
Jason Kite
JR Dennison
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/physics_facpub

Recommended Citation
Abstract

The angle dependence of emitted electron spectra from a polycrystalline Au surface has been measured at several incident electron beam energies. The range of incident energies (~100 eV to 2500 eV) extends from below the first crossover energy, through E_{max}, to above the second crossover energy. The traditional distinction between secondary electrons (<50 eV) and backscattered electrons (>50 eV) is found to be inconsistent with our energy- and angle-resolved measurements. We suggest a more “natural” delineation occurs at the local minima of the emission spectra; this feature is studied as a function of incident energy and emission angle. This work is also supported by the NASA Space Environments and Effects Program.

Introduction

Energetic primary electrons (PE’s) incident on a surface induce electron emission from the surface. All of the emitted electrons, directly or indirectly, come from these incident PE’s. Backscattered electrons (BSE’s) originate from elastic or inelastic PE collisions within the solid. Secondary electrons (SE’s) originate via interactions of PE’s or BSE’s with electrons in the solid (Fig. 1). Most SE’s that leave the sample originate within a mean free path of their point of excitation, which is ~10-20 Å for metals [Everhart and Chung, 1972]. SE’s are consequently very sensitive to surface conditions, composition, and crystal structure. The specific interactions that take place to produce BSE’s and SE’s can be investigated by studying the energy and angular resolved (ER and AR) distributions of all the electrons emitted from the surface [Davies, 1999]. In fact, the leading theorists in the field state that, “The maximum information about the SE emission process can be obtained by measuring the number of SE’s emitted per second from 1 cm2 of the surface with energy E in the direction Ω.” [Rösler and Brauer, 1981]

Measured SE’s are conventionally defined to have energies below 50 eV, though doubt has been cast on this arbitrary definition [Davies, 1999, p. 164]. BSE’s, believed to interact through combinations of elastic and inelastic collisions with the material, make up the rest of the electrons with energies greater than 50 eV. A typical energy resolved spectra shows the differentiated ratio of incoming to outgoing current flows versus negative potential detector bias (Fig. 2).

Applications of SE and BSE emission

The general study of SE/BSE emission has many important applications. Three important charging phenomena directly related to SE emission are: (i) the detrimental effects associated with spacecraft charging and their applications [DeForest, 1972; Froonincks, 1992; Katz, 1986; Garrett, 1987, 1989; Hastings, 1998; Wipple 1981; Davies 1996; Nickles, 1999; Chang, 2000], (ii) the effects of high-voltage arcing and "snapover" [Mandell, 1985; Hastings, 1989; Davies, 1997; Thompson, 1999].
Figure 2. AR spectrum with log scale electron count vs. negative detector bias (emission energy). Primary energy of 1.5 keV at normal incidence on polycrystalline Au sample D6 at a 17° emission [Davies, 1999]. Blue line is Chung and Everhart Fit. Red line is empirical exponential fit.

2000], and (iii) plasma-induced small-particle charging [Chow, 1993]. There are also three technological advances currently being studied that are directly related to SE emission: (i) improved understanding and development of the electron microscope [Seiler, 1983; Reimer, 1986, 1993], (ii) electron-emission sources for the development of electron multipliers and flat-panel displays [Kumar, 1995], and (iii) plasma limiters deposited at the walls of nuclear fusion plasma devices [Farhang, 1993].

Importance of SE production mechanisms

The process through which a SE is produced can be modeled as three successive stages: the creation of the SE in the bulk, the transport of the SE from the point of creation to the surface, and the emission of the SE from the surface. The vast majority of theoretical work has involved modeling SE emission with a standard semi-empirical theory developed by Salow and Bruining [Dionne, 1973] using an expression for the number of SE's produced per PE (or SE Yield, δ)

$$\delta = \int (-dE/dx) B e^{-\lambda x} dx. \quad (1)$$

Each of these three stages corresponds to a measured parameter. The “stopping power”, $-dE/dx$, describes the energy transferred from the PE to the SE at a depth x; the inverse mean-free-path, λ, parameterizes the SE transport to the surface; and the constant B is the probability that a SE escapes the surface. Improvements to the theory by Baroody [1950], Stenglass [1950, 1957], Barut [1954], Lye and Dekker [1957], and Dionne [1975] have incorporated slightly different assumptions for the energy loss term, $E(x)$. For example, Stenglass uses the Bethe stopping power formula $(dE/dx) = F \cdot E^{-1} \ln(E/I)$, where F and I are material dependent factors [Kanter, 1961; Susczynsky and Borovsky, 1992]. Alternately, other semi-empirical theories [Schou, 1988; Reimer, 1993] model the stopping power in terms of a power law formula of the form $dE/dx = \Lambda \cdot E^p$. All of these semi-empirical theory variations assume an isotropic angular distribution of SE production mechanisms and therefore successfully account for the low energy features in the AR spectra (e.g. Fig. 2). However, they are incomplete because they do not address SE creation mechanisms resulting from energy exchange within the solid.

Theory for SE Creation and Transport mechanisms

A quantum mechanical theory is needed to address these creation mechanisms as well as investigate whether the AR emission spectrum is indeed isotropic. In such theoretical treatments, the creation of the SE is addressed by considering three types of energy exchange within the solid: (i) the excitation of valence electrons, (ii) the excitation of core electrons, and (iii) the electron excitation due to plasmon decay [Amelio, 1970; Powell and Woodruff, 1972]. Knowing the probability for creating a secondary electron due to each of these energy exchange mechanisms allows one to calculate the transition probability between Bloch states. The resulting ER and AR distribution function for these distinct creation mechanisms (e.g. Fig. 3) can then be propagated to the surface using the Boltzmann transport equation [Bindi, 1980] or Monte Carlo techniques. The full development of the quantum mechanical theories [Ono, 1978] have been derived and simulated by Rösler and Brauer [1981] and Ganachaud and Cailler [1979].

The result of the Rösler and Brauer calculation of the AR emission spectrum of aluminum is particularly interesting. They predicted isotropic (cosine) emission distributions for each mechanism as well as a combined total [see Fig. 4(a)] by adding the different SE excitation mechanisms (Fig. 3). Ganachaud and Cailler also predicted an isotropic total emission distribution in the Al cross sections [see Fig. 4(b)] using their unique randium (random ion position) and jellium (free electron gas) model.
In contrast to the theory, highly anisotropic angle dependent excitation distributions were found for the SE's excited by the three creation mechanisms on gold. (Figs. 5 and 6) This material was chosen because some fine structure has been found. The important result of these quantum mechanical SE theories relevant to this study is the prediction of highly anisotropic excitation distributions becoming isotropic during transport to the surface where emission takes place.

As an aside, there is great interest in aluminum because much fine structure exists due to the strong electron-plasmon coupling (or energy exchange) in the material [Henrich, 1973]. Ganachaud and Cailler note that, "For Al, the characteristic loss spectra show peaks corresponding to the creation of one or several successive bulk plasmons (up to 10)." There has been much theoretical argument as to whether any other nearly-free-electron (NFE) metals have electron-plasmon coupling [Henrich, 1973].

Figure 3. Angular dependence of excitation (a) by dynamical screened electron-electron scattering with a secondary electron energy of (1) 20 eV and (2) 200 eV (b) by core electron excitations with a secondary electron energy of (1) 50 eV and (2) 200 eV and (c) by plasmon decay with a secondary electron energy of (1) 20 eV and (2) 26 eV. Primary energy of 2 keV in aluminum [Rössler and Brauer, 1981].

Figure 4. AR electron emission distributions (a) at 2 eV emission energy for 2 keV PE's normally incident on polycrystalline Al. Contributions are from different excitation mechanisms (1) core electrons, (2) electron-electron, (3) plasmon decay, and (4) combined total. [Rössler and Brauer, 1981]. (b) at 0 - 50 eV emission energy for 100 eV and 600 eV PE's normally incident on polycrystalline Al [Ganachaud and Cailler, 1979]. • and + data are also shown [Jonker, 1951; Jahrreiss and Oppel, 1972]. Line is cosine law.
Experimental evidence has shown that there are other NFE metals, which have electron-plasmon coupling [Amelio, 1970; Hague and Kliewer, 1973]. For example, Chung and Everhart state, "Low-q plasmon decay plays an important role in SE emission, which is not restricted to Al alone but should be valid in other NFE metals as well." [1976, p. 4712] Regardless of the implicit interest in electron-plasmon coupling, other NFE metals have creation mechanisms similar to Al in that they are highly anisotropic.

Since the inelastic mean free path for NFE metals is approximately the same, the transport mechanism should also be similar. Therefore, it is reasonable to infer an isotropic total emission distribution for the AR SE cross sections of NFE metals. Au is the only NFE material that does not oxidize and would therefore be a candidate as a standard.

Experimental Setup

A UHV \((10^{-11} \text{ torr})\) chamber has already been built at Utah State University with a pristine sample environment for these ER AR scattering measurements. Periodic Ar sputtering and annealing of the Au sample confirms uniform, polycrystalline ordering. Magnetic fields have been measured at <10 mGauss and ambient electric fields have been measured by utilizing the rotatable retarding field analyzer Faraday cup detector (RD) angle symmetry placement. The RD has energy resolution of 0.3 eV and angular resolution of 2°. Low incident beam currents (10 to 80 nA) have been used to minimize contamination effects [Dennison, 1997, Chang, 2000].

Integration Boundary for Yield Calculation

As seen in figure 2, there is clearly a sizable portion of SE’s emitted with energy greater than 50 eV. The SE peak has been fit with the Chung and Everhart model and the BSE region with an empirical exponential fit. To account for the portion of miscounted SE’s, a more reasonable choice of boundary, near the tail crossing of these fits, was used to calculate yields. The position, \(E_{\text{min}}\), of the local minimum, \(N_{\text{min}}\), between the SE and BSE regions has been measured for several different incident beam energies (Fig. 5). The reduced local minimum, \(E_{\text{min}}/E_{\text{beam}}\), is also shown (Fig. 6). There is no noticeable angle dependence of \(E_{\text{min}}\).
E_{\text{min}} was used as the integral boundary condition for calculating yields. The SE yield (0 to Emin) and BSE yield (Emin to Ebeam) were calculated for each distribution of AR spectra at beam energies of 500V, 900V, and 2500V. The AR SE cross sections are shown in figure 7 and the AR BSE cross sections are shown in figure 8.

Conclusion

In distinguishing SE’s from BSE’s, a clarification must be made about the subtle difference between excited (true) SE’s and emitted (detected) SE’s. Every emitted SE will be an excited SE, but not every excited SE will become an emitted SE. The use of the traditional 50 eV boundary condition leads to erroneous AR SE cross sections. However, use of the more natural delineation at the local minimum, E_{\text{min}}, as the boundary condition does lead to isotropic AR SE cross sections as theoretically predicted. Any deviations from isotropic AR SE cross sections can lead to new insight about the amounts of the three major types of excitation mechanism.

References

Kumar, N., Diamond-based field emission flat panel displays, Solid State Technology, 71 May 1995.

