained subspace fitting problem.

Chapter 2 covered the concept of resolution, which is the ability to distinguish be-

tween closely spaced reflectors. The concept of using pulse compression to obtain increased

resolution was also covered.

The role of the antenna in SAR systems was introduced in Chapter 3 and it was shown

that the motion and attitude of the SAR sensor, which relates to the pointing direction of the

antenna, could be modeled by coordinate rotations and translations. The derivation of the

induced azimuth signal and a discussion of the bandwidth of this signal, which determines

the choice of the PRF for a pulse SAR system, were also covered in this chapter. A model
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for the sampled data was presented in this chapter and it was shown that each collected

sample contains information about reflectors on the ground in a neighborhood defined by

the pulse duration and the antenna azimuth beamwidth. The last topics covered in this

chapter were the resolvability of the SAR sensor, the PSF of the SAR imaging system, and

IPI which is an artifact that leaves large star-like patterns around strong reflectors in the

formed image and is caused by the choice of the SAR image formation algorithm.

The concepts from Chapter 3 were made explicit for pulsed LFM stripmap SAR in

Chapter 4. The first azimuth nulls of the antenna pattern were suggested as the effective

azimuth antenna beamwidth. Based on the azimuth beamwidth, the range dependent syn-

thetic aperture length and the time duration that a reflector is under the illumination of the

antenna were also discussed. The time a reflector is under the illumination of the antenna

leads to the effective bandwidth of the induced signal. The resolution limits for an ideal

flight stripmap SAR were stated. Finally, the necessary steps for image formation were

discussed; which are range compression, RCMC, and azimuth compression.

The forward model for stripmap SAR was derived in Chapter 5; this comprehensive

forward model is a new contribution to stripmap SAR and formed the foundation for all

other research in this dissertation. It was shown that the forward model is linear in the

ground reflectivity parameters. The fact that the received signal is collected in the presence

of thermal AWGN was also discussed and it was shown that the AWGN becomes circularly

symmetric AWGN after the received signal is quadrature demodulated and sampled. In-

cluding the noise process, it was also shown that the forward model can also be interpreted

as a linear statistical model. It was also shown that the forward model can be generated for

a user-defined region of interest and that the bounds of the region of interest, the region of

interest closure, are controlled by the transmitted pulse duration and the effective antenna

azimuth beamwidth.

In Chapter 6, the interpretation of the forward model as a linear statistical model was

used to derive the ML image formation method; the ML image formation method (based

on the forward model) is also a new contribution to stripmap SAR. It was shown that
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forming the ML image is a least-squares problem and reduces to solving normal equations.

It was also shown in this chapter that computing the cross-correlation vector in the normal

equations is equivalent to the CBP image formation method. It was also shown that solving

the normal equations for the ground reflectivity parameter vector eliminates the IPI that

the CBP algorithm generates. Showing that CBP is an optimal step in the ML image

formation method is also a new contribution to stripmap SAR.

The ML imaging method in Chapter 6 was generalized in Chapter 7 by allowing prior

information on the scene being imaged to be incorporated, which allows MAP images to be

formed. It was also shown in this chapter that if the prior information can be assumed to

be in the exponential family of probability distributions, then MAP estimation has a close

connection to regularized algorithms. More explicitly, if the prior information is Gaussian,

then the MAP estimates can be computed using regularized least-squares algorithms. Two

algorithms were derived that form MAP images; one that is a novel use of the BRLS

algorithm and the other is a new BFARLS algorithm that can use the structure of the data

matrix of an ideal flight (if the flat earth model holds). The BFARLS uses a new block

hyperbolic transformation matrix, which is derived in the Appendix. Forming stripmap

SAR images via the novel use of the BRLS and the new BFARLS are new contributions to

stripmap SAR.

A new model-based autofocus method for stripmap SAR was derived in Chapter 8.

This new autofocus method was derived from the forward model presented in Chapter

5. It was shown that this new model-based approach reduces to a constrained subspace

fitting problem. Three methods were derived for optimizing this constrained subspace

fitting problem; two methods search along the constraints for the optimal solution and the

third method linearizes the problem and uses techniques from convex optimization to find

the optimal value. All three methods are iterative, in the sense that many iterations are

needed to find the optimal value, however, it was also shown that once the optimal value

is found and the phase error estimates are applied, the image is in focus. Hence, iterations

between the image and data domains are not needed to find the phase error estimates, as
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most conventional autofocus methods do. This model-based autofocus method is a new

contribution to stripmap SAR.

9.2 Future Work

There are many different research areas in model-based stripmap SAR that were either

only briefly mentioned in this dissertation or not addressed at all. The following suggests

possible future work that could stem from each chapter contributing to stripmap SAR.

While the stripmap SAR forward model derived in Chapter 5 is very comprehensive,

the forward model could be extended to a higher fidelity model that allows for modeling

Rayleigh fading effects, electromagnetic coupling between closely spaced reflectors, and

signal dispersion.

It was shown in Chapter 5 that the forward model could be constructed for an arbitrary

region of interest and that the region of interest closure includes all of the ground that

contributed to the data of interest. The inclusion of the ground region in the region of

interest closure does not take into account that the data is going to be compressed in both

range and azimuth. The size of the forward model could be greatly reduced if the region

of interest closure could be made smaller. Future work in this area would be to find the

effective region of interest closure where the bounds are determined by the compressed data.

The ML imaging method in Chapter 6 was demonstrated on simulated data. The ML

imaging method still needs to be tested on actual stripmap SAR data. Future work in this

area would be to construct a software framework that could build the data matrix in the

forward model for a selected region of interest and then form the ML image.

Some insights into stripmap SAR system design were observed in Chapter 6 that could

potentially lead to structure in the grammian matrix in the ML imaging method. For ex-

ample, if the system could be designed to make the grammian matrix diagonally dominant

(or perhaps even identity), then the CBP reconstruction would be the optimal reconstruc-

tion. Future work in this area would be to determine if different transmitted pulse types,

antenna patterns, or even flight paths could be selected to give the grammian matrix a

specific structure to make it easier to invert.
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The Cramér-Rao lower bound (CRLB) on the variance of the ML estimates was briefly

presented in Chapter 6. Future work in this area would be to do a full development of

the CRLB on an actual stripmap SAR sensor and compare the variance of the ground

reflectivity estimates from actual images to the CRLB.

In Chapter 7 it was shown that MAP ground reflectivity estimation has a close connec-

tion to regularized algorithms. Future work in the area of MAP image estimation would be

to explore the dependence of the regularization parameter on the SAR system parameters so

the optimal value of the regularization parameter could be computed directly. Also, future

work in this area would be to explore other algorithms that would form MAP estimated

images if the priors were not Gaussian, but still in the family of exponential distributions.

It was stated in Chapter 8 that the convex solver that was used for the linearized

convex optimization was sensitive to the conditioning of M. It was also suggested that the

linearized convex optimization method could be made more efficient if a solver were tailored

to the problem that used the structure of the objective function and the constraints. Future

work in the area of model-based autofocus would be create a solver tailored to the linearized

convex optimization method.

If the residual phase error in Chapter 8 is known to be band-limited “enough” (with

respect to the PRF), then future work may be to see if it would be possible to estimate a

decimated phase error vector, then interpolate to obtain the full phase error vector. If this

were possible, then the size of the problem could be controlled.

There are several avenues for future work that were not mentioned in this dissertation.

One area would be to explore the idea of extending the forward model to coherent change

detection (CCD) to see if it would be possible to estimate the phase difference between scenes

without explicitly forming either image. Another area would be to explore the possibility

of altering the forward model to allow for multiple antennas, then use it to do model-based

interferometric SAR and ground moving target indication (GMTI).
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Appendix

Circular and Hyperbolic Transformations

This appendix derives the block transformations that are needed in the BFARLS algo-

rithm. Both the scalar FARLS and the block FARLS algorithms need a J-unitary matrix Θ

in order to transform the pre-array into the post-array. In both cases Θ can be factored into

the product of a unitary circular transformation and a J-unitary hyperbolic transformation

Θ = ΘcΘh, (A.1)

where Θc are the circular transformations and Θh are the hyperbolic transformations.

In the scalar FARLS, the circular transformations can be accomplished using either

Givens or Householder transformations and the hyperbolic transformations can be accom-

plished by using the Givens or Householder hyperbolic transformations. In this appendix,

we will be working with Householder transformations.

A.1 Traditional Circular and Hyperbolic Householder Transformations

The circular Householder transformation is well known, [29,43]. Most often the trans-

formation is employed to “compress” the energy of a vector or a column of a matrix onto a

coordinate axis, thereby introducing zeros into the transformed vector or column.

Consider the complex vector a ∈ C
n. To compress the energy onto the ith coordinate,

the Householder vector is formed as

v = a± ejφ(ai)||a||2ei, (A.2)
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where φ(ai) is the angle of the ith element of a, [30]. The Householder transformation is

then computed as

Q = I − 2
vvH

vHv
. (A.3)

It is straightforward to verify that Q is a unitary matrix (length preserving) and involutary

(applied twice to a vector returns the original vector). Applied to a generic vector x, Qx

is the resulting vector that has been reflected about v⊥. However, applied to the vector a

(from which Q was constructed), Qa = ||a||2ei.

As an illustration, consider the following matrix (written in terms of its columns)

A =

[

a1 a2 · · · an

]

. (A.4)

Applying a circular Householder transformation with the intention of “compressing” the

energy of the first column into the first element gives

QA =

[

||a1||2e1 Qa2 · · · Qan

]

= Ã. (A.5)

Notice that ÃHÃ = AHQHQA = AHA; thus the Householder transformation applied to a

matrix preserves the Frobenius norm and the matrix 2-norm.

The hyperbolic Householder transformation is a slight modification to the circular

transformation. Replacing the Euclidean norm with the J-norm, the construction of the

hyperbolic Householder vector that will “compress” the energy of a (with respect to the

J-norm) onto the ith coordinate axis is

v = a± ejφ(ai)||a||Jei, (A.6)

where

||v||J =
√

|vHJv|. (A.7)
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The hyperbolic Householder transformation is also a slight modification of the circular

transformation

QJ = I − 2
vvH

vHJv
J. (A.8)

It is straightforward to verify that QJ is J-unitary (i.e. QH
J JQJ = QJJQ

H
J = J) and is also

involutary. The inverse of QJ is Q−1
J = JQH

J J and the inverse of QH
J is (QH

J )−1 = JQJJ .

A.2 Block Circular and Hyperbolic Householder Transformations

The generalization of Householder transformations are called block reflectors. Block

reflector transformations are common in the literature and can be either symmetric or non-

symmetric [44, 45]; however, most produce a resulting matrix that has special properties

such as being upper-triangular or block upper-triangular and zeros elsewhere. Sometimes

all that is needed is a transformation that compresses the energy of a matrix into a square

submatrix, regardless of the symmetry of the transformation and with no other requirement

other than being matrix norm preserving (this is analogous to compressing all the energy

of a vector into a single element). To illustrate this result, consider the matrix A ∈ C
m×n.

If A does not have full row rank (or m > n), then we can zero the rows of A until A has

the following form

ΘA =






Ãn×n

0(m−n)×n




 . (A.9)

If Ãn×n were upper-triangular, then the traditional Householder matrix could be used

or if Ãn×n were to be block upper-triangular many of the block reflector algorithms in the

literature could be used [45]. Likewise, if Ãn×n were to be symmetric. We now develop a

method for generating a generic Ãn×n.
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Without loss of generality, let A be a tall matrix (m > n) and have full column rank.

The range of A is the subspace spanned by the columns of A

R(A) = span

{[

a1 a2 · · · an

]}

, (A.10)

where ai is the ith column of A. The range of A can be extended to form a basis for the

m-dimensional vector space S

S = span

{[

a1 a2 · · · an q1 q2 · · · qm−n

]}

. (A.11)

The vectors qi can be found such that qH
i qj = δij and AHqi = 0, ∀i (i.e. the vectors qi

are orthonormal (with respect to each other) and span the null-space of AH). Thus, S is

the direct sum of the range of A and the null-space of AH

S = R(A)⊕N (AH). (A.12)

Let U denote the matrix whose columns are composed of the qi

U =

[

q1 q2 · · · qm−n

]

. (A.13)

The conjugate transpose of the Householder matrix Q such that

QHU =






0n×(m−n)

Λ(m−n)×(m−n)




 , (A.14)

where Λ(m−n)×(m−n) is an (m− n)× (m− n) reverse-diagonal matrix, such that ΛHΛ = I,

is exactly the matrix that produces the result we desire to have in equation (A.9). To be

explicit,

QHA =






Ãn×n

0(m−n)×n




 . (A.15)
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Due to the qi being orthonormal, the resulting matrix in equation (A.14) can be pro-

duced by simple Householder transformations on U where the energy in each column is being

compressed down the columns (instead of up the columns as is done in QR decompositions).

To show this result, note that since the matrix Q is constructed from Householder

transformations, it has the factorization

Q = Q1Q2 · · ·Qm−n, (A.16)

where Q1 is constructed from q̃1 = q1 ± ejφ(qm)em (where ||qi||2 = 1 has been used). To be

explicit,

Q1 = I − 2
q̃1q̃

H
1

q̃H q̃
. (A.17)

Let v be a vector that is orthogonal to q1. Then applying Q1 constructed from q̃1 =

q1 + ejφ(qm)em to v gives

QH
1 v = v − 2

q̃H
1 v

q̃H
1 q̃1

q̃1 (A.18)

= v − 2
(q1 + ejφ(qm)em)Hv

(q1 + ejφ(qm)em)H(q1 + ejφ(qm)em)
(q1 + ejφ(qm)em) (A.19)

= v − e−jφ(qm)vm
1 + |q1,m| (q1 + ejφ(qm)em) (A.20)

= v − vm
1 + |q1,m|






e−jφ(qm)q1,1:m−1

|q1,m|+ 1




 (A.21)

=






v1:m−1

vm




−






e−jφ(qm)vm
1+|q1,m| q1,1:m−1

vm




 (A.22)

=






v1:m−1 − e−jφ(qm)vm
1+|q1,m| q1,1:m−1

0




 . (A.23)
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Similarly, constructing Q1 from q̃1 = q1 − ejφ(qm)em and applying to v gives

QH
1 v =






v1:m−1 +
e−jφ(qm)vm
1−|q1,m| q1,1:m−1

0




 . (A.24)

These two cases can be combined; let q̃1 = q1 ± ejφ(qm)em, then

QH
1 v =






v1:m−1 ∓ e−jφ(qm)vm
1±|q1,m| q1,1:m−1

0




 , (A.25)

where v1:m−1 is the vector formed from the first m − 1 elements of v and vm is the mth

element of v.

Applying Q1 to U gives

QH
1 U =

[

∓ejφ(qm)em QH
1 q2 · · · QH

1 qm−n

]

. (A.26)

Using that the columns of U are orthonormal, substituting qi (2 ≤ i ≤ m − n) for v in

equation (A.25) gives

QH
1 qi =






qi,1:m−1 ∓ qi,me−jφ(q1,m)

1±|q1,m| q1,1:m−1

0




 , 2 ≤ i ≤ m− n, (A.27)

where ql,m is the mth element of vector ql. Forming Q2 from QH
1 q2 and applying to QH

1 U

gives

QH
2 Q

H
1 U =

[

∓ejφ(qm)em ∓ejφ([QH
1 q2]m−1)em−1 QH

2 Q
H
1 q3 · · · QH

2 Q
H
1 qm−n

]

.

(A.28)
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Continuing on in this manner shows that

QHU = QH
m−n · · ·QH

2 Q
H
1 U =






0n×(m−n)

Λ(m−n)×(m−n)




 , (A.29)

as claimed.

Applying Q1 to the matrix A gives

QH
1 A =

[

QH
1 a1 QH

1 a2 · · · QH
1 am−n

]

. (A.30)

Using that the columns of A are orthogonal to the qi (by construction) and substituting ai

for v in equation (A.25) gives

QH
1 ai =






ai,1:m−1 ∓ e−jφ(qm)ai,m
1±|q1,m| q1,1:m−1

0




 . (A.31)

Since equation (A.31) holds for any column of A, it is clear that QHA has compressed

all of the energy in the bottom row of A into the rows above. Continuing in this manner

with Q2 through Qm−n shows that

QHA = QH
m−n · · ·QH

2 Q
H
1 A =






Ãn×n

0(m−n)×n




 . (A.32)

The geometric interpretation of this is that the orthonormal vectors that span the null

space of AH are being aligned with the coordinate axes en+1 through em and thus the

reflected range cannot have any components on those axes.

The block FARLS needs the J-unitary equivalent to equation (A.15). Under a strict

condition (which will be stated below), a similar result holds for J-unitary block reflectors.

Assume that the condition holds, let U be the same as above (i.e. the columns of U are

orthonormal and span the null-space of AH), then the inverse of the complex transpose of
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the J-unitary block reflection matrix QJ such that

QJU =






0n×(m−n)

C(m−n)×(m−n)




 , (A.33)

where C(m−n)×(m−n) is an (m− n)× (m− n) reverse-lower triangular matrix, is the matrix

that produces the desired result

(QH
J )−1A = JQJJA =






Ãn×n

0(m−n)×n




 . (A.34)

The matrix QJ can be factored into a product of J-unitary Householder transformations

QJ = QJ,(m−n) · · ·QJ,1, (A.35)

where each QJ,i has the same construction as in equation (A.8).

The condition that must hold to produce the results in equation (A.34) is

q̂H
i J q̂i = sign(Ji,i), (A.36)

where q̂i is the vector that QJ,i is constructed from.

The result in equation (A.34) is exactly what we need for the block FARLS algorithm.

If the stated condition fails, it is an indication that numerical stability has set in and the

block FARLS starts to diverge.
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