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ABSTRACT 

 

A Comparison of Statistical Methods Relating Pairwise Distance  

to a Binary Subject-Level Covariate 

 

 

by 

 

 

Rachael L. Stone 

 

Utah State University, 2017 

 

 

Major Professor:  Dr. John R. Stevens 

Department:  Mathematics and Statistics 

 

 

 

 A community ecologist provided a motivating data set involving a certain animal species with 

two behavior groups, along with a pairwise genetic distance matrix among individuals. Many 

community ecologists have analyzed similar data sets with a method known as the Hopkins 

method, testing for an association between the subject-level covariate (behavior group) and the 

pairwise distance. This community ecologist wanted to know if they used the Hopkins method, 

would their results be meaningful?  Their question inspired this thesis work, where a different 

data set was used for confidentiality reasons.  Multiple methods (Hopkins method, ADONIS, 

ANOSIM, and Distance Regression) were used to analyze the distance matrix for association 

with a binary covariate of interest. To compare the performance of the Hopkins method with the 

performance of the remaining, more established methods, a simulation was run. The results of 

the simulation indicate that ADONIS, ANOSIM, and distance regression would all be preferable 

to the Hopkins method. 
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BACKGROUND: MOTIVATING STUDY 

Some time ago, a community ecologist approached Dr. Stevens (major professor to the 

author of this MS report) about a set of data being used in a study of their own. This data set 

referred to an animal species and a difference in some of this animal’s behavior (we will refer to 

these behaviors as behavior 1 and behavior 2). A genetic distance matrix and a binary subject-

level covariate were computed by this community ecologist, who wanted to evaluate the distance 

matrix differences between these 2 behavior groups. 

Other community ecologists who have had similar datasets have used the Hopkins 

method (to be discussed in the next section) to relate the genetic distance matrix to a binary 

subject-level covariate. The community ecologist wanted to know: if the Hopkins method was 

used in the analysis of their data, would it result in meaningful calculations, or was there was a 

better way to analyze the data? 

Because this community ecologist's data are privately owned and not available for public 

distribution, this report uses the dataset dune (to be discussed in the next section) with the 

intention of evaluating the performance of several possible methods that could be used to test for 

significant associations between a pairwise distance matrix and a binary subject-level covariate. 
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BACKGROUND: THE DUNE MEADOW VEGETATION STUDY 

 

The Dune Meadow Vegetation Study was conducted on the Dutch island of Terschelling 

(Batterink and Wiffels, 1983). The objective of this study was to detect a possible relation 

between the vegetation and the management of dune meadow on the island. Data collection was 

done by the Braun-Blanquet method; the data are recorded per the ordinal scale of van der 

Maarel (1979). This dataset was then used as a training example in Jongman et al. (1987) and are 

part of the vegan package in R (Oksanen 2017). 

This dataset contains 20 plots of 2×2 𝑚2 with recorded environmental variables of 

interest: A1 (a measurement of soil thickness), moisture, and manure. Each of the 20 plots were 

used as a sample area of a larger parcel of land and used to represent the corresponding larger 

parcel. There was a total of 80 parcels of land but only 20 were selected for inclusion in the data 

set dune. For each of these 20 different plots there was a quantified abundance of 30 different 

species of vegetation; this is the data contained in the dune data frame found in R. The 30-

different species are identified in Table 1 (Jongman 1987). 

These species of vegetation had their abundance quantified per the ordinal scale of van 

der Maarel (1979) and the Braun-Blanquet Method. The scale of van der Maarel uses specific 

variables (summarized in Table 2) in its quantified values while the Braun-Blanquet transformed 

these values to a cover-abundance scale on a scale of 0 to 9. Zero represents no vegetation while 

9 represents a high density of vegetation (Jongman 1987) for the given species. 
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Table 1- List of the Types of Vegetation Species Recorded in The Dune Meadow Vegetation 

Study (Jongman 1987) 

Vegetation Species 

Achimill 

Agrostol 

Airaprae 

Alopgeni  

Anthodor  

Bellpere 

Bromhord  

Chnalbu  

Cirsarve  

Comapalu  

 

Eleopalu  

Elymrepe 

Empenigr 

Hyporadi 

Juncarti 

Juncbufo 

Lolipere 

Planlac 

Poaprat 

Poatriv 

 

Ranuflam  

Rumeacet 

Sagiproc  

Salirepe 

Scorautu 

Trifprat 

Trifrepe  

Vicilath 

Bracruta 

Callcusp  

 

 

Table 2 – The specific variables used to calculate measurements in the scale of van der Maarel 

(van der Maarel 1979) 

Environmental Variables 

Variable Definition 

Abundance  the number of individuals on the sample plot 

Frequency the number of times a species occurs in a sample plot 

Cover the estimated area that a species covers 

cover-abundance combined parameter of cover and abundance 

basal-area area outline of a plant near the surface 

Phytomass measure per species, their performance in time series 
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The dune meadow vegetation data has a corresponding environmental data 

frame dune.env within R that contains the environmental data for each of the 20 plots of land. 

For the purposes of this report, the variables are treated as binary. A brief description of how the 

variables were converted to a binary form is found in the “Binary Classification” column in the 

Table 3. 

 

Table 3 – Variables found in the data frame dune.env within R (Oksanen 2017) 

Environmental Variables in dune.env Dataset 

Name of variable Description Binary Classification 

A1 Thickness of the A1 horizon in 

cm 

A soils thickness of A1 =< 4, A1 is 

classified as “Low”. 

A soils thickness of A1 >4, is 

classified as “High”. 

9 observations are classified as 

“Low”.  

11 observations are classified as 

“High”. 

 

Moisture Moisture content of the soil  

(scale of 1-5) 

A moisture content of 1 or 2 is 

categorized as “Low”. 

A moisture content of 4 or 5 is 

categorized as “High”.  

(No observations had a moisture 

content of 3.) 

10 observations are classified as 

“Low”. 

10 observations are classified as 

“High”. 

Manure Quantity of manure applied  

(scale of 0-4) 

An observation is considered 

“Low” if manure is classified as a 0 

or 1. 

An observation is “High” if manure 

is classified as a 2, 3 or 4.  

9 observations are classified as 

“Low”.  

11 observations are classified as 

“High”. 
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To compare statistical methods relating pairwise distance to a subject-level covariate, a 

pairwise distance matrix was needed for the dune dataset and the 20 plots of interest. This 

needed transformation was performed by the vegdist function from the vegan package (Oksanen 

2017). This function is commonly used by community ecologists. Specifically, this function took 

each of the 20 plots and the corresponding Braun-Blanquet abundance scores found in the dune 

object for each vegetation species, and calculated pairwise plot dissimilarity indices popular with 

community ecologists. The collection of dissimilarity indices provided a 20 x 20 pairwise 

distance matrix which quantifies the dissimilarities of each plot’s vegetation density across all 

species.  
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METHODS 

Multiple methods were considered to analyze the distance matrix of interest (provided by 

the dune dataset) for association with a binary covariate of interest: the Hopkins method 

(Hopkins 2013), ADONIS (Anderson 2001), ANOSIM (Clarke 1993), and Distance Regression 

(Zapala and Schork 2006), all briefly summarized below. 

The Hopkins method (Hopkins 2013) tests whether the average distance among the 𝑁ℎ𝑖𝑔ℎ 

observations with the same “High” level in the covariate of interest is significantly different from 

the average distance among all observations. This method performs bootstrap resampling of 

𝑁ℎ𝑖𝑔ℎ sites from the total number of sites, and averages the values found within their distance 

matrix. Noting the number of times a bootstrapped mean distance was less than or equal to the 

mean distance among the observed 𝑁ℎ𝑖𝑔ℎ sites, a p-value was calculated by the proportion of 

times the bootstrapped mean distance were at least as extreme as (i.e., less than or equal to) the 

mean distance among the original 𝑁ℎ𝑖𝑔ℎ sites (Hopkins 2013).  

Another method used for this type of comparison is ADONIS (Anderson 2001). It is a 

Permutational Multivariate Analysis of Variance Using Distance Matrices, or an Analysis of 

variance using distance matrices.  ADONIS is also used for partitioning distance matrices among 

sources of variation, such as the two levels of the binary covariates of interest: low and high. It is 

also used for fitting linear models to distance matrices. It uses a pseudo-F ratio to calculate a p-

value, and is implemented in the adonis function of the R package vegan (Oksanen 2017). The 

name ADONIS is a letter-swapped alteration on its original name of ANODIS (for Analysis of 

Dissimilarities); the alteration was made to avoid confusion with the fact that ANOSIM 

(described briefly below) also handles Analysis of Dissimilarities (Oksanen 2008).  
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ANOSIM stands for Analysis of Similarities (Clarke 1993). This method tends to have 

similar results as ADONIS but is included for verification. The help file for the anosim function 

in the R package vegan (Oksanen 2017) states that this method “provides a way to test 

statistically whether there is a significant difference between two or more groups of sampling 

units” in terms of their similarities, dissimilarities, or distances. Within the dune example the 

plots of land would be our sampling units. Permuting the distance matrix’s “group membership” 

(or the vector of the sites’ covariates levels) many times is done to obtain the null distribution of 

the R statistic, which is the difference of mean ranks between groups and within groups. This 

calculated R, when compared to the null distribution, provides a decision of statistical 

significance (Oksanen 2008). 

Distance regression (Zapala and Schork 2006) can be performed using the dr function of 

the AssocTests package in R (Wang et al. 2015).  This is a distance regression that is used to 

detect the association between a distance matrix and some independent variants of interest (such 

as binary covariates in the dune example). The significance of a pseudo F statistic is assessed 

using a Monte Carlo permutation approach, returning a p-value.   

To compare the performance of the Hopkins method with the performance of the more 

established ADONIS, ANOSIM, and distance regression methods, a simulation was run. This 

simulation called for 20 hypothetical sites, the same number of sites in the dune dataset. For each 

hypothetical site, there is a corresponding binary covariate with half of the sites at level 0 (low) 

and half at level 1 (high). Bivariate normal data was simulated for the level 0 and level 1 groups, 

with the level 0 group always centered at the origin (0,0), and the level 1 group centered at (δ, δ).  

The δ value was originally 0, and then progressively increased to δ=4 by steps of 0.5.  For each 

simulated data set, the Euclidean distance (in this two-dimensional space, for convenience) was 
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calculated between each pair of sites. The progression of this simulation is demonstrated visually 

in Figure 1.  

 

Figure 1- Visualizations of the simulated datasets for different values of δ. The solid dots 

represent when level = 0 (or low) while the hollow circles represent when level = 1 (or high).  

   

 

This simulation was run 1000 times, with 1000 bootstrap samples for methods employing 

resampling, and the δ values range from 0 to 4. For each simulated data set, Euclidean distance 

(in the 2-dimensional space visualized in Figure 1) was used to define a 20 x 20 pairwise 
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distance matrix among the 20 observations. As δ increases, the overall distance between the 

binary covariate’s levels also increases (Figure 1). This simulation was repeatedly testing the 20 

x 20 distance matrices’ association with the binary covariate (group level 0 or group level 1), 

using the four methods summarized above (Hopkins, ADONIS, ANOSIM, and Distance 

Regression). The run time for this simulation was 5 hours and 34 minutes. 

The proportion of all simulations giving a significant result when δ = 0 resulted in a Type 

I error rate estimate, or the probability of calling significant association when there is no 

association, for each method. From this simulation, the power (or the probability of determining 

a significant association when there is a non-zero association) may also be estimated by taking 

the proportion of all simulations giving a significant result when δ > 0, for each method.  When 

looking at Type I error rates (reported in Table 4) across different methods, the Hopkins method 

suggested that it differed greatly from the other three methods. It had a much lower Type I error 

rate suggesting that it is overly conservative.   

 

Table 4 – Comparison of reported Type I Error Rates 

Type I Error Rate 

Method Hopkins ADONIS ANOSIM Distance Regression 

Type I Error 0.005 0.049 0.048 0.056 

 

The Hopkins method differs for another reason; it has less power than the other methods 

(see Figure 2). ADONIS, ANOSIM and the distance regression methods are all like one another; 

they perform almost equally well. Although, ADONIS seems to, just slightly, outperform 
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ANOSIM and Distance Regression. Figure 2 visualizes the difference in power between 

methods.  

Figure 2- Visual Representation of each Methods’ Power as δ increases
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DISCUSSION 

 

When comparing these methods side by side (especially in terms of type I error rates in 

Table 4 and power in Figure 2), it is clear, the Hopkins method is not preferred. The Hopkins 

method is out performed by the remaining methods. ADONIS, ANOSIM and Distance 

Regression are very similar and provide almost identical results in terms of power and Type I 

error rate. If a comparison of distance matrices is being performed for this type of study, then 

ADONIS, ANOSIM and Distance Regression are all acceptable with ADONIS being slightly 

more recommended due to it being slightly more powerful.  

With ADONIS being the best-performing method, it was then applied it to the dune data 

set. It was applied to the 3 binary covariates (A1, Moisture, and Manure).  When applying 

ADONIS to the variable A1, a p-value of 0.098 was calculated. With this p-value, it is concluded 

that there is not a significant association between A1 (high/low) and between-site distance at α-

level equal to 0.05 (Figure 3a is a visualization of the association between A1 and between-site 

distance.) A p-value of 0.001 was calculated for the variable Moisture with a conclusion that 

there is an association between Moisture (high/low) and between-site distance at α-level equal to 

0.05 (Figure 3b is a visualization of the association between Moisture and between-site distance.) 

A p-value of 0.253 was calculated for the variable Manure with a conclusion that there is not an 

association between (high/low) and between-site distance at α-level equal to 0.05 (Figure 3c is a 

visualization of the association between Manure and between-site distance.) 
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Figure 3 – A heatmap visualization of the dune pairwise between-site distance matrix with 

column- and row-side colors and labels corresponding to levels of covariates (a) A1 high, (b) 

Moisture high, and (c) Manure high. The title of each Figure panel includes the ADONIS p-value 

for the covariate’s association with between-site distance. 

(a) A1 high, p-value 0.089 

 

 

(b) Moisture high, p-value 0.001 

 

(c) Manure high, p-value 0.253 
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 Of the three binary subject-level covariates considered in the dune data, it appears that 

only Moisture is significantly associated with the between-site similarities in vegetation density.  

Figure 3b helps visualize this – the generally-similar set of eight sites represented by the light 

colored block in the upper-right of the heatmap (and the right third of the dendrogram at top) all 

have the same FALSE value for the binary covariate Moisture high.  In other words, these most-

similar sites (in terms of vegetation density across the 30 recorded species) have a low level of 

Moisture.  There is another smaller block of four generally-similar sites (in terms of vegetation 

density across the 30 recorded species) near the lower-left corner of the heatmap that all have a 

high level of Moisture.  The generally-similar blocks of sites in Figures 3a and 3c apparently do 

not correspond sufficiently to the high/low levels of A1 or Manure, respectively, to cause 

ADONIS to return a significant result for those covariates. 

 After calculating comparisons of these methods and applying them to the dune dataset, it 

would not be suggested that the Hopkins method be applied to similar datasets, including the 

dataset provided by the community ecologist mentioned in the motivating study above. Instead, 

ADONIS, ANOSIM, and distance regression would all be improved methods compared to the 

use of the Hopkins method, particularly to achieve high statistical power and avoid an overly-

conservative type I error rate when testing for association of a pairwise distance matrix with a 

binary subject-level covariate. 
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APPENDIX A: R CODE 

 

 
      library(data.table) 
    library(vegan) 

    library(cluster) 

    library(AssocTests) 

    library(MASS) 

    library(sna) 

     

    data(dune) 

    data(dune.env) 

     

    duneNum = c(1:20) 

     

    duneMatrix <- as.matrix(vegdist(dune)) 

     

    set.seed(123) 

     

    n <- 20 #total number of dunes 

    B <- 1000 #how many times i resample for bootstrap 

    nsim <- 1000 

 

    delta.vec <- round(seq(from=0,to=4,length.out=20),2) 

     

    p1 <- p2 <- p3 <- p4 <- matrix(ncol=length(delta.vec),nrow=nsim) 

     

     

    # Define binary variables 

    #A1 

    A1high <- dune.env$A1 > 4 

    # 10 False, 10 True 

     

    #Moisture 

    Moisturehigh=c(dune.env$Moisture == 4 | dune.env$Moisture == 5) 

    # 11 False, 9 True 

     

    #Manure 

    Manurehigh=c(dune.env$Manure == 2 | dune.env$Moisture == 3 | 

                 dune.env$Moisture ==4) 

    # 11 False, 9 True 

     

     

    par(mfrow=c(3,3)) 

     

     

    #define methods 1-4 

     

    #Hopkins Approach 

    meth1 <- function(dX, fact) 

    { 
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      meandX <- mean(as.matrix(dX)[fact==1,fact==1]) 

       

      booteddX=rep(NA, B) 

       

      for (o in 1:B )  

      { 

        dXSample <- sample(duneNum, sum(fact),  replace=T) 

        dXSampleMatrix=as.matrix(dX)[c(dXSample),c(dXSample)] 

        booteddX[o] <- mean(dXSampleMatrix) 

      } 

       

      pvalue <- mean(booteddX <= meandX) 

      return(pvalue) 

    } 

     

  

    #ADONIS 

    meth2 <- function(dX, fact) 

    { 

      fact <- adonis(as.matrix(dX)~fact, permutations = B)  

      pvalue <- as.matrix(fact$aov.tab)[1,6] 

      return(pvalue) 

    } 

     

     

    #ANOSIM 

    meth3 <- function(dX, fact) 

    { 

      pvalue <- anosim(as.matrix(dX), fact, permutations = B)$signif   

      return(pvalue) 

    } 

     

     

    #Distance Regression 

    meth4 <- function(dX, fact) 

    { 

      #Assoc. Test 

      x.mat <- cbind(rep(1,20),1*fact) 

      pvalue <- dr(as.matrix(dX), null.space=1, x.mat, permute=TRUE, 

                   n.MonterCarlo=B)$p.value  

      return(pvalue) 

    } 

 

 

print(date())     

 

    # Run simulations 

    for(i in 1:length(delta.vec)) 

    { 

      delta <- delta.vec[i] 

      for(sim in 1:nsim) 
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      { 

        # Get distance matrix for simulated data 

        X0 <- mvrnorm(n=10, mu=c(0,0), Sigma=diag(2)) 

        X1 <- mvrnorm(n=10, mu=c(delta,delta), Sigma=diag(2)) 

         

        X <- rbind(X0,X1) 

        fact <- rep(c(0,1),each=10) 

        dX <- dist(X) 

         

       

         

        if(sim==1) 

        { 

          use.pch <- fact 

          use.pch[fact==0] <- 18 

          rr <- c(-2.5,2.5+max(delta.vec)) 

          plot(X, col=fact+1, pch=use.pch, xlab='dim1', ylab='dim2', 

               main=paste('delta=',delta,sep=''), 

               xlim=rr,ylim=rr) 

          abline(0,1) 

        } 

         

        # Get p-values for the four methods 

         

        p1[sim,i] <- meth1(dX,fact) 

        p2[sim,i] <- meth2(dX,fact) 

        p3[sim,i] <- meth3(dX,fact) 

        p4[sim,i] <- meth4(dX,fact) 

      } 

    } 

 

print(date())     

 

    

par(mfrow=c(1,1)) 

     

    ## Summarize results 

    alpha <- .05 

     

    # When delta=0 (first column of p1, p2, p2, p4) 

    # get Type I error rate as pct sims giving p-value < alpha 

    err <- rep(NA,4) 

    err[1] <- mean(p1[,1] < alpha) 

    err[2] <- mean(p2[,1] < alpha) 

    err[3] <- mean(p3[,1] < alpha) 

    err[4] <- mean(p4[,1] < alpha) 

     

    err 

     

    # For each delta > 0 (columns 2+ of p1, p2, p3, p4) 

    # get Power for each method as pct sims giving p-value < alpha 

    power <- matrix(nrow=length(delta.vec)-1, ncol=4) 
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    for(j in 1:length(delta.vec)-1) 

    { 

      power[j,1] <- mean(p1[,j+1] < alpha) 

      power[j,2] <- mean(p2[,j+1] < alpha) 

      power[j,3] <- mean(p3[,j+1] < alpha) 

      power[j,4] <- mean(p4[,j+1] < alpha) 

    } 

    row.names(power) <- delta.vec[-1] 

    colnames(power) <- c('Hopkins','Adonis','ANOSIM','Dist. Reg.') 

     

   

    #Visualize: plot pow1, pow2, pow3, pow4 (as lines) 

    matplot(rownames(power), power, type='l', xlab='delta', 

            ylab='power', col=1:4) 

    legend('bottomright', inset=.05, legend=colnames(power),  

           lty=1:4, horiz=FALSE, col=1:4) 

 

 

 

#Apply ADONIS to Dune Dataset's binary variables 

meth2(duneMatrix, A1high) 

meth2(duneMatrix, Moisturehigh) 

meth2(duneMatrix, Manurehigh) 

 

 

#visualize the ADONIS results 

heat <- function(dX, fact) 

{ 

colnames(duneMatrix) <- rownames(duneMatrix) <- fact 

bramp <- colorRampPalette(brewer.pal(n=9,"Blues"))(256) 

sc <- rep(bramp[50],length(fact)) 

sc[fact] <- bramp[200] 

heatmap(duneMatrix, col=bramp, ColSideColors=sc, RowSideColors=sc) 

} 

 

 

#heatmaps of binary covariates 

heat(duneMatrix, A1high) 

heat(duneMatrix, Moisturehigh) 

heat(duneMatrix, Manurehigh) 
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