Effects of Zinc Oxide Nanoparticles on Drought Tolerance in Winter Wheat

J. W. Deakin1, M. Potter2, J. Hortin3, J. Cooper3, J.E. McLean3, D.W. Britt2, A.J. Anderson2, A.R. Jacobson1

1Department of Plants, Soils, and Climate 2Department of Biological Engineering 3Utah Water Research Laboratory
Introduction

• Drought commonly decreases dryland wheat yields in Utah and globally.

• Zn is important to cell membrane structure, maintaining leaf water status, and superoxide dismutase (SOD) production (Ghanepour et al. 2015).

What is a Nanoparticle?

- A nanometer is 10^{-9} m (one billionth)
- A particle less than 100 nm in at least 1 dimension
- Nano-size particles are smaller than cells, thus can interact with an organism on a cellular level

http://www.thepipettepen.com/blog/nanomedicine-how-much-are-we-willing-to-pay/
Nano Effect?

- Cu and Zn nanoparticles (NPS) increase drought tolerance in certain wheat varieties (Taran et al. 2017).
- ZnO NPs could not be detected in soil after 1 hr incubation (Wang et al. 2013).
SEM Image of Wheat Root Grown with PcO6 and ZnO NPs: 10 days
Hypothesis

ZnO nanoparticle (NP) amendments will mitigate water stress in wheat (*Triticum aestivum*) inoculated with *Pseudomonas chlororaphis* isolate O6 (*PcO6*).
Methods

• Wheat seeds (v. Juniper) inoculated with *Pseudomonas chlororaphis* isolate O6 (*PcO6*)

• Inoculated seeds planted in sand amended with Zn
 • 0.5 mg/kg Zn as ZnO NPs*
 • 5 mg/kg Zn as ZnO NPs*
 • 5 mg/kg Zn as bulk ZnO
 • 2.8 mg/kg Zn as bulk ZnSO₄*7H₂O
 • ZnO nanoparticles: 10-30 nm (SkySprings Nanomaterials)

• Plants were grown under white LED lights (111-538 µmol/m²/s).

• After 14 days water stress was induced in half of the pots for each treatment.
Results

The moisture content differences between the drought and control treatments were significant ($p < 0.05; n = 6$); whereas, differences between the Zn treatments were not. PcO6 was included in every treatment.

Differences in maximum quantum yield of PSII (F_v/F_m) between the drought and control treatments were significant ($p < 0.05; n = 6$); whereas differences between the Zn treatments were not.
Conclusions

• No significant difference in water stress was observed between plants grown in sand amended with Zn as ZnO NPs, bulk ZnO, or bulk ZnSO$_4$; however visual observations and trends in measured data suggest that a nanoparticle effect may exist.

• Future experiments should include more replicates to determine if subtle effects are present.

Acknowledgements

This work is supported by the USDA National Institute of Food and Agriculture, AFRI project 2016-08771; UAES project UTAO-1341; and funding from UAES and the USU Office of Research to purchase the Li-6800. SEM instrumentation supported by NSF CMMI 1337932.